CROSS-REFERENCES TO RELATED APPLICATIONSThe present application is a continuation of U.S. patent application Ser. No. 10/975,555 filed Oct. 27, 2004 (now U.S. Pat. No. 7,811,296), which is a continuation in part of U.S. patent application Ser. No. 10/803,444 filed Mar. 17, 2004 (now U.S. Pat. No. 7,563,273), which is a continuation of U.S. patent application Ser. No. 09/894,463 filed Jun. 27, 2001 (now U.S. Pat. No. 6,752,813), which is a continuation in part of U.S. patent application Ser. No. 09/544,930 filed Apr. 7, 2000 (now U.S. Pat. No. 6,629,534), and which is a non-provisional of, and claims the benefit of U.S. Provisional Patent Application No. 60,128,690, filed Apr. 9, 1999. The entire contents of each of the above listed patent applications is incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to medical methods, devices, and systems. In particular, the present invention relates to methods, devices, and systems for the endovascular, percutaneous or minimally invasive surgical treatment of bodily tissues, such as tissue approximation or valve repair. More particularly, the present invention relates to repair of valves of the heart and venous valves.
Surgical repair of bodily tissues often involves tissue approximation and fastening of such tissues in the approximated arrangement. When repairing valves, tissue approximation includes coapting the leaflets of the valves in a therapeutic arrangement which may then be maintained by fastening or fixing the leaflets. Such coaptation can be used to treat regurgitation which most commonly occurs in the mitral valve.
Mitral valve regurgitation is characterized by retrograde flow from the left ventricle of a heart through an incompetent mitral valve into the left atrium. During a normal cycle of heart contraction (systole), the mitral valve acts as a check valve to prevent flow of oxygenated blood back into the left atrium. In this way, the oxygenated blood is pumped into the aorta through the aortic valve. Regurgitation of the valve can significantly decrease the pumping efficiency of the heart, placing the patient at risk of severe, progressive heart failure.
Mitral valve regurgitation can result from a number of different mechanical defects in the mitral valve or the left ventricular wall. The valve leaflets, the valve chordae which connect the leaflets to the papillary muscles, the papillary muscles or the left ventricular wall may be damaged or otherwise dysfunctional. Commonly, the valve annulus may be damaged, dilated, or weakened limiting the ability of the mitral valve to close adequately against the high pressures of the left ventricle.
The most common treatments for mitral valve regurgitation rely on valve replacement or repair including leaflet and annulus remodeling, the latter generally referred to as valve annuloplasty. A recent technique for mitral valve repair which relies on suturing adjacent segments of the opposed valve leaflets together is referred to as the “bow-tie” or “edge-to-edge” technique. While all these techniques can be very effective, they usually rely on open heart surgery where the patient's chest is opened, typically via a sternotomy, and the patient placed on cardiopulmonary bypass. The need to both open the chest and place the patient on bypass is traumatic and has associated high mortality and morbidity.
For these reasons, it would be desirable to provide alternative and additional methods, devices, and systems for performing the repair of mitral and other cardiac valves. Such methods, devices, and systems should preferably not require open chest access and be capable of being performed either endovascularly, i.e., using devices which are advanced to the heart from a point in the patient's vasculature remote from the heart or by a minimally invasive approach. Further, such devices and systems should provide features which allow repositioning and optional removal of a fixation device prior to fixation to ensure optimal placement. In addition, such devices and systems should provide features that assist in secure engagement of the targeted tissue (e.g. leaflet or other targeted structure) at the time of placement and over time (e.g. tissue in growth, maximal surface area of engagement). The methods, devices, and systems would also be useful for repair of tissues in the body other than heart valves. At least some of these objectives will be met by the inventions described hereinbelow.
2. Description of the Background Art
Minimally invasive and percutaneous techniques for coapting and modifying mitral valve leaflets to treat mitral valve regurgitation are described in PCT Publication Nos. WO 98/35638; WO 99/00059; WO 99/01377; and WO 00/03759.
Maisano et al. (1998) Eur. J. Cardiothorac. Surg. 13:240-246; Fucci et al. (1995) Eur. J. Cardiothorac. Surg. 9:621-627; and Umana et al. (1998) Ann. Thorac. Surg. 66:1640-1646, describe open surgical procedures for performing “edge-to-edge” or “bow-tie” mitral valve repair where edges of the opposed valve leaflets are sutured together to lessen regurgitation. Dec and Fuster (1994) N. Engl. J. Med. 331:1564-1575 and Alvarez et al. (1996) J. Thorac. Cardiovasc. Surg. 112:238-247 are review articles discussing the nature of and treatments for dilated cardiomyopathy.
Mitral valve annuloplasty is described in the following publications. Bach and Bolling (1996) Am. J. Cardiol. 78:966-969; Kameda et al. (1996) Ann. Thorac. Surg. 61:1829-1832; Bach and Bolling (1995) Am. Heart J. 129:1165-1170; and Bolling et al. (1995) 109:676-683. Linear segmental annuloplasty for mitral valve repair is described in Ricchi et al. (1997) Ann. Thorac. Surg. 63:1805-1806. Tricuspid valve annuloplasty is described in McCarthy and Cosgrove (1997) Ann. Thorac. Surg. 64:267-268; Tager et al. (1998) Am. J. Cardiol. 81:1013-1016; and Abe et al. (1989) Ann. Thorac. Surg. 48:670-676.
Percutaneous transluminal cardiac repair procedures are described in Park et al. (1978) Circulation 58:600-608; Uchida et al. (1991) Am. Heart J. 121: 1221-1224; and Ali Khan et al. (1991) Cathet. Cardiovasc. Diagn. 23:257-262.
Endovascular cardiac valve replacement is described in U.S. Pat. Nos. 5,840,081; 5,411,552; 5,554,185; 5,332,402; 4,994,077; and 4,056,854. See also U.S. Pat. No. 3,671,979 which describes a catheter for temporary placement of an artificial heart valve.
Other percutaneous and endovascular cardiac repair procedures are described in U.S. Pat. Nos. 4,917,089; 4,484,579; and 3,874,338; and PCT Publication No. WO 91/01689.
Thoracoscopic and other minimally invasive heart valve repair and replacement procedures are described in U.S. Pat. Nos. 5,855,614; 5,829,447; 5,823,956; 5,797,960; 5,769,812; and 5,718,725.
BRIEF SUMMARY OF THE INVENTIONThe invention provides devices, systems and methods for tissue approximation and repair at treatment sites. The devices, systems and methods of the invention will find use in a variety of therapeutic procedures, including endovascular, minimally-invasive, and open surgical procedures, and can be used in various anatomical regions, including the abdomen, thorax, cardiovascular system, heart, intestinal tract, stomach, urinary tract, bladder, lung, and other organs, vessels, and tissues. The invention is particularly useful in those procedures requiring minimally-invasive or endovascular access to remote tissue locations.
In some embodiments, the devices, systems and methods of the invention are adapted for fixation of tissue at a treatment site. Exemplary tissue fixation applications include cardiac valve repair, septal defect repair, vascular ligation and clamping, laceration repair and wound closure, but the invention may find use in a wide variety of tissue approximation and repair procedures. In a particularly preferred embodiment, the devices, systems and methods of the invention are adapted for repair of cardiac valves, and particularly the mitral valve, as a therapy for regurgitation. The invention enables two or more valve leaflets to be coapted using an “edge-to-edge” or “bow-tie” technique to reduce regurgitation, yet does not require open surgery through the chest and heart wall as in conventional approaches. In addition, the position of the leaflets may vary in diseased mitral valves depending upon the type and degree of disease, such as calcification, prolapse or flail. These types of diseases can result in one leaflet being more mobile than the other (e.g. more difficult to capture), and therefore more difficult to grasp symmetrically in the same grasp with the other leaflet. The features of the present invention allow the fixation devices to be adapted to meet the challenges of unpredictable target tissue geometry, as well as providing a more robust grasp on the tissue once it is captured.
Using the devices, systems and methods of the invention, the mitral valve can be accessed from a remote surgical or vascular access point and the two valve leaflets may be coapted using endovascular or minimally invasive approaches. While less preferred, in some circumstances the invention may also find application in open surgical approaches as well. According to the invention, the mitral valve may be approached either from the atrial side (antegrade approach) or the ventricular side (retrograde approach), and either through blood vessels or through the heart wall.
The fixation devices of the present invention each have a pair of distal elements (or fixation elements). In the main embodiments, each distal element has a first end, a free end opposite the first end, an engagement surface therebetween for engaging tissue and a longitudinal axis extending between the first and free end. The first ends of the at least two distal elements are movably coupled together such that the at least two distal elements are moveable to engage tissue with the engagement surfaces. Thus, the first ends are coupled together so that the distal elements can move between at least an open and closed position to engage tissue. Preferably, the engagement surfaces are spaced apart in the open position and are closer together and generally face toward each other in the closed position.
Each distal element has a width measured perpendicular to its longitudinal axis and a length measured along its longitudinal axis. In one embodiment suitable for mitral valve repair, the fixed width across engagement surfaces (which determines the width of tissue engaged) is at least about 2 mm, usually 3-10 mm, and preferably about 4-6mm. In some situations, a wider engagement is desired wherein the engagement surfaces have a larger fixed width, for example about 2 cm. The engagement surfaces are typically configured to engage a length of tissue of about 4-10 mm, and preferably about 6-8 mm along the longitudinal axis. However, the size of the engagement surfaces may be varied in width and/or length, as will be described in later sections.
The fixation device is preferably delivered to a target location in a patient's body by a delivery catheter having an elongated shaft, a proximal end and a distal end, the delivery catheter being configured to be positioned at the target location from a remote access point such as a vascular puncture or cut-down or a surgical penetration. In an alternative embodiment, the target location is a valve in the heart.
Optionally, the fixation devices of the invention will further include at least one proximal element (or gripping element). Each proximal element and distal element will be movable relative to each other and configured to capture tissue between the proximal element and the engagement surface of the distal element. Preferably, the distal elements and proximal elements are independently movable but in some embodiments may be movable with the same mechanism. The proximal element may be preferably biased toward the engagement surface of the fixation element to provide a compressive force against tissue captured therebetween.
In a first aspect of the present invention, fixation devices are provided that include at least two distal elements and an actuatable feature attached to at least one of the at least two distal elements. Actuation of the feature varies a dimension of at least one of the at least two distal elements which varies the size of its engagement surface. For example, in some embodiments, the actuatable feature is configured so that actuation varies the width of the distal element. In some of these embodiments, the actuatable feature comprises at least one loop which is extendable laterally outwardly in a direction perpendicular to the longitudinal axis. Thus, extension of the at least one loop increases the size of the engagement surface of the distal element, specifically the width. In others of these embodiments, the actuatable feature comprises at least one flap which is extendable laterally outwardly in a direction perpendicular to the longitudinal axis. And in still others, the actuatable feature comprises at least one pontoon which is expandable laterally outwardly in a direction perpendicular to the longitudinal axis. The pontoon may be expanded by inflation or any suitable means.
In some embodiments, the actuatable feature is configured so that actuation varies the length of the distal element. In some of these embodiments, the actuatable feature comprises at least one loop which is extendable laterally outwardly from its free end along its longitudinal axis. Thus, extension of the at least one loop increases the size of the engagement surface of the distal element, specifically the length. In others of these embodiments, each of the distal elements comprises an elongate arm and the actuatable feature comprises an extension arm coupled with the elongate arm. The extension arm is extendable from the elongate arm to increase the length of the distal element. For example, in some instances the extension arm is coupled with the elongate arm by a cam such that rotation of the cam advances the extension arm along the longitudinal axis. Extension or retraction of the extension arm may be actuated by movement of the fixation device. For example, when each distal element is moveable from a closed position (wherein the engagement surfaces of the at least two distal elements are closer together) to an open position (wherein the engagement surfaces of the at least two distal elements are further apart), movement between the closed and open position may advance the extension arm of each distal element along its longitudinal axis.
In a second aspect of the present invention, fixation devices are provided that include two pairs of distal elements, wherein the pairs of distal elements are in an opposed orientation so that the engagement surfaces of one pair faces the engagement surfaces of the other pair, and wherein the pairs of distal elements are moveable to engage tissue with the opposed engagement surfaces of the two pairs of distal elements. Thus, the fixation device includes four distal elements, the distal elements functioning in pairs so that each pair of distal elements engages a valve leaflet (in the case of the tissue comprising a valve leaflet) rather than a single distal element engaging each valve leaflet. In some embodiments, the distal elements of at least one of the two pairs are alignable so their longitudinal axes are substantially parallel. Alternatively or in addition, the distal elements of at least one of the two pairs may be rotatable laterally outwardly to a splayed position wherein their longitudinal axes substantially form an angle.
In a third aspect of the present invention, accessories are provided which may be used with fixation devices of the present invention. Such accessories may provide benefits which are similar to increasing the width and/or length of the distal elements. Thus, such accessories may be used with fixation devices of fixed dimension or with fixation devices having distal elements of varying dimensions.
In some embodiments, the accessory comprises a support coupleable with the fixation device, the support having at least two planar sections, each planar section configured to mate with an engagement surface of a distal element when coupled. In some embodiments, wherein the tissue comprises a valve leaflet, the support is configured so that each planar section is positionable against an upstream surface of the valve leaflet while each distal element is positionable against a downstream surface of the valve leaflet. Typically the fixation device is released from a delivery catheter yet temporarily maintained by a tether. Thus, in some embodiments, the support is configured to be advancable along the tether to the fixation device. The tether may be removed from the fixation device while the support is coupled to the fixation device. Thus, the fixation device and support may be left behind to maintain fixation of the tissue.
In a fourth aspect of the present invention, a fixation device is provided having at least two distal elements wherein each of the at least two distal elements has a length along its longitudinal axis, and wherein the length of one of the at least two distal elements is longer than another of the at least two distal elements. In some embodiments, the fixation device has variable length distal elements, wherein each distal element is adjustable to a different length. In other embodiments, the fixation device has fixed length distal elements, wherein each distal element is formed to have a different length. And, in still further embodiments, the fixation device has both fixed and variable length distal elements.
Other aspects of the nature and advantages of the invention are set forth in the detailed description set forth below, taken in conjunction with the drawings.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1A-1C illustrate grasping of the leaflets with a fixation device, inversion of the distal elements of the fixation device and removal of the fixation device, respectively.
FIG. 2 illustrates the position of the fixation device in a desired orientation relative to the leaflets.
FIG. 3 illustrates another embodiment of the fixation device of the present invention.
FIGS. 4A-4B,5A-5B,6A-6B,7A-7B illustrate embodiments of a fixation device in various possible positions during introduction and placement of the device within the body to perform a therapeutic procedure.
FIGS. 8A-8B illustrate an embodiment of distal elements having variable width wherein one or more loops are extendable laterally outwardly.
FIGS. 9A-9B illustrate an embodiment of distal elements having variable width wherein one or more flaps are extendable laterally outwardly.
FIGS. 10A-10B illustrate an embodiment of distal elements having variable width wherein one or more pontoons are expandable laterally outwardly.
FIGS. 11A-11B provide a perspective view of a fixation device having distal elements which are capable of moving to a splayed position.
FIGS. 11C-11D provide a side view of the fixation device ofFIGS. 11A-11B plicating tissue of a leaflet.
FIGS. 12A-12B provide a top view of a fixation device having distal elements which are capable of moving to a splayed position.
FIGS. 13A-13B illustrate an embodiment of distal elements having variable length wherein one or more loops are extendable outwardly.
FIGS. 14A-14B,15 illustrate embodiments of distal elements having variable length wherein the distal elements include extension arms.
FIG. 16 illustrates an embodiment of the fixation device having distal elements of different lengths.
FIGS. 17A-17B illustrate an embodiment of an accessory for use with fixation devices of the present invention.
FIGS. 18A-18B illustrate an embodiment of distal elements which vary in length and width.
FIGS. 19A-19C,20A-20C illustrate embodiments of a fixation device combining splaying and variable length distal elements.
DETAILED DESCRIPTION OF THE INVENTION1. Fixation Device Overview. The present invention provides methods and devices for grasping, approximating and fixating tissues such as valve leaflets to treat cardiac valve regurgitation, particularly mitral valve regurgitation.
Grasping may be atraumatic which can provide a number of benefits. By atraumatic, it is meant that the devices and methods of the invention may be applied to the valve leaflets and then removed without causing any significant clinical impairment of leaflet structure or function.
The leaflets and valve continue to function substantially the same as before the invention was applied. Thus, some minor penetration or denting of the leaflets may occur using the invention while still meeting the definition of “atraumatic”. This enables the devices of the invention to be applied to a diseased valve and, if desired, removed or repositioned without having negatively affected valve function. In addition, it will be understood that in some cases it may be necessary or desirable to pierce or otherwise permanently affect the leaflets during either grasping, fixing or both. In some of these cases, grasping and fixation may be accomplished by a single device. Although a number of embodiments are provided to achieve these results, a general overview of the basic features will be presented herein. Such features are not intended to limit the scope of the invention and are presented with the aim of providing a basis for descriptions of individual embodiments presented later in the application.
The devices and methods of the invention rely upon the use of an interventional tool that is positioned near a desired treatment site and used to grasp the target tissue. In endovascular applications, the interventional tool is typically an interventional catheter. In surgical applications, the interventional tool is typically an interventional instrument. In some embodiments, fixation of the grasped tissue is accomplished by maintaining grasping with a portion of the interventional tool which is left behind as an implant. While the invention may have a variety of applications for tissue approximation and fixation throughout the body, it is particularly well adapted for the repair of valves, especially cardiac valves such as the mitral valve. Referring toFIG. 1A, aninterventional tool10, having a delivery device, such as ashaft12, and afixation device14, is illustrated having approached the mitral valve MV from the atrial side and grasped the leaflets LF. The mitral valve may be accessed either surgically or by using endovascular techniques, and either by a retrograde approach through the ventricle or by an antegrade approach through the atrium, as described above. For illustration purposes, an antegrade approach is described.
Thefixation device14 is releasably attached to theshaft12 of theinterventional tool10 at its distal end. When describing the devices of the invention herein, “proximal” shall mean the direction toward the end of the device to be manipulated by the user outside the patient's body, and “distal” shall mean the direction toward the working end of the device that is positioned at the treatment site and away from the user. With respect to the mitral valve, proximal shall refer to the atrial or upstream side of the valve leaflets and distal shall refer to the ventricular or downstream side of the valve leaflets.
Thefixation device14 typically comprises proximal elements16 (or gripping elements) and distal elements18 (or fixation elements) which protrude radially outward and are positionable on opposite sides of the leaflets LF as shown so as to capture or retain the leaflets therebetween. Theproximal elements16 may be comprised of cobalt chromium, nitinol or stainless steel, and thedistal elements18 are may be comprised of cobalt chromium or stainless steel, however any suitable materials may be used. Thefixation device14 is coupleable to theshaft12 by acoupling mechanism17. Thecoupling mechanism17 allows thefixation device14 to detach and be left behind as an implant to hold the leaflets together in the coapted position.
In some situations, it may be desired to reposition or remove thefixation device14 after theproximal elements16,distal elements18, or both have been deployed to capture the leaflets LF. Such repositioning or removal may be desired for a variety of reasons, such as to reapproach the valve in an attempt to achieve better valve function, more optimal positioning of thedevice14 on the leaflets, better purchase on the leaflets, to detangle thedevice14 from surrounding tissue such as chordae, to exchange thedevice14 with one having a different design, or to abort the fixation procedure, to name a few. To facilitate repositioning or removal of thefixation device14 thedistal elements18 are releasable and optionally invertible to a configuration suitable for withdrawal of thedevice14 from the valve without tangling or interfering with or damaging the chordae, leaflets or other tissue.FIG. 1B illustrates inversion wherein thedistal elements18 are moveable in the direction ofarrows40 to an inverted position. Likewise, theproximal elements16 may be raised, if desired. In the inverted position, thedevice14 may be repositioned to a desired orientation wherein the distal elements may then be reverted to a grasping position against the leaflets as inFIG. 1A. Alternatively, thefixation device14 may be withdrawn (indicated by arrow42) from the leaflets as shown inFIG. 1C. Such inversion reduces trauma to the leaflets and minimizes any entanglement of the device with surrounding tissues. Once thedevice14 has been withdrawn through the valve leaflets, the proximal and distal elements may be moved to a closed position or configuration suitable for removal from the body or for reinsertion through the mitral valve.
FIG. 2 illustrates the position of thefixation device14 in a desired orientation in relation to the leaflets LF. This is a short-axis view of the mitral valve MV from the atrial side, therefore, theproximal elements16 are shown in solid line and thedistal elements18 are shown in dashed line. The proximal anddistal elements16,18 are positioned to be substantially perpendicular to the line of coaptation C. Thedevice14 may be moved roughly along the line of coaptation to the location of regurgitation. The leaflets LF are held in place so that during diastole, as shown inFIG. 2, the leaflets LF remain in position between theelements16,18 surrounded by openings O which result from the diastolic pressure gradient. Advantageously, leaflets LF are coapted such that their proximal or upstream surfaces are facing each other in a vertical orientation, parallel to the direction of blood flow through mitral valve MV. The upstream surfaces may be brought together so as to be in contact with one another or may be held slightly apart, but will preferably be maintained in the substantially vertical orientation in which the upstream surfaces face each other at the point of coaptation. This simulates the double orifice geometry of a standard surgical bow-tie repair. Color Doppler echo will show if the regurgitation of the valve has been reduced. If the resulting mitral flow pattern is satisfactory, the leaflets may be fixed together in this orientation. If the resulting color Doppler image shows insufficient improvement in mitral regurgitation, theinterventional tool10 may be repositioned. This may be repeated until an optimal result is produced wherein the leaflets LF are held in place. Once the leaflets are coapted in the desired arrangement, thefixation device14 is then detached from theshaft12 and left behind as an implant to hold the leaflets together in the coapted position.
FIG. 3 illustrates an embodiment of afixation device14. Here, thefixation device14 is shown coupled to ashaft12 to form aninterventional tool10. Thefixation device14 includes acoupling member19 and a pair of opposeddistal elements18. Thedistal elements18 compriseelongate arms53, each arm having aproximal end52 rotatably connected to thecoupling member19 and afree end54. The free ends54 have a rounded shape to minimize interference with and trauma to surrounding tissue structures. Eachfree end54 may define a curvature about two axes, one being alongitudinal axis66 ofarms53. Thus, engagement surfaces50 have a cupped or concave shape to surface area in contact with tissue and to assist in grasping and holding the valve leaflets. This further allowsarms53 to nest around theshaft12 in a closed position to minimize the profile of the device.Arms53 may be at least partially cupped or curved inwardly about theirlongitudinal axes66. Also, eachfree end54 may define a curvature about anaxis67 perpendicular tolongitudinal axis66 ofarms53. This curvature is a reverse curvature along the most distal portion of thefree end54. Likewise, the longitudinal edges of the free ends54 may flare outwardly. Both the reverse curvature and flaring minimize trauma to the tissue engaged therewith.Arms53 further include a plurality of openings to enhance grip and to promote tissue ingrowth following implantation.
The valve leaflets are grasped between thedistal elements18 andproximal elements16. In some embodiments, theproximal elements16 are flexible, resilient, and cantilevered from couplingmember19. The proximal elements are preferably resiliently biased toward the distal elements. Eachproximal element16 is shaped and positioned to be at least partially recessed within the concavity of thedistal element18 when no tissue is present. When thefixation device14 is in the open position, theproximal elements16 are shaped such that eachproximal element16 is separated from theengagement surface50 near theproximal end52 ofarm53 and slopes toward theengagement surface50 near thefree end54 with the free end of the proximal element contactingengagement surface50, as illustrated inFIG. 3. This shape of theproximal elements16 accommodates valve leaflets or other tissues of varying thicknesses.
Proximal elements16 include a plurality ofopenings63 and scalloped side edges61 to increase grip on tissue. Theproximal elements16 optionally include frictional accessories, frictional features or grip-enhancing elements to assist in grasping and/or holding the leaflets. In some embodiments, the frictional accessories comprisebarbs60 having tapering pointed tips extending toward engagement surfaces50. It may be appreciated that any suitable frictional accessories may be used, such as prongs, windings, bands, barbs, grooves, channels, bumps, surface roughening, sintering, high-friction pads, coverings, coatings or a combination of these. Optionally, magnets may be present in the proximal and/or distal elements. It may be appreciated that the mating surfaces will be made from or will include material of opposite magnetic charge to cause attraction by magnetic force. For example, the proximal elements and distal elements may each include magnetic material of opposite charge so that tissue is held under constant compression between the proximal and distal elements to facilitate faster healing and ingrowth of tissue. Also, the magnetic force may be used to draw theproximal elements16 toward thedistal elements18, in addition to or alternatively to biasing of the proximal elements toward the distal elements. This may assist in deployment of theproximal elements16. In another example, thedistal elements18 each include magnetic material of opposite charge so that tissue positioned between thedistal elements18 is held therebetween by magnetic force.
Thefixation device14 also includes anactuation mechanism58. In this embodiment, theactuation mechanism58 comprises two link members orlegs68, eachleg68 having afirst end70 which is rotatably joined with one of thedistal elements18 at a riveted joint76 and asecond end72 which is rotatably joined with astud74. Thelegs68 may be comprised of a rigid or semi-rigid metal or polymer such as Elgiloy®, cobalt chromium or stainless steel, however any suitable material may be used. While in the embodiment illustrated bothlegs68 are pinned tostud74 by asingle rivet78, it may be appreciated, however, that eachleg68 may be individually attached to thestud74 by a separate rivet or pin. Thestud74 is joinable with an actuator rod64 (not shown) which extends through theshaft12 and is axially extendable and retractable to move thestud74 and therefore thelegs68 which rotate thedistal elements18 between closed, open and inverted positions. Likewise, immobilization of thestud74 holds thelegs68 in place and therefore holds thedistal elements18 in a desired position. Thestud74 may also be locked in place by a locking feature.
In any of the embodiments offixation device14 disclosed herein, it may be desirable to provide some mobility or flexibility indistal elements18 and/orproximal elements16 in the closed position to enable these elements to move or flex with the opening or closing of the valve leaflets. This provides shock absorption and thereby reduces force on the leaflets and minimizes the possibility for tearing or other trauma to the leaflets. Such mobility or flexibility may be provided by using a flexible, resilient metal or polymer of appropriate thickness to construct thedistal elements18. Also, the locking mechanism of the fixation device (described below) may be constructed of flexible materials to allow some slight movement of the proximal and distal elements even when locked. Further, thedistal elements18 can be connected to thecoupling mechanism19 or toactuation mechanism58 by a mechanism that biases the distal element into the closed position (inwardly) but permits the arms to open slightly in response to forces exerted by the leaflets. For example, rather than being pinned at a single point, these components may be pinned through a slot that allowed a small amount of translation of the pin in response to forces against the arms. A spring is used to bias the pinned component toward one end of the slot.
FIGS. 4A-4B,5A-5B,6A-6B,7A-7B illustrate embodiments of thefixation device14 ofFIG. 3 in various possible positions during introduction and placement of thedevice14 within the body to perform a therapeutic procedure.FIG. 4A illustrates an embodiment of aninterventional tool10 delivered through acatheter86. It may be appreciated that theinterventional tool10 may take the form of a catheter, and likewise, thecatheter86 may take the form of a guide catheter or sheath. However, in this example the termsinterventional tool10 andcatheter86 will be used. Theinterventional tool10 comprises afixation device14 coupled to ashaft12 and thefixation device14 is shown in the closed position.FIG. 4B illustrates a similar embodiment of the fixation device ofFIG. 4A in a larger view. In the closed position, the opposed pair ofdistal elements18 are positioned so that the engagement surfaces50 face each other. Eachdistal element18 comprises anelongate arm53 having a cupped or concave shape so that together thearms53 surround theshaft12 and optionally contact each other on opposite sides of the shaft. This provides a low profile for thefixation device14 which is readily passable through thecatheter86 and through any anatomical structures, such as the mitral valve. In addition,FIG. 4B further includes anactuation mechanism58. In this embodiment, theactuation mechanism58 comprises twolegs68 which are each movably coupled to abase69. Thebase69 is joined with anactuator rod64 which extends through theshaft12 and is used to manipulate thefixation device14. In some embodiments, theactuator rod64 attaches directly to theactuation mechanism58, particularly thebase69. However, theactuator rod64 may alternatively attach to astud74 which in turn is attached to thebase69. In some embodiments, thestud74 is threaded so that theactuator rod64 attaches to thestud74 by a screw-type action. However, therod64 andstud74 may be joined by any mechanism which is releasable to allow thefixation device14 to be detached fromshaft12.
FIGS. 5A-5B illustrate thefixation device14 in the open position. In the open position, thedistal elements18 are rotated so that the engagement surfaces50 face a first direction. Distal advancement of thestud74 relative to couplingmember19 by action of theactuator rod64 applies force to thedistal elements18 which begin to rotate aroundjoints76 due to freedom of movement in this direction. Such rotation and movement of thedistal elements18 radially outward causes rotation of thelegs68 aboutjoints80 so that thelegs68 are directly slightly outwards. Thestud74 may be advanced to any desired distance correlating to a desired separation of thedistal elements18. In the open position, engagement surfaces50 are disposed at an acute angle relative toshaft12, and are preferably at an angle of between 90 and 180 degrees relative to each other. In one embodiment, in the open position the free ends54 ofarms53 have a span therebetween of about 10-20 mm, usually about 12-18 mm, and preferably about 14-16 mm.
Proximal elements16 are typically biased outwardly towardarms53. Theproximal elements16 may be moved inwardly toward theshaft12 and held against theshaft12 with the aid ofproximal element lines90 which can be in the form of sutures, wires, nitinol wire, rods, cables, polymeric lines, or other suitable structures. The proximal element lines90 may be connected with theproximal elements16 by threading thelines90 in a variety of ways. When theproximal elements16 have a loop shape, as shown inFIG. 5A, theline90 may pass through the loop and double back. When theproximal elements16 have an elongate solid shape, as shown inFIG. 5B, theline90 may pass through one or more of theopenings63 in theelement16. Further, aline loop48 may be present on aproximal element16, also illustrated inFIG. 5B, through which aproximal element line90 may pass and double back. Such aline loop48 may be useful to reduce friction onproximal element line90 or when theproximal elements16 are solid or devoid of other loops or openings through which the proximal element lines90 may attach. Aproximal element line90 may attach to theproximal elements16 by detachable means which would allow asingle line90 to be attached to aproximal element16 without doubling back and would allow thesingle line90 to be detached directly from theproximal element16 when desired. Examples of such detachable means include hooks, snares, clips or breakable couplings, to name a few. By applying sufficient tension to theproximal element line90, the detachable means may be detached from theproximal element16 such as by breakage of the coupling. Other mechanisms for detachment may also be used. Similarly, a lock line92 may be attached and detached from a locking mechanism by similar detachable means.
In the open position, thefixation device14 can engage the tissue which is to be approximated or treated. This embodiment is adapted for repair of the mitral valve using an antegrade approach from the left atrium. Theinterventional tool10 is advanced through the mitral valve from the left atrium to the left ventricle. Thedistal elements18 are oriented to be perpendicular to the line of coaptation and then positioned so that the engagement surfaces50 contact the ventricular surface of the valve leaflets, thereby grasping the leaflets. Theproximal elements16 remain on the atrial side of the valve leaflets so that the leaflets lie between the proximal and distal elements. In this embodiment, theproximal elements16 have frictional accessories, such asbarbs60 which are directed toward thedistal elements18. However, neither theproximal elements16 nor thebarbs60 contact the leaflets at this time.
Theinterventional tool10 may be repeatedly manipulated to reposition thefixation device14 so that the leaflets are properly contacted or grasped at a desired location. Repositioning is achieved with the fixation device in the open position. In some instances, regurgitation may also be checked while thedevice14 is in the open position. If regurgitation is not satisfactorily reduced, the device may be repositioned and regurgitation checked again until the desired results are achieved.
It may also be desired to invert thefixation device14 to aid in repositioning or removal of thefixation device14.FIGS. 6A-6B illustrate thefixation device14 in the inverted position.
By further advancement ofstud74 relative to couplingmember19, thedistal elements18 are further rotated so that the engagement surfaces50 face outwardly and free ends54 point distally, with eacharm53 forming an obtuse angle relative toshaft12. The angle betweenarms53 is preferably in the range of about 270 to 360 degrees. Further advancement of thestud74 further rotates thedistal elements18 around joints76. This rotation and movement of thedistal elements18 radially outward causes rotation of thelegs68 aboutjoints80 so that thelegs68 are returned toward their initial position, generally parallel to each other. Thestud74 may be advanced to any desired distance correlating to a desired inversion of thedistal elements18. Preferably, in the fully inverted position, the span between free ends54 is no more than about 20 mm, usually less than about 16 mm, and preferably about 12-14 mm. In this illustration, theproximal elements16 remain positioned against theshaft12 by exerting tension on the proximal element lines90. Thus, a relatively large space may be created between theelements16,18 for repositioning. In addition, the inverted position allows withdrawal of thefixation device14 through the valve while minimizing trauma to the leaflets. Engagement surfaces50 provide an atraumatic surface for deflecting tissue as the fixation device is refracted proximally. It should be further noted thatbarbs60 are angled slightly in the distal direction (away from the free ends of the proximal elements16), reducing the risk that the barbs will catch on or lacerate tissue as the fixation device is withdrawn.
Once thefixation device14 has been positioned in a desired location against the valve leaflets, the leaflets may then be captured between theproximal elements16 and thedistal elements18.FIGS. 7A-7B illustrate thefixation device14 in such a position. Here, theproximal elements16 are lowered toward the engagement surfaces50 so that the leaflets are held therebetween. InFIG. 7B, theproximal elements16 are shown to includebarbs60 which may be used to provide atraumatic gripping of the leaflets. Alternatively, larger, more sharply pointed barbs or other penetration structures may be used to pierce the leaflets to more actively assist in holding them in place. This position is similar to the open position ofFIGS. 5A-5B, however theproximal elements16 are now lowered towardarms53 by releasing tension onproximal element lines90 to compress the leaflet tissue therebetween. At any time, theproximal elements16 may be raised and thedistal elements18 adjusted or inverted to reposition thefixation device14, if regurgitation is not sufficiently reduced.
After the leaflets have been captured between the proximal anddistal elements16,18 in a desired arrangement, thedistal elements18 may be locked to hold the leaflets in this position or thefixation device14 may be returned to or toward a closed position.
It may be appreciated that thefixation devices14 of the present invention may have any or all of the above described functions and features. For example, thefixation devices14 may or may not be moveable to an inverted position. Or, thefixation devices14 may or may not includeproximal elements16. Thus, the above described aspects of thefixation devices14 are simply various embodiments and are not intended to limit the scope of the present invention.
2. Variable Width Distal Elements. The width of one or moredistal elements18 of afixation device14 may be varied to increase the surface area and therefore increase the area of contact with tissue to be fixated, such as a valve leaflet. In some embodiments, the width is increased once the leaflets have been grasped. In other embodiments, the width is increased prior to grasping of the leaflets. Although it is typically desired to increase the width of thedistal elements18 to increase purchase size and distribute fixation forces, in some instances the variable widthdistal elements18 may be used to decrease the width, either prior to leaflet grasping or while the leaflets are grasped.
FIGS. 8A-8B illustrate an embodiment ofdistal elements18 having a variable width. In this embodiment, eachdistal element18 has one ormore loops100 which are extendable laterally outward in a direction perpendicular tolongitudinal axis66.FIG. 8A illustrates theloops100 in a retracted position, wherein thedistal elements18 each have a width determined by the size of thedistal element18 itself. In this embodiment, theloops100 are disposed on a surface of thedistal elements18 opposite the engagement surfaces50 when in the retracted position. However, it may be appreciated that theloops100 may be disposed on the engagement surfaces50 or within thedistal elements18 themselves.FIG. 8B illustrates theloops100 in an expanded position wherein theloops100 extend laterally outward in a direction perpendicular tolongitudinal axis66. Expansion may be active or passive. Theloops100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number ofloops100 may be present, theloops100 may extend any distance and theloops100 may expand on one side of a distal element and not the other.
FIGS. 9A-9B illustrate another embodiment of afixation device14 havingdistal elements18 of variable width; here, thefixation device14 is shown grasping a leaflet LF. In this embodiment, eachdistal element18 has one ormore flaps104 which are extendable laterally outward in a direction perpendicular tolongitudinal axis66.FIG. 9A illustrates theflaps104 in a retracted position wherein theflaps104 are substantially disposed within thedistal elements18 themselves. It may be appreciated however that theflaps104 may be folded or curved so that the flaps are substantially disposed on the engagement surfaces50 or on a surface of thedistal elements18 opposite the engagement surfaces50.FIG. 9B illustrates theflaps104 in an expanded position wherein theflaps104 extend laterally outward in a direction perpendicular tolongitudinal axis66. Expansion may be active or passive. Theflaps104 may be comprised of any suitable material including polymer, mesh, metal, shape-memory alloy or a combination of these, to name a few. Further, it may be appreciated that any number offlaps104 may be present, theflaps104 may extend any distance and theflaps104 may expand on one side of a distal element and not the other.
FIGS. 10A-10B illustrate yet another embodiment of afixation device14 havingdistal elements18 of variable width. In this embodiment, eachdistal element18 has one orpontoons108 which are expandable laterally outward in a direction perpendicular tolongitudinal axis66.FIG. 10A provides a perspective view of afixation device14 havingexpandable pontoons108 wherein thepontoons108 are in an expanded state.FIG. 10B provides a side view of thefixation device14 ofFIG. 10B. Here, the increase in width of thedistal element18 due to thepontoon108 may be readily seen. Thepontoons108 may be expanded by any means, such as by inflation with liquid or gas, such as by inflation with saline solution. Such expansion may be active or passive. Thepontoons108 may be comprised of any suitable material such as a flexible polymer or plastic. Further, it may be appreciated that any number ofpontoons108 may be present, thepontoons108 may extend any distance and apontoon108 may expand on one side of a distal element and not the other.
3. Splayed Distal Elements. In some embodiments, thefixation device14 includes additionaldistal elements18 that assist in grasping of tissue, such as a valve leaflet. For example, thefixation device14 may include fourdistal elements18 wherein a pair ofdistal elements18 grasp each side of the leaflet. The pairs ofdistal elements18 may have any arrangement, however in some embodiments thedistal elements18 of each pair rotated laterally outwardly to a splayed position. This increases the area of contact with the tissue to be fixated and distributes the fixation forces across a broader portion of the tissue. Typically, the pairs of distal elements are splayed prior to grasping of the leaflets, however such splaying may be achieved after grasping.
FIGS. 11A-11B provide a perspective view of an embodiment of afixation device14 having a firstdistal element112, a seconddistal element114, a thirddistal element116 and a fourthdistal element118. Thedistal elements112,114,116,118 are arranged in pairs so that the first and seconddistal elements112,114 are connected with oneleg68 and the third and fourthdistal elements116,118 are connected with theother leg68′ allowing the distal elements to grasp in pairs.FIG. 11A illustrates thefixation device14 in a closed position wherein thedistal elements112,114,116,118 are in substantially parallel alignment.FIG. 11B illustrates thefixation device14 in an open position wherein thedistal elements112,114,116,118 are splayed apart. Here, the first and seconddistal elements114 are rotated laterally outwardly so that the free ends54 are moved away from each other. Such splaying may be achieved as a result of opening thefixation device14 or may be achieved separately from the opening and closing mechanism. In this embodiment, thefixation device14 includes twoproximal elements16, eachproximal element16 facing a pair of distal elements. It may be appreciated that any number ofproximal elements16, if any, may be present, including a corresponding proximal element for each distal element. Finally, thedistal elements112,114,116,118 may be splayed to separate the distal elements by any distance and the distance may be fixed or variable. Further, thedistal elements112,114,116,118 may be returned to the substantially parallel alignment.
FIG. 11C provides a side view of thefixation device14 ofFIGS. 11A-11B capturing valve leaflets LF in a coapted position. Thefixation device14 is shown in the splayed position wherein thedistal elements112,114 are rotated laterally outwardly so that the free ends54 are moved away from each other. It may be appreciated theproximal element16 is disposed on the opposite side of the leaflet LF and therefore shielded from view. Return of thedistal elements112,114 toward the substantially parallel alignment, as illustrated inFIG. 11D, may capture tissue between thedistal elements112,114, plicating the leaflet LF as shown. Such plication may be desired for optimal treatment of the diseased valve.
FIGS. 12A-12B provide a top view of another embodiment of afixation device14 having a firstdistal element112, a seconddistal element114, a thirddistal element116 and a fourthdistal element118.FIG. 12A illustrates thefixation device14 in a closed position wherein thedistal elements112,114,116,118 are in substantially parallel alignment.FIG. 12B illustrates thefixation device14 in an open position wherein thedistal elements112,114,116,118 are splayed apart. Here, the first and seconddistal elements114 are rotated laterally outwardly so that the free ends54 are moved away from each other. Again, such splaying may be achieved as a result of opening thefixation device14 or may be achieved separately from the opening and closing mechanism. And, thedistal elements112,114,116,118 may be splayed to separate the distal elements by any distance and the distance may be fixed or variable. Further, thedistal elements112,114,116,118 may be returned to the substantially parallel alignment. Again, it may be appreciated that return of the distal elements toward the substantially parallel alignment may capture tissue between the distal elements, plicating the leaflet.
4. Variable Length Distal Elements. The length of one or moredistal elements18 of afixation device14 may be varied to increase the surface area and therefore increase the area of contact with tissue to be fixated, such as a valve leaflet. In some embodiments, the length is increased once the leaflets have been grasped. In other embodiments, the length is increased prior to grasping of the leaflets. Although it is typically desired to increase the length of thedistal elements18 to increase purchase size and distribute fixation forces, in some instances the variable lengthdistal elements18 may be used to decrease the length, either prior to leaflet grasping or while the leaflets are grasped.
FIGS. 13A-13B illustrate an embodiment ofdistal elements18 having a variable length. In this embodiment, eachdistal element18 has one ormore loops100 which are extendable outwardly from the free ends54 alonglongitudinal axis66.FIG. 13A illustrates theloops100 in a refracted position, wherein thedistal elements18 each have a length determined substantially by the length of thedistal element18 itself. In this embodiment, theloops100 are retracted within thedistal elements18 themselves. However, it may be appreciated that theloops100 may be disposed on the engagement surfaces50 or on a surface opposite the engagement surfaces50.FIG. 13B illustrates theloops100 in an expanded position wherein theloops100 extend outwardly alonglongitudinal axis66. Expansion may be active or passive. Theloops100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number ofloops100 may be present and theloops100 may extend any distance.
FIGS. 14A-14B illustrate another embodiment of afixation device14 havingdistal elements18 of variable length. In this embodiment, thefixation device14 includes acoupling member19 and a pair of opposeddistal elements18, wherein eachdistal element18 is comprised of anelongate arm53 which is coupled with anextension arm130. Eachelongate arm53 has aproximal end52 rotatably connected to thecoupling member19 and afree end54. Theextension arm130 is coupled with theelongate arm53 near thefree end54 to lengthen the distal element in the direction of alongitudinal axis66. Eachelongate arm53 is also coupled with aleg68, eachleg68 having afirst end70 which is rotatably joined with one of thedistal elements18 and asecond end72 which is rotatably joined with abase69.
In this embodiment, theextension arm130 is coupled with theelongate arm53 by a cam132. Theleg68 is joined with thearm53 and cam132 at a first joint134 and theextension arm130 is joined with the cam132 at asecond joint136. Rotation of the cam132 in the direction of arrows138, advances theextension arm130 along thelongitudinal axis66.FIG. 14B shows the cams132 rotated so that theextension arms130 are extended in the direction ofarrows140. The cams132 may rotate due to motion of thefixation device14 between an open and closed position, or rotation of the cams132 may occur due to actuation of a mechanism. Theextension arms130 may be comprised of any suitable material, particularly a material similar to that of theelongate arms53. Further, it may be appreciated theextension arms130 may have any length and may extend any distance.
FIG. 15 illustrates another embodiment of afixation device14 havingdistal elements18 of variable length. In this embodiment, eachdistal element18 comprises anelongate arm53 coupled with anextension arm130. Eachelongate arm53 has aproximal end52 rotatably connected to thecoupling member19 and afree end54. Theextension arm130 is coupled with theelongate arm53 near thefree end54 to lengthen the distal element in the direction of alongitudinal axis66. Eachelongate arm53 is also coupled with aleg68, eachleg68 having afirst end70 which is rotatably joined with one of thedistal elements18 and asecond end72 which is rotatably joined with abase69. In this embodiment, eachextension arm130 is disposed within a correspondingelongate arm53 and may be extended beyond thefree end54 by advancement out of theelongate arm53. Likewise, theextension arm130 may be retracted back into theelongate arm53. In some embodiments, theextension arms130 are extended by action of thefixation device14 moving toward an open position and are retracted by action of thefixation device14 moving toward a closed position. Extension and retraction may be active or passive and theextension arms130 may be extended any distance.
5. Differing Length Distal Elements. In some instances, it may be desired to grasp or fix tissue or valve leaflets together with afixation device14 wherein thedistal elements18 are of differing length. This may be achieved with afixation device14 having variable lengthdistal elements18, wherein eachdistal element18 is adjusted to a different length. Or, this may be achieved with afixation device14 havingdistal elements18 of fixed length, wherein eachdistal element18 is formed to have a different length. An example of such a fixation device is illustrated inFIG. 16. As shown, thefixation device14 includes twodistal elements18, each joined with acoupling member18 and aleg68 wherein actuation of thelegs68 move thedistal elements18 between at least an open and closed position. In this example, one of thedistal elements18 is shown to be longer than the other. Thefixation device14 may also includeproximal elements14.Proximal elements16 may be of the same dimensions or one may be longer than the other to correspond with thedistal elements18 to which they mate.
6. Accessories. One or more accessories may be used with thefixation devices14 of the present invention to increase purchase size and distribute fixation forces. Thus, such accessories may provide benefits similar to increasing the width and/or length of the distal elements. Thus, such accessories may be used with fixation devices of fixed dimension or with fixation devices having distal elements of varying dimension.
FIGS. 17A-17B illustrate an embodiment of anaccessory150. In this embodiment, theaccessory150 comprises asupport152 which is positioned to support the tissue which is being grasped by thefixation device14.FIG. 17A illustrates valve leaflets LF being grasped by afixation device14. Thefixation device14 includes a pair ofdistal elements18 which are joined with acoupling member19 and moveable between at least an open and closed position by a pair oflegs68. In this embodiment, engagement surfaces50 of thedistal elements18 contact the downstream surfaces of the leaflets LF. In this embodiment, thesupport152 has at least two planar sections, each planar section configured to mate with an engagement surface of adistal element18 when coupled. Typically, thefixation device14 is released from a delivery catheter, yet maintained by atether154, to determine if regurgitation has been sufficiently reduced. If additional support is desired, thesupport152 is advanced down thetether154, as depicted inFIG. 17A, and positioned against the upstream surfaces of the leaflets, as depicted inFIG. 17B. Thesupport152 is then attached to thefixation device14 and thetether154 removed.
7. Combinations. Any of the above described features and accessories may be present in any combination in a fixation device of the present invention. For example, afixation device14 may havedistal elements18 that vary in width and in length, either simultaneously or independently. Or, the fixation device may havedistal elements18 that are splayable and vary in length or width or length and width, all of which may occur simultaneously or independently. Or, in another example, thefixation device14 may have onedistal element18 which is longer than the other wherein one or bothdistal elements18 vary in width. Further, mechanisms related to each feature may be present in any combination. For example, afixation device14 may have onedistal element18 that varies in width by action of aflap104 and anotherdistal element18 that varies in width by action of apontoon108. Still further, afixation device14 may include somedistal elements18 which have one or more of the above described features and somedistal elements18 which do not.
FIGS. 18A-18B illustrate an embodiment of afixation device14 combining the features presented inFIGS. 8A-8B andFIGS. 13A-13B. In this embodiment, eachdistal element18 has one ormore loops100 which are extendable laterally outward in a direction perpendicular tolongitudinal axis66 and extendable outward alonglongitudinal axis66.FIG. 18A illustrates theloops100 in a retracted position, wherein thedistal elements18 each have a width and length substantially determined by the size of thedistal element18 itself. In this embodiment, some of theloops100 are disposed on a surface of thedistal elements18 opposite the engagement surfaces50 when in the retracted position. However, it may be appreciated that theloops100 may be disposed on the engagement surfaces50 or within thedistal elements18 themselves.FIG. 18B illustrates theloops100 in an expanded position wherein theloops100 extend laterally outward in a direction perpendicular tolongitudinal axis66 and outward alonglongitudinal axis66. Expansion may be active or passive. Theloops100 may be comprised of any suitable material including wire, polymer, shape-memory alloy, Nitinol™, suture, or fiber, to name a few. Further, it may be appreciated that any number ofloops100 may be present and theloops100 may extend any distance.
FIGS. 19A-19C illustrate an embodiment of afixation device14 combining splaying and variable length distal elements.FIG. 19A provides a perspective view of afixation device14 having fourdistal elements18. Eachdistal element18 is connected with acoupling member19 and aleg68, wherein actuation of thelegs68 move thedistal elements18 between at least an open and closed position.FIG. 19B provides a top view of thefixation device14 ofFIG. 19A in the open position illustrating the splaying of thedistal elements18. In this embodiment, thedistal elements18 are fixed in a splayed position. When in the open position, thefixation device14 can be positioned to grasp tissue, such as a valve leaflet. Transitioning to a closed position retracts thedistal elements18 as illustrated inFIG. 19C. Similarly, as mentioned above, tissue may be captured or “pinched” between thedistal elements18. Further, retraction of the distal elements may drag the tissue inwardly. Together, such actions may assist in gathering up the leaflet to tighten the plication while also providing a more secure grasp on the captured tissue.
FIGS. 20A-20C also illustrates an embodiment of afixation device14 combining splaying and variable length distal elements.FIG. 20A provides a top view of thefixation device14 having fourdistal elements18. Again, eachdistal element18 is connected with acoupling member19 and aleg68, wherein actuation of thelegs68 move thedistal elements18 between at least an open and closed position. InFIG. 20A, thedistal elements18 are shown in a splayed arrangement. However, in this embodiment, thedistal elements18 are not fixed in the splayed arrangement.FIG. 20B illustrates thedistal elements18 rotating to a parallel arrangement. Thus, when in the open position, thedistal elements18 can move between a parallel arrangement and a splayed arrangement prior to grasping tissue. Transitioning to a closed position retracts thedistal elements18 as illustrated inFIG. 20C.
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that various alternatives, modifications and equivalents may be used and the above description should not be taken as limiting in scope of the invention which is defined by the appended claims.