Movatterモバイル変換


[0]ホーム

URL:


US7915017B2 - Process for the treatment of lignocellulosic biomass - Google Patents

Process for the treatment of lignocellulosic biomass
Download PDF

Info

Publication number
US7915017B2
US7915017B2US11/901,336US90133607AUS7915017B2US 7915017 B2US7915017 B2US 7915017B2US 90133607 AUS90133607 AUS 90133607AUS 7915017 B2US7915017 B2US 7915017B2
Authority
US
United States
Prior art keywords
ammonia
biomass
vessel
plant biomass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/901,336
Other versions
US20080008783A1 (en
Inventor
Bruce Dale
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michigan State University MSU
Original Assignee
Michigan State University MSU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michigan State University MSUfiledCriticalMichigan State University MSU
Priority to US11/901,336priorityCriticalpatent/US7915017B2/en
Assigned to BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITYreassignmentBOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITYASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: DALE, BRUCE
Publication of US20080008783A1publicationCriticalpatent/US20080008783A1/en
Priority to US12/976,344prioritypatent/US8968515B2/en
Application grantedgrantedCritical
Publication of US7915017B2publicationCriticalpatent/US7915017B2/en
Priority to US13/997,043prioritypatent/US9644222B2/en
Activelegal-statusCriticalCurrent
Adjusted expirationlegal-statusCritical

Links

Images

Classifications

Definitions

Landscapes

Abstract

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation-in-part of PCT/US07/10415, filed Apr. 30, 2007, designating the U.S., which is based upon Provisional Application Ser. No. 60/796,375, filed May 1, 2006, which are incorporated herein by reference in their entirety.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
Not Applicable.
STATEMENT REGARDING GOVERNMENT RIGHTS
Not Applicable.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
The present invention relates to a process for the treatment of a lignocellulosic biomass with uniquely effective combinations of water and/or heat and/or anhydrous ammonia and/or concentrated ammonium hydroxide and/or ammonia gas to increase the reactivity of structural carbohydrates (cellulose and hemicellulose) in the biomass. The treatment occurs under greater than ambient pressure. The invention also relates to means whereby ammonia can be maintained in effective contact with the biomass by managing the head space (gaseous phase) of the reactor in which ammonia, biomass and water coexist. In particular, the present invention relates to a process which enables the efficient conversion of structural polysaccharides to valuable products via enzymatic hydrolysis, chemical catalytic conversion, or by direct action of microorganisms, either in human-engineered systems or natural systems such as the animal rumen.
(2) Description of the Related Art
A wide variety of methods (e.g. concentrated or dilute acids or bases, high temperatures, radiation of various forms) have been used to pretreat lignocellulosic biomass to extract structural carbohydrates to be used to obtain monosaccharides for many different uses. The goal of these pretreatments is to increase the rate and/or yield at which the monosaccharides are subsequently obtained from the structural carbohydrates by chemical or biochemical means such as acid catalysis, enzymatic catalysis, fermentation or animal digestion. In general, these pretreatments have fallen short of desired economic and technical performance for several reasons: 1) many pretreatments degrade some of the sugars, e.g. to acids or aldehydes, thus reducing yields and inhibiting subsequent biological conversion of the remaining sugars; 2) when chemicals are used in the pretreatment, it is frequently difficult to recover these chemicals at reasonable cost; 3) residual chemicals can negatively affect downstream conversion operations; and 4) the effectiveness of many pretreatments is limited so that the ultimate conversions of structural carbohydrates obtained, independent of lost yield by sugar degradation reactions, is inadequate for competitive process economics. Thus, there are many prior art methods, and they have numerous drawbacks including those outlined above.
Sufficiently inexpensive monosaccharides from renewable plant biomass can become the basis of chemical and fuels industries, replacing or substituting for petroleum and other fossil feedstocks. Highly reactive lignocellulosic biomass can also become the basis of improved animal feeds, particularly for ruminant animals. Effective, economical pretreatments are required to make these monosaccharides available at high yield and acceptable cost.
The prior art in the pretreatment of plant biomass with anhydrous liquid ammonia or ammonium hydroxide solutions is extensive. Illustrative are the following patents and literature references:
  • U.S. Pat. No. 4,600,590 to Dale
  • U.S. Pat. No. 4,644,060 to Chou
  • U.S. Pat. No. 5,037,663 to Dale
  • U.S. Pat. No. 5,171,592 to Holtzapple et al.
  • U.S. Pat. No. 5,865,898 to Holtzapple et al.
  • U.S. Pat. No. 5,939,544 to Karsents et al.
  • U.S. Pat. No. 5,473,061 to Bredereck et al.
  • U.S. Pat. No. 6,416,621 to Karstens
  • U.S. Pat. No. 6,106,888 to Dale et al.
  • U.S. Pat. No. 6,176,176 to Dale et al.
  • U.S. Patent Application No. 2007/0031918, filed Apr. 12, 2006.
  • Felix, A., et al., Anim. Prod. 51 47-61 (1990)
  • Waiss, A. C., Jr., et al., Journal of Animal Science 35 No. 1, 109-112 (1972). All of these patents and publications are incorporated herein in their entireties.
In particular, ammonia fiber explosion (AFEX) represents a unique and effective pretreatment for biologically converting lignocellulosic biomass to ethanol (Dale, B. E., 1986. U.S. Pat. No. 5,037,663; Dale, B. E., 1991. U.S. Pat. No. 4,600,590; Alizadeh, H., F. Teymouri, T. I. Gilbert, B. E. Dale, 2005. Pretreatment of Switchgrass by Ammonia Fiber Explosion. Applied Biochemistry and Biotechnology, 121-124:1133-1141; Dale, B. E., 1991. U.S. Pat. No. 4,600,590; Dale, B. E., 1986. U.S. Pat. No. 5,037,663). In AFEX pretreatment, lignocellulosic biomass is exposed to concentrated ammonia at elevated pressures sufficient to maintain ammonia in liquid phase and moderate temperatures (e.g. around 100° C.). Residence times in the AFEX reactor are generally less than 30 minutes. To terminate the AFEX reaction, the pretreated biomass is depressurized (flashed). The AFEX process is not and has never been limited to the application of anhydrous ammonia with AFEX. Some water is always initially present with the biomass and sometimes water is added to the biomass, so that any anhydrous ammonia is immediately converted into a concentrated ammonia water mixture on beginning the AFEX treatment. However, a detailed exploration of how ammonia and water are best combined with each other and with the biomass to achieve effective pretreatment has never been performed.
Recovery of ammonia used in AFEX pretreatment is a key objective when integrating AFEX into a broader biomass conversion process design. The existing ammonia recovery design (Eggeman, T. 2001. Ammonia Fiber Explosion Pretreatment for Bioethanol Production, National Renewable Energy Laboratory (NREL) Subcontract No. LCO-1-31055-01), which is depicted inFIG. 1, calls for compressing ammonia, which is vaporized as a result of the flash operation, and separating ammonia that remains in contact with the pretreated solids via evaporation in a dryer. The resulting vapor, which also contains water, is then delivered to a distillation column to concentrate the ammonia. The ammonia from the column is pumped up to pressure and, together with the compressed flash ammonia, is recycled to the AFEX reactor.FIG. 1 shows the existing ammonia recovery approach.
FIG. 1 shows theprior art system10 including a closed AFEX reactor vessel12 into which biomass, water and ammonia are introduced under pressure. Valve V1is used to release pressure from the vessel12. The treated biomass is transferred to a heated dryer14. The dried biomass is transferred out of the dryer14 for subsequent treatment. Ammonia from the dryer14 is condensed by condenser22 and sent to slurry column16. Water is removed and condensed by condenser18. Ammonia is condensed incondenser20 and recycled to the vessel12. Ammonia gas is pressurized in acompressor24, condensed and recycled into vessel12. It is obvious to one skilled in the art that the ammonia pretreatment and recovery processes generate ammonia and water mixtures of differing phases (gaseous and liquid), compositions and temperatures. These resulting ammonia and water mixtures can therefore potentially be combined with each other and with new biomass to be treated in many different compositions and phases (gas and liquid).
The problem is that some of these potential ammonia and water treatment processes may either produce relatively low biomass reactivity and/or may require large amounts of liquid ammonia or ammonium hydroxide solutions. The most effective approaches to combine recycled ammonia and water of different compositions and phases to produce a highly reactive biomass are not well-understood. The optimal order of addition of water, ammonia and ammonia-water mixtures, and their relative amounts, temperatures and concentrations, has not been sufficiently defined so as to produce acceptable biomass reactivity. Furthermore, methods for maintaining ammonia in effective contact with the biomass, so as to reduce the total amount of ammonia required, have not been described.
OBJECTS
It is therefore an object of the present invention to provide a process by which ammonia, water and biomass are combined in uniquely effective ways to produce highly reactive structural polysaccharides within the biomass. The results obtained are novel, unexpected and useful. Further, it is an object of the present invention to provide means by which the ammonia can be maintained in effective contact with the biomass during the treatment process. Further, it is an object of the present invention to provide an economical process which enables the production of monosaccharides in high yield from the structural carbohydrates. These and other objects will become increasingly apparent by reference to the following description and the drawings.
SUMMARY OF THE INVENTION
The present invention provides a process for the treatment of a plant biomass to increase the reactivity of plant polymers, comprising hemicellulose and cellulose, which comprises: contacting the plant biomass, which has been ground and which contains varying moisture contents, with anhydrous ammonia in the liquid or vapor state, and/or concentrated ammonia:water mixtures in the liquid or vapor state, to obtain a mixture in which the ratio of ammonia (as NH3) to dry biomass is between about 0.2 to 1 and 1.2 to 1, and the water to dry biomass ratio is between about 0.2 to 1.0 and 1.5 to 1, maintaining the mixture in a closed vessel at temperatures between about 50° C. and 140° C. for a period of time; rapidly releasing the pressure by releasing ammonia from the vessel to form a treated biomass; removing the treated plant biomass which has increased reactivity from the vessel. Preferably, the treated biomass is hydrolyzed with enzymes to produce sugars. Preferably, the treated biomass is extracted to remove lignin and other compounds that can interfere with the ability of enzymes to hydrolyze the treated biomass. Preferably, the treated biomass is extracted to remove lignin and other compounds that can interfere with the ability of microorganisms to ferment the treated biomass. Preferably, the ammonia is compressed by a mechanical means for reducing the volume in a headspace inside the closed vessel and thereby increasing the fraction of the total ammonia that is in the liquid phase. Preferably, nitrogen under pressure is introduced into a headspace of the vessel so as to increase the fraction of the total ammonia that is in the liquid phase. Preferably, particles of an inert solid material are introduced into the vessel so as to increase the fraction of the total ammonia that is in the liquid phase. Preferably, particles of a solid material selected from the group consisting of sand and iron filings are introduced into the vessel so as to increase the fraction of the total ammonia that is in the liquid phase. Preferably, the headspace (gas phase) of the reactor vessel is connected with the headspace of an appropriate ammonia storage vessel so as to increase the fraction of the total ammonia that is in the liquid phase. Preferably, the treated biomass is hydrolyzed with enzymes to produce sugars and wherein the sugars are fermented by a microorganism to produce a fermentation product. Preferably, the treated biomass is fermented by a microorganism to produce a fermentation product without a separate sugar production step. Preferably, the treated biomass containing more digestible plant polymers is consumed by an animal. Preferably, the plant biomass is fermented to produce ethanol.
One skilled in the art will realize that within a facility pretreating biomass containing some water with ammonia and perhaps adding more water, heating the mixture, allowing the hot ammonia:water:biomass combination to react for a time, ending the reaction by removing the ammonia from biomass, and separating ammonia from water in the recovery process, a variety of possible ammonia:water:biomass combinations present themselves. Some combinations may prove more technically and/or economically effective than others in producing a highly reactive biomass. The present invention relates to effective treatments of a plant biomass to increase the reactivity of plant structural carbohydrates. The results are novel, unexpected and useful. At the same final conditions (temperature, amount of total water, ammonia and biomass mixed with each other), uniquely effective combinations of ammonia, water and biomass are available. Other combinations giving the same final conditions are much less effective in producing a highly reactive biomass.
For example, Table 1 shows the results of enzymatic hydrolysis of biomass treated with ammonia, water and heat under the same final conditions of 1 kg of ammonia per 1 kg of corn stover biomass (dry weight) and 0.6 kg of water per kg of corn stover biomass (dry weight) at a final reaction temperature of 90 C. These final conditions were chosen to reproduce the optimal pretreatment conditions demonstrated for “conventional” (using anhydrous ammonia) AFEX treatment of corn stover. The first row of results shows the glucose and xylose yields (92.96% and 74.75%, respectively) obtained under these “conventional” AFEX pretreatment conditions. As stated above, it is apparent to one skilled in the art, that different combinations of ammonia, water and biomass will be available, or could readily become available, in a pretreatment facility. The question is: “which combinations of these are most effective in producing a highly reactive pretreated biomass”. Experiments 1-15 provide a preliminary answer to this critically important question.
Final glucose yield, and to a lesser extent, xylose yield, following enzymatic hydrolysis are key determinants of process economics for biomass conversion systems. If 90% yield of glucose is somewhat arbitrarily chosen as the target economic yield, then it becomes obvious that only a fraction of all of the possible means for reaching the desired final conditions of 1:1 ammonia to biomass and 0.6:1 water to biomass are in fact effective in achieving this target yield. For example, from Table 1, experiments #6 and #9 differ only in the amount of water that is added to the system via biomass or via ammonium hydroxide, and yet the differences in enzymatic hydrolysis yields are huge, 58% vs. 99%, respectively. These results are unexpected, novel and useful. It is not apparent at all why combining ammonia, water and biomass in different initial proportions but the same final proportions should achieve such different results, but in fact, this is what happens. It is a novel result that has never before been reported, to the inventor's knowledge. Finally, it is an extremely useful result because the operator of the pretreatment facility now has available different routes to achieving an effective pretreatment. Some of these sets of effective conditions may prove much easier or less expensive to implement in an operating pretreatment facility, and hence will be preferred.
One skilled in the art will also recognize that it is necessary to maintain ammonia and water in effective contact with the biomass during the pretreatment process. The present invention also provides means for maintaining ammonia and water in contact with the heated mixture by minimizing or otherwise managing the headspace (vapor phase) of the reactor containing heated biomass, ammonia and water. Various approaches can be envisioned to achieve this objective. Preferably, the ammonia in step (b) is compressed by a mechanical means for reducing the volume of a headspace inside the closed vessel and thereby increasing a fraction of the total ammonia that is in the liquid phase. Preferably, nitrogen or another inert gas under pressure is introduced into a headspace of the vessel in step (b) so as to increase a fraction of the total ammonia that is in the liquid phase. Preferably, particles of an inert solid material are introduced into the vessel so as to increase a fraction of the total ammonia that is in the liquid phase. Preferably, particles of a solid material selected from the group consisting of sand and iron filings are introduced into the vessel so as to increase a fraction of the total ammonia that is in the liquid phase.FIGS. 3 and 4 show that by maintaining nitrogen pressure on the headspace of the reactor, the amount of ammonia required to obtain a desired glucose yield can be reduced. Nitrogen overpressure minimizes the amount of ammonia that evaporates from the biomass and keeps more ammonia in contact with the biomass, thereby increasing treatment effectiveness. This is strong support for the idea that minimizing ammonia in the gas phase will maximize treatment effectiveness. Obviously, other means of minimizing gas phase ammonia are available. These include combining inert solids (e.g., sand or iron filings) or simply connecting the headspace of the reactor with the headspace of a storage vessel containing ammonia and water that provides the same gas phase composition of ammonia and water as is produced under the desired reactor conditions of temperature, ammonia and water levels.
The substance and advantages of the present invention will become increasingly apparent by reference to the following drawings and the description.
BRIEF DESCRIPTION OF DRAWINGS
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
FIG. 1 is a process flow diagram for a prior art AFEX pretreatment with ammonia recovery and recycling.
FIG. 2 is a process flow diagram for the present invention for AFEX pretreatment with an efficient ammonia recovery.
FIG. 3 is a graph showing glucose yield from AFEX treated corn stover experiments under nitrogen pressure.
FIG. 4 is a graph showing xylose yield from AFEX treated corn stover experiments under nitrogen pressure.
FIGS. 3 and 4 together show that two separate AFEX treated corn stover experiments under nitrogen pressure with the same treatment conditions have similar yields.
FIG. 5 is a graph showing that while 40% moisture content gives lower yield, 20% biomass moisture content (MC) yields better results a few percent higher than that of 60% MC. The optimal condition has been 60% MC.
FIG. 6 is a graph showing a similar trend for different sets of experiments with different ammonia loadings. Lower amount of moisture content, i.e. 20% gives a better result.
FIG. 7 is a graph showing the glucose profile during 168 hr hydrolysis for different amounts of ammonia loading.
FIG. 8 is a graph showing the xylose profile during 168 hr hydrolysis for different amounts of ammonia loading.
While bothFIGS. 7 and 8 show similar hydrolysis rates, 0.75 kg NH3:1 kg DBM is favored.
FIG. 9 is a graph showing the overall glucose and xylose yields of two separate sets of AFEX treated corn stover under nitrogen pressure that are repeated. All the runs have yielded very similar results. While higher yield is obtained under nitrogen pressure, a better yield is obtained with 0.5 kg NH3:1 kg DBM, 60% MC under nitrogen pressure.
FIG. 10 is a graph showing the yield trend as the kg amount of ammonia per unit kg of dry biomass (DBM) is decreased.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Cellulosic biomass contains large amounts of structural carbohydrates or polysaccharides (cellulose, hemicellulose, and the like) that can provide much less expensive simple sugars for fermentation or non-biological transformation to a variety of products or as improved animal feeds. However, these polysaccharides are difficult to access. The present invention provides pretreatment process using concentrated ammonium hydroxide under pressure to improve the accessibility/digestibility of the polysaccharides from a cellulosic biomass. The present invention preferably uses combinations of anhydrous ammonia and concentrated ammonium hydroxide solutions to obtain results that are not obtained by either dilute ammonium hydroxide or anhydrous ammonia acting alone. This invention also uses various approaches to minimize the amount of ammonia in the gas phase so that the maximum amount of ammonia is always in the liquid phase and is available to react with the biomass, either as ammonium hydroxide or liquid ammonia.
In the present invention, the lignocellulosic material is treated with concentrated ammonium hydroxide in an amount greater than 30% by weight in an ammonium hydroxide solution. The process can be performed in a continuous reactor or a batch reactor as in the Examples.
The biomass contains water which is naturally present. Typically, this natural water represents about 1% to 20% by weight of the biomass. In general, this natural water tends to be bound in the biomass and thus the water which is primarily relied upon is that added with the ammonium hydroxide solution. Water can also be added to the biomass and, if so, then this mixes with the ammonium hydroxide to provide the ammonium hydroxide solution. Up to 50% of the biomass can be added water.
The term “lignocellulosic biomass” means a naturally derived lignin and cellulose based material. Such materials are, for instance, alfalfa, wheat straw, corn stover, wood fibers, and the like. Preferably the materials are comminuted into particles in a longest dimension.
The term “structural carbohydrates” means the polysaccharide materials containing monosaccharide moieties available by hydrolysis.
The mass ratio of a lignocellulose biomass to ammonia is preferably 1 to 1; however, the mass ratio can be between 0.3 and 1.2 to 1.0.
The reaction temperature is preferably 90° C.; however, the temperature can be between 50° C. and 120° C.
The pressure is preferably between 100 psi and 300 psi (6.9 to 20.7 atm); however, pressures between 4 and 50 atm can be used.
Hot ammonium hydroxide/water solutions or hot ammonia/water vapors can be added to ground lignocellulosic biomass in a contained vessel to obtain final mixture temperatures of 50° C. or above, preferably 90° C. A preferred ammonia to dry biomass mass weight ratio was about 0.2 to 1.2. A preferred water to dry biomass mass ratio was about 0.4 to 1.0.
FIG. 2 shows theimproved system100 with AFEX reactor vessel. The slurry is sent directly to the stripping column104 and condenser in condenser106 and is sent to mixer108 for addition of water. High pressure steam is used in the stripping column104 to remove the ammonia from the slurry. The hot aqueous slurry is removed from the bottom of the stripping column. Condensers110 and112 are used to cool the water and ammonia mixture which is recycled into the vessel102. By comparingFIGS. 1 and 2, it can be seen that the process ofFIG. 2 is more efficient.
EXAMPLES 1 TO 20
A 300 ml pressure vessel102 was first filled with a given mass of corn stover wetted to the desired moisture level as indicated in Table 1 and the vessel102 was sealed. Then a concentrated ammonium hydroxide mixture was prepared by mixing the right proportions of anhydrous ammonia and water in another pressure vessel and this mixture was added to the corn stover in the 300 ml reactor vessel102 to achieve the desired final level of ammonia and water. In this case, the target was 1 kg of ammonia per kg and dry biomass and 0.6 kg of water per kg of dry biomass. The mixture of ammonia, water and biomass was then heated to 90° C., held at that temperature for 5 minutes and the pressure rapidly released.
The resulting solid was hydrolyzed to mixtures of monosaccharides containing, for example, glucose, xylose and arabinose.
The results of the present invention are shown in Table 1 and Examples 2 to 15.
TABLE 1
Glucose and Xylose yields of ammonia treated corn stover after
168 hr (7 days) for hydrolysis with a cellulose enzyme. Different ammonia
concentrations were used. All runs are at 1 kg NH3:1 Kg dry stover (BM),
90° C. reactor temperature, 0.6 kg water/kg dry stover (except for the last 4
experiments 17 to 20) and 5 min residence time. 15 FPU cellulase
enzyme/gram glucan in BM.
Kg NH3/kg
water in
ammoniumAmmoniaWater% Glucose% Xylose
Expt. #hydroxidedistributiondistributionyieldyieldRepeats
 1 (a)1All NH3All in BM92.9674.252
 20.5¾ NH3and½ in NH4OH92.2078.852
¼ NH4OH½ in BM
 30.5¾ NH3andAll in NH4OH79.8864.902
¼ NH4OH
 40.41⅔ NH3andAll in NH4OH86.6070.541
⅓ NH4OH
 50.58⅔ NH3and½ in NH4OH78.2365.831
⅓ NH4OH½ in BM
 60.5½ NH3andAll in NH4OH57.6547.851
½ NH4OH
 70.8½ NH3and¾ in NH4OH85.5070.371
½ NH4OHand ¼ in
BM
 80.66½ NH3and½ in NH4OH97.7881.982
½ NH4OH½ in BM
 90.79½ NH3and¾ in BM98.5478.702
½ NH4OHand ¼ in
NH4OH
100.38⅓ NH3andAll in NH4OH74.5256.471
⅔ NH4OH
110.73⅓ NH3and½ in NH4OH81.5169.661
⅔ NH4OH½ in BM
120.66All NH4OHAll in NH4OH71.0057.002
130.75All NH4OH½ in NH4OH96.7879.003
½ in BM
140.88All NH4OH¾ in NH4OH97.1179.002
and ¼ in
BM
150.72All NH4OH¼ in NH4OH88.3175.372
and ¾ in
BM
16 (b)0.3All NH4OH2.3 g water83.5868.181
per g BM
17 (b)0.15All NH4OH5.6 g water70.5042.461
per g BM
18 (b)0.1All NH4OH9 g water64.8549.311
per g BM
19 (b)0.05All NH4OH19 g water51.2639.321
per g BM
20 (c)ControlNo ammoniaNot29.517.52
applicable
Note:
Pressures range from about 100 psi to about 300 psi except for Expt. 16-19, which are at atmospheric pressure
(a) Comparative Example 1 shows the AFEX process described in U.S. Pat. Nos. 4,600,590 and 5,037,663 to Dale, exemplified by FIG. 1.
Comparative Examples 16 to 19 (b) show the results at atmospheric pressure with ammonium hydroxide.
Example 20 (c) shows the process without ammonia.
Table 1 shows the results for the conversion of corn stover to glucose and xylose following treatment with ammonia and water. The total amount of water, ammonia and biomass and the system temperature is the same in all cases. The biomass was treated with 1 kg of ammonia per 1 kg dry corn stover biomass (the untreated stover has a moisture content of about 15% dry basis). The experiments were run at 90° C. with a five minute holding time at that temperature and the treated material of Example 1 was hydrolyzed with 15 filter paper units of cellulose per gram of cellulose in the stover. From the point of view of the final conditions to which the stover was subjected, these conditions are identical. However, the way in which these final conditions were reached was varied significantly and novel, surprising results were obtained.
Columns 3 and 4 of the Table show how this was done. For example, the column titled “Ammonia Distribution” shows whether the ammonia (as NH3) was added as anhydrous ammonia or as ammonium hydroxide (ammonia in water). For example, “all NH3” means that all of the ammonia was added to the biomass as anhydrous liquid ammonia as in Example 1 directly from the pressure tank. “ALL NH4OH” means all of the ammonia was added as aqueous ammonium hydroxide.
The fourth column (“Water Distribution”) shows whether the water was added to the stover directly or added as part of the ammonium hydroxide. In the first row for Experiment 1a (“conventional AFEX”), “all NH3” and “All of the water in BM” means that all the ammonia was added as anhydrous and all of the water was in the biomass as in Example 1. The last set of rows is for “All NH4OH” meaning that all of the ammonia was added as ammonium hydroxide and the water was added either to the stover or with the ammonium hydroxide. These rows (Experiments 16-19) represent essentially ambient pressure treatments of biomass by ammonia, not the concentrated ammonia systems at higher than ambient pressure of Experiments 1-15 above.
Thus, depending on how the ammonia and water are added, very different results are obtained. Eighty-five percent (85%) conversion of cellulose to glucose is used as the minimum for a cost competitive process. Using that criterion, the final column shows the % yield after 168 hours of hydrolysis for both glucose (G) and xylose (X). In no case, when all of the water was added as ammonium hydroxide (comparatively more dilute ammonium hydroxide) is the 85% criterion achieved.
The specific features of the process of the present invention that make it more advantageous than prior art methods are as follows: (1) it does not degrade any biomass carbohydrates so that yield is not compromised due to the pretreatment; (2) high overall yields of glucose (nearly 100% of theoretical) and 85% of theoretical yields of xylose, are obtained; (3) low application rates of otherwise expensive hydrolytic enzymes are needed to obtain these yields; (4) residual ammonia can serve as a nitrogen source for subsequent fermentations or animal feeding operations; (5) treated biomass and polysaccharides can be fed at very high solids levels to subsequent process operations, thereby increasing the concentration of all products and reducing the expense of producing other chemicals from the polysaccharides; (6) using different ammonia and ammonium hydroxide combinations, in combination with different water levels in the biomass, fits well into recovery operations for the ammonia and gives the plant operator additional flexibility to minimize costs and maximize treatment effectiveness; and (7) managing the reactor headspace to minimize ammonia evaporation into the gas phase further improves process economics by minimizing the amount of ammonia required to achieve an effective treatment.
Markets that can use this invention include: (1) the U.S. chemical industry which is beginning to move away from petroleum as a source of chemical feedstocks and is interested in inexpensive monosaccharides as platform chemicals for new, sustainable processes; (2) the fermentation industry, especially the fuel ethanol production industry which is also interested in inexpensive sugars from plant biomass; and (3) the animal feed industry which is strongly affected by the cost of available carbohydrates/calories for making animal feeds of various kinds.
The following Example 16 describes two (2) design features that reduce process energy requirements relative to existing designs of ammonia recovery for AFEX pretreatment: (1) steam stripping of pretreated material; and (2) water quench condensation of ammonia vapor.FIG. 2 presents a process flow sheet of these features in the context of the broader AFEX pretreatment design.
Steam Stripping of Pretreated Material
After the AFEX pretreatment is complete, the pretreated material is flashed to a lower pressure, as in the existing design. Unlike the existing design; however, the present invention uses steam-stripping of the resulting pretreated solids to recover residual ammonia. This feature enables the elimination of energy intensive solids drying that is used in the design ofFIG. 1. The processing equipment can be similar to that used for direct steam drying of solids for which there are an increasing number of commercial examples (Kudra, T., A. S. Mujumdar, 2002. Advanced Drying Technologies, New York, N.Y.: Marcel Dekker, Inc.; Pronyk, C., S. Cenkowski, 2003. “Superheating Steam Drying Technologies,” ASAE Meeting Presentation, Paper Number RRV03-0014.).
Water Quench Condensation of Ammonia Vapor
Ammonia vapor coming from the ammonia recovery steam stripping column is combined with ammonia vapor arising from the post-AFEX flash operation and condensed by first adding water in the mixer and then indirectly cooling the aqueous solution in two steps, first with cooling water, and then with chilled water. The condensed aqueous mixture is then pressurized via liquid pumping and recycled to the AFEX reactor. These steps eliminate the need for ammonia vapor compression that is used in the design ofFIG. 1.
Utility of Invention
Based on Aspen Plus (a commercially available modeling software) process simulations of the process ofFIGS. 1 and 2, the present invention requires significantly less process energy relative to the existing design, as indicated in Table 2. Furthermore, it is anticipated that the invention will result in lower processing costs as well.
TABLE 2
Comparison of process energy requirements: proposed
versus existing design for AFEX pretreatment with ammonia
recovery.1,2
FIG. 1 DesignFIG. 2 Design
Required EnergyRequired Energy
Energy Flow(% feedstock LHV)(% feedstock LHV)
Steam to dryer7.73%
Steam to NH3 column2.87%3.82%
Power to compressor0.02%
Power to chilled water0.14%
unit
TOTAL10.62% 3.96%
1Energy necessary to achieve AFEX reaction temperature is met entirely by heat of mixing between ammonia and water in the reactor.
2Both designs use the same ammonia and water loadings: 0.3 g NH3/g biomass; 0.5g H20/g biomass.
These steps are in general:
  • 1. Add hot ammonium hydroxide/water solutions or hot ammonia/water vapors to ground lignocellulosic biomass in contained environments to obtain final mixture temperatures of 50° C.
  • 2. Obtain intermediate ammonia to dry biomass mass ratio is about 0.2 to 1.0 while water to dry biomass mass ratio is about 0.4 to 1.0.
  • 3. Allow sufficient time for reaction to occur under these conditions, approximately 5 minutes.
  • 4. Compress the ammonia treated biomass, for example in a screw reactor, to minimize the volume of vapor or “dead” space.
  • 5. Further reduce the tendency of ammonia to convert to a gas by, for example, pressurizing the system with an inert gas such as nitrogen, or by mixing finely divided solids such as sand or iron filings with the biomass.
  • 6. Add essentially anhydrous liquid ammonia to the intermediate mixture to obtain a final ammonia level of about 0.5 kg ammonia (as NH3) per kg of dry biomass and temperatures of about 90° C.
  • 7. Hold new mixture at these conditions for an additional 5 minutes.
  • 8. Rapidly release the pressure to remove and recover the ammonia.
  • 9. Hydrolyze the resulting solids to mixtures of simple sugars containing, for example, glucose, xylose and arabinose.
EXAMPLES 21 TO 36
AFEX Treatment of Corn Stover Under Nitrogen Pressure
Objective:
The main objective of these series of experiments was twofold:
  • 1. To establish the fact that the ammonia in the liquid phase where it is in direct contact with the biomass is preferred phase that makes the AFEX an effective pretreatment process. Therefore, to minimize ammonia evaporation, applying nitrogen pressure during pretreatment of biomass is warranted.
  • 2. To optimize the ammonia loading under nitrogen.
    Experimental Procedure:
Old corn stover with 36.1% Glucan content was received from NREL (Golden, Colo.). The moisture content of the biomass was adjusted from 10% to the desired level before placing in the reactor. The reactor was a 300 ml PARR unit with pressure and temperature monitoring attachments. The sample in the reactor topped up with some spherical steel balls to reduce the void in the reactor and to have similar conditions with experiments without use of nitrogen.
A predetermined amount of anhydrous ammonia was charged in a reactor using a sample cylinder. Nitrogen gas was introduced to the reactor from a nitrogen cylinder tank via a pressure regulator. The reactor was gradually heated up by a heating mantle until it reached 90° C. After 5 min of residence time, the reactor was depressurized at once. Both T and P was recorded every 2 min during the experiments. The pressure started at about 400 psig and ended at about 750 psig while the reactor temperature started from about 50° C. to 90° C. where it was vented.
Experimental Conditions:
Two sets of Experiments were conducted. For the first 4Experiments 21 to 24, the previous optimal conditions of 60% dwb biomass moisture content, 90° C. treatment temperature and 5 min residence time was chosen but the amount of charged ammonia was varied to determine optimal ammonia loading under N2pressure.
For the second set of 6 Experiments 25 to 30, both the moisture content and ammonia loading was varied. Some of the first set of Experiments was repeated in the second set as well. The repeated Experiments showed similar results. A third set of 6 Experiments 31 to 36, was not conclusive for all the runs possibly due to bad hydrolysis.
Hydrolysis:
For Hydrolysis, NREL Lap-009 protocol was followed. Duplicate samples were prepared and hydrolyzed for a period of 168 hr. At time intervals of 24 hr, 72 hr and 168 hr, samples were taken for HPLC analysis. To all samples were added 15 FPU per g of glucan of Spezyme CP (CAFI 1), Old enzyme with 28.2 FPU/ml.
Analysis:
A Waters High Performance Liquid Chromatography (HPLC) with Aminex HPX 87 P BioRad Column and de-ashing guard column was used to perform the analysis. The analysis was performed in our lab as well as at Michigan Biotechnology International (MBI), East Lansing, Mich.
In the optimized AFEX pretreatment conditions of 1 kg NH3:1 kg DBM, 60% MC, 90° C. ideally, there is 90% glucose and 70% xylose conversion. If the decrease in the amount of ammonia used under nitrogen pressure is back calculated, there is a 1.5, 2 and 5 fold increase in yield under nitrogen pressure proportional to the ammonia loadings of 0.5, 0.3 and 0.1 kg NH3: Kg DBM, respectively. In other words, there is a 5 fold savings on the amount of ammonia when AFEX under nitrogen pressure is employed at 0.1:1 ammonia charge compared to 1:1. The amount of ammonia has decreased 10 times (1:1 to 0.1:10 while both the glucose and xylose yields has dropped to ½ from 90% to 45% and 70% to 35% for glucose and xylose, respectively. The results are shown inFIGS. 3 to 9.
While the present invention is described herein with reference to illustrated embodiments, it should be understood that the invention is not limited hereto. Those having ordinary skill in the art and access to the teachings herein will recognize additional modifications and embodiments within the scope thereof. Therefore, the present invention is limited only by the claims attached herein.

Claims (15)

1. A process for the treatment of a plant biomass, the process comprising:
(a) performing an ammonia treatment process comprising:
(i) contacting a lignocellulosic plant biomass, which has been ground and which contains varying moisture contents, with a source of ammonia comprising at least one of anhydrous ammonia in the liquid state, anhydrous ammonia in the vapor state, a concentrated ammonia:water mixture in the liquid state, and a concentrated ammonia:water mixture in the vapor state, thereby forming a mixture in which the ratio of ammonia (as NH3) to dry plant biomass is between about 0.1:1 and 0.75:1 and the ratio of water to dry plant biomass is between about 0.2:1 and 1.5:1;
(ii) maintaining the mixture in a closed vessel at temperatures between about 50° C. and 140° C. for a period of time;
(iii) maintaining the ammonia in contact with the lignocellulosic plant biomass and increasing an amount of the ammonia in the liquid state by managing a headspace volume of the closed vessel; and
(iv) rapidly releasing pressure from the vessel by releasing ammonia from the vessel to form a treated biomass, the treated biomass having an increased reactivity of plant polymers comprising hemicellulose and cellulose; and
(b) removing the treated plant biomass which has increased reactivity from the vessel.
10. A process for the treatment of a plant biomass, the process comprising:
(a) performing an ammonia treatment process comprising:
(i) contacting a lignocellulosic plant biomass, which has been ground and which contains varying moisture contents, with a source of ammonia comprising at least one of anhydrous ammonia in the liquid state, anhydrous ammonia in the vapor state, a concentrated ammonia:water mixture in the liquid state, and a concentrated ammonia:water mixture in the vapor state, thereby forming a mixture in which the ratio of ammonia (as NH3) to dry plant biomass is between about 0.1:1 and 1.2:1 and the ratio of water to dry plant biomass is between about 0.2:1 and 1.5:1;
(ii) maintaining the mixture in a closed vessel at temperatures between about 50° C. and 140° C. for a period of time;
(iii) introducing nitrogen under pressure into a headspace volume of the vessel to increase the fraction of the total ammonia that is in the liquid phase in the closed vessel and in contact with the lignocellulosic plant biomass; and
(iv) rapidly releasing pressure from the vessel by releasing ammonia from the vessel to form a treated biomass, the treated biomass having an increased reactivity of plant polymers comprising hemicellulose and cellulose; and
(b) removing the treated plant biomass which has increased reactivity from the vessel.
US11/901,3362006-05-012007-09-17Process for the treatment of lignocellulosic biomassActive2029-03-01US7915017B2 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US11/901,336US7915017B2 (en)2006-05-012007-09-17Process for the treatment of lignocellulosic biomass
US12/976,344US8968515B2 (en)2006-05-012010-12-22Methods for pretreating biomass
US13/997,043US9644222B2 (en)2006-05-012011-12-22Methods for pretreating biomass

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US79637506P2006-05-012006-05-01
PCT/US2007/010415WO2007130337A1 (en)2006-05-012007-04-30Process for the treatment of lignocellulosic biomass
US11/901,336US7915017B2 (en)2006-05-012007-09-17Process for the treatment of lignocellulosic biomass

Related Parent Applications (2)

Application NumberTitlePriority DateFiling Date
PCT/US2007/010415Continuation-In-PartWO2007130337A1 (en)2006-05-012007-04-30Process for the treatment of lignocellulosic biomass
US12/976,344Continuation-In-PartUS8968515B2 (en)2006-05-012010-12-22Methods for pretreating biomass

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US12/976,344Continuation-In-PartUS8968515B2 (en)2006-05-012010-12-22Methods for pretreating biomass

Publications (2)

Publication NumberPublication Date
US20080008783A1 US20080008783A1 (en)2008-01-10
US7915017B2true US7915017B2 (en)2011-03-29

Family

ID=38668077

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US12/226,763Expired - Fee RelatedUS8394611B2 (en)2006-05-012007-04-30Process for the treatment of lignocellulosic biomass
US11/901,336Active2029-03-01US7915017B2 (en)2006-05-012007-09-17Process for the treatment of lignocellulosic biomass
US13/591,092ActiveUS8771425B2 (en)2006-05-012012-08-21Process for the treatment of lignocellulosic biomass

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US12/226,763Expired - Fee RelatedUS8394611B2 (en)2006-05-012007-04-30Process for the treatment of lignocellulosic biomass

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US13/591,092ActiveUS8771425B2 (en)2006-05-012012-08-21Process for the treatment of lignocellulosic biomass

Country Status (8)

CountryLink
US (3)US8394611B2 (en)
EP (2)EP2826869A1 (en)
CN (2)CN101484590A (en)
AU (1)AU2007248736B2 (en)
BR (2)BRPI0722418B1 (en)
CA (1)CA2650860C (en)
MX (1)MX2008013981A (en)
WO (1)WO2007130337A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20090011474A1 (en)*2007-06-202009-01-08Board Of Trustees Of Michigan State UniversityProcess for producing sugars from cellulosic biomass
US20090053771A1 (en)*2007-08-222009-02-26Board Of Trustees Of Michigan State UniversityProcess for making fuels and chemicals from AFEX-treated whole grain or whole plants
US20090093027A1 (en)*2007-10-032009-04-09Board Of Trustees Of Michigan State UniversityProcess for producing sugars and ethanol using corn stillage
US20090221042A1 (en)*2006-05-012009-09-03Dale Bruce EProcess for the Treatment of Lignocellulosic Biomass
US20100081798A1 (en)*2007-01-232010-04-01Basf SeMethod for producing glucose by enzymatic hydrolysis of cellulose that is obtained from material containing ligno-cellulose using an ionic liquid that comprises a polyatomic anion
US20100267999A1 (en)*2006-05-012010-10-21Ming Woei LauExtraction of solubles and microbial growth stimulants from lignocellulosic biomass and methods related thereto
US20110192559A1 (en)*2006-05-012011-08-11Balan VenkateshMethods for pretreating biomass
WO2012071308A2 (en)2010-11-232012-05-31E. I. Du Pont De Nemours And CompanyBiomass pretreatment process for a packed bed reactor
WO2012071312A2 (en)2010-11-232012-05-31E. I. Du Pont De Nemours And CompanyContinuously fed biomass pretreatment process for a packed bed reactor
WO2013163271A1 (en)2012-04-272013-10-31Michigan Biotechnology InstituteProcess for treating biomass
US8673031B2 (en)2009-08-242014-03-18Board Of Trustees Of Michigan State UniversityPretreated densified biomass products
US8945245B2 (en)2009-08-242015-02-03The Michigan Biotechnology InstituteMethods of hydrolyzing pretreated densified biomass particulates and systems related thereto
WO2015054580A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyLignocellulosic biomass fermentation process co-product fuel for cement kiln
WO2015054570A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyFuel compositions containing lignocellulosic biomass fermentation process syrup
WO2015054581A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyLignocellulosic biomass fermentation process syrup binder and adhesive
US9175323B2 (en)2012-04-272015-11-03The Michigan Biotechnology InstituteProcess for treating biomass
US9347074B1 (en)2011-04-072016-05-24Dennis Anthony BurkeBiomass pretreatment with ammonium bicarbonate / carbonate expansion process
WO2016145297A1 (en)2015-03-122016-09-15E I Du Pont De Nemours And CompanyCo-products of lignocellulosic biomass process for landscape application
US9650657B2 (en)2010-04-192017-05-16Board Of Trustees Of Michigan State UniversityMethods for producing extracted and digested products from pretreated lignocellulosic biomass
WO2018053058A1 (en)2016-09-142018-03-22Danisco Us Inc.Lignocellulosic biomass fermentation-based processes
WO2018118815A1 (en)2016-12-212018-06-28Dupont Nutrition Biosciences ApsMethods of using thermostable serine proteases
US10202660B2 (en)2012-03-022019-02-12Board Of Trustees Of Michigan State UniversityMethods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
US10457810B2 (en)2009-08-242019-10-29Board Of Trustees Of Michigan State UniversityDensified biomass products containing pretreated biomass fibers
US10730958B2 (en)*2017-03-082020-08-04Board Of Trustees Of Michigan State UniversityPretreatment of densified biomass using liquid ammonia and systems and products related thereto
US11440999B2 (en)2017-07-072022-09-13Board Of Trustees Of Michigan State UniversityDe-esterification of biomass prior to ammonia pretreatment

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP1984514A4 (en)*2006-01-272010-09-01Univ Massachusetts SYSTEMS AND METHODS FOR OBTAINING BIOFUELS AND RELATED SUBSTANCES
US20080229657A1 (en)*2007-03-192008-09-25David SenykSystem and methods for continuous biomass processing
US7819976B2 (en)*2007-08-222010-10-26E. I. Du Pont De Nemours And CompanyBiomass treatment method
DE102008013845A1 (en)*2008-03-122009-09-17Zylum Beteiligungsgesellschaft Mbh & Co. Patente Ii Kg Process for the production of bioethanol from lignocellulosic biomass
WO2009124240A1 (en)*2008-04-032009-10-08Cellulose Sciences International, Inc.Highly disordered cellulose
WO2009124321A1 (en)*2008-04-042009-10-08University Of MassachusettsMethods and compositions for improving the production of fuels in microorganisms
US20100105114A1 (en)*2008-06-112010-04-29University Of MassachusettsMethods and Compositions for Regulating Sporulation
WO2010005940A1 (en)*2008-07-072010-01-14Brown Christopher JUse of superheated steam dryers in an alcohol distillation plant
WO2010014631A2 (en)*2008-07-282010-02-04University Of MassachusettsMethods and compositions for improving the production of products in microorganisms
JP2011529345A (en)*2008-07-282011-12-08ユニバーシティ オブ マサチューセッツ Methods and compositions for improving production of products in microorganisms
US8273559B2 (en)*2008-08-292012-09-25Iogen Energy CorporationMethod for the production of concentrated alcohol from fermentation broths
US20100086981A1 (en)*2009-06-292010-04-08Qteros, Inc.Compositions and methods for improved saccharification of biomass
MY186382A (en)2009-03-122021-07-21Univ MalayaA conversion of cellulosic materials into glucose for use in bioethanol production
KR20100119018A (en)*2009-04-302010-11-09삼성전자주식회사Pretreatment method of lignocellulose-based biomass
CA2819456C (en)*2009-05-212015-12-08Board Of Trustees Of Michigan State UniversityMethods for pretreating biomass
CN102666870A (en)*2009-10-122012-09-12纳幕尔杜邦公司Ammonia pretreatment of biomass for improved inhibitor profile
BRPI0904538B1 (en)2009-11-302018-03-27Ctc - Centro De Tecnologia Canavieira S.A. VEGETABLE BIOMASS TREATMENT PROCESS
KR20110067992A (en)*2009-12-152011-06-22삼성전자주식회사 Biomass pretreatment method and pretreatment device using internal heating
US20110183382A1 (en)*2009-12-152011-07-28Qteros, Inc.Methods and compositions for producing chemical products from c. phytofermentans
GB2478791A (en)*2010-03-192011-09-21Qteros IncEthanol production by genetically-modified bacteria
US8394177B2 (en)2010-06-012013-03-12Michigan Biotechnology InstituteMethod of separating components from a gas stream
CN103097437A (en)2010-06-102013-05-08阿文德·马立纳什·拉里 Biomass fractionation method
US8651403B2 (en)2010-07-212014-02-18E I Du Pont De Nemours And CompanyAnhydrous ammonia treatment for improved milling of biomass
IL207945A0 (en)2010-09-022010-12-30Robert JansenMethod for the production of carbohydrates
CN103154261A (en)2010-09-142013-06-12纤维素科学国际公司Nano-deaggregated cellulose
US8444810B2 (en)2010-11-212013-05-21Aicardo Roa-EspinosaApparatus and process for treatment of fibers
US8895279B2 (en)2010-12-022014-11-25Dennis A. BurkeApplications of the rotating photobioreactor
CN102178081B (en)*2011-04-132013-02-06北京中诺德瑞工业科技有限公司Processing method and product of straw feed for ruminants
WO2012174459A2 (en)*2011-06-172012-12-20Sandia CorporationUse of pressure to enhance ionic liquid pretreatment of biomass
CN102493246B (en)*2011-12-052013-12-04南开大学Method for extracting and separating cellulose from biomass solid waste
PL2791368T3 (en)2011-12-162016-03-31Shell Int ResearchSystems capable of adding cellulosic biomass to a digestion unit operating at high pressures and associated methods for cellulosic biomass processing
WO2013096834A1 (en)*2011-12-232013-06-27The Trustees Of Dartmouth CollegeSystem and method for enhancing biomass conversion using flow-through pretreatment
US9695484B2 (en)2012-09-282017-07-04Industrial Technology Research InstituteSugar products and fabrication method thereof
CN103966367B (en)2013-02-012016-01-20财团法人工业技术研究院Process for the preparation of saccharides
CN103993053B (en)*2014-05-072017-01-04中国科学院广州能源研究所A kind of water and the method for ammonia coupling preprocessing biomass
CN103992937B (en)*2014-05-072015-12-30中国科学院广州能源研究所A kind of reactive system being applied to water, ammonia process coupling preprocessing biomass
CN106319100A (en)*2015-06-302017-01-11名京实业集团有限公司Biomass resource utilization method
US9422663B1 (en)2015-11-052016-08-23Aicardo Roa-EspinosaApparatus and process for treatment of biocomponents
BR102017023137A2 (en)*2016-10-272019-02-05Ptt Global Chemical Public Company Limited lignocellulosic biomass pretreatment process using alkaline solution and steam blast.

Citations (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4600590A (en)1981-10-141986-07-15Colorado State University Research FoundationMethod for increasing the reactivity and digestibility of cellulose with ammonia
US4644060A (en)1985-05-211987-02-17E. I. Du Pont De Nemours And CompanySupercritical ammonia treatment of lignocellulosic materials
US5037663A (en)1981-10-141991-08-06Colorado State University Research FoundationProcess for increasing the reactivity of cellulose-containing materials
US5171592A (en)1990-03-021992-12-15Afex CorporationBiomass refining process
US5473061A (en)1993-09-041995-12-05Rhone-Poulenc Rhodia AktiengesellschaftProcess for the treatment of cellulose
US5865898A (en)1992-08-061999-02-02The Texas A&M University SystemMethods of biomass pretreatment
US5939544A (en)1995-03-251999-08-17Rhodia Acetow AgProcess for activating polysaccharides, polysaccharides produced by this process, and use thereof
US6106888A (en)1998-04-302000-08-22Board Of Trustees Operating Michigan State UniversityProcess for treating cellulosic materials
US6416621B1 (en)1998-03-132002-07-09Rhodia Acetow GmbhApparatus, process and pressure reactor for the treatment of solids with pressurized liquid gases
US6444437B1 (en)1998-07-142002-09-03Colorado State University Research FoundationProcess for the production of nutritional products with microorganisms using sequential solid substrate and liquid fermentation
EP1247781A2 (en)2001-04-062002-10-09Rohm And Haas CompanyImproved process for ammonia recovery
US20030044951A1 (en)1998-07-142003-03-06Sporleder Robert A.Bio-reaction process and product
DE20301645U1 (en)2003-02-032003-04-24AQUEX Abwasser- und Schlammbehandlungssysteme GmbH, 51674 WiehlAssembly for processing farm animal slurry by drying, conversion to pellets, incineration, energy recovery and ammonia stripping
US20070031918A1 (en)2005-04-122007-02-08Dunson James B JrTreatment of biomass to obtain fermentable sugars
WO2007130337A1 (en)2006-05-012007-11-15Michigan State UniversityProcess for the treatment of lignocellulosic biomass

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3259501A (en)*1964-06-111966-07-05Delta Ind IncRice hull products and method
US3707436A (en)*1971-03-221972-12-26Kimberly Clark CoExploding of ammonia impregnated wood chips
US4064276A (en)1976-08-041977-12-20Worsk Hydro A.SProcess for the production of ammoniated straw and other plant materials containing lignocellulose
US4370351A (en)1978-08-301983-01-25Harper James LProcess for enriching the protein content of food and feedstuff and products thereof
IN153549B (en)1979-01-301984-07-28Univ Waterloo
US4263744A (en)1979-08-151981-04-28Stoller Benjamin BMethod of making compost and spawned compost, mushroom spawn and generating methane gas
GB2124066B (en)*1982-07-161986-02-26Flemstofte Mads Amby MaskinfabTreating cellulose - containing matter with ammonia
DK290383D0 (en)1983-06-231983-06-23Aksel Thorkild Bentsen PROCEDURE FOR CHEMICAL TREATMENT OF VOLUMINOUS MATERIALS, NORMALLY ORGANIC MATERIALS, SUCH AS BIOMASS, WITH REACTIVE GAS OR Vapor
DK556083A (en)*1983-12-021985-06-03Flemstofte Mads Amby Maskinfab METHOD AND APPARATUS FOR TREATING CELLULOSE-CONTAINING MATERIALS, e.g. HALM, WITH AMMONIA GAS FORM
US4624805A (en)1984-09-271986-11-25The Texas A&M University SystemProcess for recovery of protein from agricultural commodities prior to alcohol production
US5047332A (en)1986-09-031991-09-10Institut Armand-Frappier-Univ. Of QuebecIntegrated process for the production of food, feed and fuel from biomass
US4848026A (en)1987-10-261989-07-18Monterey Mushrooms, Inc.Composting process for the production of mushroom cultivation substrates
US5589164A (en)1992-05-191996-12-31Cox; James P.Stabilization of biowastes
US5370999A (en)*1992-12-171994-12-06Colorado State University Research FoundationTreatment of fibrous lignocellulosic biomass by high shear forces in a turbulent couette flow to make the biomass more susceptible to hydrolysis
DE19916347C1 (en)1999-04-122000-11-09Rhodia Acetow Ag Process for separating biomass containing lignocellulose
EP1326958A4 (en)2000-09-232008-08-06James J McnellyRecirculating composting system
US20070192900A1 (en)2006-02-142007-08-16Board Of Trustees Of Michigan State UniversityProduction of beta-glucosidase, hemicellulase and ligninase in E1 and FLC-cellulase-transgenic plants
AU2002211798A1 (en)2000-10-202002-05-06Michigan State UniversityTransgenic plants containing ligninase and cellulase which degrade lignin and cellulose to fermentable sugars
WO2002037981A2 (en)2000-10-272002-05-16Michigan Biotechnology InstitutePhysical-chemical treatment of lignin containing biomass
RU2215765C2 (en)2001-09-072003-11-10ГП ММЗ "Авангард"Composition for fire-resistant thermal-insulation coating
RU2215755C1 (en)*2002-04-042003-11-10Алтайский государственный университетMethod for preparing nitrogen-containing derivatives of lignocarbohydrate materials
DE10228701A1 (en)2002-06-272004-01-15Hydac Technology Gmbh hydraulic accumulator
ATE364794T1 (en)2002-10-112007-07-15Pursuit Dynamics Plc JET PUMP
DK1443096T3 (en)2003-01-282011-07-18Hans Werner Methods and apparatus for producing fuels from compressed biomass and its use
US20050233030A1 (en)2004-03-102005-10-20Broin And Associates, Inc.Methods and systems for producing ethanol using raw starch and fractionation
WO2005100582A2 (en)2004-03-252005-10-27Novozymes Inc.Methods for degrading or converting plant cell wall polysaccharides
US20060014260A1 (en)2004-05-072006-01-19Zhiliang FanLower cellulase requirements for biomass cellulose hydrolysis and fermentation
NO320971B1 (en)2004-07-082006-02-20Norsk Pellets Vestmarka As Process for preparing fuel pellets
DK176540B1 (en)2004-09-242008-07-21Cambi Bioethanol Aps Process for the treatment of biomass and organic waste in order to extract desired biologically based products
FR2881753B1 (en)2005-02-092009-10-02Inst Francais Du Petrole PROCESS FOR THE PRODUCTION OF CELLULOLYTIC AND HEMICELLULOLYTIC ENZYMES USING ETHANOLIC FERMENTATION DISTILLATION RESIDUES OF ENZYMATIC HYDROLYSATES OF (LIGNO-) CELLULOSIC MATERIALS
MX2007012831A (en)2005-04-192007-12-12Archer Daniels Midland CoProcess for the production of animal feed and ethanol and novel feed.
EP1885864A4 (en)2005-06-032011-04-13Iogen Energy CorpMethod of continuous processing of lignocellulosic feedstocks
CN101223273A (en)2005-06-302008-07-16诺维信北美公司Production of cellulase
CN100542083C (en)2005-08-242009-09-16华为技术有限公司 Method and system for realizing network synchronization through packet network
US7771565B2 (en)2006-02-212010-08-10Packaging Corporation Of AmericaMethod of pre-treating woodchips prior to mechanical pulping
US20070227063A1 (en)2006-03-302007-10-04Board Of Trustees Of Michigan State UniversityProcess for conversion of mushroom lignocellulosic waste to useful byproducts
US20110201091A1 (en)2007-08-292011-08-18Board Of Trustees Of Michigan State UniversityProduction of microbial growth stimulant with ammonia fiber explosion (AFEX) pretreatment and cellulose hydrolysis
US9206446B2 (en)2006-05-012015-12-08Board Of Trustees Of Michigan State UniversityExtraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US8968515B2 (en)2006-05-012015-03-03Board Of Trustees Of Michigan State UniversityMethods for pretreating biomass
WO2008020901A2 (en)2006-05-012008-02-21Michigan State UniversitySeparation of proteins from grasses integrated with ammonia fiber explosion (afex) pretreatment and cellulose hydrolysis
US20070287795A1 (en)2006-06-082007-12-13Board Of Trustees Of Michigan State UniversityComposite materials from corncob granules and process for preparation
JP5109121B2 (en)2006-12-282012-12-26国立大学法人 東京大学 Method for producing sugar, method for producing ethanol, method for producing lactic acid, cellulose for enzymatic saccharification used therein and method for producing the same
US20080229657A1 (en)2007-03-192008-09-25David SenykSystem and methods for continuous biomass processing
US20080256851A1 (en)2007-04-232008-10-23Lumb Kevin DCompressed Fuel Product Using Flax Straw Derivative
US20080280236A1 (en)2007-05-082008-11-13Wright Roger GSolid fuel compositions, processes for preparing solid fuel, and combustion processes
US20090011474A1 (en)2007-06-202009-01-08Board Of Trustees Of Michigan State UniversityProcess for producing sugars from cellulosic biomass
US20090042259A1 (en)2007-08-092009-02-12Board Of Trustees Of Michigan State UniversityProcess for enzymatically converting a plant biomass
US20090053771A1 (en)2007-08-222009-02-26Board Of Trustees Of Michigan State UniversityProcess for making fuels and chemicals from AFEX-treated whole grain or whole plants
US8445236B2 (en)2007-08-222013-05-21Alliance For Sustainable Energy LlcBiomass pretreatment
EP2198019A4 (en)2007-08-302011-05-11Iogen Energy CorpMethod for cellulase production
US8367378B2 (en)2007-10-032013-02-05Board Of Trustees Of Michigan State UniversityProcess for producing sugars and ethanol using corn stillage
WO2010080489A1 (en)2008-12-192010-07-15E. I. Du Pont De Nemours And CompanyOzone treatment of biomass to enhance enzymatic saccharification
US20100206499A1 (en)2009-02-132010-08-19Zilkha Biomass Acquisitions Company L.L.C.Methods for Producing Biomass-Based Fuel With Pulp Processing Equipment
JP5469881B2 (en)2009-02-272014-04-16国立大学法人 東京大学 Method for producing sugar, method for producing ethanol, method for producing lactic acid, and method for producing raw material for enzyme saccharification used in these
CA2819456C (en)2009-05-212015-12-08Board Of Trustees Of Michigan State UniversityMethods for pretreating biomass
JP5633839B2 (en)2009-05-222014-12-03独立行政法人農業・食品産業技術総合研究機構 Method for converting lignocellulosic biomass
JP2011000071A (en)2009-06-192011-01-06Univ Of TokyoMethod for treating biomass raw material, method for producing sugar, method for producing ethanol and method for producing lactic acid
US8945245B2 (en)2009-08-242015-02-03The Michigan Biotechnology InstituteMethods of hydrolyzing pretreated densified biomass particulates and systems related thereto
AU2010289797B2 (en)2009-08-242014-02-27Board Of Trustees Of Michigan State UniversityPretreated densified biomass products
JP2011160753A (en)2010-02-122011-08-25Univ Of TokyoMethod for producing sugar, method for producing ethanol and method for producing lactic acid
CA2797193C (en)2010-04-192015-12-15Board Of Trustees Of Michigan State UniversityDigestible lignocellulosic biomass and extractives and methods for producing same
US8651403B2 (en)2010-07-212014-02-18E I Du Pont De Nemours And CompanyAnhydrous ammonia treatment for improved milling of biomass
US8753476B2 (en)2010-10-062014-06-17Andritz Technology And Asset Management GmbhMethods for producing high-freeness pulp
US20120125551A1 (en)2010-11-232012-05-24E. I. Du Pont De Nemours And CompanyBiomass pretreatment process for a packed bed reactor
US20120125548A1 (en)2010-11-232012-05-24E. I. Du Pont De Nemours And CompanyContinuously fed biomass pretreatment process for a packed bed reactor
WO2013106113A2 (en)2011-10-142013-07-18Board Of Trustees Of Michigan State UniversityIntegrated processes for conversion of lignocellulosic biomass to bioproducts and systems and apparatus related thereto
US10202660B2 (en)2012-03-022019-02-12Board Of Trustees Of Michigan State UniversityMethods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
AR094993A1 (en)2012-04-272015-09-16The Michigan Biotechnology Inst D/B/A Mbi METHODS FOR HYDROLYSIS OF PRE-TREATED DENSIFIED BIOMASS PARTICULATED MATERIALS AND RELATED SYSTEMS

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4600590A (en)1981-10-141986-07-15Colorado State University Research FoundationMethod for increasing the reactivity and digestibility of cellulose with ammonia
US5037663A (en)1981-10-141991-08-06Colorado State University Research FoundationProcess for increasing the reactivity of cellulose-containing materials
US4644060A (en)1985-05-211987-02-17E. I. Du Pont De Nemours And CompanySupercritical ammonia treatment of lignocellulosic materials
US5171592A (en)1990-03-021992-12-15Afex CorporationBiomass refining process
US5865898A (en)1992-08-061999-02-02The Texas A&M University SystemMethods of biomass pretreatment
US5473061A (en)1993-09-041995-12-05Rhone-Poulenc Rhodia AktiengesellschaftProcess for the treatment of cellulose
US5939544A (en)1995-03-251999-08-17Rhodia Acetow AgProcess for activating polysaccharides, polysaccharides produced by this process, and use thereof
US6416621B1 (en)1998-03-132002-07-09Rhodia Acetow GmbhApparatus, process and pressure reactor for the treatment of solids with pressurized liquid gases
US6176176B1 (en)1998-04-302001-01-23Board Of Trustees Operating Michigan State UniversityApparatus for treating cellulosic materials
US6106888A (en)1998-04-302000-08-22Board Of Trustees Operating Michigan State UniversityProcess for treating cellulosic materials
US6444437B1 (en)1998-07-142002-09-03Colorado State University Research FoundationProcess for the production of nutritional products with microorganisms using sequential solid substrate and liquid fermentation
US20030044951A1 (en)1998-07-142003-03-06Sporleder Robert A.Bio-reaction process and product
EP1247781A2 (en)2001-04-062002-10-09Rohm And Haas CompanyImproved process for ammonia recovery
DE20301645U1 (en)2003-02-032003-04-24AQUEX Abwasser- und Schlammbehandlungssysteme GmbH, 51674 WiehlAssembly for processing farm animal slurry by drying, conversion to pellets, incineration, energy recovery and ammonia stripping
US20070031918A1 (en)2005-04-122007-02-08Dunson James B JrTreatment of biomass to obtain fermentable sugars
WO2007130337A1 (en)2006-05-012007-11-15Michigan State UniversityProcess for the treatment of lignocellulosic biomass

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
Alizadeh, H., F. Teymouri, T.I. Gilbert, B.E. Dale, 2005. Pretreatment of Switchgrass by Ammonia Fiber Explosion. Applied Biochemistry and Biotechnology, 121-124:1133-1141.
Eggeman, T. 2001. Ammonia Fiber Explosion Pretreatment for Bioethanol Production, National Renewable Energy Laboratory (NREL) Subcontract No. LCO-1-31055-01.
Felix, A., et al., Anim. Prod. 51 47-61 (1990).
Kudra, T., A.S. Mujumdar, 2002. Advanced Drying Technologies, New York, NY: Marcel Dekker, Inc.
Mosier et al "Features of promising technologies for pretreatment of lignocellulosic biomass" online availabiltiy Sep. 2004 Bioresource Tech 96 (2005) 673-686.*
PCT Search Report on Patentability for PCT/US2007/010415, Pub Date Oct. 11, 2007.
Supplementary European Search Report for European Patent Application No. 07 77 6479, dated May 26, 2010.
Teymouri, F. et al: "Optimization of the Ammonia Fiber Explosion (AFEX) Treatment Parameters for Enzymatic Hydrolysis of Corn Stover", Bioresource Technology, Elsevier BV, Biotech. 2005.01.016, vol. 96, No. 18, Dec. 1, 2005, pp. 2014-2018.
Waiss, A.C., Jr., et al., Journal of Animal Science 35 No. 1, 109-112 (1972).

Cited By (42)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9644222B2 (en)2006-05-012017-05-09Board Of Trustees Of Michigan State UniversityMethods for pretreating biomass
US8968515B2 (en)2006-05-012015-03-03Board Of Trustees Of Michigan State UniversityMethods for pretreating biomass
US9206446B2 (en)2006-05-012015-12-08Board Of Trustees Of Michigan State UniversityExtraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US20090221042A1 (en)*2006-05-012009-09-03Dale Bruce EProcess for the Treatment of Lignocellulosic Biomass
US8771425B2 (en)2006-05-012014-07-08Board Of Trustees Of Michigan State UniversityProcess for the treatment of lignocellulosic biomass
US20100267999A1 (en)*2006-05-012010-10-21Ming Woei LauExtraction of solubles and microbial growth stimulants from lignocellulosic biomass and methods related thereto
US20110192559A1 (en)*2006-05-012011-08-11Balan VenkateshMethods for pretreating biomass
US8394611B2 (en)2006-05-012013-03-12Board Of Trustees Of Michigan State UniversityProcess for the treatment of lignocellulosic biomass
US20100081798A1 (en)*2007-01-232010-04-01Basf SeMethod for producing glucose by enzymatic hydrolysis of cellulose that is obtained from material containing ligno-cellulose using an ionic liquid that comprises a polyatomic anion
US20090011474A1 (en)*2007-06-202009-01-08Board Of Trustees Of Michigan State UniversityProcess for producing sugars from cellulosic biomass
US20090053771A1 (en)*2007-08-222009-02-26Board Of Trustees Of Michigan State UniversityProcess for making fuels and chemicals from AFEX-treated whole grain or whole plants
US8367378B2 (en)2007-10-032013-02-05Board Of Trustees Of Michigan State UniversityProcess for producing sugars and ethanol using corn stillage
US20090093027A1 (en)*2007-10-032009-04-09Board Of Trustees Of Michigan State UniversityProcess for producing sugars and ethanol using corn stillage
US10457810B2 (en)2009-08-242019-10-29Board Of Trustees Of Michigan State UniversityDensified biomass products containing pretreated biomass fibers
US9458482B2 (en)2009-08-242016-10-04The Michigan Biotechnology InstituteMethods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US8673031B2 (en)2009-08-242014-03-18Board Of Trustees Of Michigan State UniversityPretreated densified biomass products
US9039792B2 (en)2009-08-242015-05-26Board Of Trustees Of Michigan State UniversityMethods for producing and using densified biomass products containing pretreated biomass fibers
US8945245B2 (en)2009-08-242015-02-03The Michigan Biotechnology InstituteMethods of hydrolyzing pretreated densified biomass particulates and systems related thereto
US9650657B2 (en)2010-04-192017-05-16Board Of Trustees Of Michigan State UniversityMethods for producing extracted and digested products from pretreated lignocellulosic biomass
WO2012071312A3 (en)*2010-11-232012-08-16E. I. Du Pont De Nemours And CompanyContinuously fed biomass pretreatment process for a packed bed reactor
WO2012071308A3 (en)*2010-11-232012-07-19E. I. Du Pont De Nemours And CompanyBiomass pretreatment process for a packed bed reactor
WO2012071308A2 (en)2010-11-232012-05-31E. I. Du Pont De Nemours And CompanyBiomass pretreatment process for a packed bed reactor
WO2012071312A2 (en)2010-11-232012-05-31E. I. Du Pont De Nemours And CompanyContinuously fed biomass pretreatment process for a packed bed reactor
AU2011332103B2 (en)*2010-11-232014-11-06E. I. Du Pont De Nemours And CompanyContinuously fed biomass pretreatment process for a packed bed reactor
US9347074B1 (en)2011-04-072016-05-24Dennis Anthony BurkeBiomass pretreatment with ammonium bicarbonate / carbonate expansion process
US10202660B2 (en)2012-03-022019-02-12Board Of Trustees Of Michigan State UniversityMethods for increasing sugar yield with size-adjusted lignocellulosic biomass particles
US9938662B2 (en)2012-04-272018-04-10The Michigan Biotechnology InstituteProcess for treating biomass
US9175323B2 (en)2012-04-272015-11-03The Michigan Biotechnology InstituteProcess for treating biomass
WO2013163271A1 (en)2012-04-272013-10-31Michigan Biotechnology InstituteProcess for treating biomass
US9102964B2 (en)2012-04-272015-08-11The Michigan Biotechnology InstituteProcess for treating biomass
WO2015054570A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyFuel compositions containing lignocellulosic biomass fermentation process syrup
WO2015054580A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyLignocellulosic biomass fermentation process co-product fuel for cement kiln
US9725363B2 (en)2013-10-102017-08-08E I Du Pont De Nemours And CompanyLignocellulosic biomass fermentation process co-product fuel for cement kiln
US9834483B2 (en)2013-10-102017-12-05E I Du Pont Nemours And CompanySoil conditioner compositions containing lignocellulosic biomass fermentation process syrup
US9873846B2 (en)2013-10-102018-01-23E I Du Pont De Nemours And CompanyFuel compositions containing lignocellulosic biomass fermentation process syrup
US9499451B2 (en)2013-10-102016-11-22E I Du Pont De Nemours And CompanySoil conditioner compositions containing lignocellulosic biomass fermentation process syrup
WO2015054581A1 (en)2013-10-102015-04-16E. I. Du Pont De Nemours And CompanyLignocellulosic biomass fermentation process syrup binder and adhesive
WO2016145297A1 (en)2015-03-122016-09-15E I Du Pont De Nemours And CompanyCo-products of lignocellulosic biomass process for landscape application
WO2018053058A1 (en)2016-09-142018-03-22Danisco Us Inc.Lignocellulosic biomass fermentation-based processes
WO2018118815A1 (en)2016-12-212018-06-28Dupont Nutrition Biosciences ApsMethods of using thermostable serine proteases
US10730958B2 (en)*2017-03-082020-08-04Board Of Trustees Of Michigan State UniversityPretreatment of densified biomass using liquid ammonia and systems and products related thereto
US11440999B2 (en)2017-07-072022-09-13Board Of Trustees Of Michigan State UniversityDe-esterification of biomass prior to ammonia pretreatment

Also Published As

Publication numberPublication date
US20090221042A1 (en)2009-09-03
CA2650860A1 (en)2007-11-15
US20080008783A1 (en)2008-01-10
BRPI0711139A2 (en)2012-02-22
BRPI0722418A2 (en)2013-07-23
AU2007248736B2 (en)2010-04-22
CN102787149A (en)2012-11-21
CN102787149B (en)2015-07-15
EP2013368A4 (en)2010-06-23
US20120325202A1 (en)2012-12-27
US8394611B2 (en)2013-03-12
CA2650860C (en)2013-09-17
EP2826869A1 (en)2015-01-21
WO2007130337A1 (en)2007-11-15
US8771425B2 (en)2014-07-08
EP2013368B1 (en)2014-11-12
BRPI0722418B1 (en)2023-10-10
EP2013368A1 (en)2009-01-14
CN101484590A (en)2009-07-15
MX2008013981A (en)2009-03-02
AU2007248736A1 (en)2007-11-15

Similar Documents

PublicationPublication DateTitle
US7915017B2 (en)Process for the treatment of lignocellulosic biomass
US9644222B2 (en)Methods for pretreating biomass
CA2580226C (en)Continuous flowing pre-treatment system with steam recovery
CA2692897C (en)Biomass treatment method
EP2432887B1 (en)Methods for pretreating biomass
US20110171709A1 (en)Product Recovery From Fermentation of Lignocellulosic Biomass
US20100330638A1 (en)Thermochemical Treatment of Lignocellulosics for the Production of Ethanol
EP2559768A1 (en)Enzymatic hydrolysis pretreatment of lignocellulosic materials
EP1869201A2 (en)Integration of alternative feedstreams in biomass treatment and utilization
Balan et al.Advancements in ammonia-based pretreatment: key benefits and industry applications
Balan et al.Methods for pretreating biomass
Balzarotti et al.Combined ensiling and hydrothermal processing as efficient pretreatment of sugarcane bagasse for 2G bioethanol production.
Negro et al.Hydrothermal pretreatment conditions to

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, MI

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DALE, BRUCE;REEL/FRAME:020040/0662

Effective date:20070914

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCFInformation on status: patent grant

Free format text:PATENTED CASE

CCCertificate of correction
CCCertificate of correction
FPAYFee payment

Year of fee payment:4

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment:8

MAFPMaintenance fee payment

Free format text:PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2553); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp