Movatterモバイル変換


[0]ホーム

URL:


US7119816B2 - System and method for whiteboard scanning to obtain a high resolution image - Google Patents

System and method for whiteboard scanning to obtain a high resolution image
Download PDF

Info

Publication number
US7119816B2
US7119816B2US10/404,745US40474503AUS7119816B2US 7119816 B2US7119816 B2US 7119816B2US 40474503 AUS40474503 AUS 40474503AUS 7119816 B2US7119816 B2US 7119816B2
Authority
US
United States
Prior art keywords
image
images
point
points
homography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related, expires
Application number
US10/404,745
Other versions
US20040189674A1 (en
Inventor
Zhengyou Zhang
Li-wei He
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft CorpfiledCriticalMicrosoft Corp
Priority to US10/404,745priorityCriticalpatent/US7119816B2/en
Assigned to MICROSOFT CORPORATIONreassignmentMICROSOFT CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HE, LI-WEI, ZHANG, ZHENGYOU
Publication of US20040189674A1publicationCriticalpatent/US20040189674A1/en
Priority to US11/009,974prioritypatent/US20050104901A1/en
Priority to US11/010,150prioritypatent/US7301548B2/en
Application grantedgrantedCritical
Publication of US7119816B2publicationCriticalpatent/US7119816B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLCreassignmentMICROSOFT TECHNOLOGY LICENSING, LLCASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: MICROSOFT CORPORATION
Adjusted expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

This invention is directed toward a system and method for scanning a scene or object such as a whiteboard, paper document or similar item. More specifically, the invention is directed toward a system and method for obtaining a high-resolution image of a whiteboard or other object with a low-resolution camera. The system and method of the invention captures either a set of snapshots with overlap or a continuous video sequence, and then stitches them automatically into a single high-resolution image. The stitched image can finally be exported to other image processing systems and methods for further enhancement.

Description

BACKGROUND
1. Technical Field
This invention is directed toward a system and method for obtaining a high-resolution image of a whiteboard or other object. More specifically, this invention is directed toward a system and method for obtaining a high-resolution image of a whiteboard or similar object with a low-resolution camera.
2. Background Art
The many advances in technology have revolutionalized the way meetings are conducted. For instance, many knowledge workers attend meetings with their notebook computers. Additionally, many meetings nowadays are distributed—that is, the meeting participants are not physically co-located and meet via video-conferencing equipment or via a network with images of the meeting participants taken by a web camera (web cam) and transferred over the network.
One fairly common device used in meetings is the conventional whiteboard that is written on during a meeting by the meeting participants. Alternately, an easel with a white paper pad is also used. Many meeting scenarios use a whiteboard extensively for brainstorming sessions, lectures, project planning meetings, patent disclosures, and so on. Note-taking and copying what is written on the board or paper often interferes with many participants' active contribution and involvement during these meetings. As a result, efforts have been undertaken to capture this written content in some automated fashion. One such method is via capturing an image of the written content. There are, however, issues with this approach to capturing the content of a whiteboard or paper document.
Although a typical lap top computer is sometimes equipped with a built-in camera, it is normally not possible to copy images of annotations of a fruitful brainstorming session on a whiteboard because the typical built-in laptop camera has a maximum resolution 640×480 pixels that is not high enough to produce a readable image of the whiteboard.
Likewise, in the distributed meeting scenario where a meeting participant has a document only in paper form to share with other remote meeting participants, a web cam, which typically has a maximum resolution of 640×480 pixels, is unable to produce a readable image of the paper document to provide to the other participants.
Hence, the current technology is lacking in capturing whiteboard or other document data for the above-mentioned scenarios, and many other similar types of situations.
SUMMARY
The invention is directed toward a system and method that produces a high-resolution image of a whiteboard, paper document or similar planar object with a low-resolution camera by scanning the object to obtain multiple images and then stitching these multiple images together. By zooming in (or approaching to the whiteboard physically) and taking smaller portions of the object in question at a given resolution, a higher resolution image of the object can be obtained when the lower-resolution images are stitched together.
The planar object image enhancing system and method for creating a high-resolution image from low-resolution images can run in two modes: snapshot or continuous. Although the image acquisition procedure differs for the two operation modes, the stitching process is essentially the same.
In snapshot mode, one starts by acquiring a snapshot from the upper left corner of the object such as a whiteboard, a second by pointing to the right but having overlap with previous snapshot, and so on until reaching the upper right corner; moving the camera lower and taking a snapshot, then taking another one by pointing to the left, and so on until reaching the left edge. The process continues in this horizontally flipped S-shaped pattern until the lower border is captured. Successive snapshots must have overlap to allow later stitching, and this is assisted by providing visual feedback during acquisition.
In continuous mode, the user takes images also starting from the upper left corner but in this case continuously following the same S-shaped pattern discussed above without stopping to capture an image. The difference from the snapshot mode is that the user does not need to wait and position the camera anymore before taking a snapshot. The continuous image acquisition also guarantees overlap between successive images assuming a sufficient capture rate. However, motion blur may cause the final stitched image look not as crisp as those obtained with snapshot mode. In order to reduce the blur, the camera exposure time should be set to a small value.
Of course, other acquisition patterns besides the above-mentioned ones can also be used. For example, one can start from the upper left corner, from the lower left corner, or from the lower right corner of the whiteboard or other planar object when capturing the overlapping images.
The mathematic foundation behind the invention is that two images of a planar object, regardless the angle and position of the camera, are related by a plane perspectivity, represented by a 3×3 matrix called homography H. The homography defines the relationship between the points of one image and points in a subsequent image. This relationship is later used to stitch the images together into a larger scene. It typically is a simple linear projective transformation. At least 4 pairs of point matches are needed in order to determine homography H.
Given this, the stitching process involves first, for each image acquired, extracting points of interest. In one embodiment of the image enhancement system and method of the invention, a Plessey corner detector, a well-known technique in computer vision, is used to extract these points of interest. It locates corners corresponding to high curvature points in the intensity surface if one views an image as a 3D surface with the third dimension being the intensity. However, other conventional methods of detecting the points of interest could also be used. These include, for example, a Moravec interest detector.
Next, an attempt is made to match the extracted points with those from a previous image. For each point in the previous image, a 15×15 pixel window is chosen (although another sized window could be chosen) centered on the point under consideration, and the window is compared with windows of the same size, centered on the points in the current image. A zero-mean normalized cross correlation between two windows is computed. If the intensity values of the pixels in each window are rearranged as a vector, the correlation score is equivalent to the cosine angle between the two intensity vectors. The correlation score ranges from −1, for two windows that are not similar at all, to 1, for two windows which are identical. If the largest correlation score exceeds a prefixed threshold (0.707 in one working embodiment of the invention), then the associated point in the current image is considered to be the match candidate to the point in the previous image under consideration. The match candidate is retained as a match if and only if its match candidate in the previous image happens to be the point being considered. This symmetric test reduces many potential matching errors.
The set of matches established by correlation usually contains false matches because correlation is only a heuristic and only uses local information. Inaccurate location of extracted points because of intensity variation or lack of strong texture features is another source of error. The geometric constraint between two images is the homography constraint. If two points are correctly matched, they must satisfy this constraint, which is unknown in this case. If the homography between the two images is estimated based on a least-squares criterion, the result could be completely wrong even if there is only one false match. This is because least-squares is not robust to outliers (erroneous data). A technique based on a robust estimation technique known as the least median squares was developed to detect both false matches and poorly located corners, and simultaneously estimate the homography matrix H.
The aforementioned optimization is performed by searching through a random sampling in the parameter space to find the parameters yielding the smallest value for the median of squared residuals computed for the entire data set. From the smallest median residual, one can compute a so-called robust standard deviation {circumflex over (σ)}, and any point match yielding a residual larger than, say, 2.5{circumflex over (σ)} is considered to be an outlier and is discarded. Consequently, it is able to detect false matches as many as 49.9% of the whole set of matches.
This incremental matching procedure of the stitching process stops when all images have been processed.
Because of the incremental nature, cumulative errors are unavoidable. For higher accuracy, one needs to adjust H's through global optimization by considering all the images simultaneously. Take an example of a point that is matched across three views. In the incremental case, they are considered as two independent pairs, the same way as if they were projections of two distinct points in space. In the global optimization, the three image points are treated exactly as the projections of a single point in space, thus providing a stronger constraint in estimating the homographies. Therefore, the estimated homographies are more accurate and more consistent.
Once the geometric relationship between images (in terms of homography matrices H's) are determined, all of the images can be stitched together as a single high-resolution image. There are several options, and in one working embodiment of the invention a very simple one was implemented. In this embodiment, the first image is used as the reference frame of the final high-resolution image, and original images are successively matched to the reference frame. If a pixel in the reference frame appears several times in the original images, then the one in the newest image is retained.
The image enhancing system and method according to the invention has many advantages. For instance, the invention can produce a high-resolution image from a low-resolution set of images. Hence, only a low-resolution camera is necessary to create such a high-resolution image. This results in substantial cost savings. Furthermore, high-resolution images can be obtained with typical equipment available and used in a meeting. No specialized equipment is necessary.
In addition to the just described benefits, other advantages of the present invention will become apparent from the detailed description which follows hereinafter when taken in conjunction with the drawing figures which accompany it.
DESCRIPTION OF THE DRAWINGS
The file of this patent contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the U.S. Patent and Trademark Office upon request and payment of the necessary fee.
The specific features, aspects, and advantages of the invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
FIG. 1 is a diagram depicting a general purpose computing device constituting an exemplary system for implementing the invention.
FIG. 2 is a general flow diagram of the planar object image enhancing system and method for creating a high-resolution image from low-resolution images.
FIG. 3 is an exemplary user interface employed in one working embodiment of the system and method according to the invention.
FIG. 4A is an illustration of the snapshot image acquisition mode of the image enhancing system and method according to the invention.
FIG. 4B is an illustration of the continuous image acquisition mode of the image enhancing system and method according to the invention.
FIG. 5 is a flow diagram depicting the process of extracting points of interest in the image enhancing system and method according to the invention.
FIG. 6 is an image showing an example of extracted points of interest, indicated by a + of the image enhancing system and method according to the invention.
FIG. 7 is a flow diagram depicting the process of matching the points of interest between images in the image enhancing system and method according to the invention.
FIG. 8 is a flow diagram depicting the process of estimating the homography between two images in the image enhancing system and method according to the invention.
FIG. 9 is a flow diagram depicting the process of stitching together images to obtain a high-resolution image in the image enhancing system and method according to the invention.
FIG. 10 is a flow diagram depicting an alternate process of matching points of interest in the system and method according to the present invention.
FIG. 11 is a series of images of portions of a whiteboard in an office.
FIG. 12 is a stitched image from the series of images shown inFIG. 11 determined by the image enhancing system and method according to the invention. The cumulative error is visible at the left border.
FIG. 13 shows three images of a paper document.
FIGS. 14A and 14B show a comparison of the stitched image from those shown ifFIG. 13 provided by one working embodiment of the invention (FIG. 14A) and the same document captured by the same camera as a single image (FIG. 14B).
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following description of the preferred embodiments of the present invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
1.0 Exemplary Operating Environment
FIG. 1 illustrates an example of a suitablecomputing system environment100 on which the invention may be implemented. Thecomputing system environment100 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should thecomputing environment100 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in theexemplary operating environment100.
The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
With reference toFIG. 1, an exemplary system for implementing the invention includes a general purpose computing device in the form of acomputer110. Components ofcomputer110 may include, but are not limited to, aprocessing unit120, asystem memory130, and asystem bus121 that couples various system components including the system memory to theprocessing unit120. Thesystem bus121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
Computer110 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed bycomputer110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes both volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed bycomputer110. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer readable media.
Thesystem memory130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM)131 and random access memory (RAM)132. A basic input/output system133 (BIOS), containing the basic routines that help to transfer information between elements withincomputer110, such as during start-up, is typically stored inROM131.RAM132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processingunit120. By way of example, and not limitation,FIG. 1 illustratesoperating system134, application programs135,other program modules136, andprogram data137.
Thecomputer110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,FIG. 1 illustrates ahard disk drive141 that reads from or writes to non-removable, nonvolatile magnetic media, amagnetic disk drive151 that reads from or writes to a removable, nonvolatilemagnetic disk152, and anoptical disk drive155 that reads from or writes to a removable, nonvolatileoptical disk156 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. Thehard disk drive141 is typically connected to thesystem bus121 through anon-removable memory interface such asinterface140, andmagnetic disk drive151 andoptical disk drive155 are typically connected to thesystem bus121 by a removable memory interface, such asinterface150.
The drives and their associated computer storage media discussed above and illustrated inFIG. 1, provide storage of computer readable instructions, data structures, program modules and other data for thecomputer110. InFIG. 1, for example,hard disk drive141 is illustrated as storingoperating system144,application programs145,other program modules146, andprogram data147. Note that these components can either be the same as or different fromoperating system134, application programs135,other program modules136, andprogram.data137.Operating system144,application programs145,other program modules146, andprogram data147 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information into thecomputer110 through input devices such as akeyboard162 andpointing device161, commonly referred to as a mouse, trackball or touch pad. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to theprocessing unit120 through auser input interface160 that is coupled to thesystem bus121, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). Amonitor191 or other type of display device is also connected to thesystem bus121 via an interface, such as avideo interface190. In addition to the monitor, computers may also include other peripheral output devices such asspeakers197 andprinter196, which may be connected through an outputperipheral interface195. Of particular significance to the present invention, a camera192 (such as a digital/electronic still or video camera, or film/photographic scanner) capable of capturing a sequence ofimages193, can also be included as an input device to thepersonal computer110. Further, while just one camera is depicted, multiple cameras could be included as input devices to thepersonal computer110. Theimages193 from the one or more cameras are input into thecomputer110 via anappropriate camera interface194. Thisinterface194 is connected to thesystem bus121, thereby allowing the images to be routed to and stored in theRAM132, or one of the other data storage devices associated with thecomputer110. However, it is noted that image data can be input into thecomputer110 from any of the aforementioned computer-readable media as well, without requiring the use of thecamera192.
Thecomputer110 may operate in a networked environment using logical connections to one or more remote computers, such as aremote computer180. Theremote computer180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to thecomputer110, although only amemory storage device181 has been illustrated inFIG. 1. The logical connections depicted inFIG. 1 include a local area network (LAN)171 and a wide area network (WAN)173, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
When used in a LAN networking environment, thecomputer110 is connected to theLAN171 through a network interface oradapter170. When used in a WAN networking environment, thecomputer110 typically includes amodem172 or other means for establishing communications over theWAN173, such as the Internet. Themodem172, which may be internal or external, may be connected to thesystem bus121 via theuser input interface160, or other appropriate mechanism. In a networked environment, program modules depicted relative to thecomputer110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,FIG. 1 illustrates remote application programs185 as residing onmemory device181. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
The exemplary operating environment having now been discussed, the remaining parts of this description section will be devoted to a description of the program modules embodying the invention.
2.0 System and Method for Whiteboard Scanning to obtain a High Resolution Image
The invention is directed toward a system and method of converting the content of a regular whiteboard, paper document or similar planar object into a single high-resolution image that is composed of stitched together lower-resolution images.
2.1 General Overview
A general flow chart of the system and method according to the invention is shown inFIG. 2. The system begins by acquiring images of portions of a whiteboard, paper document or other subject of interest in a prescribed overlapping pattern, with a still or video camera, as shown inprocess action202. The acquired images are represented in a digital form, consisting of an array of pixels. Once an image has been obtained, the points of interest are extracted from this image (process action204). The points of interest extracted inprocess action204 are matched with the previous image of the subject, as shown inprocess action206. Outlying points of interest are rejected, and a homography H is estimated (process action208). This continues for each image in turn until the final image captured is reached (process action210), at which time the homographies may be adjusted through global optimization (process action212). The acquired images are then stitched together (process action214) to create a high-resolution composite image of the item of interest.
The general system and method according to the invention having been described, the next paragraphs provide details of the aforementioned process actions.
2.2 Image Acquisition
The system can acquire images in two modes: snapshot or continuous. Although the image acquisition procedure differs for the two operation modes, the stitching process is essentially the same. In snapshot mode, one starts by taking a snapshot from the upper left corner, a second by pointing to the right but having overlap with previous snapshot, and so on until reaching the upper right corner; moving the camera lower and taking a snapshot, then taking another one by pointing to the left, and so on until reaching the left edge. The process continues in this horizontally flipped S-shaped pattern until the lower border is captured. Successive snapshots must have overlap to allow later stitching, and this is assisted by providing visual feedback during acquisition. In one working embodiment of the system and method according to the invention, an image overlap of approximately 50% is suggested, but the system works with much less overlap in sacrificing the accuracy of the stitching quality, e.g., 5 to 20%.FIG. 3 depicts auser interface302 of one working embodiment of the invention. In theviewing region304, both the previously acquired image and the current image or video is displayed. In order to facilitate the image acquisition, approximately half of the previously acquiredimage308 is shown as opaque, while the other half, which is in theoverlapping region310, is shown as semi-transparent. The current live video is also shown as half opaque and half semi-transparent. This guides the user to take successive images with overlap. Note that the alignment does not need to be precise. The system and method according to the invention will align them. There are also afew buttons306a,306b,306c,306dto indicate the direction in which the user wants to move the camera (down, up, left, right). The overlapping regions change depending on the direction. In one embodiment of the invention, the default behavior was designed such that only the “down” button is necessary to realize image acquisition in the desired patternFIG. 4A illustrates this image acquisition process.
In continuous mode, the user takes images also starting from the upper left corner but in this case continuously following the S-shaped pattern without stopping to capture a specific image as illustrated inFIG. 4B. The difference from the snapshot mode is that the user does not need to wait and position the camera before taking a snapshot. The continuous image acquisition also guarantees overlap between successive images. However, motion blur may cause the final stitched image look not as crisp as those obtained with snapshot mode. In order to reduce the blur, the camera exposure time should be set to a small value.
It should be noted that the pattern of acquisition for either the snap shot or continuous mode could be performed in other prescribed patterns as long as there is an overlap between successive images. For example, the pattern could start at the right upper corner and move to the left and downward. Or, similarly, the pattern could start at the lower right corner and move to the left and upwards.
The stitching process works very much in a similar way in both image acquisition operation modes, and is illustrated inFIG. 2.
2.3 Extracting Points of Interest
Referring toFIGS. 2 and 5, for each image acquired, points of interest are extracted. A Plessey corner detector, which is a well-known technique in computer vision, is used in one embodiment of the image enhancement system and method of the invention. As shown inFIG. 5,process action502, an image is input. The Plessey corner detector locates corners corresponding to high curvature points in the intensity surface if one views an image as a 3D surface with the third dimension being the intensity (process action504). As shown inprocess action506, these points corresponding to the corners are extracted as the points of interest. An example is shown inFIG. 6, where the extracted points are displayed in red +.
2.4 Matching Points of Interest
Next, as shown inFIG. 7, an attempt is made to match the extracted points with those from the previous image as is shown inprocess action702. For each point in the previous image, a 15×15 pixel window is chosen (although a different sized window could be chosen) centered on the point under consideration, and the window is compared with windows of the same size, centered on the points in the current image (processactions704 through708). A zero-mean normalized cross correlation between two windows is computed in order to make this comparison. If the intensity values of the pixels in each window are rearranged as a vector, the correlation score is equivalent to the cosine angle between the two intensity vectors. The correlation score ranges from −1, for two windows that are not similar at all, to 1, for two windows that are identical. As shown inprocess action710, if the largest correlation score found for each point in the previous image exceeds a prefixed threshold (0.707 in one working embodiment of the invention), then the associated point in the current image is considered to be the match candidate to the point in the previous image under consideration. The match candidate is retained as a match if and only if its match candidate in the previous image happens to be the point being considered. That is, by reversing the role of the two images, an attempt is made to find the best match in the previous image for the match candidate in the current image; if the best match in the previous image is the point under consideration, this point and the match candidate are considered to be matched; otherwise, the match candidate is discarded, and there is no match for the point under consideration. This symmetric test reduces many potential matching errors.
2.5 Rejecting Outliers and Estimating the Homography.
The mathematic foundation behind the invention is that two images of a planar object, regardless of the angle and position of the camera, are related by a plane perspectivity, represented by a 3×3 matrix called homography H. The homography defines the relationship between the points of one image and points in another image. This relationship is later used to stitch the images together into a larger scene. More precisely, let m1=[u1, v1]Tand m2=[u2, v2]Tbe a pair of corresponding points, and use the notation ˜ for {tilde over (m)}=[u, v,1]T, then
{tilde over (m)}2=λH{tilde over (m)}1  (1)
where λ is a scalar factor. That is, H is defined up to a scalar factor. At least 4 pairs of point matches are needed in order to determine a homography H between two images.
The set of matches established by correlation usually contains false matches because correlation is only a heuristic and only uses local information. Inaccurate location of extracted points because of intensity variation or lack of strong texture features is another source of error. The geometric constraint between two images is the homography constraint (1). If two points are correctly matched, they must satisfy this constraint, which is unknown in this case. If the homography between the two images is estimated based on a least-squares criterion, the result could be completely wrong even if there is only one false match. This is because least-squares is not robust to outliers (erroneous data). A technique based on a robust estimation technique known as the least median squares was developed to detect both false matches and poorly located corners, and simultaneously estimate the homography matrix H. More precisely, let {(m1i, m2i)} be the pairs of points between two images matched by correlation, the homography matrix H is estimated by solving the following nonlinear problem:
minmedianHim2i-m^1i2(2)
where {circumflex over (m)}1iis the point m1itransferred to the current image by H, i.e., {circumflex over ({tilde over (m)}1iiH{tilde over (m)}1i.
The aforementioned optimization is performed by searching through a random sampling in the parameter space of the homography to find the parameters yielding the smallest value for the median of squared residuals computed for the entire data set. From the smallest median residual, a so-called robust standard deviation {circumflex over (σ)} can be computed, and any point match yielding a residual larger than, say, 2.5{circumflex over (σ)} is considered to be an outlier and is discarded. Consequently, it is able to detect false matches in as many as 49.9% of the whole set of matches. More concretely, after inputting a pair of images (referred to as a first image and a second image for explanation purposes) (process action802), this outlier rejection procedure is shown inFIG. 8 and is implemented as follows:
  • 1. Draw m random subsamples of p=4 different point matches (process action804). (At least 4 point matches are needed to determine a homography matrix.)
  • 2. For each subsample J, compute the homography matrix HJaccording to (1) (process action806).
  • 3. For each HJ, determine the median of the squared residuals, denoted by MJ, with respect to the whole set of point matches. The squared residual for match i is given by ∥m2i−{circumflex over (m)}1i2where {circumflex over (m)}1iis point m1itransferred to the second image by HJ(process action808).
  • 4. Retain the estimate HJfor which MJis minimal among all m MJ's (process action810).
  • 5. Compute the robust standard deviation estimate: {circumflex over (σ)}=1.4826[1+5/(n−p)]√{square root over (MJ)}, where n is twice the number of matched points (process action812).
  • 6. Declare a point match as a false match if its residual is larger than k{circumflex over (σ)}, where k is set to 2.5 (process action814).
  • 7. Discard the false matches and re-estimate H by minimizing the sum of squared errors Σ1∥m2i−{circumflex over (m)}1i2where the summation is over all good matches (process action816).
In one embodiment of the invention, m=70, was used, which gives a probability of 99% that one of the 70 subsamples is good (i.e., all four point matches in the subsample are good) even if half of the total point matches are bad. This last step improves the accuracy of the estimated homography matrix because it uses all good matches.
This incremental matching procedure stops when all images have been processed (process action818). Because of the incremental nature, cumulative errors are unavoidable.
2.6 Adjusting the Homographies through Global Optimization
For higher accuracy, one needs to adjust H's through global optimization by considering all the images simultaneously. This is done as follows. Let one assume that one has in total N images. Without loss of generality, the first image is chosen as the reference image for the global optimization. Let the homography matrix from the reference image to image i be H1, with H1=I. There are M distinct points in the reference image, which are called reference points, denoted by {circumflex over (m)}j. Because of the matching process, a reference point is observed at least in two images. For example, a point in the first image can be matched to a point in the second image, which in turn is matched to a point in the third image; this happens if the first three images shares a common region. Even if a physical point in space is observed in three or more images, only one single reference point is used to represent it. One additional symbol φijis introduced:
    • φij=1 if point j is observed in image i;
      • 0 otherwise.
        One can now formulate the global optimization as estimation of both homography matrices Hi's and reference points {circumflex over (m)}j's by minimizing the errors between the expected positions and the observed ones in the images, i.e.,
min{Hi},{m^j}i=1Nj=1Mmij-m^ii2,
where {tilde under ({circumflex over (m)}ijλijH{tilde under ({circumflex over (m)}j
with λijbeing a scalar factor.
2.7 Stitching Images.
Once the geometric relationship between images (in terms of homography matrices H's) are determined, one is able to stitch all images as a single high-resolution image. There are several options, and in one working embodiment a very simple one was implemented. As shown inFIG. 9,process action902, the first image is used as the reference frame of the final high-resolution image, and original images are successively matched to the reference frame (process action904). If a pixel in the reference frame appears several times in the original images, then the one in the newest image is retained, as shown inprocess action906.
2.8 Alternate Method of Determining Matching Points of Interest.
In order to achieve higher efficiency and robustness in matching two images without knowing any information about their relative position, a pyramidal and multi-starts search strategy was developed. The pyramidal search strategy is particularly useful when the size of the input images is very large. The flow chart of this process is shown inFIG. 10.
The process works as follows. A pair of consecutive images is input, as shown inprocess action1002. A check is made as to whether the image resolution is too high (process action1004). For example, in one embodiment of the invention, if the image width or height is bigger than 500 pixels, the image resolution is considered as too high. If the resolution is too high, then the images are down sampled (process action1006). The image size is reduced by half in each iteration, and thus a pyramidal structure for each image is built, up to a level at which the image resolution reaches the desired one. At the lowest level (or with the original resolution if the size of input images is not too large), a multi-start search strategy is employed (process action1008).
The multi-start search strategy as follows. For any given pixel in one image, its maximum displacement in the other image (i.e., the maximum difference between any pair of corresponding pixels, or the maximum disparity) is the image size if one assumes there is an overlap between the two images. Considering the previously described matching and homography estimation algorithm works with relatively large unknown motion, one does not need to examine every possible displacement. Instead, the displacement (which is equal to the image size) space is coarsely sampled uniformly. More concretely, the procedure is as follows.
    • 1. Nine start points are generated, each defining the center of a search window of the previously described matching algorithm. Let W and H be the width and height of an image. The nine points are (−W/2, −H/2), (0,−H/2), (W/2, −H/2); (−W/2, 0), (0, 0), (W/2, 0); (−W/2, H/2), (0, H/2), (W/2, H/2). The size of the search window is equal to (3W/4, 3H/4), so there is an overlap between adjacent search windows in order to lower the probability of miss due to coarse sampling. Note that with this size of the search window, one does not cover the small region near the boundary, which corresponds to an overlap less than ⅛thof the image size.
    • 2. For each start point, the aforementioned matching and homography estimation algorithm is run, which gives the number of matched points and the root of mean square errors (RMS) of matched points, as well as an estimation of the homography between two images.
    • 3. The homography estimation which corresponds to the largest number of matched points and the smallest RMS is chosen (process action1010).
      If the last level has not been reached (process action1012) one then proceeds to the higher level using the previously estimated homography, which consists of two steps:
    • 1. The homography is projected to the higher level (process action1014). Let Hi−1be the homography at level i−1. Since the images at level i is twice as big as the images at level i−1 in the pyramidal structure, the corresponding homography at level i, Hi, is equal to S Hi−1S−1, where S=diag(2,2,1).
    • 2. The homography is refined at the current level (process action1016). There are at least two ways to do that.
      • Simple Technique. First, the four image corners are transformed using Hi, the disparity is computed for each point (i.e., the difference between the transformed corner point and the original one), and the maximum and minimum disparities are computed in both the horizontal and vertical directions. Second, the search range is defined by enlarging the difference between the maximum and minimum disparities by a certain amount (10% in one embodiment) to account for the imprecision of the estimation Hi. Finally, the points are matched using the search range defined earlier, and the homography is estimated based on least-median-squares.
      • Elaborate Technique. First, the first image and all the detected corners are transformed using Hi. Second, the corners are matched and the homography between the transformed image and the second image is estimated. This estimated homography is denoted by ΔHi. The search range could be quite small (say, 15 pixels) to consider the imprecision of Hiestimated at a lower level. Finally, the refined homography is given by ΔHiHi.
        The above process is repeated until the original images are matched, and the estimated homography is reported as the output (process action1018).
        3.0 Exemplary Working Embodiment
The following paragraphs describe an exemplary working embodiment of the system and method of converting the content of a whiteboard, paper, or similar object into a high-resolution image.
In this section, a few examples are shown.FIGS. 11 and 12 show the stitching result of six images of a whiteboard.FIGS. 13 and 14 show the stitching result of a paper document. The stitched paper document, shown inFIG. 14A, is compared inFIG. 14B with a single image of the document, and clearly the stitched image gives a much higher readability.

Claims (17)

1. A computer-implemented process for converting the contents of a planar object into a high-resolution image, comprising the process actions of:
acquiring a sequence of images of portions of a planar object which have been captured in a prescribed pattern and wherein each subsequent image overlaps a previous image in said pattern;
extracting points of interest in each image;
matching said points of said interest between each pair of successive images wherein the process action of matching said points of said interest between each pair of successive images comprises the process actions of:
for each point of interest in the earlier captured image of the pair of images under consideration, establishing a window of pixels centered on the point of interest;
for each point of interest,
comparing said window in said earlier captured image of the pair under consideration with windows of pixels the same size which are centered on the points of interest in the later-captured image of the pair by computing a zero-mean normalized cross correlation between the windows; and
whenever the largest correlation scare computed between the window of the earlier captured image and each of the windows in the later captured image exceeds a prefixed threshold, designating the associated point in the later-captured image as a match candidate for the point under consideration in the earlier-captured image;
computing a projective mapping between each pair of successive images in order to determine corresponding pixel locations in the images; and
generating a composite image from said sequence of images using said projective mapping.
3. The computer-implemented process ofclaim 1 wherein said process action of computing a projective mapping between each set of two successive images in said ordered sequence of image, comprises the process actions of:
(a) inputting a first image and a second image;
(b) drawing m random subsamples of p=4 different point matches;
(c) for each subsample J, computing a homography matrix Hj;
(d) for each HJ, determining the median of the squared residuals, denoted by
MJ, with respect to the whole set of point matches, where the squared residual for match i is given by ∥m2i−{circumflex over (m)}1i2where {circumflex over (m)}1iis point in m1i, transferred to the second image by HJ;
(e) retaining the estimate HJfor which MJis minimal among all m MJ's;
(f) computing a robust standard deviation estimate {circumflex over (σ)};
(g) declaring a point match as a false match if its residual is larger than k{circumflex over (σ)}, where k is set to a prescribed value;
(h) discarding the false matches and re-estimating H by minimizing the sum of squared errors Σi1∥m2i−{circumflex over (m)}1i2where the summation is over all good matches; and
(i) repeating process actions (a) through (h) until all images of me sequence of images have been processed.
6. The computer-implemented process ofclaim 1, wherein the process action of computing a projective mapping comprises computing a homography in the form of a homography matrix between each pair of two successive images and refining the homographies computed for each pair of successive images through global optimization; further comprising the process actions of:
for a total of N images, choosing a first image as the reference image for the global optimization and letting me homography matrix from the reference image to image i be Hi, with H1=1, the identity matrix, and defining that there are M distinct points in the reference image, which are called reference points, denoted by {circumflex over (m)}j; defining a variable φij=1 if point j is observed in image i and φij=0 otherwise;
formulating the global optimization as an estimation of both homography matrices Hi's and reference points {circumflex over (m)}ij's by minimizing the errors between the expected positions of the reference points in the images and the observed reference points in the images.
8. A system for converting markings on a planar object into a high resolution image, the system comprising:
a general purpose computing device; and
a computer program comprising program modules executable by the computing device, wherein the computing device is directed by the program modules of the computer program to,
acquire a sequence of images of portions of a planar object having been captured in a prescribed pattern, each subsequent image overlapping a previous image in said pattern;
extract points of interest in each image in said sequence;
match said points of said interest between two successive images in said sequence; wherein the program module for matching said points of said interest between two successive images in said sequence comprises sub-modules for,
for each point of Interest in the earlier captured image of the set of images under consideration, establishing a window of pixels centered on the point of interest,
for each point of interest,
comparing said window in said earlier captured image of the set under consideration with windows of pixels the same size which are centered on the points of interest in the later-captured image of the set by computing a zero-mean normalized cross correlation between the windows, and
whenever the largest correlation score computed between the window of the earlier captured image and each of the windows in the later captured captured image as a match candidate for the point under consideration in the earlier-captured image;
compute a projective mapping between each set of two successive images in said sequence of images in order to determine corresponding pixel locations in the images of each set; and
generate a composite image from said images using said projective mapping.
10. The system ofclaim 8 wherein said program module for computing a projective mapping between each set of two successive images in said sequence of images, comprises sub-modules for:
(a) inputting a first image and a second image;
(b) drawing m random subsamples of p=4 different point matches;
(c) for each subsample J, computing a homography matrix Hj,
(d) for each HJ, determining the median of the squared residuals, denoted by MJ, with respect to the whole set of point matches, where the squared residual for match i is given by ∥m2i−{circumflex over (m)}1i2where {circumflex over (m)}1iis point m1itransferred to the second image by HJ;
(e) retaining the estimate HJfor which MJis minimal among all m MJ's;
(f) computing the robust standard deviation estimate {circumflex over (σ)}=1.4826[1+5/(n−p)]√{square root over (MJ)}where n, is twice the number of matched points;
(g) declaring a point match as a false match if its residual is larger than k{circumflex over (σ)}, where k is set to a prescribed number;
(h) discarding the false matches and re-estimating H by minimizing the sum of squared errors Σ1∥m2i−{circumflex over (m)}1i2where me summation is over all good matches; and
(i) repeating process actions (a) through (h) until all images have been processed.
12. A computer-readable medium having computer-executable instructions for converting a series of low resolution images of portions of a planar object into a high resolution image of said object, said computer executable instructions causing a computer to execute the method comprising:
acquiring a series of images of the depicting portions of the same scene;
extracting points of interest in each image of said series of images;
matching said points of interest in each image of said series of images with the image preceding said image in said series of images, wherein said matching said points of interest in each image of said series of images with the preceding said image in said series of images comprises,
for each point of interest in the preceding image of a pair of images under consideration, establishing a window of pixels centered on the point of interest;
for each point of interest,
comparing said window in said preceding image of the pair under consideration with windows of pixels the same size which are centered on the points of interest in the later-captured image of the pair by computing a zero-mean normalized cross correlation between the windows, and
whenever the largest correlation score computed between the window of the preceding image and each of the windows in the later captured image exceeds a prefixed threshold, designating the associated point in the later-captured image as a match candidate for the point under consideration in the preceding images;
calculating a homography between each image of said series of images with the image preceding said image in said series of images; and
stitching each image in said series of images together using said homographies to create a composite image.
15. The computer-readable medium ofclaim 12 wherein said matching said points of interest in each image of said series of images with the preceding image in said series of images further comprises:
(a) inputting a pair of consecutive images of a set of original images;
(b) checking whether the image resolution is greater than a prescribed value;
(c) if the resolution is too high, then downsampling the images by half at each iteration that the resolution is too high, thus building a pyramidal structure for each image up to a level at which the image resolution reaches a prescribed resolution;
(d) at the lowest level, or with the original resolution if the size of input images is not too large, employing a multi-start search strategy is employed to estimate a homography between the pair of images;
(e) generating nine start points, each defining the center of a search window of the previously described matching algorithm, where W and H are defined as the width and height of an image and the nine points are (−W/2, −H/2), (0, −H/2), (W/2, −H/2); (−W/2, 0), (0, 0), (W/2, 0); (−W/2, H/2), (0, H/2), (W/2, H/2);
(f) for each start point, running a matching and homography estimation procedure, which gives the number of matched points and the root of mean square errors (RMS) of matched points, as well as an estimation of the homography between the two images;
(g) choosing the homography estimation which corresponds to the largest number of matched points and the smallest RMS;
(h) if the last level has not been reached, proceeding to the higher level using the previously estimated homography;
projecting the homography to the higher level, letting Hi-1be the homography at level i−1 and the corresponding homography at level i, setting Hi, equal to S Hi−1S−1, where S=diag(2, 2, 1); refining the homography at the current level; and
(i) repeating (a) through (h) until all images of the set of original images are matched, and reporting the last estimated homography as the output.
US10/404,7452003-03-312003-03-31System and method for whiteboard scanning to obtain a high resolution imageExpired - Fee RelatedUS7119816B2 (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US10/404,745US7119816B2 (en)2003-03-312003-03-31System and method for whiteboard scanning to obtain a high resolution image
US11/009,974US20050104901A1 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image
US11/010,150US7301548B2 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US10/404,745US7119816B2 (en)2003-03-312003-03-31System and method for whiteboard scanning to obtain a high resolution image

Related Child Applications (2)

Application NumberTitlePriority DateFiling Date
US11/009,974DivisionUS20050104901A1 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image
US11/010,150ContinuationUS7301548B2 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image

Publications (2)

Publication NumberPublication Date
US20040189674A1 US20040189674A1 (en)2004-09-30
US7119816B2true US7119816B2 (en)2006-10-10

Family

ID=32990183

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US10/404,745Expired - Fee RelatedUS7119816B2 (en)2003-03-312003-03-31System and method for whiteboard scanning to obtain a high resolution image
US11/009,974AbandonedUS20050104901A1 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image
US11/010,150Expired - Fee RelatedUS7301548B2 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
US11/009,974AbandonedUS20050104901A1 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image
US11/010,150Expired - Fee RelatedUS7301548B2 (en)2003-03-312004-12-11System and method for whiteboard scanning to obtain a high resolution image

Country Status (1)

CountryLink
US (3)US7119816B2 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20050200706A1 (en)*2003-10-142005-09-15Makoto OuchiGeneration of static image data from multiple image data
US20070040913A1 (en)*2000-03-062007-02-22Fisher Clay HSystem and method for creating composite images by utilizing an imaging device
US20080298718A1 (en)*2007-05-312008-12-04Che-Bin LiuImage Stitching
US7570813B2 (en)2004-01-162009-08-04Microsoft CorporationStrokes localization by m-array decoding and fast image matching
US7580576B2 (en)2005-06-022009-08-25Microsoft CorporationStroke localization and binding to electronic document
US7583842B2 (en)2004-01-062009-09-01Microsoft CorporationEnhanced approach of m-array decoding and error correction
US7599560B2 (en)2005-04-222009-10-06Microsoft CorporationEmbedded interaction code recognition
US7607076B2 (en)2005-02-182009-10-20Microsoft CorporationEmbedded interaction code document
US7619607B2 (en)2005-06-302009-11-17Microsoft CorporationEmbedding a pattern design onto a liquid crystal display
US7622182B2 (en)2005-08-172009-11-24Microsoft CorporationEmbedded interaction code enabled display
US7639885B2 (en)2002-10-312009-12-29Microsoft CorporationDecoding and error correction in 2-D arrays
US7684618B2 (en)2002-10-312010-03-23Microsoft CorporationPassive embedded interaction coding
US7729539B2 (en)2005-05-312010-06-01Microsoft CorporationFast error-correcting of embedded interaction codes
US7817816B2 (en)2005-08-172010-10-19Microsoft CorporationEmbedded interaction code enabled surface type identification
US7826074B1 (en)2005-02-252010-11-02Microsoft CorporationFast embedded interaction code printing with custom postscript commands
US20100296131A1 (en)*2009-05-202010-11-25Dacuda AgReal-time display of images acquired by a handheld scanner
US20100296129A1 (en)*2009-05-202010-11-25Dacuda AgAutomatic sizing of images acquired by a handheld scanner
US20100296140A1 (en)*2009-05-202010-11-25Dacuda AgHandheld scanner with high image quality
US7920753B2 (en)2005-05-252011-04-05Microsoft CorporationPreprocessing for information pattern analysis
US20110234815A1 (en)*2010-03-252011-09-29Dacuda AgSynchronization of navigation and image information for handheld scanner
US20110234497A1 (en)*2010-03-252011-09-29Dacuda AgComputer peripheral for scanning
CN102236890A (en)*2010-05-032011-11-09微软公司Generating a combined image from multiple images
US8156153B2 (en)2005-04-222012-04-10Microsoft CorporationGlobal metadata embedding and decoding
US20120300025A1 (en)*2009-12-222012-11-29Thomson LicensingMethod and apparatus for optimal motion reproduction in stereoscopic digital cinema
US8441696B2 (en)2009-05-202013-05-14Dacuda AgContinuous scanning with a handheld scanner
US10142522B2 (en)2013-12-032018-11-27Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10298898B2 (en)2013-08-312019-05-21Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10410321B2 (en)2014-01-072019-09-10MN Netherlands C.V.Dynamic updating of a composite image
US10484561B2 (en)2014-05-122019-11-19Ml Netherlands C.V.Method and apparatus for scanning and printing a 3D object
US10708491B2 (en)2014-01-072020-07-07Ml Netherlands C.V.Adaptive camera control for reducing motion blur during real-time image capture
TWI718459B (en)*2018-12-262021-02-11晶睿通訊股份有限公司Image analyzing method and related image analyzing device
US12100181B2 (en)2020-05-112024-09-24Magic Leap, Inc.Computationally efficient method for computing a composite representation of a 3D environment

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP4378087B2 (en)*2003-02-192009-12-02奇美電子股▲ふん▼有限公司 Image display device
US7659915B2 (en)*2004-04-022010-02-09K-Nfb Reading Technology, Inc.Portable reading device with mode processing
US20070103544A1 (en)*2004-08-262007-05-10Naofumi NakazawaPanorama image creation device and panorama image imaging device
US7609290B2 (en)*2005-01-282009-10-27Technology Advancement Group, Inc.Surveillance system and method
US7477784B2 (en)*2005-03-012009-01-13Microsoft CorporationSpatial transforms from displayed codes
JP2006292999A (en)*2005-04-112006-10-26Direct Communications:Kk Slide image data creation device and slide image data
US7403658B2 (en)*2005-04-152008-07-22Microsoft CorporationDirect homography computation by local linearization
US8509563B2 (en)2006-02-022013-08-13Microsoft CorporationGeneration of documents from images
US20080007700A1 (en)*2006-07-102008-01-10Vanbaar JeroenMethod and system for aligning an array of rear-projectors
WO2008118886A1 (en)2007-03-232008-10-02Bioimagene, Inc.Digital microscope slide scanning system and methods
JP4864835B2 (en)*2007-08-212012-02-01Kddi株式会社 Color correction apparatus, method and program
US9300912B2 (en)*2008-03-282016-03-29Microsoft Technology Licensing, LlcSoftware based whiteboard capture solution for conference room meetings
US20090309853A1 (en)*2008-06-132009-12-17Polyvision CorporationElectronic whiteboard system and assembly with optical detection elements
US20100226926A1 (en)*2009-03-092010-09-09Bioimagene, IncMethod of Detection of Fluorescence-Labeled Probes Attached to Diseased Solid Tissue
US8537181B2 (en)*2009-03-092013-09-17Ventana Medical Systems, Inc.Modes and interfaces for observation, and manipulation of digital images on computer screen in support of pathologist's workflow
US8422794B2 (en)2009-07-302013-04-16Intellectual Ventures Fund 83 LlcSystem for matching artistic attributes of secondary image and template to a primary image
US8854395B2 (en)*2009-07-302014-10-07Intellectual Ventures Fund 83 LlcMethod for producing artistic image template designs
US20110029914A1 (en)*2009-07-302011-02-03Whitby Laura RApparatus for generating artistic image template designs
US20110029635A1 (en)*2009-07-302011-02-03Shkurko Eugene IImage capture device with artistic template design
US20110029562A1 (en)*2009-07-302011-02-03Whitby Laura RCoordinating user images in an artistic design
US8849853B2 (en)*2009-07-302014-09-30Intellectual Ventures Fund 83 LlcMethod for matching artistic attributes of a template and secondary images to a primary image
WO2011018878A1 (en)*2009-08-132011-02-17日本電気株式会社Image processing system, image processing method and program for image processing
JP4982544B2 (en)*2009-09-302012-07-25株式会社日立ハイテクノロジーズ Composite image forming method and image forming apparatus
US20110145725A1 (en)*2009-12-112011-06-16Richard John CampbellMethods and Systems for Attaching Semantics to a Collaborative Writing Surface
JP4957825B2 (en)*2010-03-252012-06-20カシオ計算機株式会社 Imaging apparatus and program
US8773464B2 (en)2010-09-152014-07-08Sharp Laboratories Of America, Inc.Methods and systems for collaborative-writing-surface image formation
US9286656B2 (en)*2012-12-202016-03-15Chung-Ang University Industry-Academy Cooperation FoundationHomography estimation apparatus and method
US9704350B1 (en)2013-03-142017-07-11Harmonix Music Systems, Inc.Musical combat game
US20140267598A1 (en)*2013-03-142014-09-18360Brandvision, Inc.Apparatus and method for holographic poster display
US10175845B2 (en)*2013-10-162019-01-083M Innovative Properties CompanyOrganizing digital notes on a user interface
EP3099504B1 (en)2014-01-312019-10-16HP Indigo B.V.Method for controlling a digital printer and digital printer
US10547825B2 (en)*2014-09-222020-01-28Samsung Electronics Company, Ltd.Transmission of three-dimensional video
US11205305B2 (en)2014-09-222021-12-21Samsung Electronics Company, Ltd.Presentation of three-dimensional video
KR102149276B1 (en)*2014-10-232020-08-28한화테크윈 주식회사Method of image registration
KR102225617B1 (en)*2014-11-032021-03-12한화테크윈 주식회사Method of setting algorithm for image registration
KR101622344B1 (en)*2014-12-162016-05-19경북대학교 산학협력단A disparity caculation method based on optimized census transform stereo matching with adaptive support weight method and system thereof
US9799106B2 (en)*2015-12-162017-10-24Dropbox, Inc.Enhancing a digital image
WO2017120776A1 (en)*2016-01-122017-07-20Shanghaitech UniversityCalibration method and apparatus for panoramic stereo video system
US9934431B2 (en)*2016-07-272018-04-03Konica Minolta Laboratory U.S.A., Inc.Producing a flowchart object from an image
US11221481B2 (en)*2016-12-072022-01-11Kyocera CorporationImage projection apparatus, image display apparatus, and vehicle
US10438362B2 (en)*2017-05-312019-10-08Here Global B.V.Method and apparatus for homography estimation
CN110809786B (en)*2017-06-202023-10-27索尼互动娱乐股份有限公司Calibration device, calibration chart, chart pattern generation device, and calibration method
US11049218B2 (en)2017-08-112021-06-29Samsung Electronics Company, Ltd.Seamless image stitching
CN113302915B (en)2019-01-142024-10-18杜比实验室特许公司 Method and system for generating a record of content appearing on a physical surface and captured on video
CN109493751A (en)*2019-01-162019-03-19深圳市华星光电半导体显示技术有限公司The display methods and display panel of display panel
CN112150541A (en)*2020-09-102020-12-29中国石油大学(华东) A Multi-LED Wafer Positioning Algorithm
KR102378659B1 (en)*2021-02-232022-03-25주식회사 포스로직Method and Apparatus for Detecting Pattern Image
US11394851B1 (en)*2021-03-052022-07-19Toshiba Tec Kabushiki KaishaInformation processing apparatus and display method

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5986668A (en)*1997-08-011999-11-16Microsoft CorporationDeghosting method and apparatus for construction of image mosaics
US6078701A (en)*1997-08-012000-06-20Sarnoff CorporationMethod and apparatus for performing local to global multiframe alignment to construct mosaic images
US6184781B1 (en)*1999-02-022001-02-06Intel CorporationRear looking vision system
US6249616B1 (en)*1997-05-302001-06-19Enroute, IncCombining digital images based on three-dimensional relationships between source image data sets
US20030026588A1 (en)*2001-05-142003-02-06Elder James H.Attentive panoramic visual sensor
US6535650B1 (en)*1998-07-212003-03-18Intel CorporationCreating high resolution images
US6755537B1 (en)*2003-03-212004-06-29Mitsubishi Electric Research Laboratories, Inc.Method for globally aligning multiple projected images

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5138460A (en)*1987-08-201992-08-11Canon Kabushiki KaishaApparatus for forming composite images
US5528290A (en)*1994-09-091996-06-18Xerox CorporationDevice for transcribing images on a board using a camera based board scanner
US20030011619A1 (en)*1997-10-082003-01-16Robert S. JacobsSynchronization and blending of plural images into a seamless combined image
US6657667B1 (en)*1997-11-252003-12-02Flashpoint Technology, Inc.Method and apparatus for capturing a multidimensional array of overlapping images for composite image generation
US7136096B1 (en)*1998-03-112006-11-14Canon Kabushiki KaishaImage processing method and apparatus, control method therefor, and storage medium
US7292261B1 (en)*1999-08-202007-11-06Patrick TeoVirtual reality camera
JP2001128051A (en)*1999-10-272001-05-11Ricoh Co Ltd Imaging device
US7064783B2 (en)*1999-12-312006-06-20Stmicroelectronics, Inc.Still picture format for subsequent picture stitching for forming a panoramic image
US6978052B2 (en)*2002-01-282005-12-20Hewlett-Packard Development Company, L.P.Alignment of images for stitching
US7006706B2 (en)*2002-04-122006-02-28Hewlett-Packard Development Company, L.P.Imaging apparatuses, mosaic image compositing methods, video stitching methods and edgemap generation methods
US7260257B2 (en)*2002-06-192007-08-21Microsoft Corp.System and method for whiteboard and audio capture
US7171056B2 (en)*2003-02-222007-01-30Microsoft Corp.System and method for converting whiteboard content into an electronic document

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6249616B1 (en)*1997-05-302001-06-19Enroute, IncCombining digital images based on three-dimensional relationships between source image data sets
US5986668A (en)*1997-08-011999-11-16Microsoft CorporationDeghosting method and apparatus for construction of image mosaics
US6078701A (en)*1997-08-012000-06-20Sarnoff CorporationMethod and apparatus for performing local to global multiframe alignment to construct mosaic images
US6535650B1 (en)*1998-07-212003-03-18Intel CorporationCreating high resolution images
US6184781B1 (en)*1999-02-022001-02-06Intel CorporationRear looking vision system
US20030026588A1 (en)*2001-05-142003-02-06Elder James H.Attentive panoramic visual sensor
US6755537B1 (en)*2003-03-212004-06-29Mitsubishi Electric Research Laboratories, Inc.Method for globally aligning multiple projected images

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Christoph Fehn, Eddie Cooke, O. Schreer, Peter Kauff, Heinrich-Hertz-Institut, Einsteinufer, Corresponding Author: Christoph Fehn, 3D Analysis and Image-Based Rendering for Immersive TV Applications, 2002, SPIC2002, pp. 1-28.*
Harpreet S Sawhney, Steve Hsu, and R Kumar, To appear in the Proc of the European Conf on Computer Vision titled Robu Video Mosaicing through Topology Inference and Local to Global Alignment, 1998, 16 pages.*
J. P. Lewis of Industrial Light & Magic, Fast Normalized Cross-Correlation, 1995, pp. 1-7.*
U.S. Appl. No. 10/178,443, filed Jun. 19, 2002, Zhengyou Zhang.
U.S. Appl. No. 10/372,488, filed Feb. 22, 2003, Zhengyou Zhang.

Cited By (59)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20120154639A1 (en)*2000-03-062012-06-21Fisher Clay HSystem And Method For Creating Composite Images By Utilizing An Imaging Device
US20070040913A1 (en)*2000-03-062007-02-22Fisher Clay HSystem and method for creating composite images by utilizing an imaging device
US8687072B2 (en)*2000-03-062014-04-01Sony CorporationSystem and method for creating composite images by utilizing an imaging device
US8134606B2 (en)*2000-03-062012-03-13Sony CorporationSystem and method for creating composite images by utilizing an imaging device
US7684618B2 (en)2002-10-312010-03-23Microsoft CorporationPassive embedded interaction coding
US7639885B2 (en)2002-10-312009-12-29Microsoft CorporationDecoding and error correction in 2-D arrays
US20050200706A1 (en)*2003-10-142005-09-15Makoto OuchiGeneration of static image data from multiple image data
US7535497B2 (en)*2003-10-142009-05-19Seiko Epson CorporationGeneration of static image data from multiple image data
US7583842B2 (en)2004-01-062009-09-01Microsoft CorporationEnhanced approach of m-array decoding and error correction
US7570813B2 (en)2004-01-162009-08-04Microsoft CorporationStrokes localization by m-array decoding and fast image matching
US7607076B2 (en)2005-02-182009-10-20Microsoft CorporationEmbedded interaction code document
US7826074B1 (en)2005-02-252010-11-02Microsoft CorporationFast embedded interaction code printing with custom postscript commands
US8156153B2 (en)2005-04-222012-04-10Microsoft CorporationGlobal metadata embedding and decoding
US7599560B2 (en)2005-04-222009-10-06Microsoft CorporationEmbedded interaction code recognition
US7920753B2 (en)2005-05-252011-04-05Microsoft CorporationPreprocessing for information pattern analysis
US7729539B2 (en)2005-05-312010-06-01Microsoft CorporationFast error-correcting of embedded interaction codes
US7580576B2 (en)2005-06-022009-08-25Microsoft CorporationStroke localization and binding to electronic document
US7619607B2 (en)2005-06-302009-11-17Microsoft CorporationEmbedding a pattern design onto a liquid crystal display
US7817816B2 (en)2005-08-172010-10-19Microsoft CorporationEmbedded interaction code enabled surface type identification
US7622182B2 (en)2005-08-172009-11-24Microsoft CorporationEmbedded interaction code enabled display
US7894689B2 (en)2007-05-312011-02-22Seiko Epson CorporationImage stitching
US20080298718A1 (en)*2007-05-312008-12-04Che-Bin LiuImage Stitching
US20100296131A1 (en)*2009-05-202010-11-25Dacuda AgReal-time display of images acquired by a handheld scanner
US9300834B2 (en)2009-05-202016-03-29Dacuda AgImage processing for handheld scanner
US8723885B2 (en)2009-05-202014-05-13Dacuda AgReal-time display of images acquired by a handheld scanner
US10225428B2 (en)2009-05-202019-03-05Ml Netherlands C.V.Image processing for handheld scanner
US20100296140A1 (en)*2009-05-202010-11-25Dacuda AgHandheld scanner with high image quality
US20100295868A1 (en)*2009-05-202010-11-25Dacuda AgImage processing for handheld scanner
US20100296129A1 (en)*2009-05-202010-11-25Dacuda AgAutomatic sizing of images acquired by a handheld scanner
US8582182B2 (en)2009-05-202013-11-12Dacuda AgAutomatic sizing of images acquired by a handheld scanner
US8441695B2 (en)2009-05-202013-05-14Dacuda AgHandheld scanner with high image quality
US8441696B2 (en)2009-05-202013-05-14Dacuda AgContinuous scanning with a handheld scanner
US20120300025A1 (en)*2009-12-222012-11-29Thomson LicensingMethod and apparatus for optimal motion reproduction in stereoscopic digital cinema
US9030525B2 (en)*2009-12-222015-05-12Thomson LicensingMethod and apparatus for optimal motion reproduction in stereoscopic digital cinema
US8497840B2 (en)2010-03-252013-07-30Dacuda AgComputer peripheral for scanning
US8339467B2 (en)2010-03-252012-12-25Dacuda AgSynchronization of navigation and image information for handheld scanner
US20110234497A1 (en)*2010-03-252011-09-29Dacuda AgComputer peripheral for scanning
US20110234815A1 (en)*2010-03-252011-09-29Dacuda AgSynchronization of navigation and image information for handheld scanner
CN102236890A (en)*2010-05-032011-11-09微软公司Generating a combined image from multiple images
US8837859B2 (en)*2010-05-032014-09-16Microsoft CorporationGenerating a combined image from multiple images
CN102236890B (en)*2010-05-032016-03-23微软技术许可有限责任公司From multiple Computer image genration combination image
US11563926B2 (en)2013-08-312023-01-24Magic Leap, Inc.User feedback for real-time checking and improving quality of scanned image
US10298898B2 (en)2013-08-312019-05-21Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10841551B2 (en)2013-08-312020-11-17Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10455128B2 (en)2013-12-032019-10-22Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US11115565B2 (en)2013-12-032021-09-07Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US11798130B2 (en)2013-12-032023-10-24Magic Leap, Inc.User feedback for real-time checking and improving quality of scanned image
US10142522B2 (en)2013-12-032018-11-27Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10375279B2 (en)2013-12-032019-08-06Ml Netherlands C.V.User feedback for real-time checking and improving quality of scanned image
US10410321B2 (en)2014-01-072019-09-10MN Netherlands C.V.Dynamic updating of a composite image
US11315217B2 (en)2014-01-072022-04-26Ml Netherlands C.V.Dynamic updating of a composite image
US11516383B2 (en)2014-01-072022-11-29Magic Leap, Inc.Adaptive camera control for reducing motion blur during real-time image capture
US10708491B2 (en)2014-01-072020-07-07Ml Netherlands C.V.Adaptive camera control for reducing motion blur during real-time image capture
US11245806B2 (en)2014-05-122022-02-08Ml Netherlands C.V.Method and apparatus for scanning and printing a 3D object
US10484561B2 (en)2014-05-122019-11-19Ml Netherlands C.V.Method and apparatus for scanning and printing a 3D object
US12309333B2 (en)2014-05-122025-05-20Magic Leap, Inc.Method and apparatus for scanning and printing a 3D object
TWI718459B (en)*2018-12-262021-02-11晶睿通訊股份有限公司Image analyzing method and related image analyzing device
US11012592B2 (en)2018-12-262021-05-18Vivotek Inc.Image analyzing method and related image analyzing device
US12100181B2 (en)2020-05-112024-09-24Magic Leap, Inc.Computationally efficient method for computing a composite representation of a 3D environment

Also Published As

Publication numberPublication date
US20050104901A1 (en)2005-05-19
US20050104902A1 (en)2005-05-19
US20040189674A1 (en)2004-09-30
US7301548B2 (en)2007-11-27

Similar Documents

PublicationPublication DateTitle
US7119816B2 (en)System and method for whiteboard scanning to obtain a high resolution image
US11551338B2 (en)Intelligent mixing and replacing of persons in group portraits
Puglisi et al.A robust image alignment algorithm for video stabilization purposes
US6785427B1 (en)Image matching using resolution pyramids with geometric constraints
US8818132B2 (en)Camera calibration with lens distortion from low-rank textures
US7496229B2 (en)System and method for visual echo cancellation in a projector-camera-whiteboard system
US7006709B2 (en)System and method deghosting mosaics using multiperspective plane sweep
US9224189B2 (en)Method and apparatus for combining panoramic image
US9652690B2 (en)Automatically capturing and cropping image of check from video sequence for banking or other computing application
US8339459B2 (en)Multi-camera head pose tracking
US7224386B2 (en)Self-calibration for a catadioptric camera
US12205256B2 (en)Image noise reduction
US20050063608A1 (en)System and method for creating a panorama image from a plurality of source images
US20040165786A1 (en)System and method for converting whiteboard content into an electronic document
US20090052743A1 (en)Motion estimation in a plurality of temporally successive digital images
US6834119B2 (en)Methods and apparatus for matching multiple images
US7936915B2 (en)Focal length estimation for panoramic stitching
US12154190B2 (en)2D and 3D floor plan generation
Sato et al.High-resolution video mosaicing for documents and photos by estimating camera motion
US10803551B2 (en)Method and system for frame stitching based image construction in an indoor environment
US20160253569A1 (en)Automatically Capturing and Cropping Image of Check from Video Sequence for Banking or other Computing Application
Isgrò et al.A fast and robust image registration method based on an early consensus paradigm
Wang et al.BiggerSelfie: Selfie video expansion with hand-held camera
Shemiakina et al.Fast projective image rectification for planar objects with Manhattan structure
Hannuksela et al.Document image mosaicing with mobile phones

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:MICROSOFT CORPORATION, WASHINGTON

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZHANG, ZHENGYOU;HE, LI-WEI;REEL/FRAME:013939/0505

Effective date:20030331

FPAYFee payment

Year of fee payment:4

FPAYFee payment

Year of fee payment:8

ASAssignment

Owner name:MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034541/0477

Effective date:20141014

FEPPFee payment procedure

Free format text:MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPSLapse for failure to pay maintenance fees

Free format text:PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FPLapsed due to failure to pay maintenance fee

Effective date:20181010


[8]ページ先頭

©2009-2025 Movatter.jp