Movatterモバイル変換


[0]ホーム

URL:


US6504201B1 - Memory cell having a vertical transistor with buried source/drain and dual gates - Google Patents

Memory cell having a vertical transistor with buried source/drain and dual gates
Download PDF

Info

Publication number
US6504201B1
US6504201B1US09/651,199US65119900AUS6504201B1US 6504201 B1US6504201 B1US 6504201B1US 65119900 AUS65119900 AUS 65119900AUS 6504201 B1US6504201 B1US 6504201B1
Authority
US
United States
Prior art keywords
pillar
source
pillars
word line
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/651,199
Inventor
Wendell P. Noble
Leonard Forbes
Kie Y. Ahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology IncfiledCriticalMicron Technology Inc
Priority to US09/651,199priorityCriticalpatent/US6504201B1/en
Application grantedgrantedCritical
Publication of US6504201B1publicationCriticalpatent/US6504201B1/en
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTreassignmentU.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: MICRON TECHNOLOGY, INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENTreassignmentMORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENTPATENT SECURITY AGREEMENTAssignors: MICRON TECHNOLOGY, INC.
Assigned to U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTreassignmentU.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST.Assignors: MICRON TECHNOLOGY, INC.
Anticipated expirationlegal-statusCritical
Assigned to MICRON TECHNOLOGY, INC.reassignmentMICRON TECHNOLOGY, INC.RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Assigned to MICRON TECHNOLOGY, INC.reassignmentMICRON TECHNOLOGY, INC.RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

An integrated circuit and fabrication method includes a memory cell for a dynamic random access memory (DRAM). Vertically oriented access transistors are formed on semiconductor pillars on buried bit lines. Buried first and second gates are provided for each access transistor on opposing sides of the pillars. Buried word lines extend in trenches orthogonal to the bit lines. The buried word lines interconnect ones of the first and second gates. In one embodiment, unitary gates are interposed and shared between adjacent pillars for gating the transistors therein. In another embodiment, separate split gates are interposed between and provided to the adjacent pillars for separately gating the transistors therein. In one embodiment, the memory cell has a surface area that is approximately 4 F2, where F is a minimum feature size. Bulk-semiconductor and semiconductor-on-insulator (SOI) embodiments are provided.

Description

CROSS REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 08/889,462, filed on Jul. 8, 1997, now U.S. Pat. No. 6,150,687, the specification of which is incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates generally to integrated circuits, and particularly, but not by way of limitation, to a dynamic random access memory (DRAM) having a memory cell with a vertical access transistor with buried dual gates, and having buried bit and word lines.
BACKGROUND OF THE INVENTION
Semiconductor memories, such as dynamic random access memories (DRAMs), are widely used in computer systems for storing data. A DRAM memory cell typically includes an access field-effect transistor (FET) and a storage capacitor. The access FET allows the transfer of data charges to and from the storage capacitor during reading and writing operations. The data charges on the storage capacitor are periodically refreshed during a refresh operation.
Memory density is typically limited by a minimum lithographic feature size (F) that is imposed by lithographic processes used during fabrication. For example, the present generation of high density dynamic random access memories (DRAMs), which are capable of storing 256 Megabits of data, require an area of 8 F2per bit of data. There is a need in the art to provide even higher density memories in order to further increase data storage capacity and reduce manufacturing costs. Increasing the data storage capacity of semiconductor memories requires a reduction in the size of the access FET and storage capacitor of each memory cell. However, other factors, such as subthreshold leakage currents and alpha-particle induced soft errors, require that larger storage capacitors be used. Thus, there is a need in the art to increase memory density while allowing the use of storage capacitors that provide sufficient immunity to leakage currents and soft errors. There is also a need in the broader integrated circuit art for dense structures and fabrication techniques.
SUMMARY OF THE INVENTION
The present invention provides an integrated circuit including a pillar of semiconductor material that extends outwardly from a working surface of a substrate. The pillar has a number of sides. A transistor is formed having a body region and first and second source/drain regions within the pillar. The transistor includes first and second gates that are each associated with a side of the pillar.
The invention also provides a memory device including an array of memory cells. Each cell includes a transistor. Each transistor includes a semiconductor pillar forming body and first and second source/drain regions. The transistor also includes first and second gates disposed adjacent to opposing sides of the pillar. The memory device also includes a plurality of substantially parallel first word lines. Each first word line is disposed orthogonally to the bit lines in a trench between columns of the memory cells. Each first word line allows addressing of first gates of the transistors of the memory cells that are adjacent to the trench in which the first word line is disposed. The memory device also includes a plurality of substantially parallel second word lines. The second word lines are interdigitated with the first word lines. Each second word line is disposed orthogonally to the bit lines in a trench between columns of the memory cells. Each second word line allows addressing of second gates of the transistors of the memory cells that are adjacent to the trench in which the second word line is disposed. A plurality of bit lines is provided, proximal to the substrate. The bit lines interconnect ones of the first source/drain regions of ones of the memory cells. In one embodiment, the pillars extend outwardly from an insulating portion of the substrate. In another embodiment, the pillars extend outwardly from a semiconductor portion of the substrate.
The invention also provides a method of fabricating an integrated circuit. According to one embodiment of the method, a substrate is provided, and a plurality of bit lines are formed on the substrate. A plurality of access transistors are formed on each of the bit lines. Each access transistor includes a first source/drain region shared by at least a portion of the bit line. Each access transistor also includes a body region and second source/drain region formed vertically on the first source/drain region. A plurality of isolation trenches are formed in the substrate, orthogonal to the bit lines. Each trench is located between access transistors on the orthogonal bit lines. A first word line is formed in a first one of the trenches. The first word line controls conduction between first and second source/drain regions of access transistors that are adjacent to a first side of the first trench. A second word line is formed in a second one of the trenches. The second word line controls conduction between first and second source/drain regions of access transistors that are adjacent to a first side of the second trench.
In one embodiment, the first word line also controls conduction between first and second source/drain regions of access transistors that are adjacent to a second side of the first trench. In another embodiment, the second word line also controls conduction between first and second source/drain regions of access transistors that are adjacent to a second side of the second trench.
In a further embodiment, another first word line is formed in the first trench, for controlling conduction between first and second source/drain regions of access transistors that are adjacent to a second side of the first trench. In yet a further embodiment, a second word line is formed in the second trench, for controlling conduction between first and second source/drain regions of access transistors that are adjacent to a second side of the second trench.
Thus, the invention provides high density integrated circuit structures and fabrication methods, such as for DRAM memory cell arrays and other semiconductor devices. Each memory cell can be fabricated in a surface area that is approximately 4 F2, where F is a minimum lithographic feature size. In one embodiment, a common first word line is shared by all of the access FETs that are located along both sides of the trench in which the first word line is located. In another embodiment, a common second word line is shared by all of the access FETs that are located along both sides of the trench in which the second word line is located. In further embodiments, split word lines are provided in either or both trenches. The split word lines provide separate addressing of gate regions of access FETs on opposite sides of the trench. Each of the unitary and split word line embodiments can be fabricated on a bulk semiconductor substrate, or on a semiconductor-on-insulator (SOI) substrate that results from using an SOI starting material, or by forming SOI regions during fabrication. The SOI embodiments provide greater immunity to alpha-particle induced soft errors, allowing the use of smaller storage capacitors.
BRIEF DESCRIPTION OF THE DRAWINGS
In the drawings, like numerals describe substantially similar components throughout the several views.
FIG. 1 is a schematic representation illustrating generally one embodiment of a semiconductor memory according to the invention.
FIG. 2 is a perspective view illustrating generally one embodiment of a portion of a memory according to the present invention.
FIG. 3 is a plan view illustrating generally memory cells according to one embodiment of the invention as viewed from above the structures formed on the substrate.
FIG. 4 is a cross-sectional view taken along thecut line44 of FIG.3.
FIGS. 5A-K describe generally various processing techniques of one embodiment of a method of fabricating memory cells according to the invention.
FIG. 6 is a perspective view illustrating generally another embodiment of a portion of a memory according to the present invention having a semiconductor-on-insulator (SOI) substrate.
FIGS. 7A-C illustrate generally, by way of example, additional steps used to form SOI bars according to one embodiment of the invention.
FIG. 8 is a perspective view illustrating-generally another embodiment of a portion of a memory according to the present invention in which split gates are formed.
FIG. 9 is a plan view illustrating generally memory cells according to a split gate embodiment of the invention as viewed from above the structures formed on the substrate.
FIG. 10 is a cross-sectional view taken along thecut line1010 of FIG.9.
FIG. 11 is a perspective view illustrating generally another embodiment of a portion of a memory according to the present invention including split gates and a bulk semiconductor substrate.
FIG. 12 is a cross-sectional view taken along thecut line1212 of FIG.11.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and changes may be made without departing from the scope of the present invention. In the following description, the terms wafer and substrate are interchangeably used to refer generally to any structure on which integrated circuits are formed, and also to such structures during various stages of integrated circuit fabrication. Both terms include doped and undoped semiconductors, epitaxial layers of a semiconductor on a supporting semiconductor or insulating material, combinations of such layers, as well as other such structures that are known in the art. The following detailed description is not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
FIG. 1 is a schematic representation illustrating generally one embodiment of anintegrated circuit100, such as a semiconductor memory device, incorporating an array of memory cells provided by the invention. In FIG. 1,circuit100 illustrates, by way of example but not by way of limitation, a dynamic random access memory (DRAM), but the invention also comprises other integrated circuits including any other semiconductor memory devices. In this exemplary embodiment,circuit100 includes memory cell arrays110, such as110A and110B. Each array110 includes M rows and N columns ofmemory cells112.
In the exemplary embodiment of FIG. 1, each memory cell includes a transfer device, such as n-channel cell access field-effect transistor (FET)130 or any other transistor or switching device having more than one control terminal inputs. More particularly,access FET130 includes first and second gate terminals for controlling conduction between its first and second source/drain terminals.
Access FET130 is coupled at a second source/drain terminal to a storage node of astorage capacitor132. The other terminal ofstorage capacitor132 is coupled to a reference voltage such as a ground voltage VSS. Each of the M rows includes one of word lines WL0, WL1 . . . WLm−1, WLm coupled to the first gate terminals ofaccess FETs130 or to one of the control terminals of an equivalent switching device. Each of the M rows also includes one of word lines R1, R2, . . . , Rm−1, Rm coupled to the second gate terminals ofaccess FETs130 inmemory cells112. Thus, the term “word line” includes any interconnection line between gate terminals ofaccess FETs130, or the control terminals of equivalent switching devices. Each of the N columns includes one of bit lines BL0, BL1 . . . BLn−1, BLn.
Bit lines BL0-BLn are used to write to and read data frommemory cells112. Word lines WL0-WLm and R1-Rm are used to activateaccess FETs130 to access a particular row ofmemory cells112 that is to be written or read. Addressing circuitry is also included. For example,address buffer114controls column decoders118, which also include sense amplifiers and input/output circuitry that is coupled to bit lines BL0-BLn.Address buffer114 also controlsrow decoders116.Row decoders116 andcolumn decoders118 selectablyaccess memory cells112 in response to address signals that are provided onaddress lines120 during read and write operations. The address signals are typically provided by an external controller such as a microprocessor or other memory controller. Each ofmemory cells112 has a substantially identical structure, and accordingly, only onememory cell112 structure is described herein.
In one example mode of operation,circuit100 receives an address of aparticular memory cell112 ataddress buffer114.Address buffer114 identifies one of the word lines WL0-WLm of theparticular memory cell112 to rowdecoder116.Row decoder116 selectively activates the particular word line WL0-WLm to activateaccess FETs130 of eachmemory cell112 that is connected to the selected word line WL0-WLm.Column decoder118 selects the one of bit lines BL0-BLn of the particularly addressedmemory cell112. For a write operation, data received by input/output circuitry is coupled to the one of bit lines BL0-BLn and through theaccess FET130 to charge or discharge thestorage capacitor132 of the selectedmemory cell112 to represent binary data. For a read operation, data stored in the selectedmemory cell112, as represented by the charge on itsstorage capacitor132, is coupled to the one of bit lines BL0-BLn, amplified, and a corresponding voltage level is provided to the input/output circuits.
According to one aspect of the invention, each of the first and second gates ofaccess FET130 is capable of controlling the conduction between its first and second source/drain terminals, as described below. In this embodiment, parallel switching functionality can be effected between the first and second source/drain terminals ofaccess FET130 by independently operating the particular ones of word lines WL0-WLm and corresponding ones of word lines R0-Rm. For example, by independently activating word line WL0 and word line R0, both of which are coupled to the same row ofmemory cells112, independently controlled inversion channels can be formed in eachcorresponding access FET130 by respective first and second gates for allowing conduction between the first and second source/drain regions.
According to another aspect of the invention, each of the first and second gates ofaccess FET130 is capable of controlling the conduction between its first and second source/drain terminals, but the first and second gates ofparticular access FETs130 are synchronously activated, rather than independently operated. For example, by synchronously activating word line WL0 and word line R0, both of which are coupled to the same row ofmemory cells112, synchronously activated inversion channels can be formed in eachcorresponding access FET130 by respective first and second gates for allowing conduction between the first and second source/drain regions.
In this embodiment, synchronous activation and deactivation of the first and second gates allows better control over the potential distributions in theaccess FET130 when it is in a conductive state. Synchronous activation and deactivation can be used to obtain well-controlled fully depleted operating characteristics ofaccess FET130.
In a further embodiment in which the first and second gates are either synchronously or independently activated, different activation voltages can be applied to the first and second gates of theaccess FET130. For example, different voltages can be provided to synchronously activated word lines WL0 and R0, thereby providing different activation voltages to the first and second gates of theaccess FET130 to obtain particular desired operating characteristics. Similarly, different deactivation voltages can be applied to the first and second gates of theaccess FET130. For example, different deactivation voltages can be provided to synchronously deactivated word lines WL0 and R0 and corresponding first and second gates ofaccess FETs130, in order to obtain particular desired operating characteristics. Similarly, different activation and deactivation voltages can be applied to independently operated word lines such as WL0 and R0.
FIG. 2 is a perspective view illustrating generally one-embodiment of a portion of a memory according to the present invention. FIG. 2 illustrates portions of sixmemory cells112a-f, including portions of vertically orientedaccess FETs130 therein. Conductive segments ofbit lines202 represent particular ones of bit lines BL0-BLn. Conductive segments offirst word line206 represents any one of word lines WL0-WLm, which provide integrally formed first gates foraccess FETs130 between which the particularfirst word line206 is interposed. Conductive segments ofsecond word line208 represents any one of word lines R0-Rm, which provide integrally formed second gates foraccess FETs130 between which the particularsecond word line208 is interposed. Thus, word lines WL0-WLm and R0-RM are alternatingly disposed (interdigitated) within the array110. The detailed description ofmemory cell112 structure refers only tomemory cells112a-f,bit lines202, and respective first and second word lines206 and208 that are associated withmemory cells112a-f. However, the following description similarly applies to allmemory cells112 and similar conductive lines in array110.
In FIG. 2, vertically orientedaccess FETs130 are formed in semiconductor pillars that extend outwardly from anunderlying substrate210. As described below,substrate210 includes bulk semiconductor starting material, semiconductor-on-insulator (SOI) starting material, or SOI material that is formed from a bulk semiconductor starting material during processing.
In one example embodiment, using bulk silicon processing techniques,access FETs130 include an n+silicon layer formed on abulk silicon substrate210 to produce first source/drain regions212 ofaccess FETs130 and integrally formed n++ conductively dopedbit lines202 defining a particular column ofmemory cells112. A p− silicon layer is formed on n+ first source/drain region212 to form thebody region214 ofaccess FET130, in which inversion channels may be capacitively generated at the sidewalls of the semiconductor pillar under the control of the first and second gates. A further n+ silicon layer is formed on p-body region214 to produce second source/drain region216 of access FET130:Storage capacitors132 are formed on the second/source drain regions216.
Word lines WL0-WLm and R0-RM are alternatingly disposed (interdigitated) within the array110. For example,first word line206 is interposed between semiconductor pillars of memory cell pairs112a-band112d-e.Second word line208 is interposed between semiconductor pillars of memory cell pairs112b-cand112e-f. Thus, as seen from FIG. 2,access FETs130 are formed onbit lines202 in semiconductor pillars extending outwardly fromsubstrate210 and includingbody regions214, and first and secondsource drain regions212 and216, respectively. In this embodiment,bit lines202 contactbulk semiconductor substrate210.
Isolation trenches provide isolation betweenaccess FETs130 ofadjacent memory cells112. Columns ofmemory cells112 are separated by atrench220 that is subsequently filled with a suitable insulating material such as silicon dioxide. For example,trench220 provides isolation betweenmemory cells112aand112dand betweenmemory cells112band112e. Rows ofmemory cells112 are alternatingly separated by atrench221 and222, each of which are separated fromsubstrate210 by an underlying insulating layer, described below, and separated from thebody region214 ofaccess FETs130 by a gate oxide, also described below. For example,trench221 provides isolation betweenmemory cells112aand112band betweenmemory cells112dand112e. In addition,trench222 provides isolation betweenmemory cells112band112candmemory cells112eand112f.Trenches221 and222 extend substantially orthogonally to bitlines202.
FIG. 3 is a plan view illustrating generallymemory cells112a-fas viewed from above the structures formed onsubstrate210. FIG. 3 illustrates subsequently formed insulator such asoxide224, formed intrenches220 to provide isolation betweenmemory cells112. In this embodiment,first word line206 is shared between first gates ofaccess FETs130 ofmemory cells112 in adjacent rows, such as betweenmemory cells112a-band112d-e.First word line206 is also shared between first gates ofother access FETs130 that are in the same adjacent rows, but coupled to different bit lines202.First word line206 is located in-trench221 that extends between the semiconductor pillars ofmemory cells112aand112b.First word line206 is separated bygate oxide218 from thevertical sidewalls219 of the semiconductor pillars on each side oftrench221.
Second word line208 is shared between second gates ofaccess FETs130 ofmemory cells112 in adjacent rows, such as betweenmemory cells112b-cand112e-f.Second word line208 is also shared between second gates ofother access FETs130 that are in the same adjacent rows, but coupled to different bit lines202.Second word line208 is located intrench222 that extends between the semiconductor pillars ofmemory cells112band112c.Second word line208 is separated bygate oxide218 from thevertical sidewalls223 of the semiconductor pillars on each side oftrench222.
FIG. 4 is a cross-sectional view taken along thecut line44 of FIG.3. In FIG. 4, respective first and second word lines206 and208 are buried below theactive semiconductor surface230 of the semiconductor pillar in thememory cells112.Active semiconductor surface230 represents an upper semiconductor portion of second source/drain region216. First and second word lines206 and208, respectively, are isolated from adjacent semiconductor pillars bygate oxide218. First and second word lines206 and208, respectively provide integrally formed first and second gate portions that are capacitively coupled toadjacent access FET130body regions214, such as for forming inversion channel regions therein. In one embodiment, respective first and second word lines206 and208 are formed of a refractory metal, such as tungsten or titanium. In another embodiment, first and second word lines206 and208 can be formed of n+ doped polysilicon. Similarly, other suitable conductors could also be used for first andsecond words lines206 and208, respectively.
Burying first and second word lines206 and208 belowsemiconductor surface230 provides additional space on the upper portion ofmemory cell112 for formation ofstorage capacitors132. Increasing the area available for formingstorage capacitor132 increases the possible obtainable capacitance value ofstorage capacitor132. In one embodiment,storage capacitor132 is a stacked capacitor that is formed using any of the many capacitor structures and process sequences known in the art. Other techniques could also be used for implementingstorage capacitor132. Contacts to the first and second word lines206 and208, respectively, can be made outside of the memory array110.
As illustrated in the plan view of FIG. 3, respective first and second word lines206 and208 are shared betweenadjacent memory cells112. As a result, only one-half the surface line width of each is allocated to each memory cell. The row pitch of each cell, measured from the centerline offirst word line206 to the centerline ofsecond word line208, can be approximately 2 F, where F is a minimum lithographic feature size. F corresponds to the length and width presented by the surface of a minimum-sized semiconductor pillar in eachmemory cell112. The column pitch of each cell, measured between centerlines ofbit lines202 can be approximately 2 F. Thus, the surface area of eachmemory cell112 can be approximately 4 F2.
FIGS. 5A-K describe generally various processing techniques of one embodiment of a method of fabricatingmemory cells112, such as shown in FIGS. 2-4, using bulk silicon processing techniques. In the embodiment of FIG. 5A, a p-bulk silicon substrate210 starting material is used. An n++ and n+ silicon composite first source/drain layer212 is formed onsubstrate210, such as by ionimplantation, epitaxial growth, or a combination of such techniques. The more heavily conductively doped lower portion of the first/source drain layer212 also functions as thebit line202. The thickness of the n++ portion of first source/drain layer212 is that of the desiredbit line202 thickness, which can be approximately between 0.1 to 0.25 μm. The overall thickness of the first source/drain layer212 can be approximately between 0.2 to 0.5 μm. Abody region layer214 of p− silicon is formed, such as by epitaxial growth, to a thickness that can be about 0.4 μm. A second source/drain region layer216 of n+ silicon is formed, such as by ion-implantation intobody region layer214 or by epitaxial growth onbody region layer214, to a thickness that can be approximately between 0.2 and 0.5 μm.
In FIG. 5B, an SiO2thinpad oxide layer512 is formed on second source/drain region216, such as by chemical vapor deposition (CVD). In one embodiment,pad oxide layer512 can be approximately 10 nm in thickness. A thin silicon nitride (Si3N4)layer514 is formed onpad oxide layer512, such as by CVD. In one embodiment,nitride layer514 of can be approximately 100 nm in thickness.
In Figure SC, photoresist is applied and selectively exposed to provide a mask for the directional etching oftrenches220, such as by reactive ion etching (RIE). The directional etching results in a plurality of column bars516 containing the stack ofnitride layer514,pad oxide layer512, second source/drain layer216,body region layer214, and first source/drain layer212.Trenches220 are etched to a depth that is sufficient to reach thesurface518 ofsubstrate210, thereby providing separation between conductively doped bit lines202.Bars516 are oriented in the direction of bit lines202. In one embodiment, bars516 have a surface line width of approximately one micron or less. The depth and width of eachtrench220 can be approximately equal to the line width ofbars516.
In FIG. 5D, the photoresist is removed.Isolation material224, such as SiO2is deposited to fill thetrenches220. The working surface is then planarized, such as by chemical mechanical polishing/planarization (CMP).
FIG. 5E illustrates the view of FIG. 5D after clockwise rotation by ninety degrees. In FIG. 5E, a photoresist material is applied and selectively exposed to provide a mask for the directional etching oftrenches221 and222, such as by reactive ion etching (RIE) of a plurality of row bars532 that are disposed orthogonally to bitlines202. Formingtrenches221 and222 includes etching though stacked layers in the portions ofbars516. Formingtrenches221 and222 also includes etching through theisolation material224 disposed betweenbars516.
More particularly,trenches221 and222 are etched throughnitride layer514,pad oxide layer512, second source/drain layer216,body region layer214, and partially into first source/drain layer212.Trenches221 and222 are etched intobars516 to a depth of about 100 nm into first source/drain layer212, leaving intact anunderlying bit line202 portion of the first source/drain layer212.Trenches221 and222 are also etched into theisolation material224 betweenbars516. In one embodiment, after etchingnitride layer514 ofbars516, a nonselective dry etch is used to remove theisolation material224 betweenbars516 and also thepad oxide layer512, second source/drain layer216,body region layer214, and a portion of first source/drain layer212 ofbars516. The directional etching oftrenches221 and222 results in the formation of a plurality of row bars532 that are orthogonal to column bars516.
FIG. 5F is a plan view illustrating generally the arrangement ofparallel bars516, andtrenches220 interposed therebetween.Bars532 are arranged orthogonally tobars516.Trenches221 and222 are interposed between ones ofbars532. The resulting semiconductor pillars in the intersecting portions ofbars532 and516 provide first and secondsource drain regions212 and216, respectively, andbody region214 foraccess FETs130 ofmemory cells112.
In FIG. 5G, which is oriented similarly to FIG. 5E, a conformalsilicon nitride layer540 is formed, such as by CVD.Nitride layer540 is directionally etched, such as by RIE, to leave resulting portions ofnitride layer540 only onsidewalls219 of thebars532 intrenches221 and222. In one embodiment, the thickness ofnitride layer540 is about 20 mn. Anoxide layer542 is formed, such as by thermal growth, at the base portions oftrenches221 and222.Oxide layer542 insulates theunderlying bit lines202 from structures subsequently formed intrenches221 and222. After formingoxide layer542, remaining portions ofnitride layer540 are removed.
In FIG. 5H, agate oxide218 is formed on the exposed sidewalls219 portions intrenches221 and222 of second source/drain region216,body region214, and first source/drain region212. In one embodiment,gate oxide218 is a high-quality thin oxide layer that is thermally grown on the exposed sidewalls219 oftrenches221 and222.
In FIG. 5I, aconductive layer544 is formed over the working surface of the wafer, including fillingtrenches221 and222 in which respective first and second word lines206 and208 will be formed. In one embodiment,layer544 is formed by CVD of a refractory metal, such as tungsten. In another embodiment,layer544 is formed by CVD of n+ polysilicon.
In FIG. 5J, CMP or other suitable planarization process is used to remove portions oflayer544 above the interface betweenpad oxide512 and second source/drain layer216.Pad oxide512 andnitride layer514 are also removed during this planarization step. As a result of the planarization step, first and second word lines206 and208, respectively, are formed inrespective trenches221 and222.
FIG. 5K illustrates one embodiment in which, an insulatinglayer546, such as SiO2, is formed on the working surface of the wafer, such as by CVD. The structure thus formed is then processed to fabricate astorage capacitor132 on the working surface of the wafer, using known techniques, followed by conventional back end of line (BEOL) procedures.
FIG. 6 is a perspective view illustrating generally another embodiment of a portion of a memory according to the present invention, similar to that described with respect to FIG.2. FIG. 6, however, illustrates an embodiment of the present invention having a semiconductor-on-insulator (SOI)substrate210 rather than abulk semiconductor substrate210. In one embodiment,SOI substrate210 of FIG. 6 is obtained using an SOI starting material. In another embodiment, described below, a bulk semiconductor starting material is used, and an bars of SOI are formed during fabrication ofcircuit100, such that the semiconductor pillars, in which portions ofaccess FETs130 are formed, extend outwardly from an insulatingportion602 ofsubstrate210.
One such method of forming bars of SOI is described in the Noble U.S. patent application Ser. No. 08/745,708 which is assigned to the assignee of the present application and which is herein incorporated by reference. Another such method of forming regions of SOI is described in the Forbes U.S. patent application Ser. No. 08/706,230, which is assigned to the assignee of the present application and which is herein incorporated by reference.
FIGS. 7A-C illustrate generally, by way of example, additional steps used to form SOI bars during the fabrication steps described above with respect to FIGS. 5A-K, such that the semiconductor pillars, in which portions ofaccess FETs130 are formed, extend outwardly from an insulatingportion602 ofsubstrate210, resulting in the structure illustrated in FIG.6.
In FIG. 7A, the processing steps described above with respect to FIGS. 5A-C are carried out, formingtrenches220 that are etched to a depth that is below theoriginal surface518 ofsubstrate210, such as by approximately greater than or equal to 0.6 μm. Anitride layer704 is formed, such as by CVD.Nitride layer704 is directionally etched, such as by RIE, to removenitride layer704 from the base regions oftrenches220. Portions ofnitride layer704 remain on the sidewall oftrenches220 to protect adjacent layers during subsequent etching and oxidation.
In FIG. 7B, an isotropic chemical etch of silicon is used to partially undercut bars516. For example, hydrofluoric acid (HF) or a commercial etchant sold under the trade name CP4 (a mixture of approximately 1 part (46% HF):1 part (CH3COOH):3 parts (HNO3)) can be used for the isotropic etchant. In one embodiment, the partial undercutting ofbars516 by isotropic etching is timed to remove a volume of silicon that is sufficient to compensate for a subsequently formed volume of oxide, described below. In general, the subsequent oxidation step produces a volume of oxide that is approximately twice that of the silicon consumed during oxidation.
In FIG. 7C,substrate210 is oxidized using a standard semiconductor processing furnace at a temperature of approximately 900 to 1,100 degrees Celsius. A wet oxidizing ambient is used in the furnace chamber to oxidize the exposed silicon regions in the lower portion oftrenches220.Substrate210 is oxidized for a time period that is sufficient to formoxide insulating portion602 that fully undercutsbars516. Insulatingportion602 underlies bothbars516 andtrenches220, and isolates thebit lines202 andaccess FETs130 formed onbit lines202 from an underlying semiconductor portion ofsubstrate210.Nitride layer704 is removed, and processing then continues as described above with respect to FIGS. 5D-K, resulting in the structure of FIG.6.
In one embodiment, bars516 are sufficiently narrow such that the oxidation step that undercutsbars516 produces sufficient oxide to filltrenches220, resulting in a generally planar structure. This avoids the need for a separate step of depositing anoxide insulation material224 described with respect to FIG.5D. The oxidation time period depends on the width ofbars516 and the effective width ofbars516 after the undercut etch step.Narrower bars516 require shorter oxidation times. For example, for sub-0.25 micron technology, oxidation time is approximately 1 hour. In another embodiment, the etch step fully undercutsbars516 before oxidation. This further reduces oxidation time.
FIGS. 8-10 illustrate generally another embodiment of a portion of a memory according to the present invention, similar to that described with respect to FIG.6. In the embodiment of FIGS. 8-10, however, first and second word lines206 and208, respectively, are each split into separate conductors.First word line206 is split into independently operablefirst word lines206aand206b, each disposed intrench221 and electrically isolated from each other.Second word line208 is split into independently operable second word lines208aand208b, each disposed intrench222 and electrically isolated from each other, such as by SiO2. Thus, gate regions need not be shared betweenaccess FETs130 inadjacent memory cells112 on opposing sides oftrenches221 and222. First and second word lines206 and208 can be formed of a refractory metal or n+ polysilicon or other suitable conductor, as described above.
In FIGS. 8-10, for example,first word line206aextends intrench221 adjacent to thevertical sidewalls219 of the semiconductor pillars of in-line memory cells112aand112d, separated therefrom bygate oxide218.First word line206bextends intrench221 adjacent to thevertical sidewalls219 of the semiconductor pillars of in-line memory cells112band112e, separated therefrom bygate oxide218.Second word line208aextends intrench222 adjacent to thevertical sidewalls219 of the semiconductor pillars of in-line memory cells112band112e, separated therefrom bygate oxide218.Second word line208bextends intrench222 adjacent to thevertical sidewalls219 of the semiconductor pillars of in-line memory cells112cand112f.
Operation of theaccess FET130 ofmemory cell112b, for example, includes operation of thefirst word line206bandsecond word line208a, as described above. A positive potential is applied to either or both offirst word line206bandsecond word line208a, as described above to turn on theaccess FET130 ofmemory cell112b. However, sincefirst word line206bis not shared by theaccess FET130 ofmemory cell112a, subthreshold leakage is not induced in theaccess FET130 ofmemory cell112aduring activation offirst word line206bto operate theaccess FET130 ofmemory cell112b. Similarly, sincesecond word line208ais not shared by theaccess FET130 ofmemory cell112c, subthreshold leakage in theaccess FET130 ofmemory cell112cis not induced during activation ofsecond word line208ato operate theaccess FET130 ofmemory cell112b.
The use of splitfirst word lines206a-band splitsecond word lines208a-bavoids the problem of sub-threshold conduction inaccess FETs130 in one row while thememory cells112 in the adjacent row are being addressed. Eachmemory cell112 is capable of being uniquely addressed by a combination offirst word line206 andsecond word line208 voltages. These voltages need not appear on thefirst word line206 andsecond word line208 of adjacent rows ofmemory cells112.
The structures of FIGS. 8-10 can be fabricated by process steps similar to those described with respect to FIGS. 5A-C forming bars516 separated bytrenches220. This is followed by the process steps described with respect to FIGS. 7A-C follow, isolatingbars516 from an underlying semiconductor portion ofsubstrate210 by insulatingportion602. This is followed by the process steps described with respect to FIGS. 5D-J forming a planar structure including a unitary conductorfirst word line206 infirst trench221 and a unitary conductorsecond word line208 insecond trench222.
Unitary conductorfirst word line206 thus formed is split to formseparate conductors206a-b. A refractory metal, n+ polysilicon, or other conductor is deposited as a conformal film that can have a thickness of less than or equal to approximately F/3, where F is the minimum feature size. The conformal film is then directionally etched, thereby leaving resulting splitconductor word lines206a-badjacent to thevertical sidewall219, separated therefrom bygate oxide218.Second word line208 can be similarly split intoseparate conductors208a-bduring the same deposition and directional etch steps. Splitting unitary conductor first and second word lines206 and208, respectively, provides the resulting structures illustrated in FIGS. 8-10, but is not required to practice the invention. These steps can be omitted, such as to obtain the structures illustrated in FIGS. 2-4.
FIGS. 11-12 illustrate generally another embodiment of a portion of a memory according to the present invention, similar to that described with respect to FIGS. 8-10, but fabricating using abulk silicon substrate210, as described with respect to FIGS. 2-4. The structures of FIGS. 11-12 are fabricated by process steps similar to those described with respect to FIGS. 5A-C, formingbars516 separated bytrenches220. The process steps described with respect to FIGS. 7A-C follow are omitted from this embodiment. Instead, this is followed by the process steps described with respect to FIGS. 5D-J forming a planar structure including a unitary conductorfirst word line206 infirst trench221 and a unitary conductorsecond word line208 insecond trench222. The unitary conductor first and second word lines206 and208, respectively, are then split as described above with respect to FIGS. 8-10.
The above structures and fabrication methods have been described, by way of example, and not by way of limitation, with respect to memory integrated circuits such as dynamic random access memories (DRAMs). However, the scope of the invention includes any other integrated circuit applications in which the above structures and fabrication methods are used.
Thus, it has been shown that the invention provides integrated circuit structures and fabrication methods, such as for DRAM memory cell arrays and other semiconductor devices. Each memory cell includes a vertical access FET, formed on a bit line, and first and second gates integrally formed with respective first and second word lines that are buried in trenches that extend along opposite sides of the memory cell. Each memory cell can be fabricated in a surface area that is approximately 4F2, where F is a minimum lithographic feature size. In one embodiment, a common first word line is shared by all of the access FETs that are located along both sides of the trench in which the first word line is located. Also, a common second word line is shared by all of the access FETs that are located along both sides of the trench in which the second word line is located. In another embodiment, split word lines are provided in each trench, and the two split word lines provide separate addressing of gate regions of access FETs on opposite sides of the trench. Each of the unitary and split word line embodiments can be fabricated on a bulk semiconductor substrate, or on a semiconductor-on-insulator (SOI) substrate that results from using an SOI starting material, or by forming SOI regions during fabrication.

Claims (28)

What is claimed is:
1. A memory array, comprising:
a substrate;
a plurality of semiconductor pillars that extend outwardly from a working surface of the substrate, each pillar having a plurality of sides including a first side opposite a second side, each pillar having a first source/drain region, a body formed vertically on the first source/drain region, and a second source/drain region formed vertically on the body, the first and second source/drain regions and the body of each pillar forming portions of an access transistor for a memory cell, the pillars being arranged in an array including a plurality of columns separated by first trenches and a plurality of rows separated by second trenches extending orthogonally to the first trenches, the first and second sides of the pillars in each row of pillars facing adjacent second trenches;
a plurality of bit lines, each bit line electrically interconnecting one of the first and the second source/drain regions of each of the pillars in one of the columns of the array; and
a pair of electrically-isolated word lines on opposite sides of each second trench, a first word line of each pair disposed adjacent to the first sides of the pillars in the row of pillars on a first side of the respective second trench to form a first gate for those pillars, a second word line of each pair disposed adjacent to the second sides of the pillars in the row of pillars on a second side of the respective second trench to form a second gate for those pillars, whereby each pillar has first and second gates associated with the first and second sides of that pillar, respectively.
2. The memory array ofclaim 1, wherein each bit line is disposed between the bodies of the pillars in the respective column of the array and the substrate.
3. The memory array ofclaim 1, wherein the first source/drain region of each pillar includes a less heavily doped portion and a more heavily doped bit line portion.
4. The memory array ofclaim 1, wherein each pillar extends outwardly from an insulating portion of the substrate.
5. The memory array ofclaim 1, wherein each pillar extends outwardly from a semiconductor portion of the substrate.
6. The memory array ofclaim 1, further comprising a storage capacitor coupled to one of the first and second source/drain regions of each pillar.
7. The memory array ofclaim 1, further comprising a first insulating layer disposed between the first gate and the first side of each pillar, and a second insulating layer disposed between the second gate and the second side of each pillar.
8. A memory device, comprising:
an array of memory cells having a plurality of columns and a plurality of rows, each cell comprising an access transistor including a semiconductor pillar with body and first and second source/drain regions, and first and second gates disposed adjacent to opposing sides of the pillar;
a plurality of bit lines, each bit line electrically interconnecting one of the first and the second source/drain regions of each of the pillars in one of the columns of the array;
a plurality of first word line pairs, the first word line pairs disposed in first trenches extending orthogonal to the bit lines between adjacent rows of cells, each first word line in the first word line pair electrically isolated from the other first word line in the first word line pair; and
a plurality of second word line pairs, interdigitated with the first word line pairs, the second word line pairs disposed in second trenches extending orthogonal to the bit lines between adjacent rows of cells, each second word line in the second word line pair electrically isolated from the other second word line in the second word line pair, wherein the first gate of each access transistor is addressed by one of the first word lines disposed in the first trench that is adjacent to that access transistor, and the second gate of each access transistor is addressed by one of the second word lines disposed in the second trench adjacent to that access transistor.
9. The memory device ofclaim 8, wherein each bit line is disposed between the bodies of the pillars in the respective column of the array and a semiconductor substrate.
10. The memory device ofclaim 8, wherein the first source/drain region of each pillar includes a less heavily doped portion and a more heavily doped bit line portion.
11. The memory device ofclaim 8, further comprising a substrate, wherein each pillar extends outwardly from an insulating portion of the substrate.
12. The memory device ofclaim 8, further comprising a substrate, wherein each pillar extends outwardly from a semiconductor portion of the substrate.
13. The memory device ofclaim 8, wherein each cell further comprises a storage capacitor coupled to one of the first and second source/drain regions of the respective pillar.
14. The memory device ofclaim 8, wherein adjacent columns of cells are separated by third trenches that extend orthogonally to the first and second trenches.
15. An integrated circuit, comprising:
a substrate;
a pillar of semiconductor material that extends outwardly from a surface of the substrate, and that has an upper surface and a plurality of sides including opposing first and second sides;
an access transistor having a vertically-stacked body and first and second source/drain regions formed within the pillar, and also having a first gate associated with the first side of the pillar and a second gate associated with the second side of the pillar;
a storage capacitor coupled to a first one of the first and second source/drain regions;
a bit line coupled to a second one of the first and second source/drain regions;
a first word line disposed in a first trench extending orthogonal to the bit line on the first side of the pillar, wherein the first word line provides control of the first gate; and
a second word line disposed in a second trench extending orthogonal to the bit line on the second side of the pillar, the second word line being electrically isolated from the first word line, wherein the second word line provides control of the second gate.
16. The integrated circuit ofclaim 15, wherein the first and second word lines are disposed beneath the upper surface of the pillar, and the storage capacitor is disposed above the upper surface of the pillar.
17. The integrated circuit ofclaim 15, wherein the bit line is disposed between the body of the access transistor and the substrate.
18. The integrated circuit ofclaim 15, wherein the first source/drain region of the access transistor includes a less heavily doped portion and a more heavily doped bit line portion.
19. The integrated circuit ofclaim 15, wherein the first source/drain region of the access transistor includes a less heavily doped portion and a more heavily doped bit line portion.
20. The integrated circuit ofclaim 15, wherein the pillar also has opposing third and fourth sides, and the third and fourth sides face a third trench and a fourth trench, respectively.
21. A memory array, comprising:
a substrate;
an array of semiconductor pillars that extend outwardly from a working surface of the substrate, each pillar having a plurality of sides including a first side opposite a second side, each pillar having a first source/drain region, a body formed vertically on the first source/drain region, and a second source/drain region formed vertically on the body, the first and second source/drain regions and the body of each pillar forming portions of an access transistor for a memory cell, the array including at least one column including a first pillar, a second pillar separated from the first pillar by a first trench, and a third pillar separated from the second pillar by a second trench, the first and second sides of the second pillar facing the first and second trenches, respectively;
a bit line electrically interconnecting one of the first and the second source/drain regions of the first pillar, the second pillar and the third pillar;
a pair of electrically-isolated first word lines on opposite sides of the first trench, a first word line of the pair of first word lines disposed adjacent to the second side of the first pillar to form a gate for the first pillar, and a second word line of the pair of first word lines disposed adjacent to the first side of the second pillar to form a first gate for the second pillar; and
a pair of electrically-isolated second word lines on opposite sides of the second trench, a first word line of the pair of second word lines disposed adjacent to the second side of the second pillar to form a second gate for the second pillar, and a second word line of the pair of second word lines disposed adjacent to the first side of the third pillar to form a gate for the third pillar.
22. The memory array ofclaim 21, wherein the bit line is disposed between the bodies of the first pillar, the second pillar and the third pillar, and the substrate.
23. The memory array ofclaim 21, wherein the first source/drain region of each of the first pillar, the second pillar and the third pillar includes a more heavily doped bit line portion.
24. The memory array ofclaim 21, further comprising a storage capacitor coupled to one of the first and second source/drain regions of each of the first, second and third pillars.
25. A memory device, comprising:
a substrate;
an array of memory cells arranged in columns and rows on the substrate, adjacent pairs of columns separated by column trenches and adjacent pairs of rows separated by row trenches, each cell comprising a storage capacitor and an access transistor, each access transistor including a semiconductor pillar forming a vertically-stacked body region and first and second source/drain regions, and including first and second gates disposed adjacent to opposing sides of the pillar;
a plurality of bit lines, each bit line electrically interconnecting one of the first and second source/drain regions of each of the pillars in one of the columns of the array; and
a pair of electrically-isolated word lines disposed in each of the row trenches, the first gate of each access transistor controlled by one word line of the pair of word lines disposed in the row trench on one side of the pillar, the second gate of each access transistor controlled by one word line of the pair of word lines disposed in the row trench on the opposing side of the pillar.
26. The memory device ofclaim 25, wherein each bit line is disposed between the body regions of the pillars in the respective column of the array and the substrate.
27. A memory array, comprising:
a substrate;
a plurality of semiconductor pillars that extend outwardly from a working surface of the substrate, each pillar having a plurality of sides including a first side opposite a second side, each pillar having a first source/drain region, a body formed vertically on the first source/drain region, and a second source/drain region formed vertically on the body, the first and second source/drain regions and the body of each pillar forming portions of an access transistor for a memory cell, the pillars being arranged in an array including a plurality of columns separated by first trenches and a plurality of rows separated by second trenches extending orthogonally to the first trenches, the first and second sides of the pillars in each row of pillars facing adjacent second trenches;
a plurality of bit lines, each bit line electrically interconnecting one of the first and the second source/drain regions of each of the pillars in one of the columns of the array, each bit line being at least partially disposed in the substrate; and
a pair of electrically-isolated word lines on opposite sides of each second trench, a first word line of each pair disposed adjacent to the first sides of the pillars in the row of pillars on a first side of the respective second trench to form a first gate for those pillars, a second word line of each pair disposed adjacent to the second sides of the pillars in the row of pillars on a second side of the respective second trench to form a second gate for those pillars, whereby each pillar has first and second gates associated with the first and second sides of that pillar, respectively.
28. A memory device, comprising:
a substrate;
an array of memory cells arranged in columns and rows on the substrate, adjacent pairs of columns separated by column trenches and adjacent pairs of rows separated by row trenches, each cell comprising a storage capacitor and an access transistor, each access transistor including a semiconductor pillar forming a vertically-stacked body region and first and second source/drain regions, and including first and second gates disposed adjacent to opposing sides of the pillar;
a plurality of bit lines, each bit line electrically interconnecting one of the first and second source/drain regions of each of the pillars in one of the columns of the array, each bit line being at least partially disposed in the substrate; and
a pair of electrically-isolated word lines disposed in each of the row trenches, the first gate of each access transistor controlled by one word line of the pair of word lines disposed in the row trench on one side of the pillar, the second gate of each access transistor controlled by one word line of the pair of word lines disposed in the row trench on the opposing side of the pillar.
US09/651,1991997-07-082000-08-30Memory cell having a vertical transistor with buried source/drain and dual gatesExpired - LifetimeUS6504201B1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US09/651,199US6504201B1 (en)1997-07-082000-08-30Memory cell having a vertical transistor with buried source/drain and dual gates

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US08/889,462US6150687A (en)1997-07-081997-07-08Memory cell having a vertical transistor with buried source/drain and dual gates
US09/651,199US6504201B1 (en)1997-07-082000-08-30Memory cell having a vertical transistor with buried source/drain and dual gates

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US08/889,462ContinuationUS6150687A (en)1997-07-081997-07-08Memory cell having a vertical transistor with buried source/drain and dual gates

Publications (1)

Publication NumberPublication Date
US6504201B1true US6504201B1 (en)2003-01-07

Family

ID=25395151

Family Applications (5)

Application NumberTitlePriority DateFiling Date
US08/889,462Expired - LifetimeUS6150687A (en)1997-07-081997-07-08Memory cell having a vertical transistor with buried source/drain and dual gates
US09/139,164Expired - Fee RelatedUS6350635B1 (en)1997-07-081998-08-24Memory cell having a vertical transistor with buried source/drain and dual gates
US09/596,266Expired - LifetimeUS6399979B1 (en)1997-07-082000-06-16Memory cell having a vertical transistor with buried source/drain and dual gates
US09/651,199Expired - LifetimeUS6504201B1 (en)1997-07-082000-08-30Memory cell having a vertical transistor with buried source/drain and dual gates
US10/162,942Expired - Fee RelatedUS6818937B2 (en)1997-07-082002-06-04Memory cell having a vertical transistor with buried source/drain and dual gates

Family Applications Before (3)

Application NumberTitlePriority DateFiling Date
US08/889,462Expired - LifetimeUS6150687A (en)1997-07-081997-07-08Memory cell having a vertical transistor with buried source/drain and dual gates
US09/139,164Expired - Fee RelatedUS6350635B1 (en)1997-07-081998-08-24Memory cell having a vertical transistor with buried source/drain and dual gates
US09/596,266Expired - LifetimeUS6399979B1 (en)1997-07-082000-06-16Memory cell having a vertical transistor with buried source/drain and dual gates

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US10/162,942Expired - Fee RelatedUS6818937B2 (en)1997-07-082002-06-04Memory cell having a vertical transistor with buried source/drain and dual gates

Country Status (1)

CountryLink
US (5)US6150687A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6597203B2 (en)2001-03-142003-07-22Micron Technology, Inc.CMOS gate array with vertical transistors
US20030227790A1 (en)*2002-06-062003-12-11Marr Ken W.Temperature compensated T-RAM memory device and method
US20040042256A1 (en)*2002-08-292004-03-04Micron Technology, Inc.Single transistor vertical memory gain cell
US20040041236A1 (en)*2002-08-292004-03-04Micron Technology, Inc.Merged mos-bipolar capacitor memory cell
US20040041189A1 (en)*2002-08-292004-03-04Voshell Thomas W.Random access memory device utilizing a vertically oriented select transistor
US20040052139A1 (en)*2002-06-212004-03-18Brown Kris K.Memory cell and method for forming the same
US20040140509A1 (en)*2003-01-222004-07-22Ching-Yu ChangNon-volatile memory and fabricating method thereof
US6804142B2 (en)2002-11-122004-10-12Micron Technology, Inc.6F2 3-transistor DRAM gain cell
US20050024936A1 (en)*2003-03-042005-02-03Micron Technology, Inc.Vertical gain cell
US20050063233A1 (en)*2002-06-212005-03-24Brown Kris K.Memory cell and method for forming the same
US20050073005A1 (en)*2003-10-072005-04-07International Business Machines CorporationHigh-density split-gate finfet
US20060038259A1 (en)*2004-08-192006-02-23Patrick ThomasSilicon pillars for vertical transistors
US20060043450A1 (en)*2004-09-022006-03-02Tang Sanh DVertical transistors
US20060113587A1 (en)*2004-11-302006-06-01Andreas ThiesTransistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
US20060160323A1 (en)*2005-01-142006-07-20Wells David HMemory array buried digit line
US20060211194A1 (en)*2004-12-132006-09-21Haller Gordon AMethods of reducing floating body effect
US7120046B1 (en)2005-05-132006-10-10Micron Technology, Inc.Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US20060249776A1 (en)*2005-05-052006-11-09Manning H MMemory cell, device, system and method for forming same
US20070018223A1 (en)*2005-07-252007-01-25Micron Technology Inc.Dram including a vertical surround gate transistor
US20070018206A1 (en)*2005-07-062007-01-25Leonard ForbesSurround gate access transistors with grown ultra-thin bodies
US20070048930A1 (en)*2005-09-012007-03-01Figura Thomas APeripheral gate stacks and recessed array gates
US20070045712A1 (en)*2005-09-012007-03-01Haller Gordon AMemory cell layout and process flow
US20070045721A1 (en)*2005-08-292007-03-01Micron Technology, Inc.Ultra-thin body vertical tunneling transistor
US20070051997A1 (en)*2005-08-312007-03-08Gordon HallerSemiconductor memory device
US20070232007A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Nanowire transistor with surrounding gate
US20070228433A1 (en)*2006-04-042007-10-04Micron Technology, Inc.DRAM with nanofin transistors
US20070228491A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Tunneling transistor with sublithographic channel
US20070231985A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Grown nanofin transistors
US20070231980A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Etched nanofin transistors
US7371627B1 (en)2005-05-132008-05-13Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US20080227255A1 (en)*2006-09-142008-09-18Micron Technology, Inc.Methods of Forming Vertical Transistors
US7557032B2 (en)2005-09-012009-07-07Micron Technology, Inc.Silicided recessed silicon
US20100090264A1 (en)*2008-10-102010-04-15Qimonda AgInterconnect structure for semiconductor devices
US20100176451A1 (en)*2009-01-092010-07-15Hoon JeongSemiconductor
US20110215391A1 (en)*2010-03-082011-09-08Elpida Memory, Inc.Semiconductor device and method of manufacturing the same
US8274106B2 (en)2004-07-202012-09-25Micron Technology, Inc.DRAM layout with vertical FETs and method of formation
US8329567B2 (en)2010-11-032012-12-11Micron Technology, Inc.Methods of forming doped regions in semiconductor substrates
US8361856B2 (en)2010-11-012013-01-29Micron Technology, Inc.Memory cells, arrays of memory cells, and methods of forming memory cells
US8362537B2 (en)2008-10-102013-01-29Qimonda AgMemory devices including semiconductor pillars
US8450175B2 (en)2011-02-222013-05-28Micron Technology, Inc.Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith
US8569831B2 (en)2011-05-272013-10-29Micron Technology, Inc.Integrated circuit arrays and semiconductor constructions
US8878156B2 (en)2011-11-212014-11-04Avalanche Technology Inc.Memory device having stitched arrays of 4 F2 memory cells
US20140346652A1 (en)*2013-05-242014-11-27Nanya Technology Corp.Buried digitline (bdl) access device and memory array
US9006060B2 (en)2012-08-212015-04-14Micron Technology, Inc.N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors
US9029822B2 (en)2012-11-172015-05-12Avalanche Technology, Inc.High density resistive memory having a vertical dual channel transistor
US9036391B2 (en)2012-03-062015-05-19Micron Technology, Inc.Arrays of vertically-oriented transistors, memory arrays including vertically-oriented transistors, and memory cells
US9087897B1 (en)2014-01-312015-07-21International Business Machines CorporationSemiconductor structures with pair(s) of vertical field effect transistors, each pair having a shared source/drain region and methods of forming the structures
US9111853B2 (en)2013-03-152015-08-18Micron Technology, Inc.Methods of forming doped elements of semiconductor device structures
US9129896B2 (en)*2012-08-212015-09-08Micron Technology, Inc.Arrays comprising vertically-oriented transistors, integrated circuitry comprising a conductive line buried in silicon-comprising semiconductor material, methods of forming a plurality of conductive lines buried in silicon-comprising semiconductor material, and methods of forming an array comprising vertically-oriented transistors
US9287271B2 (en)2011-08-232016-03-15Micron Technology, Inc.Vertical transistor devices, memory arrays, and methods of forming vertical transistor devices
US9397094B2 (en)2014-09-252016-07-19International Business Machines CorporationSemiconductor structure with an L-shaped bottom plate
US9478550B2 (en)2012-08-272016-10-25Micron Technology, Inc.Arrays of vertically-oriented transistors, and memory arrays including vertically-oriented transistors
US10515801B2 (en)2007-06-042019-12-24Micron Technology, Inc.Pitch multiplication using self-assembling materials
US11482277B2 (en)2020-11-042022-10-25Samsung Electronics Co., Ltd.Integrated circuit device including a word line driving circuit
US12426237B2 (en)2022-06-232025-09-23Changxin Memory Technologies, Inc.Semiconductor structure and method for forming same

Families Citing this family (148)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6218237B1 (en)1996-01-032001-04-17Micron Technology, Inc.Method of forming a capacitor
US6072209A (en)1997-07-082000-06-06Micro Technology, Inc.Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6150687A (en)*1997-07-082000-11-21Micron Technology, Inc.Memory cell having a vertical transistor with buried source/drain and dual gates
US5907170A (en)1997-10-061999-05-25Micron Technology, Inc.Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US6528837B2 (en)1997-10-062003-03-04Micron Technology, Inc.Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US6066869A (en)1997-10-062000-05-23Micron Technology, Inc.Circuit and method for a folded bit line memory cell with vertical transistor and trench capacitor
US6025225A (en)1998-01-222000-02-15Micron Technology, Inc.Circuits with a trench capacitor having micro-roughened semiconductor surfaces and methods for forming the same
US6246083B1 (en)1998-02-242001-06-12Micron Technology, Inc.Vertical gain cell and array for a dynamic random access memory
US6242775B1 (en)1998-02-242001-06-05Micron Technology, Inc.Circuits and methods using vertical complementary transistors
US6097242A (en)1998-02-262000-08-01Micron Technology, Inc.Threshold voltage compensation circuits for low voltage and low power CMOS integrated circuits
US5991225A (en)1998-02-271999-11-23Micron Technology, Inc.Programmable memory address decode array with vertical transistors
US6124729A (en)1998-02-272000-09-26Micron Technology, Inc.Field programmable logic arrays with vertical transistors
US6171891B1 (en)*1998-02-272001-01-09Taiwan Semiconductor Manufacturing CompanyMethod of manufacture of CMOS device using additional implant regions to enhance ESD performance
JPH11297856A (en)1998-04-161999-10-29Mitsubishi Electric Corp Static semiconductor memory device
US6208164B1 (en)1998-08-042001-03-27Micron Technology, Inc.Programmable logic array with vertical transistors
US6134175A (en)1998-08-042000-10-17Micron Technology, Inc.Memory address decode array with vertical transistors
US6104068A (en)*1998-09-012000-08-15Micron Technology, Inc.Structure and method for improved signal processing
US5977579A (en)*1998-12-031999-11-02Micron Technology, Inc.Trench dram cell with vertical device and buried word lines
US7388289B1 (en)*1999-09-022008-06-17Micron Technology, Inc.Local multilayered metallization
US6437389B1 (en)*2000-08-222002-08-20Micron Technology, Inc.Vertical gate transistors in pass transistor programmable logic arrays
US6537870B1 (en)*2000-09-292003-03-25Infineon Technologies AgMethod of forming an integrated circuit comprising a self aligned trench
US6472258B1 (en)*2000-11-132002-10-29International Business Machines CorporationDouble gate trench transistor
US6496034B2 (en)2001-02-092002-12-17Micron Technology, Inc.Programmable logic arrays with ultra thin body transistors
US6424001B1 (en)2001-02-092002-07-23Micron Technology, Inc.Flash memory with ultra thin vertical body transistors
US6377070B1 (en)2001-02-092002-04-23Micron Technology, Inc.In-service programmable logic arrays with ultra thin vertical body transistors
US6448601B1 (en)2001-02-092002-09-10Micron Technology, Inc.Memory address and decode circuits with ultra thin body transistors
US6566682B2 (en)2001-02-092003-05-20Micron Technology, Inc.Programmable memory address and decode circuits with ultra thin vertical body transistors
US6559491B2 (en)2001-02-092003-05-06Micron Technology, Inc.Folded bit line DRAM with ultra thin body transistors
US6531727B2 (en)2001-02-092003-03-11Micron Technology, Inc.Open bit line DRAM with ultra thin body transistors
US6649476B2 (en)2001-02-152003-11-18Micron Technology, Inc.Monotonic dynamic-static pseudo-NMOS logic circuit and method of forming a logic gate array
US6744094B2 (en)*2001-08-242004-06-01Micron Technology Inc.Floating gate transistor with horizontal gate layers stacked next to vertical body
US8026161B2 (en)2001-08-302011-09-27Micron Technology, Inc.Highly reliable amorphous high-K gate oxide ZrO2
US7068544B2 (en)2001-08-302006-06-27Micron Technology, Inc.Flash memory with low tunnel barrier interpoly insulators
US7067875B2 (en)*2001-09-202006-06-27Renesas Technology Corp.Semiconductor integrated circuit device and its manufacturing method
WO2003036714A1 (en)*2001-10-242003-05-01Hitachi, Ltd DLongitudinal misfet manufacturing method, longitudinal misfet, semiconductor storage device manufacturing method, and semiconductor storage device
US6800905B2 (en)*2001-12-142004-10-05International Business Machines CorporationImplanted asymmetric doped polysilicon gate FinFET
US6953730B2 (en)2001-12-202005-10-11Micron Technology, Inc.Low-temperature grown high quality ultra-thin CoTiO3 gate dielectrics
US20030151077A1 (en)*2002-02-132003-08-14Leo MathewMethod of forming a vertical double gate semiconductor device and structure thereof
US6750487B2 (en)*2002-04-112004-06-15International Business Machines CorporationDual double gate transistor
US7589029B2 (en)2002-05-022009-09-15Micron Technology, Inc.Atomic layer deposition and conversion
US7160577B2 (en)2002-05-022007-01-09Micron Technology, Inc.Methods for atomic-layer deposition of aluminum oxides in integrated circuits
US6842369B2 (en)2002-05-072005-01-11Hewlett-Packard Development Company, L.P.Intermesh memory device
US6970370B2 (en)*2002-06-212005-11-29Micron Technology, Inc.Ferroelectric write once read only memory for archival storage
US7154140B2 (en)2002-06-212006-12-26Micron Technology, Inc.Write once read only memory with large work function floating gates
US6996009B2 (en)2002-06-212006-02-07Micron Technology, Inc.NOR flash memory cell with high storage density
US7193893B2 (en)2002-06-212007-03-20Micron Technology, Inc.Write once read only memory employing floating gates
US6804136B2 (en)*2002-06-212004-10-12Micron Technology, Inc.Write once read only memory employing charge trapping in insulators
CN100407427C (en)2002-06-212008-07-30微米技术股份有限公司 NROM memory element, memory array, related apparatus and method
US6888739B2 (en)*2002-06-212005-05-03Micron Technology Inc.Nanocrystal write once read only memory for archival storage
US7221586B2 (en)2002-07-082007-05-22Micron Technology, Inc.Memory utilizing oxide nanolaminates
US7847344B2 (en)*2002-07-082010-12-07Micron Technology, Inc.Memory utilizing oxide-nitride nanolaminates
US7221017B2 (en)2002-07-082007-05-22Micron Technology, Inc.Memory utilizing oxide-conductor nanolaminates
US7071043B2 (en)*2002-08-152006-07-04Micron Technology, Inc.Methods of forming a field effect transistor having source/drain material over insulative material
US6794699B2 (en)*2002-08-292004-09-21Micron Technology IncAnnular gate and technique for fabricating an annular gate
AU2003276212A1 (en)*2002-11-072004-06-07Ciba Specialty Chemicals Holding Inc.Thickening agents comprising a crosslinked polymer powder
US7030436B2 (en)*2002-12-042006-04-18Micron Technology, Inc.Embedded DRAM gain memory cell having MOS transistor body provided with a bi-polar transistor charge injecting means
US7339822B2 (en)2002-12-062008-03-04Sandisk CorporationCurrent-limited latch
US7192892B2 (en)2003-03-042007-03-20Micron Technology, Inc.Atomic layer deposited dielectric layers
US6967143B2 (en)*2003-04-302005-11-22Freescale Semiconductor, Inc.Semiconductor fabrication process with asymmetrical conductive spacers
US7192876B2 (en)*2003-05-222007-03-20Freescale Semiconductor, Inc.Transistor with independent gate structures
US6903967B2 (en)*2003-05-222005-06-07Freescale Semiconductor, Inc.Memory with charge storage locations and adjacent gate structures
US7095075B2 (en)2003-07-012006-08-22Micron Technology, Inc.Apparatus and method for split transistor memory having improved endurance
US7276754B2 (en)*2003-08-292007-10-02Micron Technology, Inc.Annular gate and technique for fabricating an annular gate
US6844591B1 (en)*2003-09-172005-01-18Micron Technology, Inc.Method of forming DRAM access transistors
US7098502B2 (en)*2003-11-102006-08-29Freescale Semiconductor, Inc.Transistor having three electrically isolated electrodes and method of formation
US6831310B1 (en)2003-11-102004-12-14Freescale Semiconductor, Inc.Integrated circuit having multiple memory types and method of formation
US6969656B2 (en)*2003-12-052005-11-29Freescale Semiconductor, Inc.Method and circuit for multiplying signals with a transistor having more than one independent gate structure
US7050330B2 (en)2003-12-162006-05-23Micron Technology, Inc.Multi-state NROM device
US7301804B2 (en)2003-12-162007-11-27Micro Technology, Inc.NROM memory cell, memory array, related devices and methods
US7241654B2 (en)2003-12-172007-07-10Micron Technology, Inc.Vertical NROM NAND flash memory array
US7148538B2 (en)*2003-12-172006-12-12Micron Technology, Inc.Vertical NAND flash memory array
US7372091B2 (en)*2004-01-272008-05-13Micron Technology, Inc.Selective epitaxy vertical integrated circuit components
US6878991B1 (en)2004-01-302005-04-12Micron Technology, Inc.Vertical device 4F2 EEPROM memory
US7585731B2 (en)*2004-02-202009-09-08Renesas Technology Corp.Semiconductor integrated circuit device and its manufacturing method
US7075146B2 (en)2004-02-242006-07-11Micron Technology, Inc.4F2 EEPROM NROM memory arrays with vertical devices
US7262089B2 (en)*2004-03-112007-08-28Micron Technology, Inc.Methods of forming semiconductor structures
US7018876B2 (en)*2004-06-182006-03-28Freescale Semiconductor, Inc.Transistor with vertical dielectric structure
US7271083B2 (en)*2004-07-222007-09-18Taiwan Semiconductor Manufacturing Company, Ltd.One-transistor random access memory technology compatible with metal gate process
US7151294B2 (en)*2004-08-032006-12-19Micron Technology, Inc.High density stepped, non-planar flash memory
US7081421B2 (en)2004-08-262006-07-25Micron Technology, Inc.Lanthanide oxide dielectric layer
US7494939B2 (en)2004-08-312009-02-24Micron Technology, Inc.Methods for forming a lanthanum-metal oxide dielectric layer
US7547945B2 (en)2004-09-012009-06-16Micron Technology, Inc.Transistor devices, transistor structures and semiconductor constructions
US7457156B2 (en)*2004-09-022008-11-25Micron Technology, Inc.NAND flash depletion cell structure
US7271052B1 (en)2004-09-022007-09-18Micron Technology, Inc.Long retention time single transistor vertical memory gain cell
US7259415B1 (en)2004-09-022007-08-21Micron Technology, Inc.Long retention time single transistor vertical memory gain cell
US7271433B1 (en)2004-09-022007-09-18Micron Technology, Inc.High-density single transistor vertical memory gain cell
US7141838B1 (en)*2005-01-272006-11-28Spansion LlcBuried word line memory integrated circuit system
US7326611B2 (en)*2005-02-032008-02-05Micron Technology, Inc.DRAM arrays, vertical transistor structures and methods of forming transistor structures and DRAM arrays
US7374964B2 (en)2005-02-102008-05-20Micron Technology, Inc.Atomic layer deposition of CeO2/Al2O3 films as gate dielectrics
US20060197140A1 (en)*2005-03-042006-09-07Freescale Semiconductor, Inc.Vertical transistor NVM with body contact structure and method
US7244659B2 (en)*2005-03-102007-07-17Micron Technology, Inc.Integrated circuits and methods of forming a field effect transistor
US7384849B2 (en)*2005-03-252008-06-10Micron Technology, Inc.Methods of forming recessed access devices associated with semiconductor constructions
US7662729B2 (en)2005-04-282010-02-16Micron Technology, Inc.Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer
US7538389B2 (en)2005-06-082009-05-26Micron Technology, Inc.Capacitorless DRAM on bulk silicon
US7679118B2 (en)*2005-06-132010-03-16Micron Technology, Inc.Vertical transistor, memory cell, device, system and method of forming same
US7504685B2 (en)*2005-06-282009-03-17Micron Technology, Inc.Oxide epitaxial isolation
KR100600044B1 (en)*2005-06-302006-07-13주식회사 하이닉스반도체 Method for manufacturing a semiconductor device having a recess gate
US7282401B2 (en)2005-07-082007-10-16Micron Technology, Inc.Method and apparatus for a self-aligned recessed access device (RAD) transistor gate
US7927948B2 (en)2005-07-202011-04-19Micron Technology, Inc.Devices with nanocrystals and methods of formation
US20070052012A1 (en)*2005-08-242007-03-08Micron Technology, Inc.Vertical tunneling nano-wire transistor
US7867851B2 (en)*2005-08-302011-01-11Micron Technology, Inc.Methods of forming field effect transistors on substrates
US8071476B2 (en)2005-08-312011-12-06Micron Technology, Inc.Cobalt titanium oxide dielectric films
US7410910B2 (en)2005-08-312008-08-12Micron Technology, Inc.Lanthanum aluminum oxynitride dielectric films
US7446372B2 (en)*2005-09-012008-11-04Micron Technology, Inc.DRAM tunneling access transistor
US7867845B2 (en)*2005-09-012011-01-11Micron Technology, Inc.Transistor gate forming methods and transistor structures
KR100673012B1 (en)*2005-09-022007-01-24삼성전자주식회사 A dynamic random access memory device having double gate type vertical channel transistors and a method of manufacturing the same
KR100697291B1 (en)2005-09-152007-03-20삼성전자주식회사 Nonvolatile Semiconductor Memory Device and Manufacturing Method Thereof
US7432122B2 (en)*2006-01-062008-10-07Freescale Semiconductor, Inc.Electronic device and a process for forming the electronic device
US7700441B2 (en)2006-02-022010-04-20Micron Technology, Inc.Methods of forming field effect transistors, methods of forming field effect transistor gates, methods of forming integrated circuitry comprising a transistor gate array and circuitry peripheral to the gate array, and methods of forming integrated circuitry comprising a transistor gate array including first gates and second grounded isolation gates
US7709402B2 (en)2006-02-162010-05-04Micron Technology, Inc.Conductive layers for hafnium silicon oxynitride films
US8860174B2 (en)*2006-05-112014-10-14Micron Technology, Inc.Recessed antifuse structures and methods of making the same
US20070262395A1 (en)*2006-05-112007-11-15Gibbons Jasper SMemory cell access devices and methods of making the same
US8008144B2 (en)2006-05-112011-08-30Micron Technology, Inc.Dual work function recessed access device and methods of forming
US7602001B2 (en)2006-07-172009-10-13Micron Technology, Inc.Capacitorless one transistor DRAM cell, integrated circuitry comprising an array of capacitorless one transistor DRAM cells, and method of forming lines of capacitorless one transistor DRAM cells
US7772632B2 (en)2006-08-212010-08-10Micron Technology, Inc.Memory arrays and methods of fabricating memory arrays
US7589995B2 (en)2006-09-072009-09-15Micron Technology, Inc.One-transistor memory cell with bias gate
KR100881392B1 (en)2006-10-312009-02-05주식회사 하이닉스반도체 Semiconductor device with vertical transistor and manufacturing method thereof
US7872302B2 (en)*2007-01-152011-01-18Samsung Electronics Co., Ltd.Semiconductor device having vertical transistor formed on an active pattern protruding from a substrate
US7800093B2 (en)*2007-02-012010-09-21Qimonda North America Corp.Resistive memory including buried word lines
JP5460950B2 (en)2007-06-062014-04-02ピーエスフォー ルクスコ エスエイアールエル Semiconductor device and manufacturing method thereof
US7759237B2 (en)*2007-06-282010-07-20Micron Technology, Inc.Method of forming lutetium and lanthanum dielectric structures
JP5466816B2 (en)*2007-08-092014-04-09ピーエスフォー ルクスコ エスエイアールエル Manufacturing method of vertical MOS transistor
US7943997B2 (en)*2008-04-172011-05-17International Business Machines CorporationFully-depleted low-body doping field effect transistor (FET) with reverse short channel effects (SCE) induced by self-aligned edge back-gate(s)
JP5701477B2 (en)*2008-09-182015-04-15マイクロンメモリジャパン株式会社 Field effect transistor, memory cell, and method of manufacturing field effect transistor
KR101517390B1 (en)*2008-11-032015-05-04삼성전자주식회사Vertical type semiconductor device and method for manufacturing the same
US7824986B2 (en)2008-11-052010-11-02Micron Technology, Inc.Methods of forming a plurality of transistor gates, and methods of forming a plurality of transistor gates having at least two different work functions
KR101159900B1 (en)*2009-04-222012-06-25에스케이하이닉스 주식회사Semiconductor device and method of fabricating the same
US8299519B2 (en)*2010-01-112012-10-30International Business Machines CorporationRead transistor for single poly non-volatile memory using body contacted SOI device
US8467220B2 (en)*2010-01-142013-06-18Jai Hoon SimDRAM device and manufacturing method thereof
DE112011102837B4 (en)*2010-08-272021-03-11Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device with double gate and oxide semiconductor
US8921899B2 (en)2010-11-192014-12-30Micron Technology, Inc.Double gated 4F2 dram CHC cell and methods of fabricating the same
TWI415247B (en)*2010-12-152013-11-11Powerchip Technology CorpDynamic random access memory cell and array having vertical channel transistor
US9401436B2 (en)2011-05-052016-07-26Qualcomm IncorporatedMultiple control transcap variable capacitor
TWI499006B (en)*2011-10-072015-09-01Etron Technology Inc Dynamic memory structure
KR101906946B1 (en)2011-12-022018-10-12삼성전자주식회사High density semiconductor memory device
KR20130065264A (en)*2011-12-092013-06-19에스케이하이닉스 주식회사Method for forming buried bitline, semiconductor device having buried bitline and fabricating the same
US9312257B2 (en)2012-02-292016-04-12Semiconductor Energy Laboratory Co., Ltd.Semiconductor device
KR20130103942A (en)2012-03-122013-09-25에스케이하이닉스 주식회사Semiconductor device having junctionless vertical gate transistor and method for manufacturing the same
US9281065B2 (en)2014-08-112016-03-08Empire Technology Development LlcLow-power nonvolatile memory cells with select gates
US10388564B2 (en)2016-01-122019-08-20Micron Technology, Inc.Method for fabricating a memory device having two contacts
SG10201701689UA (en)2016-03-182017-10-30Semiconductor Energy LabSemiconductor device, semiconductor wafer, and electronic device
US10002795B1 (en)2017-04-122018-06-19International Business Machines CorporationMethod and structure for forming vertical transistors with shared gates and separate gates
US10332874B2 (en)2017-05-032019-06-25International Business Machines CorporationIndirect readout FET
US10522686B2 (en)2017-09-262019-12-31International Business Machines CorporationVertical thin film transistor
KR101950146B1 (en)*2018-08-232019-02-19에스케이하이닉스 주식회사Semiconductor device having junctionless vertical gate transistor and method for manufacturing the same
US11107827B2 (en)2019-02-282021-08-31International Business Machines CorporationIntegration of split gate metal-oxide-nitride-oxide-semiconductor memory with vertical FET
CN112885832B (en)*2019-11-292024-07-16长鑫存储技术有限公司Semiconductor structure and manufacturing method thereof
CN117337027A (en)*2022-06-232024-01-02长鑫存储技术有限公司 Semiconductor structures and methods of forming them

Citations (124)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3931617A (en)1974-10-071976-01-06Signetics CorporationCollector-up dynamic memory cell
US4020364A (en)1974-09-281977-04-26U.S. Philips CorporationResistance read amplifier
US4051354A (en)1975-07-031977-09-27Texas Instruments IncorporatedFault-tolerant cell addressable array
US4252579A (en)1979-05-071981-02-24International Business Machines CorporationMethod for making single electrode U-MOSFET random access memory utilizing reactive ion etching and polycrystalline deposition
US4604162A (en)1983-06-131986-08-05Ncr CorporationFormation and planarization of silicon-on-insulator structures
US4630088A (en)1984-09-111986-12-16Kabushiki Kaisha ToshibaMOS dynamic ram
US4663831A (en)1985-10-081987-05-12Motorola, Inc.Method of forming transistors with poly-sidewall contacts utilizing deposition of polycrystalline and insulating layers combined with selective etching and oxidation of said layers
US4673962A (en)1985-03-211987-06-16Texas Instruments IncorporatedVertical DRAM cell and method
US4677589A (en)1985-07-261987-06-30Advanced Micro Devices, Inc.Dynamic random access memory cell having a charge amplifier
US4701423A (en)1985-12-201987-10-20Ncr CorporationTotally self-aligned CMOS process
US4716314A (en)1974-10-091987-12-29U.S. Philips CorporationIntegrated circuit
US4761768A (en)1985-03-041988-08-02Lattice Semiconductor CorporationProgrammable logic device
US4766569A (en)1985-03-041988-08-23Lattice Semiconductor CorporationProgrammable logic array
US4845537A (en)1986-12-011989-07-04Mitsubishi Denki Kabushiki KaishaVertical type MOS transistor and method of formation thereof
US4906590A (en)1988-05-091990-03-06Mitsubishi Denki Kabushiki KaishaMethod of forming a trench capacitor on a semiconductor substrate
US4920065A (en)1988-10-311990-04-24International Business Machines CorporationMethod of making ultra dense dram cells
US4929988A (en)1987-08-251990-05-29Kabushiki Kaisha ToshibaNon-volatile semiconductor memory device and method of the manufacture thereof
US4949138A (en)1987-10-271990-08-14Texas Instruments IncorporatedSemiconductor integrated circuit device
US4958318A (en)1988-07-081990-09-18Eliyahou HarariSidewall capacitor DRAM cell
US4965651A (en)1973-02-011990-10-23U.S. Philips CorporationCMOS logic array layout
US4987089A (en)1990-07-231991-01-22Micron Technology, Inc.BiCMOS process and process for forming bipolar transistors on wafers also containing FETs
US5001526A (en)1987-11-101991-03-19Fujitsu LimitedDram cell formed on an insulating layer having a buried semiconductor pillar structure and a manufacturing method thereof
US5006909A (en)1989-10-301991-04-09Motorola, Inc.Dram with a vertical capacitor and transistor
US5010386A (en)1989-12-261991-04-23Texas Instruments IncorporatedInsulator separated vertical CMOS
US5017504A (en)1986-12-011991-05-21Mitsubishi Denki Kabushiki KaishaVertical type MOS transistor and method of formation thereof
US5021355A (en)1989-05-221991-06-04International Business Machines CorporationMethod of fabricating cross-point lightly-doped drain-source trench transistor
US5028977A (en)1989-06-161991-07-02Massachusetts Institute Of TechnologyMerged bipolar and insulated gate transistors
US5057896A (en)1988-05-281991-10-15Fujitsu LimitedSemiconductor device and method of producing same
US5072269A (en)1988-03-151991-12-10Kabushiki Kaisha ToshibaDynamic ram and method of manufacturing the same
US5083047A (en)1989-10-261992-01-21Kabushiki Kaisha ToshibaPrecharged-type logic circuit having dummy precharge line
US5087581A (en)1990-10-311992-02-11Texas Instruments IncorporatedMethod of forming vertical FET device with low gate to source overlap capacitance
US5102817A (en)1985-03-211992-04-07Texas Instruments IncorporatedVertical DRAM cell and method
US5107459A (en)1990-04-201992-04-21International Business Machines CorporationStacked bit-line architecture for high density cross-point memory cell array
US5110752A (en)1991-07-101992-05-05Industrial Technology Research InstituteRoughened polysilicon surface capacitor electrode plate for high denity dram
US5156987A (en)1991-12-181992-10-20Micron Technology, Inc.High performance thin film transistor (TFT) by solid phase epitaxial regrowth
US5177028A (en)1991-10-221993-01-05Micron Technology, Inc.Trench isolation method having a double polysilicon gate formed on mesas
US5177576A (en)1990-05-091993-01-05Hitachi, Ltd.Dynamic random access memory having trench capacitors and vertical transistors
US5181089A (en)1989-08-151993-01-19Matsushita Electric Industrial Co., Ltd.Semiconductor memory device and a method for producing the same
US5191509A (en)1991-12-111993-03-02International Business Machines CorporationTextured polysilicon stacked trench capacitor
US5202278A (en)1991-09-101993-04-13Micron Technology, Inc.Method of forming a capacitor in semiconductor wafer processing
US5208657A (en)1984-08-311993-05-04Texas Instruments IncorporatedDRAM Cell with trench capacitor and vertical channel in substrate
US5216266A (en)1990-04-111993-06-01Mitsubishi Denki Kabushiki KaishaSemiconductor memory device having memory cells formed in trench and manufacturing method therefor
US5221867A (en)1991-10-111993-06-22Intel CorporationProgrammable logic array with internally generated precharge and evaluation timing
US5223081A (en)1991-07-031993-06-29Doan Trung TMethod for roughening a silicon or polysilicon surface for a semiconductor substrate
US5266514A (en)1992-12-211993-11-30Industrial Technology Research InstituteMethod for producing a roughened surface capacitor
US5276343A (en)1990-04-211994-01-04Kabushiki Kaisha ToshibaSemiconductor memory device having a bit line constituted by a semiconductor layer
US5316962A (en)1989-08-151994-05-31Matsushita Electric Industrial Co., Ltd.Method of producing a semiconductor device having trench capacitors and vertical switching transistors
US5320880A (en)1992-10-201994-06-14Micron Technology, Inc.Method of providing a silicon film having a roughened outer surface
US5327380A (en)1988-10-311994-07-05Texas Instruments IncorporatedMethod and apparatus for inhibiting a predecoder when selecting a redundant row line
US5329481A (en)1991-12-161994-07-12U.S. Philips CorporationSemiconductor device having a memory cell
US5341331A (en)1991-07-311994-08-23Samsung Electronics, Co., Ltd.Data transmission circuit having common input/output lines
US5376575A (en)1991-09-261994-12-27Hyundai Electronics Industries, Inc.Method of making dynamic random access memory having a vertical transistor
US5379255A (en)1992-12-141995-01-03Texas Instruments IncorporatedThree dimensional famos memory devices and methods of fabricating
US5378914A (en)1990-05-311995-01-03Canon Kabushiki KaishaSemiconductor device with a particular source/drain and gate structure
US5382540A (en)1993-09-201995-01-17Motorola, Inc.Process for forming an electrically programmable read-only memory cell
US5385853A (en)1992-12-021995-01-31International Business Machines CorporationMethod of fabricating a metal oxide semiconductor heterojunction field effect transistor (MOSHFET)
US5392245A (en)1993-08-131995-02-21Micron Technology, Inc.Redundancy elements using thin film transistors (TFTs)
US5391911A (en)1993-03-291995-02-21International Business Machines CorporationReach-through isolation silicon-on-insulator device
US5393704A (en)1993-12-131995-02-28United Microelectronics CorporationSelf-aligned trenched contact (satc) process
US5396093A (en)1994-02-141995-03-07Industrial Technology Research InstituteVertical DRAM cross point memory cell and fabrication method
US5410169A (en)1990-02-261995-04-25Kabushiki Kaisha ToshibaDynamic random access memory having bit lines buried in semiconductor substrate
US5414287A (en)1994-04-251995-05-09United Microelectronics CorporationProcess for high density split-gate memory cell for flash or EPROM
US5414288A (en)1992-11-191995-05-09Motorola, Inc.Vertical transistor having an underlying gate electrode contact
US5416736A (en)1992-07-281995-05-16Motorola, Inc.Vertical field-effect transistor and a semiconductor memory cell having the transistor
US5416350A (en)1993-03-151995-05-16Kabushiki Kaisha ToshibaSemiconductor device with vertical transistors connected in series between bit lines
US5422499A (en)1993-02-221995-06-06Micron Semiconductor, Inc.Sixteen megabit static random access memory (SRAM) cell
US5427972A (en)1987-02-131995-06-27Mitsubishi Denki Kabushiki KaishaMethod of making a sidewall contact
US5432739A (en)1994-06-171995-07-11Philips Electronics North America CorporationNon-volatile sidewall memory cell method of fabricating same
US5438009A (en)1993-04-021995-08-01United Microelectronics CorporationMethod of fabrication of MOSFET device with buried bit line
US5440158A (en)1994-07-051995-08-08Taiwan Semiconductor Manufacturing Company Ltd.Electrically programmable memory device with improved dual floating gates
US5445986A (en)1993-09-031995-08-29Nec CorporationMethod of forming a roughened surface capacitor with two etching steps
US5451538A (en)1992-03-021995-09-19Motorola, Inc.Method for forming a vertically integrated dynamic memory cell
US5460988A (en)1994-04-251995-10-24United Microelectronics CorporationProcess for high density flash EPROM cell
US5460316A (en)1993-09-151995-10-24At&T Global Information Solutions CompanyStencils having enhanced wear-resistance and methods of manufacturing the same
US5466625A (en)1992-06-171995-11-14International Business Machines CorporationMethod of making a high-density DRAM structure on SOI
US5492853A (en)1994-03-111996-02-20Micron Semiconductor, Inc.Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device
US5495441A (en)1994-05-181996-02-27United Microelectronics CorporationSplit-gate flash memory cell
US5497017A (en)1995-01-261996-03-05Micron Technology, Inc.Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
US5508542A (en)1994-10-281996-04-16International Business Machines CorporationPorous silicon trench and capacitor structures
US5508219A (en)1995-06-051996-04-16International Business Machines CorporationSOI DRAM with field-shield isolation and body contact
US5519236A (en)1993-06-281996-05-21Kabushiki Kaisha ToshibaSemiconductor memory device having surrounding gate transistor
US5574299A (en)1994-03-281996-11-12Samsung Electronics Co., Ltd.Semiconductor device having vertical conduction transistors and cylindrical cell gates
US5576238A (en)1995-06-151996-11-19United Microelectronics CorporationProcess for fabricating static random access memory having stacked transistors
US5581101A (en)1995-01-031996-12-03International Business Machines CorporationFET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
US5593912A (en)1994-10-061997-01-14International Business Machines CorporationSOI trench DRAM cell for 256 MB DRAM and beyond
US5616934A (en)1993-05-121997-04-01Micron Technology, Inc.Fully planarized thin film transistor (TFT) and process to fabricate same
US5627390A (en)1994-05-261997-05-06Mitsubishi Denki Kabushiki KaishaSemiconductor device with columns
US5627097A (en)1995-07-031997-05-06Motorola, Inc.Method for making CMOS device having reduced parasitic capacitance
US5637898A (en)1995-12-221997-06-10North Carolina State UniversityVertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5640342A (en)1995-11-201997-06-17Micron Technology, Inc.Structure for cross coupled thin film transistors and static random access memory cell
US5646900A (en)1995-01-121997-07-08Mitsubishi Denki Kabushiki KaishaSense amplifier including MOS transistors having threshold voltages controlled dynamically in a semiconductor memory device
US5674769A (en)1996-06-141997-10-07Siemens AktiengesellschaftProcess for forming deep trench DRAMs with sub-groundrule gates
US5691230A (en)1996-09-041997-11-25Micron Technology, Inc.Technique for producing small islands of silicon on insulator
US5705415A (en)1994-10-041998-01-06Motorola, Inc.Process for forming an electrically programmable read-only memory cell
US5719409A (en)1996-06-061998-02-17Cree Research, Inc.Silicon carbide metal-insulator semiconductor field effect transistor
US5753947A (en)1995-01-201998-05-19Micron Technology, Inc.Very high-density DRAM cell structure and method for fabricating it
US5760434A (en)1996-05-071998-06-02Micron Technology, Inc.Increased interior volume for integrated memory cell
US5801413A (en)1995-12-191998-09-01Micron Technology, Inc.Container-shaped bottom electrode for integrated circuit capacitor with partially rugged surface
US5818084A (en)1996-05-151998-10-06Siliconix IncorporatedPseudo-Schottky diode
US5827765A (en)1996-02-221998-10-27Siemens AktiengesellschaftBuried-strap formation in a dram trench capacitor
US5834814A (en)1994-08-191998-11-10Kabushiki Kaisha ToshibaSemiconductor integrated circuit
US5864158A (en)1997-04-041999-01-26Advanced Micro Devices, Inc.Trench-gated vertical CMOS device
US5874760A (en)1997-01-221999-02-23International Business Machines Corporation4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation
US5877061A (en)1997-02-251999-03-02International Business Machines CorporationMethods for roughening and volume expansion of trench sidewalls to form high capacitance trench cell for high density dram applications
US5879971A (en)1995-09-281999-03-09Motorola Inc.Trench random access memory cell and method of formation
US5907170A (en)1997-10-061999-05-25Micron Technology, Inc.Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US5909400A (en)1997-08-221999-06-01International Business Machines CorporationThree device BICMOS gain cell
US5909618A (en)1997-07-081999-06-01Micron Technology, Inc.Method of making memory cell with vertical transistor and buried word and body lines
US5914511A (en)1997-10-061999-06-22Micron Technology, Inc.Circuit and method for a folded bit line memory using trench plate capacitor cells with body bias contacts
US5917342A (en)1995-03-311999-06-29Nec CorporationBiMOS integrated circuit
US5920088A (en)1995-06-161999-07-06Interuniversitair Micro-Electronica Centrum (Imec Vzw)Vertical MISFET devices
US5926412A (en)1992-02-091999-07-20Raytheon CompanyFerroelectric memory structure
US5936274A (en)1997-07-081999-08-10Micron Technology, Inc.High density flash memory
US5943267A (en)1996-05-161999-08-24Altera CorporationHigh-density nonvolatile memory cell
US5963469A (en)1998-02-241999-10-05Micron Technology, Inc.Vertical bipolar read access for low voltage memory cell
US5973356A (en)1997-07-081999-10-26Micron Technology, Inc.Ultra high density flash memory
US5973352A (en)1997-08-201999-10-26Micron Technology, Inc.Ultra high density flash memory having vertically stacked devices
US5981995A (en)1997-06-131999-11-09Advanced Micro Devices, Inc.Static random access memory cell having buried sidewall transistors, buried bit lines, and buried vdd and vss nodes
US6040218A (en)1998-06-192000-03-21International Business Machines CorporationTwo square NVRAM cell
JP2000164883A (en)1992-03-252000-06-16Semiconductor Energy Lab Co LtdManufacture of thin-film insulating gate semiconductor device
US6150687A (en)*1997-07-082000-11-21Micron Technology, Inc.Memory cell having a vertical transistor with buried source/drain and dual gates
US6172391B1 (en)1997-08-272001-01-09Siemens AktiengesellschaftDRAM cell arrangement and method for the manufacture thereof
US6221788B1 (en)1995-08-012001-04-24Matsushita Electronics CorporationSemiconductor and a method for manufacturing an oxide film on the surface of a semiconductor substrate
US6255708B1 (en)1997-10-102001-07-03Rengarajan SudharsananSemiconductor P-I-N detector

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE2111979A1 (en)1970-03-131971-10-21Hitachi Ltd Field effect semiconductor device
US3806741A (en)1972-05-171974-04-23Standard Microsyst SmcSelf-biasing technique for mos substrate voltage
US4313106A (en)1980-06-301982-01-26Rca CorporationElectrically programmable logic array
JPS5885638A (en)1981-11-171983-05-23Ricoh Co Ltd programmable logic array
US4740826A (en)1985-09-251988-04-26Texas Instruments IncorporatedVertical inverter
US4761385A (en)1987-02-101988-08-02Motorola, Inc.Forming a trench capacitor
JPH01109921A (en)1987-10-231989-04-26Ricoh Co LtdProgrammable logic array
US4888735A (en)1987-12-301989-12-19Elite Semiconductor & Systems Int'l., Inc.ROM cell and array configuration
US5140388A (en)1991-03-221992-08-18Hewlett-Packard CompanyVertical metal-oxide semiconductor devices
JPH05129554A (en)1991-07-011993-05-25Toshiba CorpDynamic semiconductor memory device
US5128831A (en)1991-10-311992-07-07Micron Technology, Inc.High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
US5308782A (en)1992-03-021994-05-03MotorolaSemiconductor memory device and method of formation
JP3173854B2 (en)1992-03-252001-06-04株式会社半導体エネルギー研究所 Method for manufacturing thin-film insulated gate semiconductor device and semiconductor device manufactured
US5365477A (en)1992-06-161994-11-15The United States Of America As Represented By The Secretary Of The NavyDynamic random access memory device
US5292676A (en)1992-07-291994-03-08Micron Semiconductor, Inc.Self-aligned low resistance buried contact process
US5429955A (en)1992-10-261995-07-04Texas Instruments IncorporatedMethod for constructing semiconductor-on-insulator
US5409563A (en)1993-02-261995-04-25Micron Technology, Inc.Method for etching high aspect ratio features
US5396452A (en)1993-07-021995-03-07Wahlstrom; Sven E.Dynamic random access memory
US5385854A (en)1993-07-151995-01-31Micron Semiconductor, Inc.Method of forming a self-aligned low density drain inverted thin film transistor
DE4340967C1 (en)1993-12-011994-10-27Siemens AgMethod for producing an integrated circuit arrangement having at least one MOS transistor
US5451889A (en)1994-03-141995-09-19Motorola, Inc.CMOS output driver which can tolerate an output voltage greater than the supply voltage without latchup or increased leakage current
JP3282915B2 (en)1994-03-312002-05-20富士通株式会社 DC / DC converter and method of controlling back gate voltage of NMOS transistor
US5422296A (en)1994-04-251995-06-06Motorola, Inc.Process for forming a static-random-access memory cell
JPH08274612A (en)1995-03-311996-10-18Nec CorpSemiconductor device
US5641691A (en)1995-04-031997-06-24The United States Of America As Represented By The Secretary Of The NavyMethod for fabricating complementary vertical bipolar junction transistors in silicon-on-sapphire
US5528173A (en)1995-05-101996-06-18Micron Technology, Inc.Low power, high speed level shifter
KR0165398B1 (en)*1995-05-261998-12-15윤종용Vertical transistor manufacturing method
US5641545A (en)1995-06-071997-06-24Micron Technology, Inc.Method to deposit highly conformal CVD films
JP3457106B2 (en)1995-10-132003-10-14ローム株式会社 Switching semiconductor element, programmable functional device, and method of operating programmable functional device
US5640350A (en)1996-05-011997-06-17Iga; Adam SempaMulti-bit dynamic random access memory cell storage
US5821796A (en)1996-09-231998-10-13Texas Instruments IncorporatedCircuitry for providing a high impedance state when powering down a single port node
US5990509A (en)1997-01-221999-11-23International Business Machines Corporation2F-square memory cell for gigabit memory applications
US5852375A (en)1997-02-071998-12-22Silicon Systems Research Limited5v tolerant I/O circuit
US6072209A (en)*1997-07-082000-06-06Micro Technology, Inc.Four F2 folded bit line DRAM cell structure having buried bit and word lines
US6528837B2 (en)1997-10-062003-03-04Micron Technology, Inc.Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US5872032A (en)1997-11-031999-02-16Vanguard International Semiconductor CorporationFabrication method for a DRAM cell with bipolar charge amplification
US6181196B1 (en)1997-12-182001-01-30Texas Instruments IncorporatedAccurate bandgap circuit for a CMOS process without NPN devices
US5991225A (en)1998-02-271999-11-23Micron Technology, Inc.Programmable memory address decode array with vertical transistors
US6208164B1 (en)1998-08-042001-03-27Micron Technology, Inc.Programmable logic array with vertical transistors
US6134175A (en)1998-08-042000-10-17Micron Technology, Inc.Memory address decode array with vertical transistors
US6181121B1 (en)1999-03-042001-01-30Cypress Semiconductor Corp.Low supply voltage BICMOS self-biased bandgap reference using a current summing architecture
US6172535B1 (en)1999-11-042001-01-09Analog Devices, Inc.High-speed analog comparator structures and methods
US6121084A (en)2000-01-272000-09-19Micron Technology, Inc.Semiconductor processing methods of forming hemispherical grain polysilicon layers, methods of forming capacitors, and capacitors
US6323719B1 (en)2000-05-082001-11-27National Science CouncilPseudo bipolar junction transistor

Patent Citations (133)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4965651A (en)1973-02-011990-10-23U.S. Philips CorporationCMOS logic array layout
US4020364A (en)1974-09-281977-04-26U.S. Philips CorporationResistance read amplifier
US3931617A (en)1974-10-071976-01-06Signetics CorporationCollector-up dynamic memory cell
US4716314A (en)1974-10-091987-12-29U.S. Philips CorporationIntegrated circuit
US4051354A (en)1975-07-031977-09-27Texas Instruments IncorporatedFault-tolerant cell addressable array
US4252579A (en)1979-05-071981-02-24International Business Machines CorporationMethod for making single electrode U-MOSFET random access memory utilizing reactive ion etching and polycrystalline deposition
US4604162A (en)1983-06-131986-08-05Ncr CorporationFormation and planarization of silicon-on-insulator structures
US5208657A (en)1984-08-311993-05-04Texas Instruments IncorporatedDRAM Cell with trench capacitor and vertical channel in substrate
US4630088A (en)1984-09-111986-12-16Kabushiki Kaisha ToshibaMOS dynamic ram
US4761768A (en)1985-03-041988-08-02Lattice Semiconductor CorporationProgrammable logic device
US4766569A (en)1985-03-041988-08-23Lattice Semiconductor CorporationProgrammable logic array
US5102817A (en)1985-03-211992-04-07Texas Instruments IncorporatedVertical DRAM cell and method
US4673962A (en)1985-03-211987-06-16Texas Instruments IncorporatedVertical DRAM cell and method
US4677589A (en)1985-07-261987-06-30Advanced Micro Devices, Inc.Dynamic random access memory cell having a charge amplifier
US4663831A (en)1985-10-081987-05-12Motorola, Inc.Method of forming transistors with poly-sidewall contacts utilizing deposition of polycrystalline and insulating layers combined with selective etching and oxidation of said layers
US4701423A (en)1985-12-201987-10-20Ncr CorporationTotally self-aligned CMOS process
US4845537A (en)1986-12-011989-07-04Mitsubishi Denki Kabushiki KaishaVertical type MOS transistor and method of formation thereof
US5017504A (en)1986-12-011991-05-21Mitsubishi Denki Kabushiki KaishaVertical type MOS transistor and method of formation thereof
US5427972A (en)1987-02-131995-06-27Mitsubishi Denki Kabushiki KaishaMethod of making a sidewall contact
US4929988A (en)1987-08-251990-05-29Kabushiki Kaisha ToshibaNon-volatile semiconductor memory device and method of the manufacture thereof
US4949138A (en)1987-10-271990-08-14Texas Instruments IncorporatedSemiconductor integrated circuit device
US5001526A (en)1987-11-101991-03-19Fujitsu LimitedDram cell formed on an insulating layer having a buried semiconductor pillar structure and a manufacturing method thereof
US5072269A (en)1988-03-151991-12-10Kabushiki Kaisha ToshibaDynamic ram and method of manufacturing the same
US4906590A (en)1988-05-091990-03-06Mitsubishi Denki Kabushiki KaishaMethod of forming a trench capacitor on a semiconductor substrate
US5057896A (en)1988-05-281991-10-15Fujitsu LimitedSemiconductor device and method of producing same
US4958318A (en)1988-07-081990-09-18Eliyahou HarariSidewall capacitor DRAM cell
US5327380A (en)1988-10-311994-07-05Texas Instruments IncorporatedMethod and apparatus for inhibiting a predecoder when selecting a redundant row line
US4920065A (en)1988-10-311990-04-24International Business Machines CorporationMethod of making ultra dense dram cells
US5327380B1 (en)1988-10-311999-09-07Texas Instruments IncMethod and apparatus for inhibiting a predecoder when selecting a redundant row line
US5021355A (en)1989-05-221991-06-04International Business Machines CorporationMethod of fabricating cross-point lightly-doped drain-source trench transistor
US5028977A (en)1989-06-161991-07-02Massachusetts Institute Of TechnologyMerged bipolar and insulated gate transistors
US5316962A (en)1989-08-151994-05-31Matsushita Electric Industrial Co., Ltd.Method of producing a semiconductor device having trench capacitors and vertical switching transistors
US5181089A (en)1989-08-151993-01-19Matsushita Electric Industrial Co., Ltd.Semiconductor memory device and a method for producing the same
US5083047A (en)1989-10-261992-01-21Kabushiki Kaisha ToshibaPrecharged-type logic circuit having dummy precharge line
US5006909A (en)1989-10-301991-04-09Motorola, Inc.Dram with a vertical capacitor and transistor
US5010386A (en)1989-12-261991-04-23Texas Instruments IncorporatedInsulator separated vertical CMOS
US5410169A (en)1990-02-261995-04-25Kabushiki Kaisha ToshibaDynamic random access memory having bit lines buried in semiconductor substrate
US5216266A (en)1990-04-111993-06-01Mitsubishi Denki Kabushiki KaishaSemiconductor memory device having memory cells formed in trench and manufacturing method therefor
US5107459A (en)1990-04-201992-04-21International Business Machines CorporationStacked bit-line architecture for high density cross-point memory cell array
US5276343A (en)1990-04-211994-01-04Kabushiki Kaisha ToshibaSemiconductor memory device having a bit line constituted by a semiconductor layer
US5177576A (en)1990-05-091993-01-05Hitachi, Ltd.Dynamic random access memory having trench capacitors and vertical transistors
US5378914A (en)1990-05-311995-01-03Canon Kabushiki KaishaSemiconductor device with a particular source/drain and gate structure
US4987089A (en)1990-07-231991-01-22Micron Technology, Inc.BiCMOS process and process for forming bipolar transistors on wafers also containing FETs
US5087581A (en)1990-10-311992-02-11Texas Instruments IncorporatedMethod of forming vertical FET device with low gate to source overlap capacitance
US5223081A (en)1991-07-031993-06-29Doan Trung TMethod for roughening a silicon or polysilicon surface for a semiconductor substrate
US5110752A (en)1991-07-101992-05-05Industrial Technology Research InstituteRoughened polysilicon surface capacitor electrode plate for high denity dram
US5341331A (en)1991-07-311994-08-23Samsung Electronics, Co., Ltd.Data transmission circuit having common input/output lines
US5202278A (en)1991-09-101993-04-13Micron Technology, Inc.Method of forming a capacitor in semiconductor wafer processing
US5376575A (en)1991-09-261994-12-27Hyundai Electronics Industries, Inc.Method of making dynamic random access memory having a vertical transistor
US5504357A (en)1991-09-261996-04-02Hyundai Electronics Industries, Co., Ltd.Dynamic random access memory having a vertical transistor
US5221867A (en)1991-10-111993-06-22Intel CorporationProgrammable logic array with internally generated precharge and evaluation timing
US5177028A (en)1991-10-221993-01-05Micron Technology, Inc.Trench isolation method having a double polysilicon gate formed on mesas
US5191509A (en)1991-12-111993-03-02International Business Machines CorporationTextured polysilicon stacked trench capacitor
US5329481A (en)1991-12-161994-07-12U.S. Philips CorporationSemiconductor device having a memory cell
US5156987A (en)1991-12-181992-10-20Micron Technology, Inc.High performance thin film transistor (TFT) by solid phase epitaxial regrowth
US5926412A (en)1992-02-091999-07-20Raytheon CompanyFerroelectric memory structure
US5451538A (en)1992-03-021995-09-19Motorola, Inc.Method for forming a vertically integrated dynamic memory cell
JP2000164883A (en)1992-03-252000-06-16Semiconductor Energy Lab Co LtdManufacture of thin-film insulating gate semiconductor device
US5528062A (en)1992-06-171996-06-18International Business Machines CorporationHigh-density DRAM structure on soi
US5466625A (en)1992-06-171995-11-14International Business Machines CorporationMethod of making a high-density DRAM structure on SOI
US5416736A (en)1992-07-281995-05-16Motorola, Inc.Vertical field-effect transistor and a semiconductor memory cell having the transistor
US5320880A (en)1992-10-201994-06-14Micron Technology, Inc.Method of providing a silicon film having a roughened outer surface
US5414288A (en)1992-11-191995-05-09Motorola, Inc.Vertical transistor having an underlying gate electrode contact
US5385853A (en)1992-12-021995-01-31International Business Machines CorporationMethod of fabricating a metal oxide semiconductor heterojunction field effect transistor (MOSHFET)
US5379255A (en)1992-12-141995-01-03Texas Instruments IncorporatedThree dimensional famos memory devices and methods of fabricating
US5266514A (en)1992-12-211993-11-30Industrial Technology Research InstituteMethod for producing a roughened surface capacitor
US5422499A (en)1993-02-221995-06-06Micron Semiconductor, Inc.Sixteen megabit static random access memory (SRAM) cell
US5416350A (en)1993-03-151995-05-16Kabushiki Kaisha ToshibaSemiconductor device with vertical transistors connected in series between bit lines
US5391911A (en)1993-03-291995-02-21International Business Machines CorporationReach-through isolation silicon-on-insulator device
US5438009A (en)1993-04-021995-08-01United Microelectronics CorporationMethod of fabrication of MOSFET device with buried bit line
US5616934A (en)1993-05-121997-04-01Micron Technology, Inc.Fully planarized thin film transistor (TFT) and process to fabricate same
US5519236A (en)1993-06-281996-05-21Kabushiki Kaisha ToshibaSemiconductor memory device having surrounding gate transistor
US5644540A (en)1993-08-131997-07-01Micron Technology, Inc.Redundancy elements using thin film transistors (TFTs)
US5392245A (en)1993-08-131995-02-21Micron Technology, Inc.Redundancy elements using thin film transistors (TFTs)
US5445986A (en)1993-09-031995-08-29Nec CorporationMethod of forming a roughened surface capacitor with two etching steps
US5460316A (en)1993-09-151995-10-24At&T Global Information Solutions CompanyStencils having enhanced wear-resistance and methods of manufacturing the same
US5483094A (en)1993-09-201996-01-09Motorola, Inc.Electrically programmable read-only memory cell
US5382540A (en)1993-09-201995-01-17Motorola, Inc.Process for forming an electrically programmable read-only memory cell
US5393704A (en)1993-12-131995-02-28United Microelectronics CorporationSelf-aligned trenched contact (satc) process
US5396093A (en)1994-02-141995-03-07Industrial Technology Research InstituteVertical DRAM cross point memory cell and fabrication method
US5492853A (en)1994-03-111996-02-20Micron Semiconductor, Inc.Method of forming a contact using a trench and an insulation layer during the formation of a semiconductor device
US5574299A (en)1994-03-281996-11-12Samsung Electronics Co., Ltd.Semiconductor device having vertical conduction transistors and cylindrical cell gates
US5414287A (en)1994-04-251995-05-09United Microelectronics CorporationProcess for high density split-gate memory cell for flash or EPROM
US5460988A (en)1994-04-251995-10-24United Microelectronics CorporationProcess for high density flash EPROM cell
US5495441A (en)1994-05-181996-02-27United Microelectronics CorporationSplit-gate flash memory cell
US5780888A (en)1994-05-261998-07-14Mitsubishi Denki Kabushiki KaishaSemiconductor device with storage node
US5627390A (en)1994-05-261997-05-06Mitsubishi Denki Kabushiki KaishaSemiconductor device with columns
US5432739A (en)1994-06-171995-07-11Philips Electronics North America CorporationNon-volatile sidewall memory cell method of fabricating same
US5563083A (en)1994-06-171996-10-08Pein; Howard B.Method of fabricating non-volatile sidewall memory cell
US5483487A (en)1994-07-051996-01-09Taiwan Semiconductor Manufacturing Comp. Ltd.Electrically programmable memory device with improved dual floating gates
US5440158A (en)1994-07-051995-08-08Taiwan Semiconductor Manufacturing Company Ltd.Electrically programmable memory device with improved dual floating gates
US5834814A (en)1994-08-191998-11-10Kabushiki Kaisha ToshibaSemiconductor integrated circuit
US5705415A (en)1994-10-041998-01-06Motorola, Inc.Process for forming an electrically programmable read-only memory cell
US5593912A (en)1994-10-061997-01-14International Business Machines CorporationSOI trench DRAM cell for 256 MB DRAM and beyond
US5508542A (en)1994-10-281996-04-16International Business Machines CorporationPorous silicon trench and capacitor structures
US5581101A (en)1995-01-031996-12-03International Business Machines CorporationFET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
US5646900A (en)1995-01-121997-07-08Mitsubishi Denki Kabushiki KaishaSense amplifier including MOS transistors having threshold voltages controlled dynamically in a semiconductor memory device
US5753947A (en)1995-01-201998-05-19Micron Technology, Inc.Very high-density DRAM cell structure and method for fabricating it
US5497017A (en)1995-01-261996-03-05Micron Technology, Inc.Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
US5917342A (en)1995-03-311999-06-29Nec CorporationBiMOS integrated circuit
US5508219A (en)1995-06-051996-04-16International Business Machines CorporationSOI DRAM with field-shield isolation and body contact
US5576238A (en)1995-06-151996-11-19United Microelectronics CorporationProcess for fabricating static random access memory having stacked transistors
US5920088A (en)1995-06-161999-07-06Interuniversitair Micro-Electronica Centrum (Imec Vzw)Vertical MISFET devices
US5627097A (en)1995-07-031997-05-06Motorola, Inc.Method for making CMOS device having reduced parasitic capacitance
US6221788B1 (en)1995-08-012001-04-24Matsushita Electronics CorporationSemiconductor and a method for manufacturing an oxide film on the surface of a semiconductor substrate
US5879971A (en)1995-09-281999-03-09Motorola Inc.Trench random access memory cell and method of formation
US5640342A (en)1995-11-201997-06-17Micron Technology, Inc.Structure for cross coupled thin film transistors and static random access memory cell
US5801413A (en)1995-12-191998-09-01Micron Technology, Inc.Container-shaped bottom electrode for integrated circuit capacitor with partially rugged surface
US5637898A (en)1995-12-221997-06-10North Carolina State UniversityVertical field effect transistors having improved breakdown voltage capability and low on-state resistance
US5827765A (en)1996-02-221998-10-27Siemens AktiengesellschaftBuried-strap formation in a dram trench capacitor
US5760434A (en)1996-05-071998-06-02Micron Technology, Inc.Increased interior volume for integrated memory cell
US5818084A (en)1996-05-151998-10-06Siliconix IncorporatedPseudo-Schottky diode
US5943267A (en)1996-05-161999-08-24Altera CorporationHigh-density nonvolatile memory cell
US5719409A (en)1996-06-061998-02-17Cree Research, Inc.Silicon carbide metal-insulator semiconductor field effect transistor
US5674769A (en)1996-06-141997-10-07Siemens AktiengesellschaftProcess for forming deep trench DRAMs with sub-groundrule gates
US5691230A (en)1996-09-041997-11-25Micron Technology, Inc.Technique for producing small islands of silicon on insulator
US5874760A (en)1997-01-221999-02-23International Business Machines Corporation4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation
US5877061A (en)1997-02-251999-03-02International Business Machines CorporationMethods for roughening and volume expansion of trench sidewalls to form high capacitance trench cell for high density dram applications
US5864158A (en)1997-04-041999-01-26Advanced Micro Devices, Inc.Trench-gated vertical CMOS device
US5981995A (en)1997-06-131999-11-09Advanced Micro Devices, Inc.Static random access memory cell having buried sidewall transistors, buried bit lines, and buried vdd and vss nodes
US5909618A (en)1997-07-081999-06-01Micron Technology, Inc.Method of making memory cell with vertical transistor and buried word and body lines
US5936274A (en)1997-07-081999-08-10Micron Technology, Inc.High density flash memory
US5973356A (en)1997-07-081999-10-26Micron Technology, Inc.Ultra high density flash memory
US6143636A (en)1997-07-082000-11-07Micron Technology, Inc.High density flash memory
US6150687A (en)*1997-07-082000-11-21Micron Technology, Inc.Memory cell having a vertical transistor with buried source/drain and dual gates
US5973352A (en)1997-08-201999-10-26Micron Technology, Inc.Ultra high density flash memory having vertically stacked devices
US5909400A (en)1997-08-221999-06-01International Business Machines CorporationThree device BICMOS gain cell
US6172391B1 (en)1997-08-272001-01-09Siemens AktiengesellschaftDRAM cell arrangement and method for the manufacture thereof
US5907170A (en)1997-10-061999-05-25Micron Technology, Inc.Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor
US5914511A (en)1997-10-061999-06-22Micron Technology, Inc.Circuit and method for a folded bit line memory using trench plate capacitor cells with body bias contacts
US6255708B1 (en)1997-10-102001-07-03Rengarajan SudharsananSemiconductor P-I-N detector
US5963469A (en)1998-02-241999-10-05Micron Technology, Inc.Vertical bipolar read access for low voltage memory cell
US6040218A (en)1998-06-192000-03-21International Business Machines CorporationTwo square NVRAM cell

Non-Patent Citations (76)

* Cited by examiner, † Cited by third party
Title
Adler, E., et al., "The Evolution of IBM CMOS DRAM Technology", IBM J. Res. Develop., 39(1/2), 167-188, (1995).
Asai, S., et al., "Technology Challenges for Integration Near and Below 0.1 micrometer", Proceedings of the IEEE, 85(4), Special Issue on Nanometer-Scale Science & Technology, 505-520, (Apr. 1997).
Banerjee, S.K., et al., "Characterization of Trench Transistors for 3-D Memories", 1986 Symposium on VLSI Technology, Digest of Technical Papers, San Diego, CA, 79-80 (May 1986).
Blalock, T.N., et al., "A High-Speed Sensing Scheme for 1T Dynamic RAM's Utilizing the Clamped Bit-Line Sense Amplifier", IEEE Journal of Solid-State Circuits, 27(4), pp. 618-624, (Apr. 1992).
Bomchil, G., et al., "Porous Silicon: The Material and its Applications in Silicon-On-Insulator Technologies", Applied Surface Science, 41/42, 604-613, (1989).
Burnett, D., et al., "Implications of Fundamental Threshold Voltage Variations for High-Density SRAM and Logic Circuits", 1994 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 15-16, (Jun. 1994).
Burnett, D., et al., "Statistical Threshold-Voltage Variation and Its Impact on Supply-Voltage Scaling", Proceedings SPIE: Microelectronic Device and Multilevel Interconnection Technology, 2636, 83-90 (1995).
Chen, M.J., et al., "Back-Gate Forward Bias Method for Low-Voltage CMOS Digital Cicuits", IEEE Transactions on Electron Devices, 43, 904-909, (Jun. 1996).
Chen, M.J., et al., "Optimizing the Match in Weakly Inverted MOSFET's by Gated Lateral Bipolar Action", IEEE Transactions on Electron Devices, 43, 766-773, (May 1996).
Chung, I.Y., et al., "A New SOI Inverter for Low Power Applications", Proceedings of the 1996 IEEE International SOI Conference, Sanibel Island, FL, 20-21, (1996).
De, V.K., et al., "Random MOSFET Parameter Fluctuation Limits to Gigascale Integration (GSI)", 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 198-199, (Jun. 11-13, 1996).
Denton, JP., et al., "Fully Depleted Dual-Gated Thin-Film SOI P-MOSFET's Fabricated in SOI Islands with an Isolated Buried Polysilicon Backgate", IEEE Electron Device Letters, 17(11), 509-511, (Nov. 1996).
Fong, Y., et al., "Oxides Grown on Textured Single-Crystal Silicon-Dependence on Process and Application in EEPROMs", IEEE Transactions on Electron Devices, 37(3), pp. 583-590, (Mar. 1990).
Fuse, T., et al., "A 0.5V 200MHz 1-Stage 32b ALU Using a Body Bias Controlled SOI Pass-Gate Logic", 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 286-287, (1997).
Gong, S., et al., "Techniques for Reducing Switching Noise in High Speed Digital Systems", Proceedings of the 8th Annual IEEE International ASIC Conference and Exhibit, Austin, TX, 21-24, (1995).
Hao, M.Y., et al., "Electrical Characteristics of Oxynitrides Grown on Textured Single-Crystal Silicon", Appl. Phys. Lett., 60, 445-447, (Jan. 1992).
Harada, M., et al., "Suppression of Threshold Voltage Variation in MTCMOS/SIMOX Circuit Operating Below 0.5 V", 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 96-97, (Jun. 11-13, 1996).
Hisamoto, D., et al., "A New Stacked Cell Structure for Giga-Bit DRAMs using Vertical Ultra-Thin SOI (DELTA) MOSFETs", 1991 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., 959-961, (Dec. 8-11, 1991).
Hodges, D.A., et al., "MOS Decoders", In: Analysis and Design of Digital Integrated Circuits, 2nd Edition, Section: 9.1.3, 354-357, (1988).
Holman, W.T., et al., "A Compact Low Noise Operational Amplifier for a 1.2 Micrometer Digital CMOS Technololgy", IEEE Journal of Solid-State Circuits, 30, 710-714, (Jun. 1995).
Hu, G., et al., "Will Flash Memory Replace Hard Disk Drive?", 1994 IEEE International Electron Device Meeting, Panel Discussion, Session 24, Outline, 2 pages, (Dec. 1994).
Huang, W.L., et al., "TFSOI Complementary BiCMOS Technology for Low Power Applications", IEEE Transactions on Electron Devices, 42, 506-512, (Mar. 1995).
Jun, Y.K., et al., "The Fabrication and Electrical Properties of Modulated Stacked Capacitor for Advanced DRAM Applications", IEEE Electron Device Letters, 13, 430-432, (Aug. 1992).
Jung, T.S., et al., "A 117-mm2 3.3-V Only 128-Mb Multilevel NAND Flash Memory for Mass Storage Applications",IEEE Journal of Solid-State Circuits, 31, 1575-1583, (Nov. 1996).
Kang, H.K., et al., "Highly Manufacturable Process Technology for Reliable 256 Mbit and 1Gbit DRAMs", IEEE International Electron Devices Meeting, Technical Digest, San Francisco, CA, 635-638, (Dec. 11-14, 1994).
Kim, Y.S., et al., "A Study on Pyrolysis DMEAA for Selective Deposition of Aluminum", In: Advanced Metallization and Interconnect Systems for ULSI Applications in 1995, R.C. Ellwanger, et al., (eds.), Materials Research Society, Pittsburgh, PA, 675-680, (1996).
Kishimoto, T., et al., "Well Structure by High-Energy Boron Implantation for Soft-Error Reduction in Dynamic Random Access Memories (DRAMs)" Japanese Journal of Applied Physics, 34, 6899-6902, (Dec. 1995).
Kohyama, Y., et al., "Buried Bit-Line Cell for 64MB DRAMs", 1990 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 17-18, (Jun. 4-7, 1990).
Koshida, N., et al., "Efficient Visible Photoluminescence from Porous Silicon", Japanese Journal of Applied Physics, 30, L1221-L1223, (Jul. 1991).
Lantz, II, L., "Soft Errors Induced By Alpha Particles", IEEE Transactions on Reliability, 45, 174-179, (Jun. 1996).
Lehmann, et al., "A Novel Capacitor Technology Based on Porous Silicon", Thin Solid Films 276, Elsevier Science, 138-42, (1996).
Lehmann, V., "The Physics of Macropore Formation in Low Doped n-Type Silicon", Journal of the Electrochemical Society, 140(10), 2836-2843, (Oct. 1993).
Lu, N., et al., "The SPT Cell-A New Substrate-Plate Trench Cell for DRAMs", 1985 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., 771-772, (Dec. 1-4, 1985).
MacSweeney, D., et al., "Modelling of Lateral Bipolar Devices in a CMOS Process", IEEE Bipolar Circuits and Technology Meeting, Minneapolis, MN, 27-30, (Sep. 1996).
Maeda, S., et al., "A Vertical Phi-Shape Transistor (VPhiT) Cell for 1 Gbit DRAM and Beyond", 1994 Symposium of VLSI Technology, Digest of Technical Papers, Honolulu, HI, 133-134, (Jun. 7-9, 1994).
Maeda, S., et al., "Impact of a Vertical Phi-Shape Transistor (VPhiT) Cell for 1 Gbit DRAM and Beyond", IEEE Transactions on Electron Devices, 42, 2117-2123, (Dec. 1995).
Malaviya, S., IBM TBD, 15, p. 42, (Jul. 1972).
Nitayama, A., et al., "High Speed and Compact CMOS Circuits with Multipillar Surrounding Gate Transistors", IEEE Transactions on Electron Devices, 36, 2605-2606, (Nov. 1989).
Ohno, Y., et al., "Estimation of the Charge Collection for the Soft-Error Immunity by the 3D-Device Simulation and the Quantitative Investigation", Simulation of Semiconductor Devices and Processes, 6, 302-305, (Sep. 1995).
Oowaki, Y., et al., "New alpha-Particle Induced Soft Error Mechanism in a Three Dimensional Capacitor Cell", IEICE Transactions on Electronics, 78-C, 845-851, (Jul. 1995).
Oshida, S., et al., "Minority Carrier Collection in 256 M-bit DRAM Cell on Incidence of Alpha-Particle Analyzed by Three-Dimensional Device Simulation", IEICE Transactions on Electronics, 76-C, 1604-1610, (Nov. 1993).
Ozaki, T., et al., "A Surrounding Isolation-Merged Plate Electrode (SIMPLE) Cell with Checkered Layout for 256Mbit DRAMs and Beyond", 1991 IEEE International Electron Devices Meeting, Washington, D.C., 469-472, (Dec. 8-11, 1991).
Parke, S.A., et al., "A High-Performance Lateral Transistor Fabricated on SIMOX", IEEE Electron Device Letters, 14, 33-35, (Jan. 1993).
Pein, H., et al., "A 3-D Sidewall Flash EPROM Cell and Memory Array", IEEE Transactions on Electron Devices, 40, 2126-2127, (Nov. 1993).
Pein, H., et al., "Performance of the 3-D PENCIL Flash EPROM Cell and Memory Array", IEEE Transactions on Electron Devices, 42, 1982-1991, (Nov., 1995).
Pein, H.B., et al., "Performance of the 3-D Sidewall Flash EPROM Cell", IEEE International Electron Devices Meeting, Technical Digest, 11-14, (1993).
Rao, K.V., et al., "Trench Capacitor Design Issues in VLSI DRAM Cells", 1986 IEEE International Electron Devices Meeting, Technical Digest, Los Angeles, CA, 140-143, (Dec. 7-10, 1986).
Richardson, W.F., et al., "A Trench Transistor Cross-Point DRAM Cell", IEEE International Electron Devices Meeting, Washington, D.C., 714-717, (Dec. 1-4, 1985).
Sagara, K., et al., "A 0.72 micro-meter2 Recessed STC (RSTC) Technology for 256 Mbit DRAMs using Quarter-Micron Phase-Shift Lithography", 1992 Symposium on VLSI Technology, Digest of Technical Papers, Seattle, WA, 10-11, (Jun. 2-4, 1992).
Saito, M., et al., "Technique for Controlling Effective Vth in Multi-Gbit DRAM Sense Amplifier", 1996 Symposium on VLSI Circuits, Digest of Technical Papers, Honolulu, HI, 106-107, (Jun. 13-15, 1996).
Shah, A.H., et al ., "A 4MB DRAM with Cross-Point Trench Transistor Cell", 1986 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 268-269, (Feb. 21, 1986).
Shah, A.H., et al., "A 4-Mbit DRAM with Trench-Transistor Cell", IEEE Journal of Solid-State Circuits, SC-21, 618-625, (Oct. 1986).
Sherony, M.J., et al., "Reduction of Threshold Voltage Sensitivity in SOI MOSFET's", IEEE Electron Device Letters, 16, 100-102, (Mar. 1995).
Shimomura, K., et al., "A 1V 46ns 16Mb SOI-DRAM with Body Control Technique", 1997 IEEE International Solid-State Circuits Conference, Digest of Technical Papers, 68-69, (Feb. 6, 1997).
Stellwag, T.B., et al., "A Vertically-Integrated GaAs Bipolar DRAM Cell", IEEE Transactions on Electron Devices, 38, 2704-2705, (Dec. 1991).
Suma, K., et al., "An SOI-DRAM with Wide Operating Volgate Range by CMOS/SIMOX Technology", IEEE Journal of Solid-State Circuits, 29(11), pp. 1323-1329, (Nov. 1994).
Sunouchi, K., et al., "A Surrounding Gate Transistor (SGT) Cell for 64/256Mbit DRAMs", 1989 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., 23-26, (Dec. 3-6, 1989).
Sunouchi, K., et al., "Process Integration for 64M DRAM Using an Asymmetrical Stacked Trench Capacitor (AST) Cell", 1990 IEEE International Electron Devices Meeting, San Francisco, CA, 647-650, (Dec. 9-12, 1990).
Takai, M., et al., "Direct Measurement and Improvement of Local Soft Error Susceptibility in Dynamic Random Access Memories", Nuclear Instruments & Methods in Physics Research, B-99, 562-565, (Nov. 7-10, 1994).
Takato, H., et al., "High Performance CMOS Surrounding Gate Transistor (SGT) for Ultra High Density LSIs", IEEE International Electron Devices Meeting, Technical Digest, 222-225, (1988).
Takato, H., et al., "Impact of Surrounding Gate Transistor (SGT) for Ultra-High Density LSI's", IEEE Transactions on Electron Devices, 38, 573-578, (Mar. 1991).
Tanabe, N., et al., "A Ferroelectric Capacitor Over Bit-Line (F-COB) Cell for High Density Nonvolatile Ferroelectric Memories", 1995 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, 123-124, (Jun. 6-8, 1995).
Temmler, D., "Multilayer Vertical Stacked Capacitors (MVSTC) for 64Mbit and 256Mbit DRAMs", 1991 Symposium on VLSI Technology, Digest of Technical Papers, Oiso, 13-14, (May 28-30, 1991).
Terauchi, M., et al., "A Surrounding Gate Transistor (SGT) Gain Cell for Ultra High Density DRAMs" 1993 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, 21-22, (1993).
Tsui, P.G., et al., "A Versatile Half-Micron Complementary BiCMOS Technology for Microprocessor-Based Smart Power Applications", IEEE Transactions on Electron Devices, 42, 564-570, (Mar. 1995).
Verdonckt-Vanderbroek, S., et al., "High-Gain Lateral Bipolar Action in a MOSFET Structure", IEEE Transactions on Electron Devices 38, 2487-2496, (Nov. 1991).
Wang, P.W., et al., "Excellent Emission Characteristics of Tunneling Oxides Formed Using Ultrathin Silicon Films for Flash Memory Devices", Japanese Journal of Applied Physics, 35, 3369-3373, (Jun. 1996).
Watanabe, H., et al., "A New Cylindrical Capacitor Using Hemispherical Grained Si (HSG-Si) for 256Mb DRAMs", IEEE International Electron Devices Meeting, Technical Digest, San Francisco, CA, 259-262, (Dec. 13-16, 1992).
Watanabe, H., et al., "A Novel Stacked Capacitor with Porous-Si Electrodes for High Density DRAMs", 1993 Symposium on VLSI Technology, Digest of Technical Papers, Kyoto, Japan, 17-18, (1993).
Watanabe, H., et al., "An Advanced Fabrication Technology of Hemispherical Grained (HSG) Poly-Si for High Capacitance Storage Electrodes", Extended Abstracts of the 1991 International Conference on Solid State Devices and Materials, Yokohama, Japan, 478-480, (1991).
Watanabe, H., et al., "Device Application and Structure Observation for Hemospherical-Grained Si", J. Appl. Phys., 71, 3538-3543, (Apr. 1992).
Watanabe, H., et al., "Hemispherical Grained Silicon (HSG-Si) Formation on In-Situ Phosphorous Doped Amorphous-Si Using the Seeding Method", Extended Abstracts of the 1992 International Conference on Solid State Devices and Materials, Tsukuba, Japan, 422-424, (1992).
Watanabe, S., et al., "A Novel Circuit Technology with Surrounding Gate Transistors (SGT's) for Ultra High Density DRAM's", IEEE Journal of Solid-State Circuits, 30, 960-971, (Sep. 1995).
Yamada, T., et al., "A New Cell Structure with a Spread Source/Drain (SSD) MOSFET and a Cylindrical Capacitor for 64-Mb DRAM's" IEEE Transaction on Electron Devices, 38, 2481-2486, (Nov. 1991).
Yamada, T., et al., "Spread Source/Drain (SSD) MOSFET Using Selective Silicon Growth for 64Mbit DRAMs", 1989 IEEE International Electron Devices Meeting, Technical Digest, Washington, D.C., 35-38, (Dec. 3-6, 1989).
Yoshikawa, K., "Impact of Cell Threshold Voltage Distribution in the Array of Flash Memories on Scaled and Multilevel Flash Cell Design", 1996 Symposium on VLSI Technology, Digest of Technical Papers, Honolulu, HI, 240-241, (Jun. 11-13, 1996).

Cited By (215)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6597203B2 (en)2001-03-142003-07-22Micron Technology, Inc.CMOS gate array with vertical transistors
US6781907B2 (en)2002-06-062004-08-24Micron Technology, Inc.Temperature compensated T-RAM memory device and method
US20030227790A1 (en)*2002-06-062003-12-11Marr Ken W.Temperature compensated T-RAM memory device and method
US6934209B2 (en)2002-06-062005-08-23Micron Technology, Inc.Temperature compensated T-RAM memory device and method
US7034351B2 (en)2002-06-212006-04-25Micron Technology, Inc.Memory cell and method for forming the same
US20060063330A1 (en)*2002-06-212006-03-23Brown Kris KMemory cell and method for forming the same
US6756625B2 (en)2002-06-212004-06-29Micron Technology, Inc.Memory cell and method for forming the same
US7045844B2 (en)2002-06-212006-05-16Micron Technology, Inc.Memory cell and method for forming the same
US7276418B2 (en)2002-06-212007-10-02Micron Technology, Inc.Memory cell and method for forming the same
US6797573B2 (en)2002-06-212004-09-28Micron Technology, Inc.Memory cell and method for forming the same
US20080099816A1 (en)*2002-06-212008-05-01Brown Kris KMemory cell and method for forming the same
US20060068548A1 (en)*2002-06-212006-03-30Brown Kris KMemory cell and method for forming the same
US20040219742A1 (en)*2002-06-212004-11-04Brown Kris K.Memory cell and method for forming the same
US20040052139A1 (en)*2002-06-212004-03-18Brown Kris K.Memory cell and method for forming the same
US7518174B2 (en)2002-06-212009-04-14Micron Technology, Inc.Memory cell and method for forming the same
US6921935B2 (en)2002-06-212005-07-26Micron Technology, Inc.Memory cell and method for forming the same
US7176513B2 (en)2002-06-212007-02-13Micron Technology, Inc.Memory cell and method for forming the same
US7324367B2 (en)2002-06-212008-01-29Micron Technology, Inc.Memory cell and method for forming the same
US20050082594A1 (en)*2002-06-212005-04-21Brown Kris K.Memory cell and method for forming the same
US20050063233A1 (en)*2002-06-212005-03-24Brown Kris K.Memory cell and method for forming the same
US20050082588A1 (en)*2002-06-212005-04-21Brown Kris K.Memory cell and method for forming the same
US20040233705A1 (en)*2002-08-292004-11-25Voshell Thomas W.Random access memory device utilizing a vertically oriented select transistor
US7777264B2 (en)2002-08-292010-08-17Micron Technology, Inc.Random access memory device utilizing a vertically oriented select transistor
US20050041457A1 (en)*2002-08-292005-02-24Micron Technology, Inc.Single transistor vertical memory gain cell
US7564087B2 (en)2002-08-292009-07-21Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US20050094453A1 (en)*2002-08-292005-05-05Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US7149109B2 (en)2002-08-292006-12-12Micron Technology, Inc.Single transistor vertical memory gain cell
US6838723B2 (en)2002-08-292005-01-04Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US6940761B2 (en)2002-08-292005-09-06Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US6943083B2 (en)2002-08-292005-09-13Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US6951789B2 (en)2002-08-292005-10-04Micron Technology, Inc.Method of fabricating a random access memory device utilizing a vertically oriented select transistor
US7323380B2 (en)2002-08-292008-01-29Micron Technology, Inc.Single transistor vertical memory gain cell
US20050265069A1 (en)*2002-08-292005-12-01Micron Technology, Inc.Merged mos-bipolar capacitor memory cell
US20040042256A1 (en)*2002-08-292004-03-04Micron Technology, Inc.Single transistor vertical memory gain cell
US20100276742A1 (en)*2002-08-292010-11-04Voshell Thomas WRandom access memory device utilizing a vertically oriented select transistor
US7608876B2 (en)2002-08-292009-10-27Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US20050068828A1 (en)*2002-08-292005-03-31Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US8431980B2 (en)2002-08-292013-04-30Micron Technology, Inc.Random access memory device utilizing a vertically oriented select transistor
US7199417B2 (en)2002-08-292007-04-03Micron Technology, Inc.Merged MOS-bipolar capacitor memory cell
US7205598B2 (en)2002-08-292007-04-17Micron Technology, Inc.Random access memory device utilizing a vertically oriented select transistor
US7224024B2 (en)2002-08-292007-05-29Micron Technology, Inc.Single transistor vertical memory gain cell
US20040041189A1 (en)*2002-08-292004-03-04Voshell Thomas W.Random access memory device utilizing a vertically oriented select transistor
US20040041236A1 (en)*2002-08-292004-03-04Micron Technology, Inc.Merged mos-bipolar capacitor memory cell
US20070145464A1 (en)*2002-08-292007-06-28Voshell Thomas WRandom access memory device utilizing a vertically oriented select transistor
US6804142B2 (en)2002-11-122004-10-12Micron Technology, Inc.6F2 3-transistor DRAM gain cell
US20060028859A1 (en)*2002-11-122006-02-09Micron Technology, Inc.6F2 3-Transistor DRAM gain cell
US6975531B2 (en)2002-11-122005-12-13Micron Technology, Inc.6F2 3-transistor DRAM gain cell
US20050012130A1 (en)*2002-11-122005-01-20Micron Technology, Inc.6F2 3-Transistor DRAM gain cell
US7151690B2 (en)2002-11-122006-12-19Micron Technology, Inc.6F2 3-Transistor DRAM gain cell
US20040140509A1 (en)*2003-01-222004-07-22Ching-Yu ChangNon-volatile memory and fabricating method thereof
US6806535B2 (en)*2003-01-222004-10-19Macronix International Co., Ltd.Non-volatile memory and fabricating method thereof
US7241658B2 (en)2003-03-042007-07-10Micron Technology, Inc.Vertical gain cell
US20070158722A1 (en)*2003-03-042007-07-12Micron Technology, Inc.Vertical gain cell
US7528440B2 (en)2003-03-042009-05-05Micron Technology, Inc.Vertical gain cell
US20050024936A1 (en)*2003-03-042005-02-03Micron Technology, Inc.Vertical gain cell
US20050032313A1 (en)*2003-03-042005-02-10Micron Technology, Inc.Vertical gain cell
US6956256B2 (en)2003-03-042005-10-18Micron Technology Inc.Vertical gain cell
US7298638B2 (en)2003-03-042007-11-20Micron Technology, Inc.Operating an electronic device having a vertical gain cell that includes vertical MOS transistors
US20050073005A1 (en)*2003-10-072005-04-07International Business Machines CorporationHigh-density split-gate finfet
US6888199B2 (en)2003-10-072005-05-03International Business Machines CorporationHigh-density split-gate FinFET
US8274106B2 (en)2004-07-202012-09-25Micron Technology, Inc.DRAM layout with vertical FETs and method of formation
US8482047B2 (en)2004-07-202013-07-09Micron Technology, Inc.DRAM layout with vertical FETS and method of formation
US7247570B2 (en)2004-08-192007-07-24Micron Technology, Inc.Silicon pillars for vertical transistors
US20060038259A1 (en)*2004-08-192006-02-23Patrick ThomasSilicon pillars for vertical transistors
US8847298B2 (en)2004-08-192014-09-30Micron Technology, Inc.Pillars for vertical transistors
US20060263973A1 (en)*2004-08-192006-11-23Patrick ThomasSilicon pillars for vertical transistors
US7413480B2 (en)2004-08-192008-08-19Micron Technology, Inc.Silicon pillars for vertical transistors
US8330246B2 (en)2004-08-192012-12-11Micron Technology, Inc.Intermediate structures for forming circuits
US8026579B2 (en)2004-08-192011-09-27Micron Technology, Inc.Silicon pillars for vertical transistors
US20100224967A1 (en)*2004-08-192010-09-09Micron Technology, Inc.Silicon pillars for vertical transistors
US7723756B2 (en)2004-08-192010-05-25Micron Technology, Inc.Silicon pillars for vertical transistors
US20070164319A1 (en)*2004-08-192007-07-19Micron Technology, Inc.Silicon pillars for vertical transistors
US8629533B2 (en)2004-08-192014-01-14Micron Technology, Inc.Pillars for vertical transistors
US7285812B2 (en)2004-09-022007-10-23Micron Technology, Inc.Vertical transistors
US20060043450A1 (en)*2004-09-022006-03-02Tang Sanh DVertical transistors
US7521322B2 (en)2004-09-022009-04-21Micron Technology, Inc.Vertical transistors
US20060113587A1 (en)*2004-11-302006-06-01Andreas ThiesTransistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
US20080150012A1 (en)*2004-11-302008-06-26Infineon Technologies AgTransistor Array for Semiconductor Memory Devices and Method for Fabricating a Vertical Channel Transistor Array
US7355230B2 (en)2004-11-302008-04-08Infineon Technologies AgTransistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
US7781773B2 (en)2004-11-302010-08-24Qimonda AgTransistor array for semiconductor memory devices and method for fabricating a vertical channel transistor array
US20060211194A1 (en)*2004-12-132006-09-21Haller Gordon AMethods of reducing floating body effect
US7368344B2 (en)2004-12-132008-05-06Micron Technology, Inc.Methods of reducing floating body effect
US20070128809A1 (en)*2004-12-132007-06-07Micron Technology, Inc.Methods of reducing floating body effect
US7183164B2 (en)2004-12-132007-02-27Micron Technology, Inc.Methods of reducing floating body effect
US7626223B2 (en)2004-12-132009-12-01Micron Technology, Inc.Memory structure for reduced floating body effect
US20070138528A1 (en)*2004-12-132007-06-21Micron Technology, Inc.Memory structure for reduced floating body effect
US7368365B2 (en)2005-01-142008-05-06Wells David HMemory array buried digit line
US20060258119A1 (en)*2005-01-142006-11-16Wells David HMemory array buried digit line
US7601608B2 (en)2005-01-142009-10-13Micron Technologies, Inc.Memory array buried digit line
US8102008B2 (en)2005-01-142012-01-24Micron Technology, Inc.Integrated circuit with buried digit line
US20100276741A1 (en)*2005-01-142010-11-04Micron Technology, Inc.Integrated circuit with buried digit line
US7229895B2 (en)2005-01-142007-06-12Micron Technology, IncMemory array buried digit line
US20060160323A1 (en)*2005-01-142006-07-20Wells David HMemory array buried digit line
US20060258118A1 (en)*2005-01-142006-11-16Wells David HMemory array buried digit line
US7768073B2 (en)2005-01-142010-08-03Micron Technology, Inc.Memory array buried digit line
US20090173982A1 (en)*2005-05-052009-07-09Micron Technology, Inc.Method for forming memory cell and device
US20070173014A1 (en)*2005-05-052007-07-26Manning H MMethod for forming memory cell and device
US7786522B2 (en)2005-05-052010-08-31Micron Technology, Inc.Method for forming memory cell and device
US8207564B2 (en)2005-05-052012-06-26Micron Technology, Inc.Memory cell, pair of memory cells, and memory array
US20100290268A1 (en)*2005-05-052010-11-18Micron Technology, Inc.Memory cell, pair of memory cells, and memory array
US7504298B2 (en)2005-05-052009-03-17Micron Technology, Inc.Method for forming memory cell and device
US7372092B2 (en)2005-05-052008-05-13Micron Technology, Inc.Memory cell, device, and system
US20060249776A1 (en)*2005-05-052006-11-09Manning H MMemory cell, device, system and method for forming same
US8637362B2 (en)2005-05-132014-01-28Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US7120046B1 (en)2005-05-132006-10-10Micron Technology, Inc.Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US8101992B2 (en)2005-05-132012-01-24Micron Technology, Inc.Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US20110165744A1 (en)*2005-05-132011-07-07Micron TechnologyMemory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US8227305B2 (en)2005-05-132012-07-24Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US7371627B1 (en)2005-05-132008-05-13Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US8350320B2 (en)2005-05-132013-01-08Micron Technology, Inc.Memory array and memory device
US8609523B2 (en)2005-05-132013-12-17Micron Technology, Inc.Method of making a memory array with surrounding gate access transistors and capacitors with global staggered local bit lines
US7510954B1 (en)2005-05-132009-03-31Micron Technology, Inc.Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US7525141B1 (en)2005-05-132009-04-28Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US20110121383A1 (en)*2005-05-132011-05-26Micron Technology, Inc.Memory array with surrounding gate access transistors and capacitors with global and staggered local bit lines
US7910972B2 (en)2005-05-132011-03-22Micron Technology, Inc.Memory array with ultra-thin etched pillar surround gate access transistors and buried data/bit lines
US20070018206A1 (en)*2005-07-062007-01-25Leonard ForbesSurround gate access transistors with grown ultra-thin bodies
US7888721B2 (en)2005-07-062011-02-15Micron Technology, Inc.Surround gate access transistors with grown ultra-thin bodies
US7626219B2 (en)2005-07-062009-12-01Micron Technology, Inc.Surround gate access transistors with grown ultra-thin bodies
US7601595B2 (en)2005-07-062009-10-13Micron Technology, Inc.Surround gate access transistors with grown ultra-thin bodies
US20070066019A1 (en)*2005-07-062007-03-22Leonard ForbesSurround gate access transistors with grown ultra-thin bodies
US8115243B2 (en)2005-07-062012-02-14Micron Technology, Inc.Surround gate access transistors with grown ultra-thin bodies
US20070114576A1 (en)*2005-07-062007-05-24Leonard ForbesSurround gate access transistors with grown ultra-thin bodies
US20110140184A1 (en)*2005-07-062011-06-16Leonard ForbesSurround gate access transistors with grown ultra-thin bodies
US20070018223A1 (en)*2005-07-252007-01-25Micron Technology Inc.Dram including a vertical surround gate transistor
US20070090363A1 (en)*2005-07-252007-04-26Abbott Todd RDram including a vertical surround gate transistor
US7566620B2 (en)2005-07-252009-07-28Micron Technology, Inc.DRAM including a vertical surround gate transistor
US7768051B2 (en)2005-07-252010-08-03Micron Technology, Inc.DRAM including a vertical surround gate transistor
US7745873B2 (en)2005-08-292010-06-29Micron Technology, Inc.Ultra-thin body vertical tunneling transistor
US20090014783A1 (en)*2005-08-292009-01-15Leonard ForbesUltra-thin body vertical tunneling transistor
US20070045721A1 (en)*2005-08-292007-03-01Micron Technology, Inc.Ultra-thin body vertical tunneling transistor
US7439576B2 (en)2005-08-292008-10-21Micron Technology, Inc.Ultra-thin body vertical tunneling transistor
US8546215B2 (en)2005-08-312013-10-01Micron Technology, Inc.Methods of fabricating a memory device
US8222105B2 (en)2005-08-312012-07-17Micron Technology, Inc.Methods of fabricating a memory device
US20100144107A1 (en)*2005-08-312010-06-10Micron Technology, Inc.Semiconductor Memory Device
US7696567B2 (en)2005-08-312010-04-13Micron Technology, IncSemiconductor memory device
US8481385B2 (en)2005-08-312013-07-09Micron Technology, Inc.Methods of fabricating a memory device
US20070051997A1 (en)*2005-08-312007-03-08Gordon HallerSemiconductor memory device
US7687342B2 (en)2005-09-012010-03-30Micron Technology, Inc.Method of manufacturing a memory device
US7416943B2 (en)2005-09-012008-08-26Micron Technology, Inc.Peripheral gate stacks and recessed array gates
US7557032B2 (en)2005-09-012009-07-07Micron Technology, Inc.Silicided recessed silicon
US7977236B2 (en)2005-09-012011-07-12Micron Technology, Inc.Method of forming a transistor gate of a recessed access device, method of forming a recessed transistor gate and a non-recessed transistor gate, and method of fabricating an integrated circuit
US20110183507A1 (en)*2005-09-012011-07-28Micron Technology Inc.Peripheral Gate Stacks and Recessed Array Gates
US20070045712A1 (en)*2005-09-012007-03-01Haller Gordon AMemory cell layout and process flow
US7939409B2 (en)2005-09-012011-05-10Micron Technology, Inc.Peripheral gate stacks and recessed array gates
US8252646B2 (en)2005-09-012012-08-28Micron Technology, Inc.Peripheral gate stacks and recessed array gates
US7935999B2 (en)2005-09-012011-05-03Micron Technology, Inc.Memory device
US20070048930A1 (en)*2005-09-012007-03-01Figura Thomas APeripheral gate stacks and recessed array gates
US20100148249A1 (en)*2005-09-012010-06-17Micron Technology, Inc.Method Of Manufacturing A Memory Device
US9076888B2 (en)2005-09-012015-07-07Micron Technology, Inc.Silicided recessed silicon
US20080299753A1 (en)*2005-09-012008-12-04Figura Thomas APeripheral Gate Stacks and Recessed Array Gates
US20070228433A1 (en)*2006-04-042007-10-04Micron Technology, Inc.DRAM with nanofin transistors
US7425491B2 (en)2006-04-042008-09-16Micron Technology, Inc.Nanowire transistor with surrounding gate
US7491995B2 (en)2006-04-042009-02-17Micron Technology, Inc.DRAM with nanofin transistors
US8134197B2 (en)2006-04-042012-03-13Micron Technology, Inc.Nanowire transistor with surrounding gate
US8119484B2 (en)2006-04-042012-02-21Micron Technology, Inc.DRAM with nanofin transistors
US8062949B2 (en)2006-04-042011-11-22Micron Technology, Inc.Nanowire transistor with surrounding gate
US8823006B2 (en)2006-04-042014-09-02Micron Technology, Inc.Nanofin transistors with crystalline semiconductor fins
US20080315279A1 (en)*2006-04-042008-12-25Micron Technology, Inc.Nanowire transistor with surrounding gate
US20070232007A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Nanowire transistor with surrounding gate
US8803229B2 (en)2006-04-042014-08-12Micron Technology, IncNanowire transistor with surrounding gate
US8354311B2 (en)2006-04-042013-01-15Micron Technology, Inc.Method for forming nanofin transistors
US8734583B2 (en)2006-04-042014-05-27Micron Technology, Inc.Grown nanofin transistors
US9893072B2 (en)2006-04-042018-02-13Micron Technology, Inc.DRAM with nanofin transistors
US20070228491A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Tunneling transistor with sublithographic channel
US9087730B2 (en)2006-04-042015-07-21Micron Technology, Inc.DRAM with nanofin transistors
US20070231980A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Etched nanofin transistors
US20070231985A1 (en)*2006-04-042007-10-04Micron Technology, Inc.Grown nanofin transistors
US7592218B2 (en)*2006-09-142009-09-22Micron Technology, Inc.Methods of forming vertical transistors
US20080227255A1 (en)*2006-09-142008-09-18Micron Technology, Inc.Methods of Forming Vertical Transistors
US10515801B2 (en)2007-06-042019-12-24Micron Technology, Inc.Pitch multiplication using self-assembling materials
US20100090264A1 (en)*2008-10-102010-04-15Qimonda AgInterconnect structure for semiconductor devices
US8362537B2 (en)2008-10-102013-01-29Qimonda AgMemory devices including semiconductor pillars
US8138538B2 (en)*2008-10-102012-03-20Qimonda AgInterconnect structure for semiconductor devices
US8183613B2 (en)*2009-01-092012-05-22Samsung Electronics Co., Ltd.Bipolar transistor for a memory array
US20100176451A1 (en)*2009-01-092010-07-15Hoon JeongSemiconductor
US9136227B2 (en)*2010-03-082015-09-15Ps4 Luxco S.A.R.L.Semiconductor device with buried bit line
US20110215391A1 (en)*2010-03-082011-09-08Elpida Memory, Inc.Semiconductor device and method of manufacturing the same
US8361856B2 (en)2010-11-012013-01-29Micron Technology, Inc.Memory cells, arrays of memory cells, and methods of forming memory cells
US9337201B2 (en)2010-11-012016-05-10Micron Technology, Inc.Memory cells, arrays of memory cells, and methods of forming memory cells
US8497194B2 (en)2010-11-032013-07-30Micron Technology, Inc.Methods of forming doped regions in semiconductor substrates
US9093367B2 (en)2010-11-032015-07-28Micron Technology, Inc.Methods of forming doped regions in semiconductor substrates
US8329567B2 (en)2010-11-032012-12-11Micron Technology, Inc.Methods of forming doped regions in semiconductor substrates
US8790977B2 (en)2011-02-222014-07-29Micron Technology, Inc.Methods of forming a vertical transistor, methods of forming memory cells, and methods of forming arrays of memory cells
US8609488B2 (en)2011-02-222013-12-17Micron Technology, Inc.Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith
US9054216B2 (en)2011-02-222015-06-09Micron Technology, Inc.Methods of forming a vertical transistor
US8450175B2 (en)2011-02-222013-05-28Micron Technology, Inc.Methods of forming a vertical transistor and at least a conductive line electrically coupled therewith
US9318493B2 (en)2011-05-272016-04-19Micron Technology, Inc.Memory arrays, semiconductor constructions, and methods of forming semiconductor constructions
US8569831B2 (en)2011-05-272013-10-29Micron Technology, Inc.Integrated circuit arrays and semiconductor constructions
US8871589B2 (en)2011-05-272014-10-28Micron Technology, Inc.Methods of forming semiconductor constructions
US9401363B2 (en)2011-08-232016-07-26Micron Technology, Inc.Vertical transistor devices, memory arrays, and methods of forming vertical transistor devices
US9287271B2 (en)2011-08-232016-03-15Micron Technology, Inc.Vertical transistor devices, memory arrays, and methods of forming vertical transistor devices
US9209390B2 (en)2011-11-212015-12-08Avalanche Technology, Inc.Memory device having stitched arrays of 4 F2 memory cells
US9029824B2 (en)2011-11-212015-05-12Avalanche Technology, Inc.Memory device having stitched arrays of 4 F2 memory cells
US8878156B2 (en)2011-11-212014-11-04Avalanche Technology Inc.Memory device having stitched arrays of 4 F2 memory cells
US9036391B2 (en)2012-03-062015-05-19Micron Technology, Inc.Arrays of vertically-oriented transistors, memory arrays including vertically-oriented transistors, and memory cells
US9129896B2 (en)*2012-08-212015-09-08Micron Technology, Inc.Arrays comprising vertically-oriented transistors, integrated circuitry comprising a conductive line buried in silicon-comprising semiconductor material, methods of forming a plurality of conductive lines buried in silicon-comprising semiconductor material, and methods of forming an array comprising vertically-oriented transistors
US9006060B2 (en)2012-08-212015-04-14Micron Technology, Inc.N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors
US9472663B2 (en)2012-08-212016-10-18Micron Technology, Inc.N-type field effect transistors, arrays comprising N-type vertically-oriented transistors, methods of forming an N-type field effect transistor, and methods of forming an array comprising vertically-oriented N-type transistors
US9478550B2 (en)2012-08-272016-10-25Micron Technology, Inc.Arrays of vertically-oriented transistors, and memory arrays including vertically-oriented transistors
US9029822B2 (en)2012-11-172015-05-12Avalanche Technology, Inc.High density resistive memory having a vertical dual channel transistor
US9773677B2 (en)2013-03-152017-09-26Micron Technology, Inc.Semiconductor device structures with doped elements and methods of formation
US9111853B2 (en)2013-03-152015-08-18Micron Technology, Inc.Methods of forming doped elements of semiconductor device structures
US9070584B2 (en)*2013-05-242015-06-30Nanya Technology Corp.Buried digitline (BDL) access device and memory array
US20140346652A1 (en)*2013-05-242014-11-27Nanya Technology Corp.Buried digitline (bdl) access device and memory array
CN104183599A (en)*2013-05-242014-12-03南亚科技股份有限公司Memory array structure
CN104183599B (en)*2013-05-242017-04-12南亚科技股份有限公司Memory array structure
US9224837B2 (en)2014-01-312015-12-29Globalfoundries Inc.Semiconductor structures with pair(s) of vertical field effect transistors, each pair having a shared source/drain region and methods of forming the structures
US9087897B1 (en)2014-01-312015-07-21International Business Machines CorporationSemiconductor structures with pair(s) of vertical field effect transistors, each pair having a shared source/drain region and methods of forming the structures
US9871118B2 (en)2014-09-252018-01-16International Business Machines CorporationSemiconductor structure with an L-shaped bottom plate
US10008585B2 (en)2014-09-252018-06-26International Business Machines CorporationSemiconductor structure with an L-shaped bottom plate
US10304944B2 (en)2014-09-252019-05-28International Business Machines CorporationSemiconductor structure with an L-shaped bottom
US9397094B2 (en)2014-09-252016-07-19International Business Machines CorporationSemiconductor structure with an L-shaped bottom plate
US11482277B2 (en)2020-11-042022-10-25Samsung Electronics Co., Ltd.Integrated circuit device including a word line driving circuit
US11830539B2 (en)2020-11-042023-11-28Samsung Electronics Co., Ltd.Integrated circuit device including a word line driving circuit
US12426237B2 (en)2022-06-232025-09-23Changxin Memory Technologies, Inc.Semiconductor structure and method for forming same

Also Published As

Publication numberPublication date
US6350635B1 (en)2002-02-26
US6399979B1 (en)2002-06-04
US20020149048A1 (en)2002-10-17
US6150687A (en)2000-11-21
US6818937B2 (en)2004-11-16

Similar Documents

PublicationPublication DateTitle
US6504201B1 (en)Memory cell having a vertical transistor with buried source/drain and dual gates
US6191448B1 (en)Memory cell with vertical transistor and buried word and body lines
US7489002B2 (en)Memory having a vertical transistor
US7015525B2 (en)Folded bit line DRAM with vertical ultra thin body transistors
US6476434B1 (en)4 F2 folded bit line dram cell structure having buried bit and word lines
US6191470B1 (en)Semiconductor-on-insulator memory cell with buried word and body lines
US9048337B2 (en)Vertical transistor, memory cell, device, system and method of forming same
US6881627B2 (en)Flash memory with ultra thin vertical body transistors
US5937296A (en)Memory cell that includes a vertical transistor and a trench capacitor
US7084028B2 (en)Semiconductor device and method of manufacturing a semiconductor device
HK1009207A (en)Memory cell that includes a vertical transistor and a trench capacitor

Legal Events

DateCodeTitleDescription
FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12

ASAssignment

Owner name:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text:SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date:20160426

Owner name:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text:SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001

Effective date:20160426

ASAssignment

Owner name:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT, MARYLAND

Free format text:PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date:20160426

Owner name:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL

Free format text:PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001

Effective date:20160426

ASAssignment

Owner name:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT, CALIFORNIA

Free format text:CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date:20160426

Owner name:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN

Free format text:CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001

Effective date:20160426

ASAssignment

Owner name:MICRON TECHNOLOGY, INC., IDAHO

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001

Effective date:20180629

ASAssignment

Owner name:MICRON TECHNOLOGY, INC., IDAHO

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL AGENT;REEL/FRAME:050937/0001

Effective date:20190731


[8]ページ先頭

©2009-2025 Movatter.jp