TECHNICAL FIELDThe invention herein resides in the art of fluid filtration systems and, more particularly, to a liquid filtration system which accommodates the periodic cleaning of the filter with a cleaning solution. Specifically, the invention relates to a liquid filtration system in which the efficiency of the system is continually optimized by periodically cleaning the filter to its maximum filtration capability and subsequently entering the filtration process until such time that the permeate flow rate of the liquid through the filter membrane indicates that cleansing of the filter is again required.
BACKGROUND ARTIt has previously been known to filter liquids which comprise a process fluid having both low molecular weight organics such as water, dissolved salts, solvents, and high molecular weight organics such as emulsified oils, suspended solids, colloids, and polymers therein. Particularly, it has been known to provide a means for separating the low molecular weight liquid from the high molecular weight organic material entrained therein by passing the process fluid through a membrane filter. Such systems employ reverse osmosis filters or what are generally termed “ultra filters” in a two tank system in order to achieve the necessary filtering. Typically, a working tank contains the process fluid to be filtered and a cleaning solution tank contains a cleaning fluid such as an appropriate detergent to clean the filter itself. The systems typically contain valves that switch the filter from a working tank to a cleaning tank and back again. Such valves may be either manual or automated.
Ultra filters need to be cleaned or regenerated after they have been used for a period of time. One of the ways of determining that cleaning of the filter is required is to monitor the flow of liquid (permeate) from the filter membrane itself. As the flow decreases due to fouling or blinding of the filter, the efficiency of the system decreases. Accordingly, periodic cleaning of the filter itself is required by passing a cleaning fluid or detergent therethrough.
It is particularly important to terminate the filtering process and clean the filter prior to any point in time that the filter itself has become totally clogged or damaged. Such membrane filters are extremely expensive and, accordingly, in order to protect the filter and assure optimum operation of the filtering system, such periodic monitoring and cleansing of the filter is required. In the past, a variable area inline flow meter was monitored to manually determine the permeate flow rate through the filter membrane and to determine when cleaning of the filter was required. Such a technique is, of course, extremely inaccurate and given to costly error.
The prior art has generally taught numerous types of filtration systems for filtering the process fluid. Specifically, the prior art has taught a broad range of filtering systems in which periodic cleansing of the filter medium is undertaken. However, none of the prior art systems are given to an optimized automated approach to such filtration and maintenance of system integrity. There is a need in the art for an automated fluid filtration system which achieves optimization of the filtering process by monitoring the flow rate of permeate through the filter membrane and periodic cleaning of the filter as a function of such flow rate.
DISCLOSURE OF INVENTIONIn light of the foregoing, it is a first aspect of the invention to provide a fluid filtration system which is substantially automatic in nature. Another aspect of the invention is the provision of a fluid filtration system which maximizes operation by periodically cleaning the filter medium when the permeate rate of flow drops below a determined level.
Still a further aspect of the invention is the provision of a fluid filtration system which substantially eliminates the possibility of human error in monitoring and determining the efficiency of the system.
Yet another aspect of the invention is the provision of a fluid filtration system which is highly efficient, reliable and durable in operation, and easy to implement with state of the art components and techniques.
The foregoing and other aspects of the invention which will become apparent as the detailed description proceeds are achieved by a fluid filtration system, comprising: a first supply of process fluid to be filtered; a second supply of filter cleaning fluid; a filter interposed between said first and second supplies; a pump interposed among said filter and said first and second supplies; an array of valves interconnected to said pump, filter, and first and second supplies, said valves allowing selective interconnection and circulatory intercommunication of said filter with said first and second supplies; and a flow meter connected to said filter, said flow meter providing output signals determinative of said selective interconnection.
Other aspects of the invention which will become apparent herein are attained by a method for filtering the process fluid, comprising: passing the process fluid through the filter until the flow rate of the permeate through the filter membrane drops below a first threshold; passing a cleaning solution through said filter to clean said filter to accommodate an increased flow rate of permeate through the filter membrane; reestablishing said first threshold; and passing process fluid through said filter until the flow rate of the permeate through the filter membrane drops below said first threshold.
BRIEF DESCRIPTION OF THE DRAWINGSFor a complete understanding of the objects, techniques and structure of the invention reference should be made to the following detailed description and accompanying drawings wherein:
FIG. 1 is a block diagram of a filtration system made in accordance with the invention;
FIG. 2 is a functional block diagram of the control system employed with the filtration system of FIG. 1;
FIG. 3 is a graph illustrating permeate flow rate as a function of time; and
FIG. 4 is a flow chart illustrating the process of the invention.
BEST MODE FOR CARRYING OUT THE INVENTIONReferring now to the drawings and more particularly to FIG. 1, it can be seen that a filtration system made in accordance with the invention is designated generally by thenumeral10. Thefiltration system10 includes atank12 which has process fluid such as spent metalworking fluids which contain water soluble oils, suspended solids or the like therein, such process fluid being presented for filtration to separate the oil and solids of the process fluid from the water. Asecond tank14 maintains therein an appropriate filter cleaning fluid, for purposes to be discussed below. Afilter16 is provided for cleaning the process fluid maintained in thetank12 and, for purposes herein, can be considered an ultra filter, as are well known in the art of industrial waste management.
A pair ofvalves18,20 are interposed in association with the filtercleaning fluid tank14 and filter16 to allow for selective passing of the cleaning fluid through the filter. Similarly,valves22,24 are interposed betweenfilter16 and thetank12 of process fluid in order to direct the passage of process fluid through the filter. As will become apparent below, the valves18-24 may be either automatically or manually actuated.
Arecirculation pump26 is interposed between thefilter16 and theoutlet valves20,24 ofrespective tanks14,12 and runs continuously. Therecirculation pump26 provides for selective passage of either process fluid or cleaning fluid through thefilter16, depending upon the state of actuation of the pairs ofvalves18,20 and22,24.
In accordance with the invention, adifferential pressure transducer28ais interposed in alow loss venturi28band operated as a flow meter to monitor the flow rate of permeate through thefilter membrane16. Some of the permeate which has passed through the filter membrane passes through a conduit such as aplastic tube28c, through thelow loss venturi28b, and then through another conduit28dto a recovery tank or the like. Those skilled in the art will appreciate that a direct relationship exists between the pressure and flow rate and, accordingly, a differential pressure transducer and low loss venturi may be employed as such a flow meter. In accordance with the preferred embodiment of the invention, thedifferential pressure transducer28aand theventuri28bare of the low loss venturi type, since the pressures of permeate from thefilter membrane16 are low and it is desirable that the flow meter itself provide minimal obstruction to such flow.
The output of thedifferential pressure transducer28ais an electrical signal which correlates with the flow rate. This signal is applied to acontrol system30 which functions in a manner to be discussed below. Suffice it to say at this time that thecontrol system30 may be employed to automatically control the opening and closing of the valves18-24 consistent with the desirability of selectively passing either process fluid or cleaning solution through thefilter16. It will be appreciated by those skilled in the art that the pairs ofvalves18,20 and22,24 are actuated in a mutually exclusive manner.
With reference now to FIG. 2, it can be seen that thecontrol system30 includes anappropriate amplifier32 receiving the output signal of thedifferential pressure sensor28a. The amplified signal is passed from theamplifier32 to an analog/digital converter34, from which the digitized output of the amplified transducer signals is passed to anappropriate microprocessor36. Themicroprocessor36 then correlates the digitized pressure signal to permeate flow rate. Anappropriate memory38 is provided in association with the microprocessor to receive and maintain data therein. Anappropriate display40, such as a liquid crystal display, is also provided in association with themicroprocessor36 to provide visual output indicia of the permeate flow rate and of the operational sequence of the process of the invention. However, in an embodiment in which the valves18-24 are not automatically actuated, but in which manual intervention is required, directions to the operator of the need for switching between tanks and the like can be presented on theliquid crystal display40.
As will become apparent later herein, a manualselect switch39 is provided to allow an operator to select, through themicroprocessor36, either the clean or process mode. Similarly, in manual operation, an alarm is activated at the end of the clean and process cycles to advise the operator to appropriately open and close the valves18-24. Upon completion of that task, the operator resets the alarm as at41, causing themicroprocessor36 to begin the next process.
It should be appreciated that the concept of the invention is to optimize the efficiency of thefiltration system10 by monitoring the flow rate of permeate through thefilter membrane16 and periodically terminating the process cycle (during which process fluid is passed through the filter) to enter into a filter cleaning cycle (during which a cleaning solution is passed through the filter). This technique is achieved by dividing the operation of thefiltration system10 into two particular sections, a first “clean” section in which thefilter16 is itself cleaned, and the “process” section during which time process fluid is passed through thefilter16. A pair of clean and process cycles are designated by thenumeral42 in the graph of FIG.3. There, it can be seen that the clean cycle is designated by the numeral44 and the process cycle by the numeral46.
During thecleaning cycle44, thevalves18,20 are opened and thevalves22,24 are closed such that only cleaning solution passes through thefilter16. During this cycle, the flow rate of permeate fromfilter membrane16 is monitored and, as shown in FIG. 3, will typically be observed as being of increasing rate to a peak value where the flow rate stabilizes or the rate of change flattens out. In a mathematical context, the derivative of flow rate with respect to time would approach zero. Effectively, the derivative of the rate of change of flow rate with respect to time is taken by simply periodically monitoring the flow rate and determining when the flow rate has substantially stabilized. Depending upon the filter, process fluid, and cleaning fluid employed, the monitoring of the flow rate of permeate through the filter membrane may be undertaken on intervals of anywhere from 2-30 minutes. In any event, when the flow rate has stabilized, the clean cycle is departed and the process cycle is entered.
As shown in the graph of FIG. 3, in the process cycle with thevalves18,20 being closed and thevalves22,24 being opened, an initial substantial drop in permeate flow rate is experienced as at48. Depending upon the nature of thefilter16, the process fluid of thetank12, and the nature of thepump26, the period of time necessary to maintain the transition from the cleaning to the process cycle may vary. Typically, this time will be on the order of 2-10 minutes. In any event, following the initial transition, it has generally been found that the flow rate of permeate from thefilter membrane16 will degrade in somewhat of a gradual manner as designated by the line50-52 in FIG.3. In accordance with the invention, at a fixed time delay following the switch from the clean to the process cycle, a flow rate reading is made at50. It is then determined that a clean cycle will necessarily be required when the flow rate has diminished by a certain percentage from that measured at50. According to one embodiment of the invention, it has been determined that a clean cycle will be entered when the flow rate during the process cycle drops to 50 percent of that measured at50. In other words, with flow rate at50 designated the initial process peak flow, a clean cycle will be entered at52 which is the point at which the flow rate of permeate through thefilter membrane16 during the process cycle is at 50 percent of the initial process peak flow measured at50. Again, depending upon the parameters of thefiltration system10 and the process fluid to be treated, such percentage may vary. Indeed, the flow rate at which the cycle changes (trip flow threshold) may be selected as a percentage of the flow rate first measured when the process cycle is entered, or at any other suitable point. Suffice it to say that when a clean cycle is entered as at52, thevalves22,24 are closed (either manually or automatically by the control system30) and thevalves18,20 are similarly opened. Theclean cycle44 is entered and the cleaning of thefilter16 continues until the derivative of the rate of change of flow rate with respect to time approaches zero or stabilizes.
Referring now to FIG. 4, an appreciation of the method of the invention can be attained. As shown, the method is entered at56 with the operator starting the operation and selecting either the cleaning44 orprocess46 mode of operation. The input pressure of thesensor28a, as digitized by the A/D converter34, is then determined and converted to a flow rate at58,60. If the process mode has been chosen, the determination is made at62 to enter that mode. At76, a time delay is entered to accommodate the initial drop inflow rate48 as shown in FIG.3. After that time delay, the initial processpeak flow rate50 is measured at78 and the tripflow threshold rate52 is established at80. The passage of process fluid from thetank12 through therecirculation pump26 andfilter16 continues as at82 until the flow rate drops below the flow rate threshold at52. At this time, the cleaningcycle44 is entered at84.
In an automated system, thecontrol system30 would then close thevalves22,24 and open thevalves18,20, with appropriate time delays to effectuate the mode change without unnecessary intermix of the clean and process fluids. On a manual system, an audible or visual alarm is actuated at86 to advise the operator of the need to so control the valves18-24 to effect the mode change. When the change is manually effected, the operator resets the alarm as at88 and the process continues with a determination of flow rate at58,60 and entry into the clean mode at62.
With the clean mode having been entered, thedecision block62 enters the clean cycleoperative process64, as shown. Here, the time derivative is effectively determined as at66 and is continually monitored at68 until the flow rate has stabilized, as shown in FIG. 3 at the peak of the cleaningcycle44. Again, this is accomplished by periodically monitoring the flow rate of permeate through thefilter membrane16 until minimal change in flow rate is experienced from one sample time to the next or, in other words, until the flow rate has stabilized. When this has occurred, the peak clean flow rate is sensed at70 and stored in thememory38. In accordance with one embodiment of the invention, the peak clean flow rate can be employed as the basis for setting thetrip flow threshold52, as compared to employing the initial processpeak flow rate50. In any event, following storage of the peak cleaning flow rate at70, the process mode is entered at72.
In an automated system, thecontrol system30 would then close thevalves18,20 and open thevalves22,24, with appropriate time delays to effectuate the mode changes, without unnecessary intermix of the clean and process fluids. In a manual system, the alarm is actuated at74 to advise the operator of the need to so control the valves18-24 to effect the mode change. When the change is manually effected, the operator resets the alarm as at88 and the process continues with a determination to flow rate at58,60 and entry into the clean mode at62. It can be seen that theprocess46 again continues until the permeate flow rate through thefilter membrane16 drops below theflow threshold52, at which time the clean mode is again entered.
It will be appreciated that the system of FIG. 4 was just described with anautomated cleaning cycle64, such cycle operating on the basis of monitoring the permeate flow though thefilter membrane16 until such flow has stabilized. Alternatively, the process64acan be employed in the method of FIG. 4 by which cleaning solution is caused to pass through thetank14 to thefilter16 for a fixed duration of time, such time being sufficient, in the ordinary course of events, to effect thorough cleansing of thefilter16. In that embodiment, the decision block68ais simply a timer which causes theclean cycle44 to continue for a fixed period of time, after which the clean cycle is departed and the process cycle entered. This fixed period of time may, of course, be adjusted by the operator.
It should now be apparent that the concept of the invention provides periodic cleaning offilter16, followed by a processing cycle which proceeds until the efficiency of thefilter16 has degraded, by blinding of the filter or otherwise, to a predetermined level. At that time, the cleaning cycle is entered and the filter is cleaned to an optimum level, at which time the process cycle is again entered. Accordingly, the concept of the invention is sequentially and repetitively entering processing and filter cleaning cycles at such a rate and in such a manner as to assure optimum efficiency of the process fluid filter process.
Thus it can be seen that the objects of the invention have been satisfied by the structure and technique presented above. While in accordance with the patent statutes only the best mode and preferred embodiment of the invention has been presented and described in detail, it is to be understood that the invention is not limited thereto or thereby. Accordingly, for an appreciation of the true scope and breadth of the invention, reference should be made to the following claims.