Movatterモバイル変換


[0]ホーム

URL:


US5828066A - Multisource infrared spectrometer - Google Patents

Multisource infrared spectrometer
Download PDF

Info

Publication number
US5828066A
US5828066AUS08/674,869US67486996AUS5828066AUS 5828066 AUS5828066 AUS 5828066AUS 67486996 AUS67486996 AUS 67486996AUS 5828066 AUS5828066 AUS 5828066A
Authority
US
United States
Prior art keywords
mirror
multisource
infrared
infrared energy
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08/674,869
Inventor
Robert G. Messerschmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to US08/674,869priorityCriticalpatent/US5828066A/en
Priority to US09/176,884prioritypatent/US6034370A/en
Application grantedgrantedCritical
Publication of US5828066ApublicationCriticalpatent/US5828066A/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A spectrometer having a source of broad band infrared energy, a relay mirror that focuses the infrared energy at an intercepting mirror, a first object mirror that collimates the infrared energy from the intercepting mirror, a spatial light modulator that receives the collimated infrared energy and reflects it back to the first object mirror, the spatial light modulator including deformable mirror elements, and a controller that deforms the mirror elements according to a predetermined pattern. Deformable mirror elements obtain needed spectra while reducing the mechanical complexity of the spectrometer.

Description

BACKGROUND AND SUMMARY OF THE INVENTION
Previous spectrometers have required moving parts to obtain the dispersion of light into its constituent wavelength components. Such moving parts include scanning a diffraction grating to move the dispersed light across the entrance slit of a spectrometer or oscillating a mirror to produce the changing interference patterns for a interferometer. Moving parts have an obvious disadvantage in imposing substantial mechanical complexity into the spectrometer. In some sense the spectral resolution of the spectrometer is always limited by the mechanical precision of its construction and by the mechanical precision of its maintenance. Such mechanical constraints also necessarily limit the mechanical rigidity, stability and transportability of the spectrometer
Conventional sample analysis using a spectrometer has also been limited to sampling a single area of a specimen plane at a time. This is unfortunate in that many spectroscopic analyses require taking the spectrum of multiple adjacent areas on a specimen. Constructing a matrix of the spectra of an entire sample area is therefore a complex, time consuming operation that is rarely performed.
It is an objective of the present invention to use electrical components to perform all deflections of a beam of light that are needed to obtain a spectrum. It is another objective of the present invention to produce multiple spectra of a sample area using opto-electronic components. It is another objective of the present invention to facilitate making both the dispersive and interferometric measurements of the spectral constituents of light using electrical components.
The present invention achieves these and other objectives using a multisource infrared spectrometer having a source of broad band infrared energy, a relay mirror that focuses the infrared energy at an intercepting mirror, a first object mirror that collimates the infrared energy from the intercepting mirror, a spatial light modulator that receives the collimated infrared energy and reflects it back to the first object mirror, the spatial light modulator including deformable mirror elements, and a controller that deforms the mirror elements according to a predetermined pattern.
A BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a multisource infrared spectrometer according to the present invention that is configured as an infrared microscope.
FIG. 2 and FIGS. 3a and 3b show details of a deformable mirror device that can operate as a spatial light modulator in the spectrometers shown in FIGS. 1,4, and 5.
FIG. 4 is another multisource infrared spectrometer according to the present invention.
FIG. 5 is another multisource infrared spectrometer according to the present invention.
FIG. 6 shows details of another deformable mirror device for use as a spatial light modulator in the spectrometer shown in FIG. 5.
DETAILED DESCRIPTION
FIG. 1 shows a multisource infrared spectrometer of the present invention. An off-axis concave parabolic focusing mirror 3 focuses light from a source 1 to a pick-off mirror 5. An off-axis parabolic mirror 7 focuses the light from the pick-off mirror 5 onto the reflective surface of a deformable mirror device (DMD) 9.
FIG. 2 shows the reflective surfaces of the DMD 9. FIG. 3a shows thereflective surfaces 30 of DMD 9 in a rest state. An electric signal from acontrol circuit 31 causes a series ofreflective surfaces 30 to deflect as shown in FIG. 3b. The selection, construction, operation of asuitable control circuit 31 is considered to be within the capability of a person of ordinary skill in the art.
An off-axisparabolic mirror 11 together with off-axis parabolic mirror 7 collimate deflected light from the DMD 9. Together with the pick-off mirror 5, these mirrors comprise a Schlieren stop. Mirror 11 directs the light through a focus to diffraction grating 13. Such diffraction gratings are known in the art and therefore not a subject of the present invention.
Diffraction grating 13 disperses the light into its constituent wavelength components and focuses them onto an entrance slit 14. Another off axisparabolic mirror 15 focuses the light from the entrance slit 14 to amask 17. As shown, identical, symmetricalparabolic mirrors 19, 21, 25 and 27 form a microscope having a unitary magnification and image themask 17 onto aspecimen plane 23 and adetector 29. The operation of the microscope formed bymirrors 19, 21, 25 and 27 is known since it is described in U.S. Pat. No. 5,225,678 which is assigned to the assignee of the present application and incorporated herein by reference. This microscope is shown merely to example one form of sampling accessory. It is to be understood that many different types of sampling accessories could direct the light to aspecimen plane 23 and on to adetector 29.
The multisource spectrometer shown in FIG. 1 operates so that the DMD 9 functions as a spatial light modulator to control the spectral content of the light.Deflectable elements 30 comprise cantilevered beams that, by deflecting as shown by deflected elements 30' in FIG. 3b shift light into the entrance slit of the spectrometer. The Schlieren stop formed by pick-off mirror 5 and off-axisparabolic mirrors 7 and 11 permit the DMD 9 to act as the source for the diffraction grating 13 in which each of thedeformable mirror elements 30 comprise a source of a different color. Modulating DMD 9 allows the light to be scanned over the entrance slit 14 so as to vary the spectral content of the light reachingspecimen plane 23. The modulation of the control signal for the DMD 9 is then correlated with the signal received bydetector 29 to produce a spectrum of the sample. The correlation of an acceptable electronic processing controller for deflecting the elements of the DMD into a predetermined patterned for the purpose of implementing the present invention is believed to be within the level of one of ordinary skill in the art.
FIG. 4 shows another multisource infrared spectrometer according to the present invention. This spectrometer modifies that shown in FIG. 1 by inserting an a partiallyreflective beam splitter 10 andinterferometric mirrors 12, 12' before off-axis transfer mirror 11. Operating the DMD 9 in the manner described above shifts the light vertically across thebeam splitter 10. This shift has the effect of changing the path length of the light so as to set up interference in the two arms represented bymirrors 12 and 12'. The light is then directed to thedetector 29 through thespecimen plane 23 andmask 17 by off-axisparabolic mirrors 11, 15 and 28.
FIG. 4 also shows thespecimen plane 23 receiving light directly from the concaveparabolic mirror 15. It is to be understood, however, that any sampling accessory could be used to in combination with the multisource infrared spectrometer.
The operation of the multisource infrared spectrometer shown in FIG. 4 has the effect of duplicating a standard Fourier-transform infrared spectrometer. It is therefore contemplated that the same type of fourier analysis of the signal fromdetector 29 can be used to produce a spectrum. However, the DMD 9 eliminates the need to mechanically oscillate eithermirror 12 or 12' to change the path length of the light that is needed to instigate the optical interference. Instead, DMD 9 electronically changes the location of the light on the surface ofbeam splitter 10 which then has the effect of changing the path length of the light in each of the arms atmirrors 12 and 12'.
FIG. 5 shows another multisource infrared spectrometer according to the present invention. The DMD 9 is positioned at a field stop of the infrared microscope formed byparabolic mirrors 19, 21 and 25 of the type described above in connection with FIG. 1. This configuration allows a DMD 9 to act as the mask for the microscope. The individual elements of the DMD spatially define a sampling area on thesample image plane 23 by determining which areas receive light.
The construction of the DMD 9 shown in FIG. 5 can differ from that shown in FIGS. 3aand 3b. This change in construction is motivated by the ability to map thereflective surface 30 of the DMD onto thespecimen plane 23 using imaging optics such as that supplied by the microscope shown in FIG. 5. FIG. 6 shows the surface of a suitable DMD 9 for use in the spectrometer shown in FIG. 5. Thereflective surface 30 is divided into a plurality ofindividual cells 31. Each cell. when deformed, permits light to be imaged onto thesample image plane 23. The entirety of the matrix delimits a sampling area on thespecimen plane 23 once mapped thereon by imaging optics such as the microscope shown.
The spectrometer shown in FIG. 5 permits making simultaneous measurements of multiple areas of thespecimen plane 23. The matrix of deformable elements shown in FIG. 6 can be driven according to a Hadamard transform such that half of the elements of DMD 9 are deflected at any given moment, thus permitting half of a sample to be illuminated an any moment. Changing the pattern of illumination changes the half of the elements being illuminated. Changing the pattern according to a Hadamard transform provides a ready way of extracting the spectral features for each element. The principles of sampling using Hadamard transforms are known and therefore not described further.
Parabolic mirror 25 reflects the light from thespecimen plane 23 to aninterferometer 26 which decomposes the light into its individual spectral components. The interferometer can comprises a conventional Fourier transform spectrometer or one built in accord with FIG. 4 so as to have no parts that are mechanically moved. The off-axisparabolic mirror 28 reflects the light, thus decomposed, to adetector 29. The spectrum of the light can then be obtained using a variety of methods that are known in the art.
It is to be appreciated that the position of theinterferometer 26 in FIG. 5 is backward from that commonly found in spectrographic systems. The spectrograph in FIG. 5 effectively reverses the input and output of the spectrometer.
It is to be understood that the deformable mirror device 9 described above is only one way of implementing the spatial light modulation needed to practice the present invention. Other spatial light modulators, such as alternately transparent filters, etc., are known in the art and are for use with the present invention. The objective of the present invention can be achieved with any filter that spatially modulates light. Whether that filter transmits light or, as exemplified above, reflects light in no way precludes its use in the present invention.
It is also to be understood that the foregoing applications of the present invention have been particularly adapted for use in infrared spectrometry. However, there is no reason that the present invention could not be adapted for spectrometry in other wavelength regimes. It is particularly contemplated that the present invention would find applicability in near infrared applications such as required for obtaining spectrum from biological systems.
The principles, preferred embodiments and modes of operation of the present invention have been set forth in the foregoing specification. The embodiment disclosed herein should be interpreted as illustrating the present invention and not as restricting it. The foregoing disclosure is not intended to limit the range of equivalent structure available to a person of ordinary skill in the art in any way, but rather to expand the range of equivalent structures in ways not previously thought of. Numerous variations and changes can be made to the foregoing illustrative embodiments without departing from the scope and spirit of the present invention as set forth in the appended claims.

Claims (10)

What is claimed is:
1. A multisource infrared spectrometer, comprising
a source of broad band infrared energy,
a relay mirror that focuses the infrared energy at an intercepting mirror,
a first object mirror that collimates the infrared energy from the intercepting mirror,
a spatial light modulator that receives the collimated infrared energy and reflects it back to the first object mirror, the spatial light modulator including deformable mirror elements, and
a controller that deforms the mirror elements according to a predetermined pattern.
2. A multisource infrared spectrometer as claimed in claim 1, wherein the deformable mirror elements comprise a linear array.
3. A multisource infrared spectrometer as claimed in claim 2, further comprising
a second object mirror to focus the collimated infrared energy at a spectrograph plane,
a diffraction grating to disperse the constituent wavelengths of the infrared energy, and
a transfer mirror to focus the infrared energy at a spectrograph plane.
4. A multisource infrared spectrometer as claimed in claim 3, wherein the diffraction grating and transfer mirror are a holographic concave mirror.
5. A multisource infrared spectrometer as claimed in claim 2, further comprising
a refractive beam splitter having first and second sides, each side of the refractive beam splitter reflecting part of the collimated beam of infrared energy from the first object mirror,
at least first and second transfer mirrors that receive the infrared energy reflected from the first side of the refractive beam splitter and passing through the second side of the refractive beam splitter, respectively, each transfer mirror being positioned to reflect the collimated infrared energy to the other transfer mirror and back to a side of the refractive beam splitter opposite that from which the infrared energy came, and
a second object mirror to focus infrared energy reflected from the second side of the refractive beam splitter at a field stop.
6. A multisource infrared spectrometer as claimed in claim 1, wherein the deformable mirror elements comprise a two dimensional array.
7. A multisource infrared spectrometer as claimed in claim 6, further comprising
a second object mirror to focus the infrared energy at a field stop,
a mask positioned at the field stop to delimit a measuring area, and
a condenser to map the measuring area onto a specimen plane.
8. A multisource infrared spectrometer as claimed in claim 7, further comprising an spectrograph for separating the broad band infrared energy into constituent wavelength components.
9. A multisource infrared spectrometer as claimed in claim 8, wherein the spectrograph comprises an interferometer.
10. A multisource infrared spectrometer as claimed in claim 1, wherein the predetermined pattern comprises a Hadamard transform.
US08/674,8691996-07-021996-07-02Multisource infrared spectrometerExpired - Fee RelatedUS5828066A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US08/674,869US5828066A (en)1996-07-021996-07-02Multisource infrared spectrometer
US09/176,884US6034370A (en)1996-07-021998-10-22Multisource infrared spectrometer

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US08/674,869US5828066A (en)1996-07-021996-07-02Multisource infrared spectrometer

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US09/176,884ContinuationUS6034370A (en)1996-07-021998-10-22Multisource infrared spectrometer

Publications (1)

Publication NumberPublication Date
US5828066Atrue US5828066A (en)1998-10-27

Family

ID=24708222

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US08/674,869Expired - Fee RelatedUS5828066A (en)1996-07-021996-07-02Multisource infrared spectrometer
US09/176,884Expired - Fee RelatedUS6034370A (en)1996-07-021998-10-22Multisource infrared spectrometer

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US09/176,884Expired - Fee RelatedUS6034370A (en)1996-07-021998-10-22Multisource infrared spectrometer

Country Status (1)

CountryLink
US (2)US5828066A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6034370A (en)*1996-07-022000-03-07Messerschmidt; Robert G.Multisource infrared spectrometer
US6046808A (en)*1999-04-092000-04-04Three Lc, Inc.Radiation filter, spectrometer and imager using a micro-mirror array
US6128078A (en)*1999-04-092000-10-03Three Lc, Inc.Radiation filter, spectrometer and imager using a micro-mirror array
US6483112B1 (en)1998-07-142002-11-19E. Neil LewisHigh-throughput infrared spectroscopy
US6574490B2 (en)2001-04-112003-06-03Rio Grande Medical Technologies, Inc.System for non-invasive measurement of glucose in humans
US6654125B2 (en)2002-04-042003-11-25Inlight Solutions, IncMethod and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US6690464B1 (en)1999-02-192004-02-10Spectral Dimensions, Inc.High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units
US20040045830A1 (en)*2002-04-242004-03-11Tseng Scott C-JCompositions and processes for format flexible, roll-to-roll manufacturing of electrophoretic displays
US6718189B2 (en)1995-08-092004-04-06Rio Grande Medical Technologies, Inc.Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US20040094715A1 (en)*1998-07-142004-05-20Lewis E. NeilHigh-throughput infrared spectroscopy
US20040218172A1 (en)*2003-01-242004-11-04Deverse Richard A.Application of spatial light modulators for new modalities in spectrometry and imaging
US6816605B2 (en)1999-10-082004-11-09Lumidigm, Inc.Methods and systems for biometric identification of individuals using linear optical spectroscopy
US6818892B1 (en)1999-04-092004-11-16Spectraprobe LimitedSystem and method for infra-red detection
US20050024640A1 (en)*1999-04-092005-02-03Fateley William G.System and method for encoded spatio-spectral information processing
US6862091B2 (en)2001-04-112005-03-01Inlight Solutions, Inc.Illumination device and method for spectroscopic analysis
US6865408B1 (en)2001-04-112005-03-08Inlight Solutions, Inc.System for non-invasive measurement of glucose in humans
US20050185179A1 (en)*2004-02-252005-08-25Wang Sean X.Fourier transform spectrometer apparatus using multi-element mems
US20050243312A1 (en)*1999-04-092005-11-03Frank GeshwindDevices and method for spectral measurements
US20050270528A1 (en)*1999-04-092005-12-08Frank GeshwindHyper-spectral imaging methods and devices
US6983176B2 (en)2001-04-112006-01-03Rio Grande Medical Technologies, Inc.Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US6996292B1 (en)2002-04-182006-02-07Sandia CorporationStaring 2-D hadamard transform spectral imager
US7027848B2 (en)2002-04-042006-04-11Inlight Solutions, Inc.Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US7043288B2 (en)2002-04-042006-05-09Inlight Solutions, Inc.Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US20060197086A1 (en)*2005-03-042006-09-07Samsung Electronics Co., Ltd.Organic light emitting diode display and manufacturing method thereof
US7126682B2 (en)2001-04-112006-10-24Rio Grande Medical Technologies, Inc.Encoded variable filter spectrometer
US7147153B2 (en)2003-04-042006-12-12Lumidigm, Inc.Multispectral biometric sensor
US7203345B2 (en)1999-10-082007-04-10Lumidigm, Inc.Apparatus and method for identification of individuals by near-infrared spectrum
US7219086B2 (en)1999-04-092007-05-15Plain Sight Systems, Inc.System and method for hyper-spectral analysis
US7263213B2 (en)2003-12-112007-08-28Lumidigm, Inc.Methods and systems for estimation of personal characteristics from biometric measurements
US20070229821A1 (en)*2006-04-042007-10-04Christian Sean MSpectroscope and Method of Performing Spectroscopy
US7347365B2 (en)2003-04-042008-03-25Lumidigm, Inc.Combined total-internal-reflectance and tissue imaging systems and methods
US7352470B1 (en)*2002-07-262008-04-01Lockheed Martin CorporationFourier transform spectrometry with a single-aperture interferometer
US20080078544A1 (en)*2006-04-042008-04-03Christian Sean MMethod and Apparatus for Performing Spectroscopy Downhole within a Wellbore
US7394919B2 (en)2004-06-012008-07-01Lumidigm, Inc.Multispectral biometric imaging
US7460696B2 (en)2004-06-012008-12-02Lumidigm, Inc.Multispectral imaging biometrics
US7508965B2 (en)2004-06-012009-03-24Lumidigm, Inc.System and method for robust fingerprint acquisition
US7539330B2 (en)2004-06-012009-05-26Lumidigm, Inc.Multispectral liveness determination
US7545963B2 (en)2003-04-042009-06-09Lumidigm, Inc.Texture-biometrics sensor
US7613504B2 (en)2001-06-052009-11-03Lumidigm, Inc.Spectroscopic cross-channel method and apparatus for improved optical measurements of tissue
US7620212B1 (en)2002-08-132009-11-17Lumidigm, Inc.Electro-optical sensor
US7627151B2 (en)2003-04-042009-12-01Lumidigm, Inc.Systems and methods for improved biometric feature definition
US7652765B1 (en)2004-03-062010-01-26Plain Sight Systems, Inc.Hyper-spectral imaging methods and devices
US7668350B2 (en)2003-04-042010-02-23Lumidigm, Inc.Comparative texture analysis of tissue for biometric spoof detection
US7751594B2 (en)2003-04-042010-07-06Lumidigm, Inc.White-light spectral biometric sensors
US7801338B2 (en)2005-04-272010-09-21Lumidigm, Inc.Multispectral biometric sensors
US7801339B2 (en)2006-07-312010-09-21Lumidigm, Inc.Biometrics with spatiospectral spoof detection
US7804984B2 (en)2006-07-312010-09-28Lumidigm, Inc.Spatial-spectral fingerprint spoof detection
US7899217B2 (en)2006-07-192011-03-01Lumidign, Inc.Multibiometric multispectral imager
US20110108719A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Multi-Channel Source Assembly for Downhole Spectroscopy
US20110108721A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Filter Wheel Assembly for Downhole Spectroscopy
US20110108720A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Multi-Channel Detector Assembly for Downhole Spectroscopy
US7995808B2 (en)2006-07-192011-08-09Lumidigm, Inc.Contactless multispectral biometric capture
JP2011524231A (en)*2008-06-172011-09-01コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for optical inspection of the interior of a turbid medium
US20120092636A1 (en)*2009-04-302012-04-19Asml Netherlands B.V.Metrology Apparatus, Lithography Apparatus and Method of Measuring a Property of a Substrate
US8175346B2 (en)2006-07-192012-05-08Lumidigm, Inc.Whole-hand multispectral biometric imaging
US8229185B2 (en)2004-06-012012-07-24Lumidigm, Inc.Hygienic biometric sensors
US8285010B2 (en)2007-03-212012-10-09Lumidigm, Inc.Biometrics based on locally consistent features
US8355545B2 (en)2007-04-102013-01-15Lumidigm, Inc.Biometric detection using spatial, temporal, and/or spectral techniques
US8411262B2 (en)2010-09-302013-04-02Precision Energy Services, Inc.Downhole gas breakout sensor
US8542353B2 (en)2010-09-302013-09-24Precision Energy Services, Inc.Refractive index sensor for fluid analysis
US8570149B2 (en)2010-03-162013-10-29Lumidigm, Inc.Biometric imaging using an optical adaptive interface
US8731250B2 (en)2009-08-262014-05-20Lumidigm, Inc.Multiplexed biometric imaging
US8787630B2 (en)2004-08-112014-07-22Lumidigm, Inc.Multispectral barcode imaging
US10091440B1 (en)2014-05-052018-10-02Lockheed Martin CorporationSystem and method for providing compressive infrared imaging
CN114279685A (en)*2021-12-142022-04-05成都信和创业科技有限责任公司Low-light-level night vision target dynamic simulation method and device with variable distance and variable spectrum
CN117664892A (en)*2022-08-242024-03-08华为技术有限公司Miniature infrared spectrometer and electronic equipment

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE19531988A1 (en)*1995-08-301997-03-06Europaeische Kommission Remote measurement of U (Pu) in glasses
US20050007582A1 (en)*2003-07-072005-01-13Lumidigm, Inc.Methods and apparatus for collection of optical reference measurements for monolithic sensors
US20050073690A1 (en)*2003-10-032005-04-07Abbink Russell E.Optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL)
US20090040516A1 (en)*2007-08-102009-02-12Honeywell International Inc.Spectroscopic system
US20100246902A1 (en)*2009-02-262010-09-30Lumidigm, Inc.Method and apparatus to combine biometric sensing and other functionality
CN103487839B (en)*2013-08-262015-12-09中国科学院长春光学精密机械与物理研究所Equivalent detector abnormity pixel implementation method able to programme

Citations (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2706253A (en)*1951-01-301955-04-12Phillips Petroleum CoSelective wave length filter spectrophotometer
US3402001A (en)*1963-06-061968-09-17IbmSelective gating of radiation
US3815090A (en)*1971-09-271974-06-04Siemens AgMethod and circuit arrangement for automatic recognition of characters with the help of a translation invariant classification matrix
US3969699A (en)*1975-04-111976-07-13Honeywell Inc.Image dissector with many apertures for Hadamard encoding
US3982227A (en)*1975-06-021976-09-21General Electric CompanyPattern recognition machine for analyzing line orientation
US4134134A (en)*1976-06-101979-01-09U.S. Philips CorporationApparatus for picture processing
US4389673A (en)*1980-03-111983-06-21Claude DespoisHadamard transformer using charge transfer devices
US4421985A (en)*1981-06-301983-12-20Vought CorporationDark field infrared telescope
US4615619A (en)*1984-03-191986-10-07D.O.M. Associates, Inc.Stationary, electrically alterable, optical masking device and spectroscopic apparatus employing same
US4687926A (en)*1984-12-201987-08-18Polaroid CorporationSpectrally filtered lens producing plural f-numbers with different spectral characteristics
US5225678A (en)*1991-11-131993-07-06Connecticut Instrument CorporationSpectoscopic sampling accessory having dual measuring and viewing systems
US5475221A (en)*1994-05-111995-12-12Brimrose Corporation Of AmericaOptical spectrometer using light emitting diode array

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USH1354H (en)*1991-10-071994-09-06The United States Of America As Represented By The Secretary Of The Air ForceOptical data transducer
CA2081753C (en)*1991-11-222002-08-06Jeffrey B. SampsellDmd scanner
US5319214A (en)*1992-04-061994-06-07The United States Of America As Represented By The Secretary Of The ArmyInfrared image projector utilizing a deformable mirror device spatial light modulator
WO1997033153A1 (en)*1996-03-051997-09-12Levine Michael SHolographic gas analyzer
US5828066A (en)*1996-07-021998-10-27Messerschmidt; Robert G.Multisource infrared spectrometer

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2706253A (en)*1951-01-301955-04-12Phillips Petroleum CoSelective wave length filter spectrophotometer
US3402001A (en)*1963-06-061968-09-17IbmSelective gating of radiation
US3815090A (en)*1971-09-271974-06-04Siemens AgMethod and circuit arrangement for automatic recognition of characters with the help of a translation invariant classification matrix
US3969699A (en)*1975-04-111976-07-13Honeywell Inc.Image dissector with many apertures for Hadamard encoding
US3982227A (en)*1975-06-021976-09-21General Electric CompanyPattern recognition machine for analyzing line orientation
US4134134A (en)*1976-06-101979-01-09U.S. Philips CorporationApparatus for picture processing
US4389673A (en)*1980-03-111983-06-21Claude DespoisHadamard transformer using charge transfer devices
US4421985A (en)*1981-06-301983-12-20Vought CorporationDark field infrared telescope
US4615619A (en)*1984-03-191986-10-07D.O.M. Associates, Inc.Stationary, electrically alterable, optical masking device and spectroscopic apparatus employing same
US4687926A (en)*1984-12-201987-08-18Polaroid CorporationSpectrally filtered lens producing plural f-numbers with different spectral characteristics
US5225678A (en)*1991-11-131993-07-06Connecticut Instrument CorporationSpectoscopic sampling accessory having dual measuring and viewing systems
US5475221A (en)*1994-05-111995-12-12Brimrose Corporation Of AmericaOptical spectrometer using light emitting diode array

Cited By (99)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6718189B2 (en)1995-08-092004-04-06Rio Grande Medical Technologies, Inc.Method and apparatus for non-invasive blood analyte measurement with fluid compartment equilibration
US6034370A (en)*1996-07-022000-03-07Messerschmidt; Robert G.Multisource infrared spectrometer
US9487398B2 (en)1997-06-092016-11-08Hid Global CorporationApparatus and method of biometric determination using specialized optical spectroscopy systems
US6483112B1 (en)1998-07-142002-11-19E. Neil LewisHigh-throughput infrared spectroscopy
US7391025B2 (en)1998-07-142008-06-24The United States Of America As Represented By The Department Of Health And Human ServicesHigh-throughput infrared spectroscopy
US20040094715A1 (en)*1998-07-142004-05-20Lewis E. NeilHigh-throughput infrared spectroscopy
US7399968B2 (en)1999-02-192008-07-15Malvern Instruments IncorporatedSpectroscopic instruments and methods employing array detector and variable filtering
US20080185504A9 (en)*1999-02-192008-08-07Lewis E NSpectroscopic instruments and methods employing array detector and variable filtering
US6690464B1 (en)1999-02-192004-02-10Spectral Dimensions, Inc.High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units
US20050199788A1 (en)*1999-02-192005-09-15Lewis E. N.High-volume on-line spectroscopic composition testing of manufactured pharmaceutical dosage units
US20050243312A1 (en)*1999-04-092005-11-03Frank GeshwindDevices and method for spectral measurements
US7219086B2 (en)1999-04-092007-05-15Plain Sight Systems, Inc.System and method for hyper-spectral analysis
US6818892B1 (en)1999-04-092004-11-16Spectraprobe LimitedSystem and method for infra-red detection
US20050024640A1 (en)*1999-04-092005-02-03Fateley William G.System and method for encoded spatio-spectral information processing
EP1218704A4 (en)*1999-04-092007-03-21Plain Sight Systems IncRadiation filter, spectrometer and imager using a micro-mirror array
US7180588B2 (en)1999-04-092007-02-20Plain Sight Systems, Inc.Devices and method for spectral measurements
US6046808A (en)*1999-04-092000-04-04Three Lc, Inc.Radiation filter, spectrometer and imager using a micro-mirror array
US20070263214A1 (en)*1999-04-092007-11-15Fateley William GSystem and method for encoded spatio-spectral information processing
US6128078A (en)*1999-04-092000-10-03Three Lc, Inc.Radiation filter, spectrometer and imager using a micro-mirror array
US20050270528A1 (en)*1999-04-092005-12-08Frank GeshwindHyper-spectral imaging methods and devices
US7248358B2 (en)1999-04-092007-07-24Plain Sight Systems, Inc.Devices and method for spectral measurements
US6816605B2 (en)1999-10-082004-11-09Lumidigm, Inc.Methods and systems for biometric identification of individuals using linear optical spectroscopy
US7203345B2 (en)1999-10-082007-04-10Lumidigm, Inc.Apparatus and method for identification of individuals by near-infrared spectrum
US6574490B2 (en)2001-04-112003-06-03Rio Grande Medical Technologies, Inc.System for non-invasive measurement of glucose in humans
US7126682B2 (en)2001-04-112006-10-24Rio Grande Medical Technologies, Inc.Encoded variable filter spectrometer
US6983176B2 (en)2001-04-112006-01-03Rio Grande Medical Technologies, Inc.Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US6865408B1 (en)2001-04-112005-03-08Inlight Solutions, Inc.System for non-invasive measurement of glucose in humans
US6862091B2 (en)2001-04-112005-03-01Inlight Solutions, Inc.Illumination device and method for spectroscopic analysis
US7890158B2 (en)2001-06-052011-02-15Lumidigm, Inc.Apparatus and method of biometric determination using specialized optical spectroscopy systems
US7613504B2 (en)2001-06-052009-11-03Lumidigm, Inc.Spectroscopic cross-channel method and apparatus for improved optical measurements of tissue
US7043288B2 (en)2002-04-042006-05-09Inlight Solutions, Inc.Apparatus and method for spectroscopic analysis of tissue to detect diabetes in an individual
US7027848B2 (en)2002-04-042006-04-11Inlight Solutions, Inc.Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte
US6654125B2 (en)2002-04-042003-11-25Inlight Solutions, IncMethod and apparatus for optical spectroscopy incorporating a vertical cavity surface emitting laser (VCSEL) as an interferometer reference
US6996292B1 (en)2002-04-182006-02-07Sandia CorporationStaring 2-D hadamard transform spectral imager
US20040045830A1 (en)*2002-04-242004-03-11Tseng Scott C-JCompositions and processes for format flexible, roll-to-roll manufacturing of electrophoretic displays
US7352470B1 (en)*2002-07-262008-04-01Lockheed Martin CorporationFourier transform spectrometry with a single-aperture interferometer
US7620212B1 (en)2002-08-132009-11-17Lumidigm, Inc.Electro-optical sensor
US20040218172A1 (en)*2003-01-242004-11-04Deverse Richard A.Application of spatial light modulators for new modalities in spectrometry and imaging
US7735729B2 (en)2003-04-042010-06-15Lumidigm, Inc.Biometric sensor
US7386152B2 (en)2003-04-042008-06-10Lumidigm, Inc.Noninvasive alcohol sensor
US7668350B2 (en)2003-04-042010-02-23Lumidigm, Inc.Comparative texture analysis of tissue for biometric spoof detection
US7627151B2 (en)2003-04-042009-12-01Lumidigm, Inc.Systems and methods for improved biometric feature definition
US7347365B2 (en)2003-04-042008-03-25Lumidigm, Inc.Combined total-internal-reflectance and tissue imaging systems and methods
US7819311B2 (en)2003-04-042010-10-26Lumidigm, Inc.Multispectral biometric sensor
US7147153B2 (en)2003-04-042006-12-12Lumidigm, Inc.Multispectral biometric sensor
US7440597B2 (en)2003-04-042008-10-21Rowe Robert KLiveness sensor
US8184873B2 (en)2003-04-042012-05-22Lumidigm, Inc.White-light spectral biometric sensors
US7751594B2 (en)2003-04-042010-07-06Lumidigm, Inc.White-light spectral biometric sensors
US7545963B2 (en)2003-04-042009-06-09Lumidigm, Inc.Texture-biometrics sensor
US7263213B2 (en)2003-12-112007-08-28Lumidigm, Inc.Methods and systems for estimation of personal characteristics from biometric measurements
US7265830B2 (en)2004-02-252007-09-04Bwt Property, Inc.Fourier Transform spectrometer apparatus using multi-element MEMS
US20050185179A1 (en)*2004-02-252005-08-25Wang Sean X.Fourier transform spectrometer apparatus using multi-element mems
US7652765B1 (en)2004-03-062010-01-26Plain Sight Systems, Inc.Hyper-spectral imaging methods and devices
US7460696B2 (en)2004-06-012008-12-02Lumidigm, Inc.Multispectral imaging biometrics
US7394919B2 (en)2004-06-012008-07-01Lumidigm, Inc.Multispectral biometric imaging
US7508965B2 (en)2004-06-012009-03-24Lumidigm, Inc.System and method for robust fingerprint acquisition
US8913800B2 (en)2004-06-012014-12-16Lumidigm, Inc.Optical biometrics imaging with films
US8165357B2 (en)2004-06-012012-04-24Lumidigm, Inc.Two camera biometric imaging
US8229185B2 (en)2004-06-012012-07-24Lumidigm, Inc.Hygienic biometric sensors
US7539330B2 (en)2004-06-012009-05-26Lumidigm, Inc.Multispectral liveness determination
US7835554B2 (en)2004-06-012010-11-16Lumidigm, Inc.Multispectral imaging biometrics
US7831072B2 (en)2004-06-012010-11-09Lumidigm, Inc.Multispectral imaging biometrics
US8787630B2 (en)2004-08-112014-07-22Lumidigm, Inc.Multispectral barcode imaging
US20060197086A1 (en)*2005-03-042006-09-07Samsung Electronics Co., Ltd.Organic light emitting diode display and manufacturing method thereof
US7801338B2 (en)2005-04-272010-09-21Lumidigm, Inc.Multispectral biometric sensors
US20080316484A1 (en)*2006-04-042008-12-25Christian Sean MSpectroscope and Method Performing Spectroscopy Utilizing an Adaptive Optical Element
US7440098B2 (en)2006-04-042008-10-21Custom Sensors And TechnologySpectroscope and method of performing spectroscopy utilizing a micro mirror array
US7508506B2 (en)2006-04-042009-03-24Custom Sensors And TechnologyMethod and apparatus for performing spectroscopy downhole within a wellbore
US7728971B2 (en)2006-04-042010-06-01Precision Energy Services, Inc.Method and apparatus for performing spectroscopy downhole within a wellbore
US20090103087A1 (en)*2006-04-042009-04-23Christian Sean MMethod and Apparatus for Performing Spectroscopy Downhole within a Wellbore
US20070229821A1 (en)*2006-04-042007-10-04Christian Sean MSpectroscope and Method of Performing Spectroscopy
US20080078544A1 (en)*2006-04-042008-04-03Christian Sean MMethod and Apparatus for Performing Spectroscopy Downhole within a Wellbore
US7719680B2 (en)2006-04-042010-05-18Custom Sensors And TechnologySpectroscope and method performing spectroscopy utilizing an adaptive optical element
US8831297B2 (en)2006-07-192014-09-09Lumidigm, Inc.Contactless multispectral biometric capture
US7995808B2 (en)2006-07-192011-08-09Lumidigm, Inc.Contactless multispectral biometric capture
US8781181B2 (en)2006-07-192014-07-15Lumidigm, Inc.Contactless multispectral biometric capture
US8175346B2 (en)2006-07-192012-05-08Lumidigm, Inc.Whole-hand multispectral biometric imaging
US7899217B2 (en)2006-07-192011-03-01Lumidign, Inc.Multibiometric multispectral imager
US7804984B2 (en)2006-07-312010-09-28Lumidigm, Inc.Spatial-spectral fingerprint spoof detection
US7801339B2 (en)2006-07-312010-09-21Lumidigm, Inc.Biometrics with spatiospectral spoof detection
US8285010B2 (en)2007-03-212012-10-09Lumidigm, Inc.Biometrics based on locally consistent features
US8355545B2 (en)2007-04-102013-01-15Lumidigm, Inc.Biometric detection using spatial, temporal, and/or spectral techniques
JP2011524231A (en)*2008-06-172011-09-01コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for optical inspection of the interior of a turbid medium
US20120092636A1 (en)*2009-04-302012-04-19Asml Netherlands B.V.Metrology Apparatus, Lithography Apparatus and Method of Measuring a Property of a Substrate
US8731250B2 (en)2009-08-262014-05-20Lumidigm, Inc.Multiplexed biometric imaging
US8872908B2 (en)2009-08-262014-10-28Lumidigm, IncDual-imager biometric sensor
US20110108721A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Filter Wheel Assembly for Downhole Spectroscopy
US8735803B2 (en)2009-11-062014-05-27Precision Energy Services, IncMulti-channel detector assembly for downhole spectroscopy
US8536516B2 (en)2009-11-062013-09-17Precision Energy Services, Inc.Multi-channel source assembly for downhole spectroscopy
US8436296B2 (en)2009-11-062013-05-07Precision Energy Services, Inc.Filter wheel assembly for downhole spectroscopy
US20110108720A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Multi-Channel Detector Assembly for Downhole Spectroscopy
US8164050B2 (en)2009-11-062012-04-24Precision Energy Services, Inc.Multi-channel source assembly for downhole spectroscopy
US20110108719A1 (en)*2009-11-062011-05-12Precision Energy Services, Inc.Multi-Channel Source Assembly for Downhole Spectroscopy
US8570149B2 (en)2010-03-162013-10-29Lumidigm, Inc.Biometric imaging using an optical adaptive interface
US8542353B2 (en)2010-09-302013-09-24Precision Energy Services, Inc.Refractive index sensor for fluid analysis
US8411262B2 (en)2010-09-302013-04-02Precision Energy Services, Inc.Downhole gas breakout sensor
US10091440B1 (en)2014-05-052018-10-02Lockheed Martin CorporationSystem and method for providing compressive infrared imaging
CN114279685A (en)*2021-12-142022-04-05成都信和创业科技有限责任公司Low-light-level night vision target dynamic simulation method and device with variable distance and variable spectrum
CN117664892A (en)*2022-08-242024-03-08华为技术有限公司Miniature infrared spectrometer and electronic equipment

Also Published As

Publication numberPublication date
US6034370A (en)2000-03-07

Similar Documents

PublicationPublication DateTitle
US5828066A (en)Multisource infrared spectrometer
US8922783B2 (en)Multiband spatial heterodyne spectrometer and associated methods
JP4712923B2 (en) Confocal spectroscopy system and spectroscopy method
US7180588B2 (en)Devices and method for spectral measurements
US7342658B2 (en)Programmable spectral imaging system
US5539517A (en)Method for simultaneously measuring the spectral intensity as a function of wavelength of all the pixels of a two dimensional scene
US5479258A (en)Image multispectral sensing
US6870619B1 (en)Spectrometer and method for measuring optical spectrum
US5835214A (en)Method and apparatus for spectral analysis of images
US5777736A (en)High etendue imaging fourier transform spectrometer
US7652765B1 (en)Hyper-spectral imaging methods and devices
EP0740133B1 (en)Sample illumination for spectroscopic apparatus and method
US20050270528A1 (en)Hyper-spectral imaging methods and devices
EP2136191B1 (en)Slab waveguide spatial heterodyne spectrometer assembly
US5048959A (en)Spectrographic imaging system
US5059027A (en)Spatial heterodyne spectrometer and method
US7636158B1 (en)Optimal coupling of high performance line imaging spectrometer to imaging system
EP2225599A2 (en)Multi-spectral light source illumination and fluorescence detection
US7535647B1 (en)Beam splitters for, for instance, high efficiency spectral imagers
EP0520463B1 (en)A high-resolution spectroscopy system
WO2005088264A1 (en)Hyper-spectral imaging methods and devices
US7167249B1 (en)High efficiency spectral imager
EP0957345B1 (en)Methods and apparati for spectral imaging using interferometers of the Fabry-Perot type
WO2005086818A2 (en)Devices and method for spectral measurements
US20240077356A1 (en)Compact holographic slm spectrometer

Legal Events

DateCodeTitleDescription
REMIMaintenance fee reminder mailed
LAPSLapse for failure to pay maintenance fees
LAPSLapse for failure to pay maintenance fees

Free format text:PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FPLapsed due to failure to pay maintenance fee

Effective date:20021027


[8]ページ先頭

©2009-2025 Movatter.jp