Movatterモバイル変換


[0]ホーム

URL:


US5685860A - Self-capping needle assembly - Google Patents

Self-capping needle assembly
Download PDF

Info

Publication number
US5685860A
US5685860AUS08/483,549US48354995AUS5685860AUS 5685860 AUS5685860 AUS 5685860AUS 48354995 AUS48354995 AUS 48354995AUS 5685860 AUS5685860 AUS 5685860A
Authority
US
United States
Prior art keywords
assembly
needle
cap
hub
distal tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/483,549
Inventor
Joseph J. Chang
Thomas Sloane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethicon Endo Surgery Inc
Smiths Medical ASD Inc
Original Assignee
Johnson and Johnson Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Medical IncfiledCriticalJohnson and Johnson Medical Inc
Priority to US08/483,549priorityCriticalpatent/US5685860A/en
Assigned to JOHNSON & JOHNSON MEDICAL, INC.reassignmentJOHNSON & JOHNSON MEDICAL, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: CHANGE, JOSEPH J., SLOANE, THOMAS
Priority to IL11839396Aprioritypatent/IL118393A0/en
Priority to BR9602636Aprioritypatent/BR9602636A/en
Priority to JP8165181Aprioritypatent/JPH0999071A/en
Priority to ZA9604784Aprioritypatent/ZA964784B/en
Priority to EP96304186Aprioritypatent/EP0747082A3/en
Priority to TW086207437Uprioritypatent/TW415243U/en
Publication of US5685860ApublicationCriticalpatent/US5685860A/en
Application grantedgrantedCritical
Assigned to ETHICON, INC.reassignmentETHICON, INC.MERGER (SEE DOCUMENT FOR DETAILS).Assignors: JOHNSON & JOHNSON MEDICAL, INC.
Assigned to NEW ENDO, INC.reassignmentNEW ENDO, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ETHICON, INC.
Assigned to ETHICON ENDO SURGERY, INC.reassignmentETHICON ENDO SURGERY, INC.CHANGE OF NAME (SEE DOCUMENT FOR DETAILS).Assignors: NEW ENDO, INC.
Assigned to MEDEX, INC.reassignmentMEDEX, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ETHICON ENDO-SURGERY, INC.
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

An improved self-capping disposable needle assembly for use in combination with a skin puncture apparatus is provided. More specifically, an improved self-capping disposable needle assembly for use with a catheter which assembly contains a pleated sleeve made from any natural or synthetic fiber material is provided. The fiber materials employed as the pleated sleeve optionally may be treated with a suitable agent that provides the fiber material with a hydrophobic coating and prevents fluids such as blood from seeping therefrom.

Description

FIELD OF THE INVENTION
The present invention provides an improved self-capping disposable needle assembly for use in combination with a skin puncture apparatus. More specifically, the present invention relates to an improved self-capping disposable needle assembly for use with a skin puncture apparatus such as a catheter assembly which contains a pleated sleeve made from any natural or synthetic fiber material. Moreover, the fiber material employed as the pleated sleeve may be braided, non-woven or woven and it, optionally, may be treated with a suitable agent that provides the fiber with a hydrophobic coating. Such a coating will prevent unwanted fluids such as blood from seeping through the fiber material during use.
BACKGROUND OF THE INVENTION
In today's health industry, there is an ongoing risk of exposure to infectious diseases such as human immunodeficiency virus (HIV) and other AIDS related viruses by health care workers who are continuously utilizing skin puncture apparatuses for injecting patients with medicaments. The term skin puncture apparatus is used herein to denote devices that are employed in the medical profession to pierce the skin of a patient. Such devices include IV catheter assemblies, intrascopic devices, hypodermic syringe assemblies, biopsy needles and sutures.
Because of this potential risk, disposable needles are considered by many individuals in the health care industry as being potentially infective and are accordingly handled with great care to avoid accidental contamination and/or injury. Moreover, a great deal of effort has gone into developing improved needle assemblies which are safer to handle and which prevent accidents from occurring.
One way of avoiding accidental contamination and/or injury is to advise health care workers to place disposable needles in puncture resistant containers. Although the use of puncture resistant containers represents a viable solution to the aforementioned problem, it is not a practical way since it presupposes that puncture resistant containers are available in all circumstances wherein contamination could occur.
In recent years it has become more convenient and safer to provide capping assemblies secured to each needle for immediate capping after use of the needle. One such capping assembly is disclosed in U.S. Pat. No. 3,134,380 to Armao. Specifically, this patent discloses a retractable needle guard which extends over the length of the needle assembly prior to use and is retracted as the needle is inserted into a patient. In the typical needle assembly of this kind, a shield which covers a significant portion of the needle shaft is provided at all times. Several drawbacks accordingly are associated with these types of needle assemblies. For example, these types of needle assemblies have less usable needle length when a conventional needle is adapted to the assembly; or they require a significantly longer needle shaft. Additionally, all the prior art needle assemblies of this type leave the distal tip of the needle exposed or capable of being exposed. Moreover, the tip of the needle is not locked in a completely enclosed guard. Therefore, needle assemblies as described in Armao may not fully protect health care workers from accidental contamination and/or injury.
More recent needle assemblies which overcome the aforementioned problems have been developed and are currently being used in health industries today. Such needle assemblies are described, for example, in U.S. Pat. Nos. 4,978,344 and 4,994,041, both to Dombrowski et al. Specifically, these patents to Dombrowski et al. disclose a needle assembly which includes a hub for connecting the assembly to a fluid conduit. The hub includes a passageway extending therethrough to receive a hollow needle in fluid communication therewith. The cap has a neutral position along the needle adjacent to the hub for exposing a length of the needle, and an extended position for capping the distal tip of the needle. The needle is disposed within a passageway of a catheter assembly whereby removal of the needle from the passageway of the catheter assembly moves the cap to the extended position, capping the distal tip as the cap is unseated from the catheter assembly.
A variation of the needle assemblies disclosed in the foregoing Dombrowski et al. patents is disclosed in U.S. Pat. No. 5,312,371 to Dombrowski et al. More specifically, this patent relates to a method for making a self-capping needle and catheter assembly which includes placing a needle hub and cap on a pin, with the pin extending through the passageway thereof. Two sheets of organic polymeric material are placed on the hub and the cap. The sleeve containing this organic polymeric material is then permanently stretched to a predetermined length. The cap, hub and organic polymeric sleeve are, according to this patent, placed on a needle and the cap is moved against the hub, folding the sleeve therebetween for reception of the catheter assembly.
In all of the foregoing Dombrowski et al. patents, the sleeves are made of an organic polymeric material which are pleated into bellows using elaborate and costly thermal processes. Moreover, in addition to being formed through complicated processing techniques, the plastic sleeves employed in the Dombrowski et al. patents have low tensile strength and high elongation. Thus, under some circumstances the sleeve may break resulting in possible contamination and/or injury of the person handling the needle.
In light of the prior art and the problems associated with those needle assemblies, research is ongoing to develop new and improved needle assemblies which are extremely safe to use and which overcome the drawbacks mentioned hereinabove.
SUMMARY OF THE INVENTION
The present invention is directed to an improved pleated sleeve material for use in self-capping needle assemblies which are adapted to receive a skin puncture apparatus connected thereto. The pleated sleeve materials employed in the present invention include braided, woven or non-woven fibers such as dacron, silk, cotton, polyester, rayon, wool, linen, satin and the like. Mixtures of these fibers are also contemplated herein. Such fibers have higher tensile strengths and lower elongation values than the pleated sleeves that are fabricated from organic polymeric materials. Because of these properties, the fiber sleeves of the instant invention are stronger than those heretofore known. Moreover, the fiber sleeves of the present invention, which include any natural or synthetic fiber, can be pleated or formed into bellows without the need for elaborate and expensive thermal processes such as those employed in the prior art.
As stated hereinabove, the term skin puncture apparatus is used herein to denote medical devices that are employed in the health industry to pierce the skin of a patient. Illustrative examples of such skin puncture apparatuses that may be employed in the instant invention include, but are not limited to, IV catheter assemblies, intrascopic devices, hypodermic syringe assemblies, biopsy needles, sutures and the like. Of these skin puncture apparatuses, catheters are particularly preferred.
In a highly preferred embodiment of the present invention, the fiber material is treated with a suitable agent that forms a pleated sleeve which contains a hydrophobic coating thereon. Such a coating prevents blood and/or fluids that are inside the sleeve from seeping through the fiber material. Specific types of agents that may be employed in the instant invention are fluorocarbon-based materials that have a low energy effect when applied to the natural or synthetic fibers.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a longitudinal cross-sectional view of a needle assembly that may be employed in the present invention.
FIG. 2 is a side view of a catheter being completely removed from the needle assembly.
DETAILED DESCRIPTION OF THE INVENTION
As stated above, the present invention provides an improved pleated sleeve material for use in self-capping disposable needle assemblies that are adapted for use with a skin puncture apparatus. Although a wide variety of needle assemblies and skin puncture apparatuses may be employed in the present invention, reference is made to the accompanying drawings which illustrate one type of needle assembly and catheter assembly that may be employed in the present invention.
It should be noted that the basic structure of both the needle assembly and catheter assembly described hereinbelow and as depicted in the accompanying drawings are well known to those skilled in this art. For example, such structures are disclosed in U.S. Pat. Nos. 4,790,828, 4,994,041 and 5,312,371 all to Dombrowski et al. It also emphasized that the sleeve materials of the present invention may be used in other needle assemblies and skin puncture apparatuses that are known to those skilled in this art.
In each of the figures, the needle assembly is indicated as 10. Theneedle assembly 10 of the instant invention includes a combination of ahypodermic needle assembly 12 and acatheter assembly 14. Other skin puncture apparatuses such as intrascopic devices, hypodermic syringe assemblies, biopsy needles and sutures may be used in place ofcatheter assembly 14.
Specifically, thehypodermic needle assembly 12 includes ahub portion 16 having an inner cup shapedsurface 18 adapted to be connected to asyringe barrel 20. Thehub 16 of the hypodermic needle assembly includes apassageway 22 extending therethrough. Thehub 16 also includes a radially outwardly extendingflange 24 which is employed in the present invention to securehub 16 tosyringe barrel 20 with an appropriate type of locking mechanism such as a luer-locking mechanism.
Needle assembly 10 further includes a hollowmetallic needle 26 having a base 28 which is reversibly fitted intopassageway 22 ofhub 16. The hollow needle is in fluid communication withpassageway 22 and it includes adistal tip 30 which is a sharp pointed beveled portion adapted for puncturing the skin of a patient. Such a distal tip is well known to those skilled in this art.
Needle assembly 10 also includes acap 32 having a neutral position alongneedle 26 positioned nearhub 16 for exposing the length ofneedle 26 as shown in FIG. 1.Cap 32 also has an extended position for cappingdistal tip 30 as shown in FIG. 2.Cap 32 includes acap passageway 34 to allow passage ofneedle 26 therethrough and aninner surface 35 having at least oneflange 36 extending therefrom and tapered towardshub 16. Theflange 36 forms closedcorners 38 defined byinner surface 35.
In the extend position which is shown in FIG. 2,flange 36 coversneedle tip 30 and prevents the needle tip from re-enteringpassageway 34. Thecap 32 contains an outer seating surface not shown in the accompanying drawings for receiving thecatheter assembly 14.
Needle assembly 10 also includes asleeve 40 for connectingcap 32 tohub 16. Thesleeve 40 also serves to limit theextent cap 32 can be extended fromhub 16.Cap 32 may extend fromhub 16 to the full length ofneedle 26 and, when in combination withflange 36, it deflects theneedle tip 30 into closedcorners 38. The needle tip is thereafter locked undercap 32 when it is relocated to the extended position. Whensleeve 40 is fully extended,flange 36 is in combination withsleeve 40, thus providing a sufficient means for lockingcap 32 overdistal tip 30 ofneedle 26.
Sleeve 40 employed in the present invention is in the form of an expandable pleated or bellow-shapedsleeve interconnecting hub 16 andcap 32 for perfecting a seal and closure about the full length ofneedle 26 when the cap is extended as shown in FIG. 2.
In accordance with the instant invention, the sleeve is made from any natural or synthetic fiber material. More specifically, the fiber materials that are employed in the present invention as the sleeve material may be braided, woven or non-woven fibers. Specific types of fiber materials that may be employed in the present invention assleeve 40 include, but are not limited to, silk, cotton, rayon, linen, dacron, wool, satin, nylon, polyester and the like. Mixtures of the fiber materials are also contemplated in the present invention. Of these fibers, polyesters are particularly preferred as the sleeve material.
As stated above, whensleeve 40 is composed of a fiber material it will have a higher tensile strength and lower elongation value compared to plastic materials that are commonly employed in the prior art as the sleeve material. Because of the foregoing properties, the sleeve of the present invention is highly resistant to accidental breakage and it is easier to expand overneedle 26.
Sleeve 40 is made by forming two sheets of fiber material abouthub 16 andcap 32, sealing the edges thereof, and fastening it tohub 16 andcap 32. The sealing of the edges of the two fiber materials and the fastening tohub 16 andcap 32 are performed using conventional techniques that are well known to those skilled in this particular field.
In a highly preferred embodiment of the instant invention, the fiber material is coated with an agent which providessleeve 40 with a hydrophobic coating. By forming a hydrophobic coating aroundsleeve 40, fluids inside the sleeve, such as blood, are prevented from seeping through the sleeve material. Suitable agents that may be used to providesleeve 40 with a hydrophobic coating include fluorocarbon-based materials which have a low surface energy effect on the fiber material when applied thereto. Specific examples of such fluorocarbon-based materials include, but are not limited to, fluoromethane, fluoroethane, fluoropropane, fluoroethene, fluoropropene and the like. Mixtures of these fluorocarbon-based materials are also contemplated in the present invention.
The hydrophobic coating may be provided using conventional coating techniques that are well known to those skilled in the art. For example, the hydrophobic coating may be provided to the fiber material by lamination, direct calendaring, direct coating or transfer coating. The foregoing description provides a detailed account of theneedle assembly 10 employed in the present invention.
The following provides a description of thecatheter assembly 14 used in the present invention. As stated above other skin puncture apparatuses such as intrascopic devices, hypodermic syringe apparatuses, biopsy needles and sutures may be used instead ofcatheter assembly 14.
Thecatheter assembly 14 shown in FIG. 2 includes ashaft portion 44 which is disposed about the uncovered length ofneedle 26 and acts to exposedistal tip 30. In this particularly position,distal tip 30 may initiate a puncture through a patient's skin and gain entry to the patient such thatshaft portion 44 of thecatheter 14 enters the patient. Thecatheter assembly 14 also contains acatheter hub 46 connected toshaft portion 44 and having an inner surface for releasable seating on thecap seating surface 48 whereby removal ofneedle 26 fromshaft 44 moves cap 32 to the extended position, ashub 46 of the catheter assembly is unseated from the seating surface ofcap 32.Distal tip 30 ofneedle 26 is concurrently capped asneedle 26 is removed from the catheter assembly.
By adopting the above structure, a person administering the injection such as a nurse or doctor does not have to removeneedle assembly 12 fromcatheter assembly 14, and then separately capdistal tip 30 ofneedle 26. This greatly reduces the probability of accidental contamination and/or injury. Instead, needle 26 is capped in a single motion. It should be noted thatsleeve 40 of the present invention also maintainscap 32 locked againstdistal tip 30.
In accordance with the present invention, seatingsurface 48 provides an outer cylindrical or frustoconical surface forcap 32. Thecatheter hub 46 includes an inner complementing surface defining a seat in friction fit overseating surface 48 whencap 32 is in a neutral position. Other reversible methods of seating or connecting the seating surface are also contemplated in the present invention. Thehub 46 also includes radially outwardly extendingannular flange 50 which permits for a luer lock of the catheter.
In operation,catheter assembly 14 is seated overcap 32 and both are disposed adjacent tohub 16. After catherization, thehub portion 16 is moved away from thecatheter 14 withdrawingneedle 26 from the catheter and extendingsleeve 40. Thehub 16 depending on the particular use may or may not contain ahypodermic syringe assembly 20.
Aftercap 32 is fully extended so thatflange 36 is covered bydistal tip 30 inclosed corners 38, the length ofsleeve 40 acts to limit any further extension ofcap 32, andflange 36 deflectsdistal tip 30 to prevent it from re-enteringcap passageway 22 by moving it intoclosed corners 38 thereby irreversibly cappingneedle 26. As is illustrated in FIG. 2, upon further removal ofneedle assembly 10 fromcatheter assembly 14,cap 32 becomes unseated fromcatheter hub 46. When catherization is done in one single motion, the withdrawal of the remainder of the needle assembly from thecatheter assembly 14 extends and coverscap 32 overdistal tip 30 while simultaneously releasing the catheter therefrom.
Thus, the present invention provides a more efficient and safer means for catherizing a patient than heretofore known. Moreover, sincesleeve 40 is made from a braided, woven or non-woven fiber, it has a higher tensile strength and lower elongation value than would a sleeve made of plastic material. Such properties result in a needle assembly which is more durable and less likely to break than those disclosed in the prior art. Furthermore, unlike plastic sleeves which require elaborate and expensive thermal processes for pleating, the sleeves of the present invention are pleated using conventional processes which are less expensive and not as elaborate as those required for pleating plastic sleeves.
While the present invention has been particularly shown and described with respect to preferred embodiments thereof, it will be understood by one skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the instant invention.

Claims (15)

What is claimed is:
1. A disposable needle assembly for use in combination with a skin puncture apparatus, said assembly comprising a needle assembly including a needle having a sharpened distal tip and a pleated hydrophobic sleeve surrounding said needle wherein said pleased sleeve is made from a natural or synthetic fiber material wherein the fiber material is braided, woven or non-woven.
2. The assembly of claim 1, wherein the fiber material is silk, cotton, rayon, linen, wool, satin, nylon, polyester or mixtures thereof.
3. The assembly of claim 2, wherein the fiber material is polyester.
4. The assembly of claim 3, wherein the fiber material is treated with an agent which is effective to provide a hydrophobic coating to said fiber.
5. The assembly of claim 4, wherein said agent is a fluorocarbon-based material which has a low surface energy effect when applied to said fiber material.
6. The assembly of claim 5, wherein the fluorocarbon-based material is fluoromethane, fluoroethane, fluoropropane, fluoroethene, fluoropropene or mixtures thereof.
7. The assembly of claim 1 wherein said needle assembly further comprises:
a hub portion for connecting said needle assembly to a fluid conduit, said hub portion including a passageway extending therethrough;
a hollow needle portion in fluid communication with said hub passageway, said needle portion having a distal tip relative to said hub portion;
a cap including said pleated sleeve for connecting the hub portion to said cap and limiting the extent to which the cap can be extended from the hub portion, and locking means for locking said cap over said distal tip when said pleated sleeve is fully extended, said cap having a neutral position along said needle portion near said hub portion of said needle assembly for exposing a length of said needle portion, and an extended position for capping said distal tip.
8. The assembly of claim 7, wherein said skin puncture apparatus is a catheter assembly, an intrascopic device, a syringe needle apparatus, a biopsy needle or a suture.
9. The assembly of claim 8, wherein the skin puncture apparatus is a catheter assembly.
10. The assembly of claim 9 wherein said catheter assembly includes a passageway therethrough, a shaft portion disposed about said exposed length of said needle portion and exposing said distal tip, and a catheter hub for releasable seating on said cap whereby removal of said needle portion from said shaft portion moves said cap relative to said needle portion to said extended position capping said distal tip as said catheter hub is unseated from said cap.
11. The assembly of claim 10, where said cap further includes a releasable securing means for positively securing said cap with said catheter assembly as said needle portion is disposed within said passageway of said catheter assembly and releasing said cap from said catheter assembly when said cap is moved to said extended position whereby removal of said needle portion from said passageway of said catheter assembly moves said cap relative to said needle portion to said extended position capping said distal tip as said capping means is unseated from said catheter assembly.
12. A disposable needle assembly for use in combination with a skin puncture apparatus, said assembly comprising:
a catheter assembly including a passageway therethrough;
a hub portion for connecting said needle assembly to said catheter assembly, said hub portion including a passageway extending therethrough;
a hollow needle portion in fluid communication with said hub passageway, said needle portion having a distal tip relative to said hub portion;
a cap including (i) a pleated sleeve for connecting the hub portion to said cap and limiting the extent to which the cap can be extended from the hub portion, wherein said pleated sleeve is hydrophobic and composed of a natural or synthetic fiber material; (ii) locking means for locking said cap over said distal tip when said pleated sleeve is fully extended, said cap having a neutral position along said needle portion near said hub portion of said needle assembly for exposing a length of said needle portion and an extended position for capping said distal tip; and (iii) a releasable securing means for positively securing said cap with said catheter assembly as said needle portion is disposed within said passageway of said catheter assembly and releasing said cap from said catheter assembly when said cap is moved to said extended position whereby removal of said needle portion from said passageway of said catheter assembly moves said cap relative to said needle portion to said extended position capping said distal tip as said capping means is unseated from said catheter assembly.
13. The assembly of claim 12, wherein the fiber material is braided, woven or non-woven.
14. The assembly of claim 13, wherein the fiber material is silk, cotton, rayon, linen, wool, satin, nylon, polyester or mixtures thereof.
15. The assembly of claim 14, wherein the fiber material is polyester.
US08/483,5491995-06-071995-06-07Self-capping needle assemblyExpired - LifetimeUS5685860A (en)

Priority Applications (7)

Application NumberPriority DateFiling DateTitle
US08/483,549US5685860A (en)1995-06-071995-06-07Self-capping needle assembly
IL11839396AIL118393A0 (en)1995-06-071996-05-22Improved self-capping needle assembly
BR9602636ABR9602636A (en)1995-06-071996-06-05 Disposable needle set for use in combination with a skin puncture device
JP8165181AJPH0999071A (en)1995-06-071996-06-06Self capping needle assembly
ZA9604784AZA964784B (en)1995-06-071996-06-06Self-capping needle assembly.
EP96304186AEP0747082A3 (en)1995-06-071996-06-06Self-capping needle assembly
TW086207437UTW415243U (en)1995-06-071996-08-19Disposable needle kit in combination with skin piercing device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US08/483,549US5685860A (en)1995-06-071995-06-07Self-capping needle assembly

Publications (1)

Publication NumberPublication Date
US5685860Atrue US5685860A (en)1997-11-11

Family

ID=23920518

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US08/483,549Expired - LifetimeUS5685860A (en)1995-06-071995-06-07Self-capping needle assembly

Country Status (7)

CountryLink
US (1)US5685860A (en)
EP (1)EP0747082A3 (en)
JP (1)JPH0999071A (en)
BR (1)BR9602636A (en)
IL (1)IL118393A0 (en)
TW (1)TW415243U (en)
ZA (1)ZA964784B (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5807352A (en)*1995-11-061998-09-15Tamaro; Frank A.Safety cap assembly for needles
US6080138A (en)*1998-09-232000-06-27Lemke; Christy L.IV protector
US6213978B1 (en)1998-10-272001-04-10Cherie A. VoytenIntravenous catheter insertion apparatus
US6234999B1 (en)2000-01-182001-05-22Becton, Dickinson And CompanyCompact needle shielding device
US20020169418A1 (en)*2001-04-182002-11-14Thomas MenziSafety spring catheter introducer assembly
US6527747B2 (en)*2001-05-252003-03-04Becton Dickinson And CompanyIntroducer needle assembly having a tethered needle shield
US20030114797A1 (en)*2001-12-172003-06-19Vaillancourt Vincent L.Safety needle with collapsible sheath
US20040127854A1 (en)*2002-12-302004-07-01Leinsing Karl R.Safety catheter system and method
US20050147652A1 (en)*2002-02-122005-07-07Atkins Jane T.Cell delivery system
US20050245870A1 (en)*2004-05-032005-11-03Leroy BrownPorous multiple sample sleeve and blood drawing device for flash detection
US20050272150A1 (en)*2002-11-142005-12-08Teumer Jeffrey KCultivation of hair inductive cells
US7232433B1 (en)1999-09-222007-06-19Siemens Medical Solutions Usa, Inc.Medical diagnostic ultrasound catheter with dielectric isolation
US20080133027A1 (en)*2006-12-012008-06-05Hodges Steve JUrologic devices incorporating collagen inhibitors
US20080262434A1 (en)*2007-04-202008-10-23Vaillancourt Michael JHuber needle with safety sheath
US20080319387A1 (en)*2005-02-142008-12-25Shai AmisarMethod and Apparatus for Inserting a Catheter Device
US7604616B2 (en)1998-04-092009-10-20Becton, Dickinson And CompanyCatheter and introducer needle assembly with needle shield
US20100152677A1 (en)*2008-12-112010-06-17Vaillancourt Michael JDevice for removing a huber needle from a patient
CN101933830A (en)*2010-09-072011-01-05吉林大学 A treatment method for improving wettability of bionic medical puncture needle
US8057431B2 (en)2006-12-212011-11-15B. Braun Melsungen AgHinged cap for needle device
US8177760B2 (en)2004-05-122012-05-15C. R. Bard, Inc.Valved connector
EP2567662A1 (en)2011-09-072013-03-13VLV associates, Inc.Protective cover assembly for a needle assembly
US8486024B2 (en)2011-04-272013-07-16Covidien LpSafety IV catheter assemblies
US8574197B2 (en)2004-02-262013-11-05C. R. Bard, Inc.Huber needle safety enclosure
US8628497B2 (en)2011-09-262014-01-14Covidien LpSafety catheter
US8715250B2 (en)2011-09-262014-05-06Covidien LpSafety catheter and needle assembly
US8834422B2 (en)2011-10-142014-09-16Covidien LpVascular access assembly and safety device
US8932258B2 (en)2010-05-142015-01-13C. R. Bard, Inc.Catheter placement device and method
US8939938B2 (en)2006-10-122015-01-27Covidien LpNeedle tip protector
US9095683B2 (en)2011-02-252015-08-04C. R. Bard, Inc.Medical component insertion device including a retractable needle
US9125985B2 (en)2013-04-012015-09-08iMed Technology, Inc.Needle with protective cover member
US20150352333A1 (en)*2013-01-302015-12-10Equipos Médicos Vizcarra, S.A.Closed peripheral intravenous catheter with safety system cpivcss
US20150360005A1 (en)*2013-01-302015-12-17Equipos Médicos Vizcarra, S.A.Peripheral intravenous catheter with bellows-type passive safety system ivcbts
US9248234B2 (en)2010-09-102016-02-02C. R. Bard, Inc.Systems for isolation of a needle-based infusion set
US9522254B2 (en)2013-01-302016-12-20Vascular Pathways, Inc.Systems and methods for venipuncture and catheter placement
US9616201B2 (en)2011-01-312017-04-11Vascular Pathways, Inc.Intravenous catheter and insertion device with reduced blood spatter
US9675784B2 (en)2007-04-182017-06-13Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US9872971B2 (en)2010-05-142018-01-23C. R. Bard, Inc.Guidewire extension system for a catheter placement device
US9950139B2 (en)2010-05-142018-04-24C. R. Bard, Inc.Catheter placement device including guidewire and catheter control elements
US10220191B2 (en)2005-07-062019-03-05Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US10232146B2 (en)2014-09-052019-03-19C. R. Bard, Inc.Catheter insertion device including retractable needle
US10384039B2 (en)2010-05-142019-08-20C. R. Bard, Inc.Catheter insertion device including top-mounted advancement components
US10493262B2 (en)2016-09-122019-12-03C. R. Bard, Inc.Blood control for a catheter insertion device
US10525234B2 (en)2010-09-102020-01-07C. R. Bard, Inc.Antimicrobial/haemostatic interface pad for placement between percutaneously placed medical device and patient skin
CN110731813A (en)*2019-11-282020-01-31搏时(北京)医疗科技有限公司sternum puncture needle base assembly and sternum puncture needle
USD884160S1 (en)2019-02-252020-05-12iMed Technology, Inc.Huber safety needle
US10729846B2 (en)2010-09-102020-08-04C. R. Bard, Inc.Self-sealing pad for a needle-based infusion set
USD903101S1 (en)2011-05-132020-11-24C. R. Bard, Inc.Catheter
USD903100S1 (en)2015-05-012020-11-24C. R. Bard, Inc.Catheter placement device
USD921884S1 (en)2018-07-272021-06-08Bard Access Systems, Inc.Catheter insertion device
US11040176B2 (en)2015-05-152021-06-22C. R. Bard, Inc.Catheter placement device including an extensible needle safety component
US20210386974A1 (en)*2020-06-162021-12-16Becton, Dickinson And CompanyCatheter system to provide needle safety and related methods
US11389626B2 (en)2018-03-072022-07-19Bard Access Systems, Inc.Guidewire advancement and blood flashback systems for a medical device insertion system
US11400260B2 (en)2017-03-012022-08-02C. R. Bard, Inc.Catheter insertion device
US11559665B2 (en)2019-08-192023-01-24Becton, Dickinson And CompanyMidline catheter placement device
US11925779B2 (en)2010-05-142024-03-12C. R. Bard, Inc.Catheter insertion device including top-mounted advancement components
US12440652B2 (en)2019-09-202025-10-14Bard Peripheral Vascular, Inc.Intravenous catheter-placement device and method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3134380A (en)*1962-02-081964-05-26Thomas A ArmaoShielded hypodermic needle
US4790828A (en)*1987-08-071988-12-13Dombrowski Mitchell PSelf-capping needle assembly
US4978344A (en)*1988-08-111990-12-18Dombrowski Mitchell PNeedle and catheter assembly
US5295962A (en)*1992-04-291994-03-22Cardiovascular Dynamics, Inc.Drug delivery and dilatation catheter
US5312371A (en)*1993-07-271994-05-17Dombrowski Mitchell PMethod of making a needle sleeve assembly
US5419766A (en)*1993-09-281995-05-30Critikon, Inc.Catheter with stick protection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5013305A (en)*1988-06-291991-05-07Opie Eric ANeedle safety system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3134380A (en)*1962-02-081964-05-26Thomas A ArmaoShielded hypodermic needle
US4790828A (en)*1987-08-071988-12-13Dombrowski Mitchell PSelf-capping needle assembly
US4978344A (en)*1988-08-111990-12-18Dombrowski Mitchell PNeedle and catheter assembly
US4994041A (en)*1988-12-271991-02-19Dombrowski Mitchell PNeedle and catheter assembly
US5295962A (en)*1992-04-291994-03-22Cardiovascular Dynamics, Inc.Drug delivery and dilatation catheter
US5368566A (en)*1992-04-291994-11-29Cardiovascular Dynamics, Inc.Delivery and temporary stent catheter having a reinforced perfusion lumen
US5312371A (en)*1993-07-271994-05-17Dombrowski Mitchell PMethod of making a needle sleeve assembly
US5419766A (en)*1993-09-281995-05-30Critikon, Inc.Catheter with stick protection

Cited By (129)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5807352A (en)*1995-11-061998-09-15Tamaro; Frank A.Safety cap assembly for needles
US8864714B2 (en)1998-04-092014-10-21Becton, Dickinson And CompanyCatheter and introducer needle assembly with needle shield
US7604616B2 (en)1998-04-092009-10-20Becton, Dickinson And CompanyCatheter and introducer needle assembly with needle shield
US20100191188A1 (en)*1998-04-092010-07-29Becton, Dickinson And CompanyCatheter and Introducer Needle Assembly with Needle Shield
US6080138A (en)*1998-09-232000-06-27Lemke; Christy L.IV protector
US6213978B1 (en)1998-10-272001-04-10Cherie A. VoytenIntravenous catheter insertion apparatus
US7232433B1 (en)1999-09-222007-06-19Siemens Medical Solutions Usa, Inc.Medical diagnostic ultrasound catheter with dielectric isolation
US6234999B1 (en)2000-01-182001-05-22Becton, Dickinson And CompanyCompact needle shielding device
US6425884B1 (en)2000-01-182002-07-30Becton, Dickinson And CompanyCompact needle shielding device
US20020169418A1 (en)*2001-04-182002-11-14Thomas MenziSafety spring catheter introducer assembly
US7500965B2 (en)2001-04-182009-03-10B. Braun Melsungen AgSafety spring catheter introducer assembly
US6527747B2 (en)*2001-05-252003-03-04Becton Dickinson And CompanyIntroducer needle assembly having a tethered needle shield
US8066678B2 (en)*2001-12-172011-11-29Bard Access Systems, Inc.Safety needle with collapsible sheath
US8728029B2 (en)2001-12-172014-05-20Bard Access Systems, Inc.Safety needle with collapsible sheath
US20030114797A1 (en)*2001-12-172003-06-19Vaillancourt Vincent L.Safety needle with collapsible sheath
US7717888B2 (en)*2001-12-172010-05-18Patricia B. Vaillancourt, legal representativeSafety needle with collapsible sheath
US20090005743A1 (en)*2001-12-172009-01-01Vaillancourt Vincent LSafety needle with collapsible sheath
US20050147652A1 (en)*2002-02-122005-07-07Atkins Jane T.Cell delivery system
US20070255254A1 (en)*2002-02-122007-11-01Intercytex LimitedCell delivery system
US20070253939A1 (en)*2002-02-122007-11-01Intercytex LimitedCell delivery system
US20050272150A1 (en)*2002-11-142005-12-08Teumer Jeffrey KCultivation of hair inductive cells
US7785876B2 (en)2002-11-142010-08-31Aderans Research Institute, Inc.Cultivation of hair inductive cells
US7125396B2 (en)2002-12-302006-10-24Cardinal Health 303, Inc.Safety catheter system and method
US8029472B2 (en)2002-12-302011-10-04Carefusion 303, Inc.Safety catheter system and method
US9707378B2 (en)2002-12-302017-07-18Carefusion 303, Inc.Safety catheter system and method
US20040127854A1 (en)*2002-12-302004-07-01Leinsing Karl R.Safety catheter system and method
US20070100284A1 (en)*2002-12-302007-05-03Leinsing Karl RSafety catheter system and method
US10881834B2 (en)2002-12-302021-01-05Carefusion 303, Inc.Safety catheter system and method
US8574197B2 (en)2004-02-262013-11-05C. R. Bard, Inc.Huber needle safety enclosure
US8852154B2 (en)2004-02-262014-10-07C. R. Bard, Inc.Huber needle safety enclosure
US7530967B2 (en)*2004-05-032009-05-12Clearview Patient Safety Technologies, LlcPorous multiple sample sleeve and blood drawing device for flash detection
US20050245870A1 (en)*2004-05-032005-11-03Leroy BrownPorous multiple sample sleeve and blood drawing device for flash detection
US8177760B2 (en)2004-05-122012-05-15C. R. Bard, Inc.Valved connector
US20080319387A1 (en)*2005-02-142008-12-25Shai AmisarMethod and Apparatus for Inserting a Catheter Device
US10912930B2 (en)2005-07-062021-02-09Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US10806906B2 (en)2005-07-062020-10-20Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US11577054B2 (en)2005-07-062023-02-14Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US10220191B2 (en)2005-07-062019-03-05Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US12370349B2 (en)2005-07-062025-07-29Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US11020571B2 (en)2005-07-062021-06-01Vascular Pathways, Inc.Intravenous catheter insertion device and method of use
US11925778B2 (en)2005-07-062024-03-12Vascular Pathways, Inc.Intravenous catheter insertion device
US8939938B2 (en)2006-10-122015-01-27Covidien LpNeedle tip protector
US20090028914A1 (en)*2006-12-012009-01-29Wake Forest University Health ScienceMedical devices incorporating collagen inhibitors
US8883183B2 (en)2006-12-012014-11-11Wake Forest University Health SciencesMedical devices incorporating collagen inhibitors
US8668703B2 (en)2006-12-012014-03-11Wake Forest University Health SciencesMedical devices incorporating collagen inhibitors
US8883190B2 (en)2006-12-012014-11-11Wake Forest University Health SciencesUrologic devices incorporating collagen inhibitors
US20080133027A1 (en)*2006-12-012008-06-05Hodges Steve JUrologic devices incorporating collagen inhibitors
US20080132941A1 (en)*2006-12-012008-06-05Sullivan Christopher AMedical devices incorporating collagen inhibitors
US20090028920A1 (en)*2006-12-012009-01-29Wake Forest University Health SciencesUrological devices incorporating collagen inhibitors
US8715231B2 (en)2006-12-212014-05-06B. Braun Melsungen AgHinged cap for needle device
US8057431B2 (en)2006-12-212011-11-15B. Braun Melsungen AgHinged cap for needle device
US9675784B2 (en)2007-04-182017-06-13Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US9757540B2 (en)2007-04-182017-09-12Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US8597253B2 (en)2007-04-202013-12-03Bard Access SystemsHuber needle with safety sheath
US20080262434A1 (en)*2007-04-202008-10-23Vaillancourt Michael JHuber needle with safety sheath
US9713673B2 (en)2007-04-202017-07-25Bard Access Systems, Inc.Huber needle with safety sheath
US10525236B2 (en)2007-05-072020-01-07Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US10086171B2 (en)2007-05-072018-10-02Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US10799680B2 (en)2007-05-072020-10-13Vascular Pathways, Inc.Intravenous catheter insertion and blood sample devices and method of use
US20100152677A1 (en)*2008-12-112010-06-17Vaillancourt Michael JDevice for removing a huber needle from a patient
US8535273B2 (en)2008-12-112013-09-17Bard Access Systems, Inc.Device for removing a huber needle from a patient
US8231582B2 (en)2008-12-112012-07-31Bard Access Systems, Inc.Device for removing a Huber needle from a patient
US9662441B2 (en)2008-12-112017-05-30Bard Access Systems, Inc.Device for removing a huber needle from a patient
US11278702B2 (en)2010-05-142022-03-22C. R. Bard, Inc.Guidewire extension system for a catheter placement device
US10384039B2 (en)2010-05-142019-08-20C. R. Bard, Inc.Catheter insertion device including top-mounted advancement components
US12296115B2 (en)2010-05-142025-05-13C. R. Bard, Inc.Insertion device
US11135406B2 (en)2010-05-142021-10-05C. R. Bard, Inc.Catheter insertion device including top-mounted advancement components
US10688280B2 (en)2010-05-142020-06-23C. R. Bard, Inc.Catheter placement device including guidewire and catheter control elements
US10426931B2 (en)2010-05-142019-10-01C. R. Bard, Inc.Catheter placement device and method
US11925779B2 (en)2010-05-142024-03-12C. R. Bard, Inc.Catheter insertion device including top-mounted advancement components
US10688281B2 (en)2010-05-142020-06-23C. R. Bard, Inc.Catheter placement device including guidewire and catheter control elements
US8932258B2 (en)2010-05-142015-01-13C. R. Bard, Inc.Catheter placement device and method
USD735321S1 (en)2010-05-142015-07-28C. R. Bard, Inc.Catheter
US10722685B2 (en)2010-05-142020-07-28C. R. Bard, Inc.Catheter placement device including guidewire and catheter control elements
US9872971B2 (en)2010-05-142018-01-23C. R. Bard, Inc.Guidewire extension system for a catheter placement device
US9950139B2 (en)2010-05-142018-04-24C. R. Bard, Inc.Catheter placement device including guidewire and catheter control elements
USD733289S1 (en)2010-05-142015-06-30C. R. Bard, Inc.Catheter placement device
US11000678B2 (en)2010-05-142021-05-11C. R. Bard, Inc.Catheter placement device and method
US8998852B2 (en)2010-05-142015-04-07C. R. Bard, Inc.Catheter placement device and method
CN101933830A (en)*2010-09-072011-01-05吉林大学 A treatment method for improving wettability of bionic medical puncture needle
US10143799B2 (en)2010-09-102018-12-04C. R. Bard, Inc.Systems for isolation of a needle-based infusion set
US9248234B2 (en)2010-09-102016-02-02C. R. Bard, Inc.Systems for isolation of a needle-based infusion set
US10729846B2 (en)2010-09-102020-08-04C. R. Bard, Inc.Self-sealing pad for a needle-based infusion set
US10525234B2 (en)2010-09-102020-01-07C. R. Bard, Inc.Antimicrobial/haemostatic interface pad for placement between percutaneously placed medical device and patient skin
US10806900B2 (en)2010-09-102020-10-20C. R. Bard. Inc.Insertion device with interface pad and methods of making
US10328239B2 (en)2011-01-312019-06-25Vascular Pathways, Inc.Intravenous catheter and insertion device with reduced blood spatter
US11202886B2 (en)2011-01-312021-12-21Vascular Pathways, Inc.Intravenous catheter and insertion device with reduced blood spatter
US9616201B2 (en)2011-01-312017-04-11Vascular Pathways, Inc.Intravenous catheter and insertion device with reduced blood spatter
US9095683B2 (en)2011-02-252015-08-04C. R. Bard, Inc.Medical component insertion device including a retractable needle
US11931534B2 (en)2011-02-252024-03-19C. R. Bard, Inc.Medical component insertion device including a retractable needle
US9861792B2 (en)2011-02-252018-01-09C. R. Bard, Inc.Medical component insertion device including a retractable needle
US11123524B2 (en)2011-02-252021-09-21C. R. Bard, Inc.Medical component insertion device including a retractable needle
US8926563B2 (en)2011-04-272015-01-06Covidien LpSafety IV catheter assemblies
US8486024B2 (en)2011-04-272013-07-16Covidien LpSafety IV catheter assemblies
USD903101S1 (en)2011-05-132020-11-24C. R. Bard, Inc.Catheter
EP2567662A1 (en)2011-09-072013-03-13VLV associates, Inc.Protective cover assembly for a needle assembly
US20130324883A1 (en)*2011-09-072013-12-05Michael J. VaillancourtProtective Cover Assembly for a Needle Assembly
US8905944B2 (en)*2011-09-072014-12-09Vlv Associates, Inc.Protective cover assembly for a needle assembly
US8628497B2 (en)2011-09-262014-01-14Covidien LpSafety catheter
US8715250B2 (en)2011-09-262014-05-06Covidien LpSafety catheter and needle assembly
US9375552B2 (en)2011-09-262016-06-28Covidien LpSafety needle assembly
US8834422B2 (en)2011-10-142014-09-16Covidien LpVascular access assembly and safety device
US20150352333A1 (en)*2013-01-302015-12-10Equipos Médicos Vizcarra, S.A.Closed peripheral intravenous catheter with safety system cpivcss
US10265507B2 (en)2013-01-302019-04-23Vascular Pathways, Inc.Systems and methods for venipuncture and catheter placement
US9522254B2 (en)2013-01-302016-12-20Vascular Pathways, Inc.Systems and methods for venipuncture and catheter placement
US20150360005A1 (en)*2013-01-302015-12-17Equipos Médicos Vizcarra, S.A.Peripheral intravenous catheter with bellows-type passive safety system ivcbts
US9125985B2 (en)2013-04-012015-09-08iMed Technology, Inc.Needle with protective cover member
US11033719B2 (en)2014-09-052021-06-15C. R. Bard, Inc.Catheter insertion device including retractable needle
US10232146B2 (en)2014-09-052019-03-19C. R. Bard, Inc.Catheter insertion device including retractable needle
US11565089B2 (en)2014-09-052023-01-31C. R. Bard, Inc.Catheter insertion device including retractable needle
USD1069106S1 (en)2015-05-012025-04-01C. R. Bard, Inc.Catheter placement device
USD903100S1 (en)2015-05-012020-11-24C. R. Bard, Inc.Catheter placement device
US11040176B2 (en)2015-05-152021-06-22C. R. Bard, Inc.Catheter placement device including an extensible needle safety component
US12161819B2 (en)2015-05-152024-12-10C. R. Bard, Inc.Catheter placement device including an extensible needle safety component
US12403294B2 (en)2016-09-122025-09-02C. R. Bard, Inc.Blood control for a catheter insertion device
US11759618B2 (en)2016-09-122023-09-19C. R. Bard, Inc.Blood control for a catheter insertion device
US10493262B2 (en)2016-09-122019-12-03C. R. Bard, Inc.Blood control for a catheter insertion device
US11400260B2 (en)2017-03-012022-08-02C. R. Bard, Inc.Catheter insertion device
US12357796B2 (en)2017-03-012025-07-15C. R. Bard, Inc.Catheter insertion device
US11389626B2 (en)2018-03-072022-07-19Bard Access Systems, Inc.Guidewire advancement and blood flashback systems for a medical device insertion system
US12017020B2 (en)2018-03-072024-06-25Bard Access Systems, Inc.Guidewire advancement and blood flashback systems for a medical device insertion system
USD921884S1 (en)2018-07-272021-06-08Bard Access Systems, Inc.Catheter insertion device
USD884160S1 (en)2019-02-252020-05-12iMed Technology, Inc.Huber safety needle
US11883615B2 (en)2019-08-192024-01-30Becton, Dickinson And CompanyMidline catheter placement device
US11559665B2 (en)2019-08-192023-01-24Becton, Dickinson And CompanyMidline catheter placement device
US12440652B2 (en)2019-09-202025-10-14Bard Peripheral Vascular, Inc.Intravenous catheter-placement device and method thereof
CN110731813A (en)*2019-11-282020-01-31搏时(北京)医疗科技有限公司sternum puncture needle base assembly and sternum puncture needle
US20210386974A1 (en)*2020-06-162021-12-16Becton, Dickinson And CompanyCatheter system to provide needle safety and related methods
US12318557B2 (en)*2020-06-162025-06-03Becton, Dickinson And CompanyCatheter system to provide needle safety and related methods

Also Published As

Publication numberPublication date
BR9602636A (en)1998-04-22
EP0747082A2 (en)1996-12-11
IL118393A0 (en)1996-09-12
TW415243U (en)2000-12-11
JPH0999071A (en)1997-04-15
ZA964784B (en)1997-12-08
EP0747082A3 (en)1997-02-26

Similar Documents

PublicationPublication DateTitle
US5685860A (en)Self-capping needle assembly
US5312371A (en)Method of making a needle sleeve assembly
RU2172187C2 (en)Intravenous catheter with self-adjusting needle protecting device
US4994041A (en)Needle and catheter assembly
US5743882A (en)Needle blunting assembly for use with intravascular introducers
US4892523A (en)Shielded safety syringe
US5312366A (en)Shielded cannula assembly
DE69730150T2 (en) PULSE DEVICE FOR A CATHETER
CA2174828C (en)Hardpack shield for a pivoting needle guard
EP1433419B1 (en)Safety needle assembly with pivoting shield
US6270480B1 (en)Catheter apparatus and method
US5098402A (en)Retractable hypodermic syringe
US5865806A (en)One step catheter advancement automatic needle retraction system
US3358684A (en)Parenteral injection devices
US4850996A (en)Safety needle
EP2952220B1 (en)Peripheral intravenous catheter with bellows-type passive safety system ivcbts
EP0812601A2 (en)Radially vented flashback chamber and plug assembly
US20120046621A1 (en)Safety needle with collapsible sheath
US20050234408A1 (en)Safety arteriovenous fistula needle
JP2003510137A (en) Compact needle point shield
JPH02111376A (en)Catheter assembly
US20150352333A1 (en)Closed peripheral intravenous catheter with safety system cpivcss
SE513823C2 (en) Point guard for puncture needles
US5439453A (en)Hypodermic needle storage apparatus
US5248307A (en)Fluid shield

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:JOHNSON & JOHNSON MEDICAL, INC., CONNECTICUT

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHANGE, JOSEPH J.;SLOANE, THOMAS;REEL/FRAME:007689/0488;SIGNING DATES FROM 19950922 TO 19951012

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

ASAssignment

Owner name:ETHICON, INC., NEW JERSEY

Free format text:MERGER;ASSIGNOR:JOHNSON & JOHNSON MEDICAL, INC.;REEL/FRAME:014675/0320

Effective date:19971218

ASAssignment

Owner name:NEW ENDO, INC., NEW JERSEY

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON, INC.;REEL/FRAME:014734/0642

Effective date:20011231

ASAssignment

Owner name:ETHICON ENDO SURGERY, INC., NEW JERSEY

Free format text:CHANGE OF NAME;ASSIGNOR:NEW ENDO, INC.;REEL/FRAME:014788/0206

Effective date:20011231

ASAssignment

Owner name:MEDEX, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON ENDO-SURGERY, INC.;REEL/FRAME:015035/0753

Effective date:20030521

FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp