Movatterモバイル変換


[0]ホーム

URL:


US5459825A - System for updating the locations of objects in computer displays upon reconfiguration - Google Patents

System for updating the locations of objects in computer displays upon reconfiguration
Download PDF

Info

Publication number
US5459825A
US5459825AUS08/209,276US20927694AUS5459825AUS 5459825 AUS5459825 AUS 5459825AUS 20927694 AUS20927694 AUS 20927694AUS 5459825 AUS5459825 AUS 5459825A
Authority
US
United States
Prior art keywords
display
configuration
objects
sector
display configuration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/209,276
Inventor
Greg Anderson
Ian Hendry
Konstantin Othmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apple Inc
Original Assignee
Apple Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apple Computer IncfiledCriticalApple Computer Inc
Priority to US08/209,276priorityCriticalpatent/US5459825A/en
Assigned to APPLE COMPUTER, INC.reassignmentAPPLE COMPUTER, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: ANDERSON, GREG, HENDRY, IAN, OTHMER KONSTANTIN
Priority to PCT/US1995/003141prioritypatent/WO1995025324A1/en
Priority to AU19917/95Aprioritypatent/AU1991795A/en
Application grantedgrantedCritical
Publication of US5459825ApublicationCriticalpatent/US5459825A/en
Assigned to APPLE INC.reassignmentAPPLE INC.CHANGE OF NAME (SEE DOCUMENT FOR DETAILS).Assignors: APPLE COMPUTER, INC.
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A system for updating the location of elements in a computer display, upon a change in the size and/or configuration of the display, maintains user preferences regarding the appearance of elements. As a first step, user designated locations for individual elements, such as icons, are stored in a database for each different display configuration. Upon changing the display from one configuration to another, the elements are positioned in accordance with the information stored in the database. In a second aspect of the system, each of the original and new displays are divided into corresponding sectors. All objects located within a sector of the original display are placed in the same position in the corresponding sector of the new display. With this system, the groupings of objects and overall display appearance are maintained upon changing from one display configuration to another.

Description

FIELD OF THE INVENTION
The present invention is directed to the display of information on one or more computer monitors, and more particularly to the updating of displayed information upon monitor reconfiguration.
BACKGROUND OF THE INVENTION
In the modern computing environment, the user is presented with a variety of choices for displaying information processed within the computer. Monitors and display screens come in a wide choice of sizes, and many offer different display modes with varying resolutions. If the user switches from one monitor to another, it may be necessary to update the displayed information to accommodate the size and/or characteristics of the new monitor. Similarly, for monitors that are capable of operating in multiple modes, an update may be required when switching from one mode to another. For example, in one mode the monitor may provide a display that is 640 pixels wide and 480 pixels high, and in another mode the width of the display might be 1,024 pixels and its height can be 768 pixels.
The configuration of the display system can also change as a result of other occurrences as well, for example when a graphics system implements a change in display resolution. Whenever a change in display configuration occurs, the elements of the display might be placed at different locations relative to the overall shape of the display. These changes are particularly noticeable in graphical interfaces which employ a desktop metaphor to identify objects and applications for the user. In graphical interfaces which employ this type of metaphor, files, application programs and other objects are represented as icons that can be placed on the desktop by the user. A typical user may prefer to group the icons on the desktop in a manner which identifies their relationship to one another. For example, utility applications may be placed in one corner of the desktop, files in another, and other application programs in a third area. If the display changes, the icons may appear in different portions of the overall display. For example, an icon located at the fight edge of a 640 pixel wide display screen would be positioned near the center of the screen if the display is switched to a width of 1,024 pixels. Conversely, an icon on the right edge of a display having a width of 1,024 pixels would be positioned off the display if the display is changed to the 640 pixel mode.
In the past, when the size of a display changed, icons that were positioned off the display would be relocated to default positions on the new display. For example, they might be located along the fight edge of the display, beginning at the top right corner. An alternative approach is to scale the position of each icon in proportion to its position on the previous display.
While both of these approaches attempt to ensure that all objects in the prior display are visible on the new display, they do not preserve the grouping or relative arrangement of the icons from the original display to the new display. For example, approaches which employ only proportional scaling cause the icons to overlap or move apart, depending on the size of the new display relative to the original display. With either of these prior approaches, the user is forced to rearrange the icons on the new display in accordance with preferred groupings and manner of presentation. It is desirable, therefore, to provide a system for updating a display in which user preferences are maintained, to the extent possible, when changing the size and/or configuration of the display.
BRIEF STATEMENT OF THE INVENTION
In accordance with the present invention, the foregoing objective is achieved by updating the display of information in a manner that preserves the relative positions of objects, such as icons, in the display. In one aspect of the invention, each of the original and new displays is divided into a number of sectors, e.g., four quadrants. Corresponding sectors in each of the original and new displays are of the same size. For example, the size of each sector can be determined by the smaller dimension for that sector in each of the original and new displays. Once the sectors have been determined, all objects located within a sector of the original display are placed in the same position in the corresponding sector of the new display. In this manner, the relative locations and distances between objects within each sector remain the same. If any objects are located outside of the sectors in the original display, their positions in the new display are determined through proportional scaling.
In accordance with a second feature of the invention, a database of user preferences is established for each different display configuration. Whenever a user places or repositions an object within a particular display, that position is stored in the database for that display. Subsequently, whenever that display mode is employed, the objects are positioned in accordance with the information stored in the database.
Preferably, both of these features are employed in combination to update the display. For example, when the display configuration is changed, a database for that configuration is first accessed, to identify user preferred positions for each of the objects. For any objects whose positions are not stored in the database, the sector approach is used to determine default positions for them.
The system of the present invention offers the advantage that, when a display is reconfigured, user preferences as to the location of objects within the display are preserved as much as possible. As a result, the user does not have to spend time relocating objects on the new display in order to obtain a preferred layout.
Further features and advantages of the present invention are explained in detail hereinafter with reference to preferred embodiments illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A, 1B and 1C illustrate examples of situations in which monitor configurations change, necessitating a need to update the display;
FIGS. 2A and 2B illustrate the manner in which the heuristic sector approach of the present invention is applied when going from a smaller display to a larger display;
FIGS. 3A and 3B illustrate the operation of the present invention when going from a larger display to a smaller display;
FIGS. 4A and 4B illustrate another example of change in display size, and the manner in which the present invention applies thereto; and
FIG. 5 is an example of a database which can be employed to store user preferences for object locations.
DETAILED DESCRIPTION
To facilitate an understanding of the present invention, it is described hereinafter with reference to its implementation in a graphical user interface of the type which employs a desktop containing objects that are represented as icons. It will be appreciated that the practical applications of the invention are not limited to this particular embodiment. Rather, the invention can find utility in any situation in which it is desirable to update a display to accommodate a change in size and/or display mode.
FIGS. 1A, 1B and 1C illustrate examples of situations in which a display is reconfigured. In the example of FIG. 1A, a user may employ a laptop ornotebook computer 10, for example while travelling. Thedisplay screen 12 of the notebook computer is typically relatively small in size. Therefore, upon returning to the office, the user may desire to employ a monitor having a larger display area, such as astandard desktop monitor 14. For example, the notebook computer might be plugged into a docking station which is connected to a larger monitor. This change in monitors may necessitate an update of the arrangement of objects in the display.
In the example of FIG. 1B, a computer might be connected todual monitors 16 and 18. In this situation, one-half of the overall display can appear on each monitor. Subsequently, one of the monitors may be removed, so that the size of the display is effectively cut in half. Again, the positions of the displayed objects will need to be rearranged, to accommodate those which were on themonitor 18 that was removed.
In the situation of FIG. 1C, the user may switch from a full page monitor 20 to a standard (half page)size monitor 22. Since the aspect ratio (height to width) of the display changes, the object positions will have to be updated
In each of these situations, the actual size of the display changes. In other situations, the physical size of the display may remain the same, but its effective size may change, for example, in switching from a 640×480 display mode to a 1024×768 display mode. In each of these cases, it is desirable to reconfigure the elements appearing in the display, to make most effective use of the available display area. The present invention is directed to a system for updating the display in accordance with the available display area.
In accordance with one aspect of the present invention, a heuristic approach is employed in which the original and new display areas are divided into sectors, and the contents of each sector in the original display are directly transferred to a corresponding sector in the new display. This approach preserves the arrangement and relative spacings of the objects within each sector.
One technique for determining the sectors is illustrated in the example of FIGS. 2A and 2B. These figures illustrate a typical desktop that might be displayed on the monitor of a computer that employs a graphical user interface. The desktop includes amenu bar 23 at the top, and various icons within aworkspace 25. In the particular example shown in FIGS. 2A and 2B, the contents of the original display, illustrated in FIG. 2A, are transferred to a new, larger display (FIG. 2B). To effect the transfer, corresponding areas in each of the original and new displays are established. The size of each area is determined by identifying the smaller width and height dimension for each of the two displays. In this particular example, both the width and height dimensions of the original display (FIG. 2A) are smaller than those of the new display (FIG. 2B). The original display is divided into foursectors 26, 28, 30 and 32, each of whose height and width dimensions, v and h, are equal to one-half of those for the overall display. In effect, therefore, the original display is divided into four quadrants.
Four sectors 26', 28', 30' and 32' of the same dimensions v and h are established at corresponding locations within the new, larger display of FIG. 2B. All of the icons within each sector in the original display are then mapped into the same location in the corresponding sector of the new display. For example, in the case of thesector 30 in the lower left corner of the display area, afolder 34 is located a distance dx from the left edge of the display and a distance dy from the bottom of the display. These same distances are used by the graphical user interface to position the folder relative to the left and bottom edges, respectively, of the new display in FIG. 2B.
It is possible, of course, to divide the display into sectors other than four quadrants, as shown in FIGS. 2A and 2B. It has been found, however, that most computer users tend to employ the corners of a display area as reference points for locating icons. For example, icons for application programs might be grouped in one corner of the display, those for file folders in another corner, and utility programs in another corner. Thus, by dividing the display into four quadrants, the relationship of the icons to the corners of the display is preserved.
FIGS. 3A and 3B illustrate the converse situation, in which the original display is larger than the new display. In this case, since the dimensions of the new display are smaller than those of the original display, they are used to determine the size of the sectors. Once the size of the four sectors has been determined, they are respectively established in the four corners of the original display. As in the previous example, all items located within the sectors of the original display are mapped to the same locations in the corresponding sectors of the new display. Since the four sectors do not occupy the total area of the original display, it may be the case that certain objects are located outside of the sectors, as shown by thefolder icon 36 in FIG. 3A. In this case, the position for this icon in the new display is determined through proportional scaling. In this manner, the position of the icon relative to the other icons is preserved, although the spacing between icons may vary.
As noted previously, the dimensions of the sectors are determined with reference to the smaller dimension of the two displays in each of the height and width directions. In the two preceding examples, both dimensions were determined with reference to a single display. In some situations, one dimension may be determined with reference to the original display and the other dimension with reference to the new display. Such a situation is illustrated in FIGS. 4A and 4B. In the example of these figures, the original display of FIG. 4A has a greater height than the new display of FIG. 4B, but a smaller width. In this case, the height v of the sectors is determined with reference to the smaller of the two height dimensions, i.e., that of the new display. Conversely, the width h of the sectors is equal to one-half the width of the original display, which is the smaller dimension.
In the foregoing examples, the sectors of the display are determined with reference to the display's dimensions. Alternative approaches for determining appropriate sectors can be employed as well. For example, rather than using the dimensions of the display, it is possible to employ the relative spacings, or density, of icons within the display as the determining factor. Any suitable approach for determining object density can be employed for this purpose. For example, the distances between pairs of adjacent icons can be measured, to calculate an average distance between icons. Icons which are located closer to one another than this average distance, or some fraction thereof, can be identified as belonging to a group. If a different function is used to determine object density, all objects within a certain density factor can be labelled as part of the same group.
After all of the icons in a group have been identified, the portion of the display which contains this group can be established as one sector. The location of this sector in the overall display is then determined, for example with reference to one of the corners of the display, and a corresponding sector established in the new display at the same relative location. The icons are then mapped into the same positions in the established sector in the new display. With this approach, the user's preferred groupings of icons are maintained. Any icons which do not fall within an identified group can be positioned through proportional spacing.
It is possible to employ a combination of these two methods to establish the sectors as well. For example, the density of icons might first be analyzed to identify groups and established sectors pertaining thereto. The remainder of the display can then be divided into four quadrants to establish other sectors. With this approach, if the user groups icons in the center of the display, their relationship to one another will remain intact.
As a second feature of the present invention, a database is established for each different display configuration. Individual items of information in the database include an identification of each object in the display, and its position. Each time the user places a new object in the display, or repositions a desktop element, the user interface causes this new position to be stored in the database. An example of such a database is illustrated in FIG. 5. By storing user designated locations for each desktop element in each different display configuration, user preferences can be maintained from one display configuration to another.
Preferably, in the implementation of the present invention, both the database information and the sector positioning are employed to update a display upon change of configuration. When a new display configuration is employed, the user interface first refers to the database established for that configuration. All items from the original display that are identified within the database for the new display configuration are displayed at the positions stored therein. If an item's position has not been previously recorded for the new display configuration, e.g., an item recently added to the original display, its position is determined by the user interface using the heuristic approach. In the example of FIG. 5,Folder 3 is present in the original display (Configuration 1) but has no previously stored location for the new display (Configuration 2). Therefore, its position in the new display configuration is determined by means of the heuristic approach, and then stored in the database for future reference.
From the foregoing, it can be seen that the present invention provides a system for updating the location of elements in a reconfigured display, which preserves the original arrangement of elements as much as possible. With this system, the user is not required to spend time relocating elements to obtain a desired appearance.
It will be appreciated that the present invention is not limited to the specific embodiments which have been described herein to facilitate an understanding of its underlying principles. Rather, the implementation of the invention can take a number of different forms. The scope of the invention, therefore, is defined by the claims which are appended hereto, rather than the foregoing description, and all changes and equivalents which are consistent with the meaning of the claims are intended to be embraced therein.

Claims (25)

What is claimed is:
1. In a computer having a visual display, a system for updating locations of displayed objects upon a change from a first display configuration to a second display configuration, comprising:
a database storing preferred locations for objects in said second display configuration, said database containing an identification of at least some of the objects to be displayed and a location for each object;
means for establishing corresponding sectors in each of the first and second display configurations; and
a graphical interface for displaying the objects identified in said database on the display at the locations stored in the database, and for displaying other objects at locations within a sector of the first display configuration at the same locations within the corresponding sector of the second display configuration.
2. The system of claim 1 wherein corresponding sectors in the first display configuration and in the second display configuration have the same size.
3. The system of claim 2 wherein all sectors have the same size in both the first display configuration and the second display configuration.
4. The system of claim 2 wherein each sector has a height dimension and a width dimension, and wherein the height dimension of a sector is determined in accordance with the display configuration having the smaller height, and the width dimension of a sector is determined in accordance with the display configuration having the smaller width.
5. The system of claim 2 wherein a sector is established by determining the density of objects displayed within the first display configuration, grouping objects which fall within a predetermined density factor, and defining a sector around the grouped objects.
6. The system of claim 1 further including means for displaying objects which are not identified in said database and not located in any of the sectors of said first display configuration in a corresponding location in the second display configuration that is determined by proportionally scaling the position of the displayed object in accordance with the relative dimensions of the first and second display configurations.
7. The system of claim 1 wherein said objects include icons which represent files, software programs and/or hardware devices.
8. In a computer having a graphical user interface in which objects can be displayed at different locations, a method for updating the display of objects in response to a change from a first display configuration to a second display configuration, comprising the steps of:
establishing a plurality of display sectors for each of the first and second display configurations, where each display sector for the first configuration has a corresponding sector of the same size and relative location in the second configuration;
determining the locations of objects within each sector of the first display configuration; and
displaying the objects at the same respective locations within the corresponding sector of the second display configuration.
9. The method of claim 8 further including the steps of:
detecting whether any objects are displayed outside of the established sectors in the first display configuration;
determining the location of each such detected object in the first display configuration; and
displaying each such detected object at a corresponding location in the second display configuration.
10. The method of claim 9 wherein the corresponding location in the second display configuration is determined by proportionally scaling the position of the displayed object in accordance with the relative dimensions of the first and second display configurations.
11. The method of claim 8 wherein all of the sectors in both the first and second display configurations are of the same size.
12. The method of claim 11 wherein each sector has a height dimension and a width dimension, and wherein the height dimension of a sector is determined in accordance with the display configuration having the smaller height, and the width dimension of a sector is determined in accordance with the display configuration having the smaller width.
13. The method of claim 8 wherein the step of establishing said sectors comprises the steps of measuring the distances between adjacent displayed objects, grouping adjacent objects whose distance between one another is less than a threshold value, and defining a sector around each set of grouped objects.
14. The method of claim 8 wherein said objects include icons which represent files, software programs and/or hardware devices.
15. In a computer having a visual display, a method for updating locations of displayed objects upon a change from a first display configuration to a second display configuration, comprising the steps of:
storing preferred locations for objects in a database associated with said second display configuration, said database containing an identification of at least some of the objects to be displayed and a location for each object;
establishing corresponding sectors in each of the first and second display configurations; and
displaying the objects identified in said database on the display at the locations stored in the database, and displaying other objects at locations within a sector of the first display configuration at the same locations within the corresponding sector of the second display configuration.
16. The method of claim 13 wherein corresponding sectors in the first display configuration and in the second display configuration have the same size.
17. The method of claim 16 wherein all sectors have the same size in both the first display configuration and the second display configuration.
18. The method of claim 16 wherein each sector has a height dimension and a width dimension, and wherein the height dimension of a sector is determined in accordance with the display configuration having the smaller height, and the width dimension of a sector is determined in accordance with the display configuration having the smaller width.
19. The method of claim 16 wherein the step of establishing a sector includes the steps of determining the density of objects displayed within the first display configuration, grouping objects which fall within a predetermined density factor, and defining a sector around the grouped objects.
20. The method of claim 15 further including the step of displaying objects which are not identified in said database and not located in any of the sectors of said first display configuration in a corresponding location in the second display configuration that is determined by proportionally scaling the position of the displayed object in accordance with the relative dimensions of the first and second display configurations.
21. The method of claim 15 wherein said objects include icons which represent files, software programs and/or hardware devices.
22. In a computer system of the type in which objects are displayed on a visual display and the display can be changed from one configuration to at least one other configuration, a method for maintaining user preferences regarding the display of objects in the respective configurations, comprising the steps of:
detecting when a user positions objects in the display while the display is in a first configuration;
storing the user-defined position of the objects in the display in a database associated with said first configuration;
detecting when a user positions objects in the display while the display is in a second configuration;
storing the user-defined position of the objects in the display in a database associated with said second configuration;
detecting a change of the configuration of the display from said first configuration to said second configuration; and
repositioning objects in the display in accordance with their stored positions in said database associated with said second configuration.
23. The method of claim 22 including the further steps of detecting a change of the configuration of the display from said second configuration to said first configuration, and repositioning objects in the display in accordance with their stored positions in said database associated with said first configuration.
24. The method of claim 22 wherein said database associated with said first configuration and said database associated with said second configuration are both components of a single database.
25. The method of claim 22 wherein said objects include icons which represent files, software programs and/or hardware devices.
US08/209,2761994-03-141994-03-14System for updating the locations of objects in computer displays upon reconfigurationExpired - LifetimeUS5459825A (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US08/209,276US5459825A (en)1994-03-141994-03-14System for updating the locations of objects in computer displays upon reconfiguration
PCT/US1995/003141WO1995025324A1 (en)1994-03-141995-03-14System for updating computer displays upon reconfiguration
AU19917/95AAU1991795A (en)1994-03-141995-03-14System for updating computer displays upon reconfiguration

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US08/209,276US5459825A (en)1994-03-141994-03-14System for updating the locations of objects in computer displays upon reconfiguration

Publications (1)

Publication NumberPublication Date
US5459825Atrue US5459825A (en)1995-10-17

Family

ID=22778116

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US08/209,276Expired - LifetimeUS5459825A (en)1994-03-141994-03-14System for updating the locations of objects in computer displays upon reconfiguration

Country Status (3)

CountryLink
US (1)US5459825A (en)
AU (1)AU1991795A (en)
WO (1)WO1995025324A1 (en)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5570462A (en)*1995-05-051996-10-29Apple Computer, Inc.System and method for object placement and sizing in a dynamic display environment
US5621876A (en)*1995-04-071997-04-15Apple Computer, Inc.Method and apparatus for modifying a display matrix in a computer window by adding one column or row at a time
US5657463A (en)*1994-01-191997-08-12Apple Computer, Inc.Method and apparatus for positioning a new window on a display screen based on an arrangement of previously-created windows
US5682487A (en)*1994-06-101997-10-28Bay Networks, Inc.Method and apparatus providing resizable views
US5682486A (en)*1995-03-141997-10-28International Business Machines CorporationVideo display and control of multiple graphical interfaces
US5694561A (en)*1994-12-121997-12-02Microsoft CorporationMethod and system for grouping and manipulating windows
US5720021A (en)*1995-02-061998-02-17Matsushita Electric Industrial Co., Ltd.Image processing apparatus for storing image data to a page memory
US5774119A (en)*1996-08-141998-06-30International Business Machines CorporationGraphical interface method, apparatus and application for selection of target object
US5774120A (en)*1996-08-141998-06-30International Business Machines CorporationRefresh and select-all actions in graphical user interface
US5781193A (en)*1996-08-141998-07-14International Business Machines CorporationGraphical interface method, apparatus and application for creating multiple value list from superset list
US5784057A (en)*1996-08-141998-07-21International Business Machines CorporationDynamically modifying a graphical user interface window title
US5818444A (en)*1996-08-141998-10-06International Business Machines CorporationMethod, apparatus and application for object selective but global attribute modification
US5835090A (en)*1996-10-161998-11-10Etma, Inc.Desktop manager for graphical user interface based system with enhanced desktop
US5838563A (en)*1996-04-121998-11-17Fisher-Rosemont Systems, Inc.System for configuring a process control environment
US5867157A (en)*1996-08-141999-02-02International Business Machines CorporationGraphical interface method, apparatus and application for creating and modifying a list of values with multiple components
US5872568A (en)*1996-08-141999-02-16International Business Machines CorporationApplication and method for creating a list from pre-defined and user values
US5903455A (en)*1996-02-061999-05-11Fisher-Rosemount Systems, Inc.Interface controls for use in a field device management system
US5917499A (en)*1996-04-051999-06-29Microsoft CorporationInteractive graph display system
US5920313A (en)*1995-06-011999-07-06International Business Machines CorporationMethod and system for associating related user interface objects
US5940294A (en)*1996-04-121999-08-17Fisher-Rosemont Systems, Inc.System for assisting configuring a process control environment
US6104395A (en)*1996-08-142000-08-15International Business Machines CorporationGraphical interface method, apparatus and application for opening window of all designated container objects
US6110041A (en)*1996-12-302000-08-29Walker Digital, LlcMethod and system for adapting gaming devices to playing preferences
US6160553A (en)*1998-09-142000-12-12Microsoft CorporationMethods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and in which object occlusion is avoided
US6195096B1 (en)1996-08-142001-02-27International Business Machines CorporationGraphical interface method, apparatus and application for creating and modifying a multiple-value text list
US6215502B1 (en)*1996-10-282001-04-10Cks PartnersMethod and apparatus for automatically reconfiguring graphical objects relative to new graphical layouts
US6304272B1 (en)*1996-12-102001-10-16Micrografx, Inc.Graphics system and method having objects conformed to a template
US20020151366A1 (en)*2001-04-112002-10-17Walker Jay S.Method and apparatus for remotely customizing a gaming device
US6486883B1 (en)*1999-06-182002-11-26Phoenix Technologies, Ltd.Apparatus and method for updating images stored in non-volatile memory
US20020186253A1 (en)*1998-05-112002-12-12Rodden James F.Method and system for automatically resizing and repositioning windows in response to changes in display
US6510352B1 (en)1999-07-292003-01-21The Foxboro CompanyMethods and apparatus for object-based process control
US20030107604A1 (en)*2001-12-122003-06-12Bas OrdingMethod and system for automatic window resizing in a graphical user interface
US6618630B1 (en)1999-07-082003-09-09Fisher-Rosemount Systems, Inc.User interface that integrates a process control configuration system and a field device management system
US6754885B1 (en)1999-05-172004-06-22Invensys Systems, Inc.Methods and apparatus for controlling object appearance in a process control configuration system
US6788980B1 (en)1999-06-112004-09-07Invensys Systems, Inc.Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network
US20040205608A1 (en)*2001-09-122004-10-14James HuangSystem and method for rearranging the layout of a business card
US6819304B2 (en)*2001-10-112004-11-16International Business Machines CorporationAdjustable display device with display adjustment function and method therefor
US20040261037A1 (en)*2003-06-202004-12-23Apple Computer, Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US6868538B1 (en)1996-04-122005-03-15Fisher-Rosemount Systems, Inc.Object-oriented programmable controller
US7033276B2 (en)1996-04-222006-04-25Walker Digital, LlcMethod and system for adapting casino games to playing preferences
US7061552B1 (en)*2000-01-282006-06-13Sony CorporationMethod and apparatus to perform automatic digital convergence
US7089530B1 (en)1999-05-172006-08-08Invensys Systems, Inc.Process control configuration system with connection validation and configuration
US7096465B1 (en)1999-05-172006-08-22Invensys Systems, Inc.Process control configuration system with parameterized objects
US20060198555A1 (en)*2005-03-042006-09-07Canon Kabushiki KaishaLayout control apparatus, layout control method, and layout control program
US20060287069A1 (en)*1996-04-222006-12-21Walker Jay SMethod and system for adapting casino games to playing preferences
US20060287046A1 (en)*1996-04-222006-12-21Walker Jay SSystem and method for facilitating play of a video game via a web site
US20070004511A1 (en)*2001-06-152007-01-04Walker Jay SMethod and apparatus for planning and customizing a gaming experience
US20070117619A1 (en)*2001-12-032007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US7272815B1 (en)1999-05-172007-09-18Invensys Systems, Inc.Methods and apparatus for control configuration with versioning, security, composite blocks, edit selection, object swapping, formulaic values and other aspects
US20080090645A1 (en)*2005-12-022008-04-17Walker Jay SGaming Systems And Apparatus For Detecting A Signal Indicative Of A Problem Gambler And Dispatching An Event In Response Thereto
US20080311979A1 (en)*2007-06-122008-12-18Walker Jay SMultiplayer gaming device and methods
US7502656B2 (en)1996-08-202009-03-10Invensys Systems, Inc.Methods and apparatus for remote process control
US20090109244A1 (en)*2007-10-262009-04-30Mitel Nteworks CorporationMethod and apparatus for maintaining a visual appearance of at least one window when a resolution of the screen changes
US20090275366A1 (en)*2008-05-052009-11-05Schilling Donald LPersonal portable communication devices with deployable display systems for three dimensional visual representations and/or privacy and methods of use
US20090291755A1 (en)*2001-06-152009-11-26Walker Jay SSystems and methods for customized gaming limits
US20090322765A1 (en)*1998-03-022009-12-31Gordon Fraser GrigorMethod and Apparatus for Configuring Multiple Displays Associated with a Computing System
US20100023828A1 (en)*2008-07-282010-01-28At&T Corp.IP Multicast with IP Unicast/Multicast Error Correction
US20100079445A1 (en)*2008-09-302010-04-01Apple Inc.Method for reducing graphics rendering failures
US20100095248A1 (en)*2008-10-142010-04-15International Business Machines CorporationDesktop icon management and grouping using desktop containers
US7761923B2 (en)2004-03-012010-07-20Invensys Systems, Inc.Process control methods and apparatus for intrusion detection, protection and network hardening
US7778717B2 (en)2002-04-152010-08-17Invensys Systems, Inc.Component object model communication method for a control system
US20100313165A1 (en)*2009-06-082010-12-09John LouchUser interface for multiple display regions
US7860857B2 (en)2006-03-302010-12-28Invensys Systems, Inc.Digital data processing apparatus and methods for improving plant performance
US20100328323A1 (en)*2009-06-252010-12-30Apple Inc.Virtual graphics device driver
US7890927B2 (en)1999-05-172011-02-15Invensys Systems, Inc.Apparatus and method for configuring and editing a control system with live data
US8047909B2 (en)1998-03-312011-11-01Walker Digital, LlcMethod and apparatus for linked play gaming with combined outcomes and shared indicia
US20120042286A1 (en)*2010-08-102012-02-16Rmt, Inc.Graphical Computer Application Recall System and Method
US8127060B2 (en)2009-05-292012-02-28Invensys Systems, IncMethods and apparatus for control configuration with control objects that are fieldbus protocol-aware
US20120188457A1 (en)*2011-01-262012-07-26Takeshi KatoImage processing apparatus and image processing method
USD681652S1 (en)*2007-03-222013-05-07Fujifilm CorporationElectronic camera
US8463964B2 (en)2009-05-292013-06-11Invensys Systems, Inc.Methods and apparatus for control configuration with enhanced change-tracking
TWI410881B (en)*2009-12-312013-10-01Taiwan Mobile Co Ltd Digital multimedia magazine publishing system and method
US8594814B2 (en)2008-06-202013-11-26Invensys Systems, Inc.Systems and methods for immersive interaction with actual and/or simulated facilities for process, environmental and industrial control
US20140317559A1 (en)*2012-04-172014-10-23Franz Antonio WakefieldMethod, system, apparatus, and tangible portable interactive electronic device storage medium; that processes custom programs and data for a user by creating, displaying, storing, modifying, performing adaptive learning routines, and multitasking; utilizing cascade windows on an electronic screen display in a mobile electronic intercative device gui (graphical user interface) system
US9164650B2 (en)2003-06-202015-10-20Apple Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US20160306502A1 (en)*2015-04-142016-10-20Ebay Inc.Standardizing user interface elements
US11226715B2 (en)*2019-09-302022-01-18Lenovo (Singapore) Pte. Ltd.Universal size designation for display element during display and transfer

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4855728A (en)*1986-05-301989-08-08Hitachi, Ltd.Method and apparatus for converting display data form
US4860246A (en)*1985-08-071989-08-22Seiko Epson CorporationEmulation device for driving a LCD with a CRT display
US4926166A (en)*1984-04-251990-05-15Sharp Kabushiki KaishaDisplay driving system for driving two or more different types of displays
US4980678A (en)*1987-06-191990-12-25Kabushiki Kaisha ToshibaDisplay controller for CRT/flat panel display apparatus
US4990904A (en)*1987-06-191991-02-05Kabushiki Kaisha ToshibaDisplay mode switching system for flat panel display apparatus
US5159683A (en)*1986-07-291992-10-27Western Digital CorporationGraphics controller adapted to automatically sense the type of connected video monitor and configure the control and display signals supplied to the monitor accordingly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0439087B1 (en)*1990-01-251996-12-11Radius Inc.Method for resizing and moving computer display windows
CA2080209A1 (en)*1992-01-101993-07-11Eric Allen BrewerSpatially organized computer display system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4926166A (en)*1984-04-251990-05-15Sharp Kabushiki KaishaDisplay driving system for driving two or more different types of displays
US4860246A (en)*1985-08-071989-08-22Seiko Epson CorporationEmulation device for driving a LCD with a CRT display
US4855728A (en)*1986-05-301989-08-08Hitachi, Ltd.Method and apparatus for converting display data form
US5159683A (en)*1986-07-291992-10-27Western Digital CorporationGraphics controller adapted to automatically sense the type of connected video monitor and configure the control and display signals supplied to the monitor accordingly
US4980678A (en)*1987-06-191990-12-25Kabushiki Kaisha ToshibaDisplay controller for CRT/flat panel display apparatus
US4990904A (en)*1987-06-191991-02-05Kabushiki Kaisha ToshibaDisplay mode switching system for flat panel display apparatus

Cited By (147)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5657463A (en)*1994-01-191997-08-12Apple Computer, Inc.Method and apparatus for positioning a new window on a display screen based on an arrangement of previously-created windows
US5682487A (en)*1994-06-101997-10-28Bay Networks, Inc.Method and apparatus providing resizable views
US5694561A (en)*1994-12-121997-12-02Microsoft CorporationMethod and system for grouping and manipulating windows
US5720021A (en)*1995-02-061998-02-17Matsushita Electric Industrial Co., Ltd.Image processing apparatus for storing image data to a page memory
US5682486A (en)*1995-03-141997-10-28International Business Machines CorporationVideo display and control of multiple graphical interfaces
US5621876A (en)*1995-04-071997-04-15Apple Computer, Inc.Method and apparatus for modifying a display matrix in a computer window by adding one column or row at a time
US5570462A (en)*1995-05-051996-10-29Apple Computer, Inc.System and method for object placement and sizing in a dynamic display environment
US5920313A (en)*1995-06-011999-07-06International Business Machines CorporationMethod and system for associating related user interface objects
US5960214A (en)*1996-02-061999-09-28Fisher-Rosemount Systems, Inc.Integrated communication network for use in a field device management system
US5903455A (en)*1996-02-061999-05-11Fisher-Rosemount Systems, Inc.Interface controls for use in a field device management system
US5917499A (en)*1996-04-051999-06-29Microsoft CorporationInteractive graph display system
US8185871B2 (en)1996-04-122012-05-22Fisher-Rosemount Systems, Inc.System for configuring a process control environment
US20050172258A1 (en)*1996-04-122005-08-04Fisher-Rosemount Systems, Inc.System for configuring a process control environment
US6078320A (en)*1996-04-122000-06-20Fisher-Rosemount Systems, Inc.System for configuring a process control environment
US5838563A (en)*1996-04-121998-11-17Fisher-Rosemont Systems, Inc.System for configuring a process control environment
US5940294A (en)*1996-04-121999-08-17Fisher-Rosemont Systems, Inc.System for assisting configuring a process control environment
US6868538B1 (en)1996-04-122005-03-15Fisher-Rosemount Systems, Inc.Object-oriented programmable controller
US20060287069A1 (en)*1996-04-222006-12-21Walker Jay SMethod and system for adapting casino games to playing preferences
US20070117641A1 (en)*1996-04-222007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US7033276B2 (en)1996-04-222006-04-25Walker Digital, LlcMethod and system for adapting casino games to playing preferences
US20070060360A1 (en)*1996-04-222007-03-15Walker Jay SMethod and system for adapting casino games to playing preferences
US20070117622A1 (en)*1996-04-222007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US7438642B2 (en)1996-04-222008-10-21Walker Digital, LlcSystem and method for facilitating play of a video game via a web site
US20070117618A1 (en)*1996-04-222007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US20070117621A1 (en)*1996-04-222007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US7390255B2 (en)1996-04-222008-06-24Walker Digital, LlcSystem and method for facilitating play of a video game via a web site
US20060287046A1 (en)*1996-04-222006-12-21Walker Jay SSystem and method for facilitating play of a video game via a web site
US7985132B2 (en)1996-04-222011-07-26Walker Digital, LlcSystem and method for facilitating play of a video game via a web site
US20070123347A1 (en)*1996-04-222007-05-31Walker Jay SSystem and method for facilitating play of a video game via a web site
US5872568A (en)*1996-08-141999-02-16International Business Machines CorporationApplication and method for creating a list from pre-defined and user values
US6195096B1 (en)1996-08-142001-02-27International Business Machines CorporationGraphical interface method, apparatus and application for creating and modifying a multiple-value text list
US6104395A (en)*1996-08-142000-08-15International Business Machines CorporationGraphical interface method, apparatus and application for opening window of all designated container objects
US5818444A (en)*1996-08-141998-10-06International Business Machines CorporationMethod, apparatus and application for object selective but global attribute modification
US5784057A (en)*1996-08-141998-07-21International Business Machines CorporationDynamically modifying a graphical user interface window title
US5781193A (en)*1996-08-141998-07-14International Business Machines CorporationGraphical interface method, apparatus and application for creating multiple value list from superset list
US5867157A (en)*1996-08-141999-02-02International Business Machines CorporationGraphical interface method, apparatus and application for creating and modifying a list of values with multiple components
US5774120A (en)*1996-08-141998-06-30International Business Machines CorporationRefresh and select-all actions in graphical user interface
US5774119A (en)*1996-08-141998-06-30International Business Machines CorporationGraphical interface method, apparatus and application for selection of target object
US7739361B2 (en)1996-08-202010-06-15Thibault Richard LMethods for remote process control with networked digital data processors and a virtual machine environment
US7502656B2 (en)1996-08-202009-03-10Invensys Systems, Inc.Methods and apparatus for remote process control
US7899070B2 (en)1996-08-202011-03-01Invensys Systems, Inc.Control system apparatus with change updates
US7882197B2 (en)1996-08-202011-02-01Invensys Systems, Inc.Control system methods that transfer control apparatus information over IP networks in web page-less transfers
US8023500B2 (en)1996-08-202011-09-20Invensys Systems, Inc.Methods for process control with change updates
US8081584B2 (en)1996-08-202011-12-20Invensys Systems, Inc.Control system apparatus and systems using value-based transfers
US7979488B2 (en)1996-08-202011-07-12Invensys Systems, Inc.Control system methods using value-based transfers
US7720944B2 (en)1996-08-202010-05-18Invensys Systems, Inc.Process control system with networked digital data processors and a virtual machine environment
US5835090A (en)*1996-10-161998-11-10Etma, Inc.Desktop manager for graphical user interface based system with enhanced desktop
US6215502B1 (en)*1996-10-282001-04-10Cks PartnersMethod and apparatus for automatically reconfiguring graphical objects relative to new graphical layouts
US6304272B1 (en)*1996-12-102001-10-16Micrografx, Inc.Graphics system and method having objects conformed to a template
US6110041A (en)*1996-12-302000-08-29Walker Digital, LlcMethod and system for adapting gaming devices to playing preferences
US6293866B1 (en)1996-12-302001-09-25Walker Digital, LlcSystem for adapting gaming devices to playing preferences
US8860633B2 (en)*1998-03-022014-10-14Ati Technologies UlcMethod and apparatus for configuring multiple displays associated with a computing system
US20090322765A1 (en)*1998-03-022009-12-31Gordon Fraser GrigorMethod and Apparatus for Configuring Multiple Displays Associated with a Computing System
US8047909B2 (en)1998-03-312011-11-01Walker Digital, LlcMethod and apparatus for linked play gaming with combined outcomes and shared indicia
US8856681B2 (en)*1998-05-112014-10-07Apple Inc.Method and system for automatically resizing and repositioning windows in response to changes in display
US20020191026A1 (en)*1998-05-112002-12-19Rodden James F.Method and system for automatically resizing and repositioning windows in response to changes in display
US7155682B2 (en)*1998-05-112006-12-26Apple Computer, Inc.Method and system for automatically resizing and repositioning windows in response to changes in display
US20020186253A1 (en)*1998-05-112002-12-12Rodden James F.Method and system for automatically resizing and repositioning windows in response to changes in display
US20070101300A1 (en)*1998-05-112007-05-03Apple Computer, Inc.Method and system for automatically resizing and repositioning windows in response to changes in display
US7216302B2 (en)*1998-05-112007-05-08Apple Computer, Inc.Method and system for automatically resizing and repositioning windows in response to changes in display
US6160553A (en)*1998-09-142000-12-12Microsoft CorporationMethods, apparatus and data structures for providing a user interface, which exploits spatial memory in three-dimensions, to objects and in which object occlusion is avoided
US8225271B2 (en)1999-05-172012-07-17Invensys Systems, Inc.Apparatus for control systems with objects that are associated with live data
US8229579B2 (en)1999-05-172012-07-24Invensys Systems, Inc.Control systems and methods with versioning
US7984420B2 (en)1999-05-172011-07-19Invensys Systems, Inc.Control systems and methods with composite blocks
US7890927B2 (en)1999-05-172011-02-15Invensys Systems, Inc.Apparatus and method for configuring and editing a control system with live data
US7089530B1 (en)1999-05-172006-08-08Invensys Systems, Inc.Process control configuration system with connection validation and configuration
US8028275B2 (en)1999-05-172011-09-27Invensys Systems, Inc.Control systems and methods with smart blocks
US8028272B2 (en)1999-05-172011-09-27Invensys Systems, Inc.Control system configurator and methods with edit selection
US7272815B1 (en)1999-05-172007-09-18Invensys Systems, Inc.Methods and apparatus for control configuration with versioning, security, composite blocks, edit selection, object swapping, formulaic values and other aspects
US6754885B1 (en)1999-05-172004-06-22Invensys Systems, Inc.Methods and apparatus for controlling object appearance in a process control configuration system
US8060222B2 (en)1999-05-172011-11-15Invensys Systems, Inc.Control system configurator and methods with object characteristic swapping
US7096465B1 (en)1999-05-172006-08-22Invensys Systems, Inc.Process control configuration system with parameterized objects
US8368640B2 (en)1999-05-172013-02-05Invensys Systems, Inc.Process control configuration system with connection validation and configuration
US8090452B2 (en)1999-06-112012-01-03Invensys Systems, Inc.Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network
US6788980B1 (en)1999-06-112004-09-07Invensys Systems, Inc.Methods and apparatus for control using control devices that provide a virtual machine environment and that communicate via an IP network
US6486883B1 (en)*1999-06-182002-11-26Phoenix Technologies, Ltd.Apparatus and method for updating images stored in non-volatile memory
US6618630B1 (en)1999-07-082003-09-09Fisher-Rosemount Systems, Inc.User interface that integrates a process control configuration system and a field device management system
US6510352B1 (en)1999-07-292003-01-21The Foxboro CompanyMethods and apparatus for object-based process control
US7061552B1 (en)*2000-01-282006-06-13Sony CorporationMethod and apparatus to perform automatic digital convergence
US20020151366A1 (en)*2001-04-112002-10-17Walker Jay S.Method and apparatus for remotely customizing a gaming device
US7040987B2 (en)2001-04-112006-05-09Walker Digital, LlcMethod and apparatus for remotely customizing a gaming device
US20060178189A1 (en)*2001-04-112006-08-10Walker Jay SMethod and apparatus for remotely customizing a gaming device
US20060252522A1 (en)*2001-04-112006-11-09Walker Jay SMethod and apparatus for remotely customizing a gaming device
US20060252523A1 (en)*2001-04-112006-11-09Walker Jay SMethod and apparatus for remotely customizing a gaming device
US20090291755A1 (en)*2001-06-152009-11-26Walker Jay SSystems and methods for customized gaming limits
US20070203971A1 (en)*2001-06-152007-08-30Walker Jay SMethod and apparatus for planning and customizing a gaming experience
US20070004511A1 (en)*2001-06-152007-01-04Walker Jay SMethod and apparatus for planning and customizing a gaming experience
US20070015564A1 (en)*2001-06-152007-01-18Walker Jay SMethod and apparatus for planning and customizing a gaming experience
US20040205608A1 (en)*2001-09-122004-10-14James HuangSystem and method for rearranging the layout of a business card
US6819304B2 (en)*2001-10-112004-11-16International Business Machines CorporationAdjustable display device with display adjustment function and method therefor
US20070117619A1 (en)*2001-12-032007-05-24Walker Jay SSystem and method for facilitating play of a video game via a web site
US20030107604A1 (en)*2001-12-122003-06-12Bas OrdingMethod and system for automatic window resizing in a graphical user interface
US7778717B2 (en)2002-04-152010-08-17Invensys Systems, Inc.Component object model communication method for a control system
US20040261037A1 (en)*2003-06-202004-12-23Apple Computer, Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US20040261038A1 (en)*2003-06-202004-12-23Apple Computer, Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US10318134B2 (en)2003-06-202019-06-11Apple Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US9164650B2 (en)2003-06-202015-10-20Apple Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US8127248B2 (en)*2003-06-202012-02-28Apple Inc.Computer interface having a virtual single-layer mode for viewing overlapping objects
US7761923B2 (en)2004-03-012010-07-20Invensys Systems, Inc.Process control methods and apparatus for intrusion detection, protection and network hardening
US20060198555A1 (en)*2005-03-042006-09-07Canon Kabushiki KaishaLayout control apparatus, layout control method, and layout control program
US7900139B2 (en)*2005-03-042011-03-01Canon Kabushiki KaishaLayout control apparatus, layout control method, and layout control program
US20080090645A1 (en)*2005-12-022008-04-17Walker Jay SGaming Systems And Apparatus For Detecting A Signal Indicative Of A Problem Gambler And Dispatching An Event In Response Thereto
US8545309B2 (en)2005-12-022013-10-01IgtGaming systems and apparatus for detecting a signal indicative of a problem gambler and dispatching an event in response thereto
US7860857B2 (en)2006-03-302010-12-28Invensys Systems, Inc.Digital data processing apparatus and methods for improving plant performance
USD714813S1 (en)2007-03-222014-10-07Fujifilm CorporationElectronic camera
USD737288S1 (en)*2007-03-222015-08-25Fujifilm CorporationElectronic camera
USD700193S1 (en)2007-03-222014-02-25Fujifilm CorporationElectronic camera
USD681652S1 (en)*2007-03-222013-05-07Fujifilm CorporationElectronic camera
US8684825B2 (en)2007-06-122014-04-01Inventor Holdings, LlcMultiplayer gaming device and methods
US8147322B2 (en)2007-06-122012-04-03Walker Digital, LlcMultiplayer gaming device and methods
US20080311979A1 (en)*2007-06-122008-12-18Walker Jay SMultiplayer gaming device and methods
US20090109244A1 (en)*2007-10-262009-04-30Mitel Nteworks CorporationMethod and apparatus for maintaining a visual appearance of at least one window when a resolution of the screen changes
US7961202B2 (en)*2007-10-262011-06-14Mitel Networks CorporationMethod and apparatus for maintaining a visual appearance of at least one window when a resolution of the screen changes
US20090275366A1 (en)*2008-05-052009-11-05Schilling Donald LPersonal portable communication devices with deployable display systems for three dimensional visual representations and/or privacy and methods of use
US8594814B2 (en)2008-06-202013-11-26Invensys Systems, Inc.Systems and methods for immersive interaction with actual and/or simulated facilities for process, environmental and industrial control
US8601335B2 (en)2008-07-282013-12-03At&T Intellectual Property Ii, L.P.Internet Protocol multicast with Internet Protocol unicast/multicast error correction
US20100023828A1 (en)*2008-07-282010-01-28At&T Corp.IP Multicast with IP Unicast/Multicast Error Correction
US20100079445A1 (en)*2008-09-302010-04-01Apple Inc.Method for reducing graphics rendering failures
US8310494B2 (en)2008-09-302012-11-13Apple Inc.Method for reducing graphics rendering failures
US9257101B2 (en)2008-09-302016-02-09Apple Inc.Method for reducing graphics rendering failures
US10606434B2 (en)2008-10-142020-03-31International Business Machines CorporationDesktop icon management and grouping using desktop containers
US9760234B2 (en)*2008-10-142017-09-12International Business Machines CorporationDesktop icon management and grouping using desktop containers
US20100095248A1 (en)*2008-10-142010-04-15International Business Machines CorporationDesktop icon management and grouping using desktop containers
US8127060B2 (en)2009-05-292012-02-28Invensys Systems, IncMethods and apparatus for control configuration with control objects that are fieldbus protocol-aware
US8463964B2 (en)2009-05-292013-06-11Invensys Systems, Inc.Methods and apparatus for control configuration with enhanced change-tracking
US9720584B2 (en)2009-06-082017-08-01Apple Inc.User interface for multiple display regions
US8621387B2 (en)*2009-06-082013-12-31Apple Inc.User interface for multiple display regions
US10579204B2 (en)2009-06-082020-03-03Apple Inc.User interface for multiple display regions
US9081474B2 (en)2009-06-082015-07-14Apple Inc.User interface for multiple display regions
US20100313165A1 (en)*2009-06-082010-12-09John LouchUser interface for multiple display regions
US20100313164A1 (en)*2009-06-082010-12-09John LouchUser interface for multiple display regions
US9223465B2 (en)2009-06-082015-12-29Apple Inc.User interface for multiple display regions
US8612883B2 (en)2009-06-082013-12-17Apple Inc.User interface for managing the display of multiple display regions
US9336028B2 (en)2009-06-252016-05-10Apple Inc.Virtual graphics device driver
US20100328323A1 (en)*2009-06-252010-12-30Apple Inc.Virtual graphics device driver
US10504203B2 (en)2009-06-252019-12-10Apple Inc.Virtual graphics device driver
TWI410881B (en)*2009-12-312013-10-01Taiwan Mobile Co Ltd Digital multimedia magazine publishing system and method
US20120042286A1 (en)*2010-08-102012-02-16Rmt, Inc.Graphical Computer Application Recall System and Method
US20120188457A1 (en)*2011-01-262012-07-26Takeshi KatoImage processing apparatus and image processing method
US9292158B2 (en)*2012-04-172016-03-22Franz Antonio WakefieldMethod, system, apparatus, and tangible portable interactive electronic device storage medium; that processes custom programs and data for a user by creating, displaying, storing, modifying, performing adaptive learning routines, and multitasking; utilizing cascade windows on an electronic screen display in a mobile electronic interactive device GUI (graphical user interface) system
US20140317559A1 (en)*2012-04-172014-10-23Franz Antonio WakefieldMethod, system, apparatus, and tangible portable interactive electronic device storage medium; that processes custom programs and data for a user by creating, displaying, storing, modifying, performing adaptive learning routines, and multitasking; utilizing cascade windows on an electronic screen display in a mobile electronic intercative device gui (graphical user interface) system
US10372285B2 (en)*2015-04-142019-08-06Ebay Inc.Standardizing user interface elements
US20160306502A1 (en)*2015-04-142016-10-20Ebay Inc.Standardizing user interface elements
US11036347B2 (en)2015-04-142021-06-15Ebay Inc.Standardizing user interface elements
US11644938B2 (en)2015-04-142023-05-09Ebay Inc.Standardizing user interface elements
US11886681B2 (en)2015-04-142024-01-30Ebay Inc.Standardizing user interface elements
US11226715B2 (en)*2019-09-302022-01-18Lenovo (Singapore) Pte. Ltd.Universal size designation for display element during display and transfer

Also Published As

Publication numberPublication date
AU1991795A (en)1995-10-03
WO1995025324A1 (en)1995-09-21

Similar Documents

PublicationPublication DateTitle
US5459825A (en)System for updating the locations of objects in computer displays upon reconfiguration
US5339390A (en)Operating a processor to display stretched continuation of a workspace
US6473102B1 (en)Method and system for automatically resizing and repositioning windows in response to changes in display
US5577187A (en)Method and system for tiling windows based on previous position and size
US6404443B1 (en)Three-dimensional graphical user interface for managing screen objects
US5704050A (en)Snap control for relocating elements of a graphical user interface
JP3598303B2 (en) Method of selectively displaying and activating overlapping display objects on a display, and computer system
US5463726A (en)Method and apparatus for graphic accessing of multiple software applications
US5632009A (en)Method and system for producing a table image showing indirect data representations
US6377285B1 (en)Zooming space-grid for graphical user interface
CA2012795C (en)Image editor zoom function
EP0412693B1 (en)Graphics arrangement for displaying spatial distributed, time-variant data
US5155806A (en)Method and apparatus for displaying context sensitive help information on a display
US20050240878A1 (en)System and method for scaling icons
JPS62276673A (en) Multi-window display device
JPH05210722A (en)Graphics-display-tool
US6879331B2 (en)Method and apparatus for implementing enlarged virtual screen using dynamic zone-compression of screen content
JPH02114318A (en)Menu display system
WO2004097615A2 (en)A method of displaying a document
JP2002099370A (en)Method and system for switching virtual desktops and computer program product
JPS61147290A (en)Display altering apparatus
JPH04337798A (en)Data processing system with display window
EP0551696A1 (en)Hypertext display system
CA2021823C (en)Window display system and method
EP0644500B1 (en)Method and system for producing a table image having focus and context areas showing direct and indirect data representations

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:APPLE COMPUTER, INC., CALIFORNIA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSON, GREG;HENDRY, IAN;OTHMER KONSTANTIN;REEL/FRAME:006988/0360;SIGNING DATES FROM 19940328 TO 19940329

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12

ASAssignment

Owner name:APPLE INC.,CALIFORNIA

Free format text:CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019235/0583

Effective date:20070109

Owner name:APPLE INC., CALIFORNIA

Free format text:CHANGE OF NAME;ASSIGNOR:APPLE COMPUTER, INC.;REEL/FRAME:019235/0583

Effective date:20070109


[8]ページ先頭

©2009-2025 Movatter.jp