Movatterモバイル変換


[0]ホーム

URL:


US5436189A - Self-aligned channel stop for trench-isolated island - Google Patents

Self-aligned channel stop for trench-isolated island
Download PDF

Info

Publication number
US5436189A
US5436189AUS08/106,160US10616093AUS5436189AUS 5436189 AUS5436189 AUS 5436189AUS 10616093 AUS10616093 AUS 10616093AUS 5436189 AUS5436189 AUS 5436189A
Authority
US
United States
Prior art keywords
semiconductor
trench
layer
semiconductor layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US08/106,160
Inventor
James D. Beasom
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intersil Corp
Original Assignee
Harris Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris CorpfiledCriticalHarris Corp
Priority to US08/106,160priorityCriticalpatent/US5436189A/en
Application grantedgrantedCritical
Publication of US5436189ApublicationCriticalpatent/US5436189A/en
Assigned to INTERSIL CORPORATIONreassignmentINTERSIL CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HARRIS CORPORATION
Assigned to CREDIT SUISSE FIRST BOSTON, AS COLLATERAL AGENTreassignmentCREDIT SUISSE FIRST BOSTON, AS COLLATERAL AGENTSECURITY INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: INTERSIL CORPORATION
Assigned to MORGAN STANLEY & CO. INCORPORATEDreassignmentMORGAN STANLEY & CO. INCORPORATEDSECURITY AGREEMENTAssignors: D2AUDIO CORPORATION, ELANTEC SEMICONDUCTOR, INC., INTERSIL AMERICAS INC., INTERSIL COMMUNICATIONS, INC., INTERSIL CORPORATION, KENET, INC., PLANET ATE, INC., QUELLAN, INC., TECHWELL, INC., ZILKER LABS, INC.
Assigned to INTERSIL CORPORATIONreassignmentINTERSIL CORPORATIONRELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS).Assignors: CREDIT SUISSE FIRST BOSTON
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A channel stop is self-aligned with a trench sidewall of a trench-isolated semiconductor architecture, so that there is no alignment tolerance between the stop and the trench wall. An initial masking layer, through which the trench pattern is to be formed in a semiconductor island layer, is used as a doping mask for introducing a channel stop dopant into a surface portion of the semiconductor layer where the trench is to be formed. The lateral diffusion of the dopant beneath the oxide and adjacent to the trench aperture defines the eventual size of the channel stop. The semiconductor layer is then anisotropically etched to form a trench to a prescribed depth, usually intersecting the underlying semiconductor substrate. Because the etch goes through only a portion of the channel stop diffusion, leaving that portion which has laterally diffused beneath-the oxide mask, the channel stop is self-aligned with the sidewall of the trench. The trench may be then oxidized and filled with polysilicon material to complete the trench isolation process. The width of the stop is controlled by lateral diffusion, which can be smaller than the width of a line defined by a mask, since that width is the minimum mask width plus twice the lateral diffusion of the layer defined by the mask.

Description

This is a division of application Ser. No. 679,182, filed Apr. 2, 1991, now U.S. Pat. No. 5,248,894, issued Sep. 28, 1993, which, in turn, is a continuation of application Ser. No. 416,490, filed Oct. 3, 1989, now abandoned.
FIELD OF THE INVENTION
The present invention relates in general to trench-isolated semiconductor devices and is particularly directed to a mechanism for forming a channel stop that is self-aligned with the trench walls.
BACKGROUND OF THE INVENTION
Because of its inherent reduced capacitance and higher integration density properties trench isolation is often used to isolate semiconductor islands within an integrated circuit architecture. In addition to being used with silicon-on-insulator configurations, trench isolation is also commonly employed with PN junction isolation of the bottom or floor of the island, as diagrammatically illustrated in FIG. 1, which shows an N-island 11 atop ansupport substrate 12. The sides ofisland 11 are isolated by means of atrench 13, typically filled with an insulator (oxide)layer 14 and conductor (polysilicon) material.
As trench isolation technology has developed it has been increasingly used to isolate thicker islands, such as those employed for high voltage (e.g. in excess of 30 volts) devices. With the relatively large field gradients in such-devices there is the possibility of the formation of aparasitic inversion path 17 beneath thesurface oxide layer 18 and along the sidewall of theisland 11, which electrically connects a device region, such as Ptype diffusion region 21 formed in the surface ofisland 11, with the underlying substrate. Such a parasitic path may be caused, for example, by the gating action of the potential applied topolysilicon material 15 together with the voltage of an interconnect line (not shown) which overliessurface oxide layer 18 betweenregion 21 andtrench 13, by the action of negative charge on and/or in the surface and sidewall oxide layers, or by a combination of charge and gate bias. High voltage-islands are particularly prone to the problem since they use higher resistivity material, which has a lower inversion threshold voltage than lower resistivity material, to achieve a higher breakdown voltage. In addition, the higher voltages present on the conductors cause the parasitic devices to turn on.
One technique to circumvent the inversion problem is to use a channel stop, which, for a high voltage junction, typically takes the form of a diffusion, such asdiffusion region 31 shown in FIG. 2, having the same conductivity type asisland 11, surrounding theopposite conductivity diffusion 21. The surface concentration of the channel stop is elevated with respect to that of the island and is made high enough so that it does not invert under worst case conditions. In order not to limit breakdown the channel stop region is spaced apart fromregion 21, which increases device occupation area and thus reduces integration density.
SUMMARY OF THE INVENTION
In accordance with the present invention, the need to provide a separation region between the trench and a device region within the island, which results in an unwanted increase in occupation area, is obviated by channel stop formation technique through which the stop is self-aligned with the trench sidewall, so that there is no alignment tolerance between the stop and the trench wall. Moreover, the width of the stop is controlled by lateral diffusion, which can be smaller than the width of a line defined by a mask, since that width is the minimum mask width plus twice the lateral diffusion of the layer defined by the mask.
In accordance with the present invention, an initial masking layer, e.g. oxide, through which the trench pattern is to be formed in the semiconductor island layer, is used as a doping mask for introducing a channel stop dopant into a surface portion of the semiconductor layer where the trench is to be formed. The lateral diffusion of the dopant beneath the oxide and adjacent to the trench aperture defines the eventual size of the channel stop, such that its lateral dimension is less than its depth, or vertical dimension, since an inherent characteristic of such lateral diffusion is that the dimension of the lateral diffusion beneath the mask is less than the diffusion depth into the semiconductor layer exposed by the mask aperture. The semiconductor layer is then anisotropically etched to form a trench to a prescribed depth, usually intersecting the underlying semiconductor substrate. Because the etch goes through only a portion of the channel stop diffusion, leaving that portion which has laterally diffused beneath the oxide mask, the channel stop is self-aligned with the sidewall of the trench. The trench may be then oxidized and filled with polysilicon material to complete the trench isolation process.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 diagrammatically illustrates PN junction isolation at the bottom of a conventional trench-isolated island;
FIG. 2 illustrates a conventional channel stop mechanism for circumventing inversion for a high voltage junction in a trench-isolated island;
FIGS. 3a-3d diagrammatically illustrate a trench-isolated semiconductor device employing a self-aligned channel stop, in cross-section, at respective stages of the manufacturing process of the present invention;
FIG. 4 shows a completed trench-isolated island structure having an underlying N+ region and a pair of channel stop regions that are contiguous with the sidewalls of isolation trenches; and
FIG. 5 is a cross-sectional side view of an arrangement of P and N islands trench-isolated on an underlying P substrate having self-aligned channel stop regions; and
FIG. 6 is a top view of the arrangement of P and N islands trench-isolated on an underlying P substrate having self-aligned channel stop regions as shown in FIG. 5.
DETAILED DESCRIPTION
Referring now to FIGS. 3a-3d, a trench-isolated semiconductor device employing a self-aligned channel stop is diagrammatically illustrated, in cross-section, at respective stages of manufacture. In particular, FIG. 3a shows a semiconductor (e.g. silicon)substrate 41 of a first conductivity type (e.g. P type), having asemiconductor layer 43 of a second conductivity type (e.g. N- type), formed onsubstrate 41 and having atop surface 45.
Overlying thetop surface 45 ofsemiconductor layer 43 is aninsulator layer 49, such as silicon oxide, which is selectively patterned to form one ormore apertures 51, exposingrespective surface portions 53 of thesemiconductor layer 43 for the purpose of defining an etch mask which will delineate the trench-isolated island.
In accordance with the present invention, prior to etching throughsemiconductor layer 43 to form the trench pattern, a channel stop dopant (an N type impurity such as phosphorous) is introduced (diffused) intosemiconductor layer 43 throughaperture 51 ininsulator layer 49, so as to form a highimpurity concentration region 55, which will serve as the source of channel stop regions and extends into the adjacent surface ofsemiconductor layer 43 beneathinsulator layer 49, as shown in FIG. 3b.Region 55 has an impurity concentration greater (N) than that (N-) ofsemiconductor layer 43, and is sufficiently high that it does not invert under worst case conditions.
Following the diffusion of highimpurity concentration region 55, atrench 54 is formed insemiconductor layer 43 throughaperture 51 andregion 55. Specifically, usinginsulator layer 49 as a mask,semiconductor layer 43 is anisotropically etched, for example by a reactive ion etch, down to thesubstrate 41, as shown in FIG. 3c. Since the trench passes through the channel stop region, leavingregion segments 57 and 59 that have diffused into surface regions oflayer 43 adjacent toaperture 51, the sidewalls ofregions 57 and 59 are inherently self-aligned with thesidewalls 56, 58 of the trench. Thus,channel stop regions 57 and 59 are contiguous with both thetop surface 45 and thetrench sidewall surfaces 56, 58, having a width set (which is less than its depth, as described above) by lateral diffusion beneathoxide layer 49 so as to occupy minimum area.
Next, as shown in FIG. 3d, thesidewalls 56, 58 and floor, orbottom 60, of the trench are coated or filled with aninsulator layer 61, such as silicon oxide. Where the trench is only partially filled, it may be followed by a layer of conductive material, for example by filling the oxide-coated trench with dopedpolysilicon 63, up to the surface ofsemiconductor layer 43. The original mask layer may then be stripped offsurface 45, for subsequent processing. Also shown in FIG. 3d is aregion 47 of P conductivity type, representative of one or more semiconductor regions that define PN junctions withsemiconductor layer 43 and form device regions of one or more prescribed circuit elements that make up the integrated circuit architecture.Region 47 may be formed by conventional processing subsequent to the trench refill.
FIG. 4 shows a completed trench-isolated island structure (P substrate 41/N- top layer 43) (absent contacts) having anN+ region 65, underlying P-type region 50 and a pair ofchannel stop regions 57 and 67 that are contiguous with thesidewalls 56, 58 and 66, 68 ofrespective trenches 54 and 64 but are spaced-apart from P-type region 50.Trenches 54 and 64 contain a sidewall-contiguous layer of dielectric (oxide) 61, 61' andpolysilicon refill 63, 63', respectively. Thetop surface 45 ofsemiconductor layer 43 is covered with athick field oxide 69, to minimize breakdown reduction, which may occur when a biased conductor lies over an N to N-high low junction. As can be seen from FIGS. 3d and 4, the manner of forming channel stop regions in accordance with the present invention creates no steps in the surface oxide layer. This absence of steps allows higher resolution lithography to be used and improves interconnect step coverage.
FIGS. 5 and 6 diagrammatically illustrate the application of the present invention to the case where complementary conductivity type islands (both P and N type) are trench-isolated within the same semiconductor wafer. More particularly. FIG. 5 is a cross-sectional side view and FIG. 6 is a top view of an arrangement of P and N islands trench-isolated on anunderlying P substrate 71, which contains a buriedN separation layer 73 where the P island is to be formed. Manufacture of the illustrated complementary trench-isolated structure is initiated by providing a semiconductor substrate 71 (P type in the present example), in which Ntype isolation region 73 has been diffused where a surface P type island is to be formed. Following diffusion ofregion 73, a shallow P type surface diffusion is formed inregion 73 to serve a source of P dopant impurities during subsequent epitaxial formation of a top (N-)semiconductor layer 75. During epitaxial growth oflayer 75 these P type impurities diffuse up intolayer 75 to formP type region 77. Afterlayer 75 has been formed, an additionalP type region 79 is selectively down-diffused through thetop surface 81 oflayer 75, so as to intersectregion 77 and thereby define a Ptype island region 83 that is isolated from P type substrate byseparation region 73. In some cases, an alternative approach would be to omit the preliminary formation of updiffusion region 77 and use only a down-diffusion to complete theisland 83. Both techniques are conventional.
Sinceepitaxial layer 75 contains both N- and P type material that are to be trench-isolated both N and P type channel stop regions are to be formed. The self-alignment mechanism described above with reference to FIGS. 3a-3d is carried out for both island types. To define the location of each type of channel stop region (P and N type) an extra oversize mask (an ion-implant photoresist mask) may be formed to overlieepitaxial layer 75, so as to overlap the trench and limit the N channel stop,to only those trenches that border N type islands. The P channel stop regions are patterned in a similar manner. In the structure illustrated in FIG. 5, it will be noted that P typechannel stop regions 86 and 87, withinP type island 83, are self-aligned withrespective sidewalls 88 and 89 oftrenches 91 and 92, while the opposite sidewalls oftrenches 91 and 92 are contiguous with N type channel stops forislands 101 and 103. For complementary channel stops on opposite walls of a trench, respective P and N masks may extend from the neighborhood of the center of the trench laterally to overlap the edge of the trench pattern where that particular type channel stop region is to be formed.
Although there is some overlap of the mask aperture about the center of the trench, this overlap region is removed during trench etch so that, in effect, the overlap is a don't care region. Consequently, counterdoping of the first dopant by the second is unnecessary. Alternatively, one of the channel dopants, e.g. N type, may be initially non-selectively introduced into all surface regions where channel stops (regardless of final conductivity type) are desired. Then a separate mask may be formed to selectively counterdope these regions where opposite conductivity type (P type in the present example) channel stops are desired, leaving the N channel stops, as is.
In the embodiment of FIGS. 5 and 6, N-type island 103 is trench-isolated by dielectric-coated/polysilicon-filledtrenches 92 and 93, with which channel stop region pairs 87, 95 and 96, 97 are self-aligned in the manner described above. Dielectric (oxide) is shown at 111, 112, 113, while poly refill is shown at 121, 122, 123. An additional high impurityN+ contact region 102 is diffused intoisland 103, in order to supply a prescribed bias throughisland 103 to underlying Ntype separation region 73, which is contiguous withisland 103 atsurface 78 ofunderlying substrate 71.
As will be appreciated from the foregoing description of the channel stop formation technique according to the present invention, through which the channel stop is self-aligned with the trench sidewall, the undesirable provision of a separation region or spacing between the trench and a device region within a trench-isolated island, which results in an unwanted increase in occupation area, is effectively obviated, so that there is no alignment tolerance between the channel stop and the trench wall. Moreover, the width of the stop is controlled by lateral diffusion, which can be smaller than the width of a line defined by a mask, since that width is the minimum mask width plus twice-the lateral diffusion of the layer defined by the mask.
While I have shown and described several embodiments in accordance with the present invention, it is to be understood that the same is not limited thereto but is susceptible to numerous changes and modifications as known to a person skilled in the art, and I therefore do not wish to be limited to the details shown and described herein but intend to cover all such changes and modifications as are obvious to one of ordinary skill in the art.

Claims (11)

What is claimed is:
1. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate having a first semiconductor portion of a first conductivity type, a second semiconductor portion of a second conductivity type, opposite to said first conductivity type, spaced apart from said first semiconductor portion by a separation surface portion therebetween, and a third semiconductor portion of said second conductivity type, formed beneath said first semiconductor portion;
(b) forming first and second semiconductor regions of said first and second conductivity types, respectively, in surface portions of said first and second semiconductor portions of said substrate, said first semiconductor region having an impurity concentration greater than that of said first semiconductor portion and said second semiconductor region having an impurity concentration greater than that of said second semiconductor portion and being spaced-apart from said third semiconductor portion of said second conductivity type;
(c) forming a trench through said separation surface portion of said semiconductor substrate, such that said trench intersects and extends through said first and second semiconductor portions, so that sidewalls of said trench touch said first and second semiconductor regions and said first and second portions of said substrate; and
(d) forming a layer of insulator material disposed along sidewalls of said trench.
2. A method according to claim 1, wherein step (a) further includes forming third and fourth semiconductor regions in said first and second portions of said semiconductor substrate, so as to be spaced apart from said first and second semiconductor regions formed in step (b).
3. A method according to claim 1, further including the step (f) of forming conductive material on said layer of insulator material in said trench.
4. A method according to claim 1, wherein step (c) comprises forming said trench such that said first semiconductor region has a first dimension which extends laterally in a surface portion of said first semiconductor portion of said substrate, and a second dimension, which extends vertically along a sidewall of said trench, such that the first dimension of said first semiconductor region is less than the second dimension of said first semiconductor region, and such that said second semiconductor region has a first dimension which extends laterally in a surface portion of said second semiconductor portion of said substrate, and a second dimension, which extends vertically along a sidewall of said trench, so that the first dimension of said second semiconductor region is less than the second dimension of said second semiconductor region.
5. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate having a first semiconductor layer containing a first portion of semiconductor material of a first conductivity type and a second portion of semiconductor material of a second conductivity type, opposite to said first conductivity type, and a second semiconductor layer containing a third portion of semiconductor material of said second conductivity type that overlies and touches said first portion of semiconductor material of said first layer, and a fourth portion of semiconductor material of said first conductivity type that overlies and touches said second portion of semiconductor material of said first layer;
(b) forming a first semiconductor region of said second conductivity type in a surface portion of said third portion of said second semiconductor layer, said first semiconductor region having an impurity concentration greater than that of said third portion of semiconductor material of said second semiconductor layer and being spaced-apart from said second portion of semiconductor material of said second conductivity type;
(c) forming a second semiconductor region of said first conductivity type in a surface portion of said fourth portion of said second semiconductor layer, said second semiconductor region having an impurity concentration greater than that of said fourth portion of semiconductor material of said second semiconductor layer;
(d) forming first and second trenches through said second semiconductor layer, so that sidewalls of said first and second trenches touch said first and second semiconductor regions, respectively, such that said first semiconductor region has a first dimension which extends laterally in said portion of said third semiconductor layer, and a second dimension which extends vertically along the sidewall of said first trench, such that said first dimension of said first semiconductor region is less than the second dimension of said first semiconductor region, and such that said second semiconductor region has a first dimension which extends laterally in said portion of said fourth semiconductor layer, and a second dimension which extends vertically along the sidewall of said second trench, such that said first dimension of said second semiconductor region is less than the second dimension of said second semiconductor region; and
(e) forming insulator material along sidewalls of said first and second trenches.
6. A method according to claim 5, further including the step (f) of forming conductive material on insulator material that has been formed along sidewalls of said first and second trenches in step (e).
7. A method according to claim 5, wherein said third portion of semiconductor material of said second conductivity type is spaced apart from said fourth portion of semiconductor material of said first conductivity type by a first separation portion through which said first trench is formed in step (d), and wherein a third semiconductor region of said second conductivity type is formed in another surface portion of said third portion of semiconductor material and extends into adjacent semiconductor material of said third portion of said second semiconductor layer, said third semiconductor region having an impurity concentration greater than that of said third portion of semiconductor material of said second semiconductor layer and being spaced-apart from said second portion of semiconductor material of said second conductivity type, such that said second trench formed in step (d) has its sidewall touching said third semiconductor region.
8. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate having a first semiconductor layer containing a first portion of semiconductor material of a first conductivity type and a second portion of semiconductor material of a second conductivity type, opposite to said first conductivity type, and a second semiconductor layer containing a third portion of semiconductor material of said second conductivity type that overlies and touches said first portion of semiconductor material of said first layer, and a fourth portion of semiconductor material of said first conductivity type that overlies and touches said second portion of semiconductor material of said first layer and is spaced apart from said third portion of semiconductor material of said second conductivity type;
(b) forming a first semiconductor region of said second conductivity type in a surface portion of said third portion of said second semiconductor layer, said first semiconductor region having an impurity concentration greater than that of said third portion of semiconductor material of said second semiconductor layer;
(c) forming a second semiconductor region of said first conductivity type in a surface portion of said fourth portion of said second semiconductor layer, said second semiconductor region having an impurity concentration greater than that of said fourth portion of semiconductor material of said second semiconductor layer;
(d) forming a third semiconductor region of said second conductivity type in another surface portion of said third portion of said semiconductor material of said semiconductor layer and extending into adjacent semiconductor material of said third portion of said semiconductor material of said second semiconductor layer, said third semiconductor region having an impurity concentration greater than that of said third portion of said semiconductor material of said second semiconductor layer, and such that said second portion of semiconductor material of said first semiconductor layer underlies and touches a prescribed region of said third portion of semiconductor material of said second semiconductor layer;
(e) forming first and second trenches through said second semiconductor layer to said first semiconductor layer, such that sidewalls of said first and second trenches touch said first and second semiconductor regions, respectively, and such that said second trench has its sidewall touch said third semiconductor region;
(f) forming insulator material along sidewalls of said first and second trenches; and
(g) forming an ohmic contact region of said second conductivity type in a further surface portion of said third portion of said second semiconductor layer.
9. A method according to claim 8, wherein step (e) comprises forming said first and second trenches such that said first semiconductor region has a first dimension which extends laterally in said first portion of said third portion of said second semiconductor layer, and a second dimension which extends vertically along the sidewall of said first trench, such that said first dimension of said first semiconductor region is less than the second dimension of said first semiconductor region, and such that said second semiconductor region has a first dimension which extends laterally in said second surface portion of said fourth portion of said second semiconductor layer, and a second dimension which extends vertically along the sidewall of said second trench, such that said first dimension of said second semiconductor region is less than the second dimension of said second semiconductor region.
10. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate having a first semiconductor layer of a first conductivity type, and a second semiconductor layer of a second conductivity type, opposite to said first conductivity type, formed on said first semiconductor layer and having a first surface;
(b) forming a first semiconductor region of said second conductivity type in a first surface position of said first surface of said second semiconductor layer surrounding and being spaced apart from a second surface portion of said first surface of said second semiconductor layer by a third surface portion of said first surface of said second semiconductor layer therebetween, while being spaced apart from said first semiconductor layer and having an impurity concentration greater than that of said second semiconductor layer;
(c) forming a trench through said first semiconductor region and said second semiconductor layer to said first semiconductor layer, so that said trench surrounds said second and third surface portions of said first surface of said second semiconductor layer, and has a sidewall touching said first semiconductor region, said trench dividing said first semiconductor region into a first semiconductor portion adjacent to said third surface portion of said first surface of said second semiconductor layer and into a second semiconductor portion, separated from said third surface portion of said first surface of said second semiconductor layer by said trench, such that said first semiconductor portion has a first dimension which extends laterally into said third surface portion of said first surface of said second semiconductor layer, and a second dimension which extends vertically along said sidewall of said trench, such that said first dimension is less than said second dimension;
(d) forming a first layer of insulator material along said sidewall of said trench and extending through said second semiconductor layer, and forming conductive material on said first layer of insulator material along said sidewall of said trench; and
(e) forming a second semiconductor region of said first conductivity type in said second surface portion of said first surface of said second semiconductor layer.
11. A method of manufacturing a semiconductor device comprising the steps of:
(a) providing a semiconductor substrate having a first semiconductor layer of a first conductivity type, and a second semiconductor layer of a second conductivity type, opposite to said first conductivity type, formed on said first semiconductor layer and having a first surface;
(b) forming a first semiconductor region of said second conductivity type in a first surface position of said first surface of said second semiconductor layer surrounding and being spaced apart from a second surface portion of said first surface of said second semiconductor layer by a third surface portion of said first surface of said second semiconductor layer therebetween, while being spaced apart from said first semiconductor layer and having an impurity concentration greater than that of said second semiconductor layer;
(c) forming a trench through said first semiconductor region and said second semiconductor layer to said first semiconductor layer, so that said trench surrounds said second and third surface portions of said first surface of said second semiconductor layer, and has a sidewall touching said first semiconductor region, said trench dividing said first semiconductor region into a first semiconductor portion adjacent to said third surface portion of said first surface of said second semiconductor layer and into a second semiconductor portion, separated from said third surface portion of said first surface of said second semiconductor layer by said trench, such that said first semiconductor portion has a first dimension which extends laterally into said third surface portion of said first surface of said second semiconductor layer, and a second dimension which extends vertically along said sidewall of said trench, such that said first dimension is less than said second dimension;
(d) forming a first layer of insulator material along said sidewall of said trench and extending through said second semiconductor layer; and
(e) forming a second semiconductor region of said first conductivity type in said second surface portion of said first surface of said second semiconductor layer; and wherein
step (b) comprises selectively forming a masking layer on said first surface of said semiconductor layer, said masking layer having an aperture overlying and exposing only a portion of said first surface portion of said first surface of said semiconductor layer in which said first semiconductor region is to be formed in step (c), and introducing impurities of said second conductivity type through said masking layer aperture into said second semiconductor, so that said impurities diffuse horizontally along said third surface portion of said first surface of said second semiconductor layer beneath said masking layer and vertically into said second semiconductor layer, thereby forming said first semiconductor region of said second conductivity type in said first surface portion of said first surface of said second semiconductor layer, and wherein
step (c) comprises using said masking layer aperture to define a lateral extent of said trench through first semiconductor region and said second semiconductor layer to said first semiconductor layer, so that said sidewall of said trench touches that portion of said first semiconductor region beneath said masking layer.
US08/106,1601989-10-031993-08-13Self-aligned channel stop for trench-isolated islandExpired - LifetimeUS5436189A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US08/106,160US5436189A (en)1989-10-031993-08-13Self-aligned channel stop for trench-isolated island

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US41649089A1989-10-031989-10-03
US07/679,182US5248894A (en)1989-10-031991-04-02Self-aligned channel stop for trench-isolated island
US08/106,160US5436189A (en)1989-10-031993-08-13Self-aligned channel stop for trench-isolated island

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US07/679,182DivisionUS5248894A (en)1989-10-031991-04-02Self-aligned channel stop for trench-isolated island

Publications (1)

Publication NumberPublication Date
US5436189Atrue US5436189A (en)1995-07-25

Family

ID=27023372

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US07/679,182Expired - LifetimeUS5248894A (en)1989-10-031991-04-02Self-aligned channel stop for trench-isolated island
US08/106,160Expired - LifetimeUS5436189A (en)1989-10-031993-08-13Self-aligned channel stop for trench-isolated island

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US07/679,182Expired - LifetimeUS5248894A (en)1989-10-031991-04-02Self-aligned channel stop for trench-isolated island

Country Status (1)

CountryLink
US (2)US5248894A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5569621A (en)*1994-02-041996-10-29Analog Devices, IncorporatedIntegrated circuit chip supported by a handle wafer and provided with means to maintain the handle wafer potential at a desired level
US5571738A (en)*1992-09-211996-11-05Advanced Micro Devices, Inc.Method of making poly LDD self-aligned channel transistors
WO1997036323A1 (en)*1996-03-281997-10-02Advanced Micro Devices, Inc.Method of doping trench sidewalls before trench etching
US5795792A (en)*1994-01-201998-08-18Mitsubishi Denki Kabushiki KaishaMethod of manufacturing a semiconductor device having a trench structure
US6030882A (en)*1998-11-062000-02-29United Semiconductor Corp.Method for manufacturing shallow trench isolation structure
US6048776A (en)*1996-04-302000-04-11United MicroelectronicsSemiconductor device and a method of fabricating the same
US6114741A (en)*1996-12-132000-09-05Texas Instruments IncorporatedTrench isolation of a CMOS structure
US6198127B1 (en)*1999-05-192001-03-06Intersil CorporationMOS-gated power device having extended trench and doping zone and process for forming same
US6445043B1 (en)*1994-11-302002-09-03Agere SystemsIsolated regions in an integrated circuit
US6710403B2 (en)2002-07-302004-03-23Fairchild Semiconductor CorporationDual trench power MOSFET
US6710418B1 (en)2002-10-112004-03-23Fairchild Semiconductor CorporationSchottky rectifier with insulation-filled trenches and method of forming the same
US6803626B2 (en)2002-07-182004-10-12Fairchild Semiconductor CorporationVertical charge control semiconductor device
US6916745B2 (en)2003-05-202005-07-12Fairchild Semiconductor CorporationStructure and method for forming a trench MOSFET having self-aligned features
US20050233541A1 (en)*2002-03-052005-10-20Samsung Electronics, Co., Ltd.Semiconductor device having dual isolation structure and method of fabricating the same
US6991977B2 (en)2001-10-172006-01-31Fairchild Semiconductor CorporationMethod for forming a semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US20060051965A1 (en)*2004-09-072006-03-09Lam Research CorporationMethods of etching photoresist on substrates
US7033891B2 (en)2002-10-032006-04-25Fairchild Semiconductor CorporationTrench gate laterally diffused MOSFET devices and methods for making such devices
US7061066B2 (en)2001-10-172006-06-13Fairchild Semiconductor CorporationSchottky diode using charge balance structure
WO2006081974A1 (en)*2005-02-022006-08-10Atmel Germany GmbhMethod for the production of integrated circuits
US20060187596A1 (en)*2005-02-242006-08-24International Business Machines CorporationCharge modulation network for multiple power domains for silicon-on-insulator technology
US7132712B2 (en)2002-11-052006-11-07Fairchild Semiconductor CorporationTrench structure having one or more diodes embedded therein adjacent a PN junction
US7265415B2 (en)2004-10-082007-09-04Fairchild Semiconductor CorporationMOS-gated transistor with reduced miller capacitance
US7265416B2 (en)2002-02-232007-09-04Fairchild Korea Semiconductor Ltd.High breakdown voltage low on-resistance lateral DMOS transistor
US7301203B2 (en)2003-11-282007-11-27Fairchild Korea Semiconductor Ltd.Superjunction semiconductor device
US7319256B1 (en)2006-06-192008-01-15Fairchild Semiconductor CorporationShielded gate trench FET with the shield and gate electrodes being connected together
US7345342B2 (en)2001-01-302008-03-18Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US7352036B2 (en)2004-08-032008-04-01Fairchild Semiconductor CorporationSemiconductor power device having a top-side drain using a sinker trench
US7368777B2 (en)2003-12-302008-05-06Fairchild Semiconductor CorporationAccumulation device with charge balance structure and method of forming the same
US7385248B2 (en)2005-08-092008-06-10Fairchild Semiconductor CorporationShielded gate field effect transistor with improved inter-poly dielectric
US7446374B2 (en)2006-03-242008-11-04Fairchild Semiconductor CorporationHigh density trench FET with integrated Schottky diode and method of manufacture
US7504306B2 (en)2005-04-062009-03-17Fairchild Semiconductor CorporationMethod of forming trench gate field effect transistor with recessed mesas
US7576388B1 (en)2002-10-032009-08-18Fairchild Semiconductor CorporationTrench-gate LDMOS structures
US7625793B2 (en)1999-12-202009-12-01Fairchild Semiconductor CorporationPower MOS device with improved gate charge performance
US7638841B2 (en)2003-05-202009-12-29Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US7745289B2 (en)2000-08-162010-06-29Fairchild Semiconductor CorporationMethod of forming a FET having ultra-low on-resistance and low gate charge
US7772668B2 (en)2007-12-262010-08-10Fairchild Semiconductor CorporationShielded gate trench FET with multiple channels
US20120193748A1 (en)*2008-12-082012-08-02Yedinak Joseph ATrench-based power semiconductor devices with increased breakdown voltage characteristics
US8319290B2 (en)2010-06-182012-11-27Fairchild Semiconductor CorporationTrench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8673700B2 (en)2011-04-272014-03-18Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8772868B2 (en)2011-04-272014-07-08Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8786010B2 (en)2011-04-272014-07-22Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8829641B2 (en)2001-01-302014-09-09Fairchild Semiconductor CorporationMethod of forming a dual-trench field effect transistor
US8836028B2 (en)2011-04-272014-09-16Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8866218B2 (en)2011-03-292014-10-21Fairchild Semiconductor CorporationWafer level MOSFET metallization
US8872278B2 (en)2011-10-252014-10-28Fairchild Semiconductor CorporationIntegrated gate runner and field implant termination for trench devices
US8928077B2 (en)2007-09-212015-01-06Fairchild Semiconductor CorporationSuperjunction structures for power devices
US9431481B2 (en)2008-09-192016-08-30Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5567553A (en)*1994-07-121996-10-22International Business Machines CorporationMethod to suppress subthreshold leakage due to sharp isolation corners in submicron FET structures
US5693971A (en)1994-07-141997-12-02Micron Technology, Inc.Combined trench and field isolation structure for semiconductor devices
US5622890A (en)*1994-07-221997-04-22Harris CorporationMethod of making contact regions for narrow trenches in semiconductor devices
US5448090A (en)*1994-08-031995-09-05International Business Machines CorporationStructure for reducing parasitic leakage in a memory array with merged isolation and node trench construction
US5859466A (en)*1995-06-071999-01-12Nippon Steel Semiconductor CorporationSemiconductor device having a field-shield device isolation structure and method for making thereof
US5770878A (en)1996-04-101998-06-23Harris CorporationTrench MOS gate device
US5757059A (en)*1996-07-301998-05-26International Business Machines CorporationInsulated gate field effect transistor
US5899701A (en)*1997-06-251999-05-04Siemens AktiengesellschaftMethod for making silica strain test structures
US6136664A (en)*1997-08-072000-10-24International Business Machines CorporationFilling of high aspect ratio trench isolation
US6960818B1 (en)*1997-12-302005-11-01Siemens AktiengesellschaftRecessed shallow trench isolation structure nitride liner and method for making same
KR100421046B1 (en)*2001-07-132004-03-04삼성전자주식회사Semiconductor device and method for manufacturing the same
FR2960097A1 (en)*2010-05-112011-11-18St Microelectronics Tours SasBidirectional protection component for use in first-conductivity type semiconductor substrate, has metallization layer covering first-conductivity type implanted zone, and isolated trench traversing epitaxy layer
JP6997033B2 (en)*2018-04-242022-01-17ルネサスエレクトロニクス株式会社 Semiconductor devices and methods for manufacturing semiconductor devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4140558A (en)*1978-03-021979-02-20Bell Telephone Laboratories, IncorporatedIsolation of integrated circuits utilizing selective etching and diffusion
JPS59161838A (en)*1983-03-071984-09-12Toshiba CorpSemiconductor device and manufacture thereof
US4523369A (en)*1982-03-311985-06-18Tokyo Shibaura Denki Kabushiki KaishaMethod for manufacturing a semiconductor device
US4534824A (en)*1984-04-161985-08-13Advanced Micro Devices, Inc.Process for forming isolation slots having immunity to surface inversion
US4692992A (en)*1986-06-251987-09-15Rca CorporationMethod of forming isolation regions in a semiconductor device
US4824797A (en)*1985-10-311989-04-25International Business Machines CorporationSelf-aligned channel stop
US5206182A (en)*1989-06-081993-04-27United Technologies CorporationTrench isolation process

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3800195A (en)*1972-08-091974-03-26Motorola IncMethod of making semiconductor devices through overlapping diffusions
NL161301C (en)*1972-12-291980-01-15Philips Nv SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURE THEREOF.
US4042949A (en)*1974-05-081977-08-16Motorola, Inc.Semiconductor devices
US4056415A (en)*1975-08-041977-11-01International Telephone And Telegraph CorporationMethod for providing electrical isolating material in selected regions of a semiconductive material
US4137109A (en)*1976-04-121979-01-30Texas Instruments IncorporatedSelective diffusion and etching method for isolation of integrated logic circuit
US4231057A (en)*1978-11-131980-10-28Fujitsu LimitedSemiconductor device and method for its preparation
US4503451A (en)*1982-07-301985-03-05Motorola, Inc.Low resistance buried power bus for integrated circuits
JPS5976466A (en)*1982-10-251984-05-01Mitsubishi Electric CorpPlanar type semiconductor device
US4547793A (en)*1983-12-271985-10-15International Business Machines CorporationTrench-defined semiconductor structure
JPS60140752A (en)*1983-12-281985-07-25Olympus Optical Co LtdSemiconductor photoelectric conversion device
US4605948A (en)*1984-08-021986-08-12Rca CorporationSemiconductor structure for electric field distribution
US4729006A (en)*1986-03-171988-03-01International Business Machines CorporationSidewall spacers for CMOS circuit stress relief/isolation and method for making
JPS62296455A (en)*1986-06-161987-12-23Mitsubishi Electric CorpSemiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4140558A (en)*1978-03-021979-02-20Bell Telephone Laboratories, IncorporatedIsolation of integrated circuits utilizing selective etching and diffusion
US4523369A (en)*1982-03-311985-06-18Tokyo Shibaura Denki Kabushiki KaishaMethod for manufacturing a semiconductor device
JPS59161838A (en)*1983-03-071984-09-12Toshiba CorpSemiconductor device and manufacture thereof
US4534824A (en)*1984-04-161985-08-13Advanced Micro Devices, Inc.Process for forming isolation slots having immunity to surface inversion
US4824797A (en)*1985-10-311989-04-25International Business Machines CorporationSelf-aligned channel stop
US4692992A (en)*1986-06-251987-09-15Rca CorporationMethod of forming isolation regions in a semiconductor device
US5206182A (en)*1989-06-081993-04-27United Technologies CorporationTrench isolation process

Cited By (100)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5571738A (en)*1992-09-211996-11-05Advanced Micro Devices, Inc.Method of making poly LDD self-aligned channel transistors
US5795792A (en)*1994-01-201998-08-18Mitsubishi Denki Kabushiki KaishaMethod of manufacturing a semiconductor device having a trench structure
US5569621A (en)*1994-02-041996-10-29Analog Devices, IncorporatedIntegrated circuit chip supported by a handle wafer and provided with means to maintain the handle wafer potential at a desired level
US6445043B1 (en)*1994-11-302002-09-03Agere SystemsIsolated regions in an integrated circuit
WO1997036323A1 (en)*1996-03-281997-10-02Advanced Micro Devices, Inc.Method of doping trench sidewalls before trench etching
US5780353A (en)*1996-03-281998-07-14Advanced Micro Devices, Inc.Method of doping trench sidewalls before trench etching
US6048776A (en)*1996-04-302000-04-11United MicroelectronicsSemiconductor device and a method of fabricating the same
US6114741A (en)*1996-12-132000-09-05Texas Instruments IncorporatedTrench isolation of a CMOS structure
US6030882A (en)*1998-11-062000-02-29United Semiconductor Corp.Method for manufacturing shallow trench isolation structure
US6198127B1 (en)*1999-05-192001-03-06Intersil CorporationMOS-gated power device having extended trench and doping zone and process for forming same
US7625793B2 (en)1999-12-202009-12-01Fairchild Semiconductor CorporationPower MOS device with improved gate charge performance
US7745289B2 (en)2000-08-162010-06-29Fairchild Semiconductor CorporationMethod of forming a FET having ultra-low on-resistance and low gate charge
US8710584B2 (en)2000-08-162014-04-29Fairchild Semiconductor CorporationFET device having ultra-low on-resistance and low gate charge
US8101484B2 (en)2000-08-162012-01-24Fairchild Semiconductor CorporationMethod of forming a FET having ultra-low on-resistance and low gate charge
US7345342B2 (en)2001-01-302008-03-18Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US9368587B2 (en)2001-01-302016-06-14Fairchild Semiconductor CorporationAccumulation-mode field effect transistor with improved current capability
US8829641B2 (en)2001-01-302014-09-09Fairchild Semiconductor CorporationMethod of forming a dual-trench field effect transistor
US7061066B2 (en)2001-10-172006-06-13Fairchild Semiconductor CorporationSchottky diode using charge balance structure
US6991977B2 (en)2001-10-172006-01-31Fairchild Semiconductor CorporationMethod for forming a semiconductor structure with improved smaller forward voltage loss and higher blocking capability
US7429523B2 (en)2001-10-172008-09-30Fairchild Semiconductor CorporationMethod of forming schottky diode with charge balance structure
US7605040B2 (en)2002-02-232009-10-20Fairchild Korea Semiconductor Ltd.Method of forming high breakdown voltage low on-resistance lateral DMOS transistor
US7265416B2 (en)2002-02-232007-09-04Fairchild Korea Semiconductor Ltd.High breakdown voltage low on-resistance lateral DMOS transistor
US20050233541A1 (en)*2002-03-052005-10-20Samsung Electronics, Co., Ltd.Semiconductor device having dual isolation structure and method of fabricating the same
US7297604B2 (en)*2002-03-052007-11-20Samsung Electronics Co., Ltd.Semiconductor device having dual isolation structure and method of fabricating the same
US6803626B2 (en)2002-07-182004-10-12Fairchild Semiconductor CorporationVertical charge control semiconductor device
US7977744B2 (en)2002-07-182011-07-12Fairchild Semiconductor CorporationField effect transistor with trench filled with insulating material and strips of semi-insulating material along trench sidewalls
US7291894B2 (en)2002-07-182007-11-06Fairchild Semiconductor CorporationVertical charge control semiconductor device with low output capacitance
US6710403B2 (en)2002-07-302004-03-23Fairchild Semiconductor CorporationDual trench power MOSFET
US7033891B2 (en)2002-10-032006-04-25Fairchild Semiconductor CorporationTrench gate laterally diffused MOSFET devices and methods for making such devices
US8198677B2 (en)2002-10-032012-06-12Fairchild Semiconductor CorporationTrench-gate LDMOS structures
US7576388B1 (en)2002-10-032009-08-18Fairchild Semiconductor CorporationTrench-gate LDMOS structures
US6710418B1 (en)2002-10-112004-03-23Fairchild Semiconductor CorporationSchottky rectifier with insulation-filled trenches and method of forming the same
US7132712B2 (en)2002-11-052006-11-07Fairchild Semiconductor CorporationTrench structure having one or more diodes embedded therein adjacent a PN junction
US7582519B2 (en)2002-11-052009-09-01Fairchild Semiconductor CorporationMethod of forming a trench structure having one or more diodes embedded therein adjacent a PN junction
US7652326B2 (en)2003-05-202010-01-26Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US7799636B2 (en)2003-05-202010-09-21Fairchild Semiconductor CorporationPower device with trenches having wider upper portion than lower portion
US6916745B2 (en)2003-05-202005-07-12Fairchild Semiconductor CorporationStructure and method for forming a trench MOSFET having self-aligned features
US8936985B2 (en)2003-05-202015-01-20Fairchild Semiconductor CorporationMethods related to power semiconductor devices with thick bottom oxide layers
US8889511B2 (en)2003-05-202014-11-18Fairchild Semiconductor CorporationMethods of manufacturing power semiconductor devices with trenched shielded split gate transistor
US8786045B2 (en)2003-05-202014-07-22Fairchild Semiconductor CorporationPower semiconductor devices having termination structures
US8716783B2 (en)2003-05-202014-05-06Fairchild Semiconductor CorporationPower device with self-aligned source regions
US8350317B2 (en)2003-05-202013-01-08Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US8143123B2 (en)2003-05-202012-03-27Fairchild Semiconductor CorporationMethods of forming inter-poly dielectric (IPD) layers in power semiconductor devices
US8143124B2 (en)2003-05-202012-03-27Fairchild Semiconductor CorporationMethods of making power semiconductor devices with thick bottom oxide layer
US8129245B2 (en)2003-05-202012-03-06Fairchild Semiconductor CorporationMethods of manufacturing power semiconductor devices with shield and gate contacts
US7595524B2 (en)2003-05-202009-09-29Fairchild Semiconductor CorporationPower device with trenches having wider upper portion than lower portion
US8034682B2 (en)2003-05-202011-10-11Fairchild Semiconductor CorporationPower device with trenches having wider upper portion than lower portion
US7344943B2 (en)2003-05-202008-03-18Fairchild Semiconductor CorporationMethod for forming a trench MOSFET having self-aligned features
US8013391B2 (en)2003-05-202011-09-06Fairchild Semiconductor CorporationPower semiconductor devices with trenched shielded split gate transistor and methods of manufacture
US7638841B2 (en)2003-05-202009-12-29Fairchild Semiconductor CorporationPower semiconductor devices and methods of manufacture
US8013387B2 (en)2003-05-202011-09-06Fairchild Semiconductor CorporationPower semiconductor devices with shield and gate contacts and methods of manufacture
US7982265B2 (en)2003-05-202011-07-19Fairchild Semiconductor CorporationTrenched shield gate power semiconductor devices and methods of manufacture
US7855415B2 (en)2003-05-202010-12-21Fairchild Semiconductor CorporationPower semiconductor devices having termination structures and methods of manufacture
US7655981B2 (en)2003-11-282010-02-02Fairchild Korea Semiconductor Ltd.Superjunction semiconductor device
US7301203B2 (en)2003-11-282007-11-27Fairchild Korea Semiconductor Ltd.Superjunction semiconductor device
US7368777B2 (en)2003-12-302008-05-06Fairchild Semiconductor CorporationAccumulation device with charge balance structure and method of forming the same
US8518777B2 (en)2003-12-302013-08-27Fairchild Semiconductor CorporationMethod for forming accumulation-mode field effect transistor with improved current capability
US7936008B2 (en)2003-12-302011-05-03Fairchild Semiconductor CorporationStructure and method for forming accumulation-mode field effect transistor with improved current capability
US8026558B2 (en)2004-08-032011-09-27Fairchild Semiconductor CorporationSemiconductor power device having a top-side drain using a sinker trench
US7732876B2 (en)2004-08-032010-06-08Fairchild Semiconductor CorporationPower transistor with trench sinker for contacting the backside
US8148233B2 (en)2004-08-032012-04-03Fairchild Semiconductor CorporationSemiconductor power device having a top-side drain using a sinker trench
US7352036B2 (en)2004-08-032008-04-01Fairchild Semiconductor CorporationSemiconductor power device having a top-side drain using a sinker trench
US20060051965A1 (en)*2004-09-072006-03-09Lam Research CorporationMethods of etching photoresist on substrates
US20080182422A1 (en)*2004-09-072008-07-31Lam Research CorporationMethods of etching photoresist on substrates
US7534683B2 (en)2004-10-082009-05-19Fairchild Semiconductor CorporationMethod of making a MOS-gated transistor with reduced miller capacitance
US7265415B2 (en)2004-10-082007-09-04Fairchild Semiconductor CorporationMOS-gated transistor with reduced miller capacitance
WO2006081974A1 (en)*2005-02-022006-08-10Atmel Germany GmbhMethod for the production of integrated circuits
US20060187596A1 (en)*2005-02-242006-08-24International Business Machines CorporationCharge modulation network for multiple power domains for silicon-on-insulator technology
US7129545B2 (en)2005-02-242006-10-31International Business Machines CorporationCharge modulation network for multiple power domains for silicon-on-insulator technology
US7560778B2 (en)2005-02-242009-07-14International Business Machines CorporationCharge modulation network for multiple power domains for silicon-on-insulator technology
US20070008668A1 (en)*2005-02-242007-01-11Cain David ACharge modulation network for multiple power domains for silicon-on-insulator technology
US8084327B2 (en)2005-04-062011-12-27Fairchild Semiconductor CorporationMethod for forming trench gate field effect transistor with recessed mesas using spacers
US7504306B2 (en)2005-04-062009-03-17Fairchild Semiconductor CorporationMethod of forming trench gate field effect transistor with recessed mesas
US8680611B2 (en)2005-04-062014-03-25Fairchild Semiconductor CorporationField effect transistor and schottky diode structures
US7598144B2 (en)2005-08-092009-10-06Fairchild Semiconductor CorporationMethod for forming inter-poly dielectric in shielded gate field effect transistor
US7385248B2 (en)2005-08-092008-06-10Fairchild Semiconductor CorporationShielded gate field effect transistor with improved inter-poly dielectric
US7446374B2 (en)2006-03-242008-11-04Fairchild Semiconductor CorporationHigh density trench FET with integrated Schottky diode and method of manufacture
US20090035900A1 (en)*2006-03-242009-02-05Paul ThorupMethod of Forming High Density Trench FET with Integrated Schottky Diode
US7713822B2 (en)2006-03-242010-05-11Fairchild Semiconductor CorporationMethod of forming high density trench FET with integrated Schottky diode
US7319256B1 (en)2006-06-192008-01-15Fairchild Semiconductor CorporationShielded gate trench FET with the shield and gate electrodes being connected together
US7859047B2 (en)2006-06-192010-12-28Fairchild Semiconductor CorporationShielded gate trench FET with the shield and gate electrodes connected together in non-active region
US7473603B2 (en)2006-06-192009-01-06Fairchild Semiconductor CorporationMethod for forming a shielded gate trench FET with the shield and gate electrodes being connected together
US9595596B2 (en)2007-09-212017-03-14Fairchild Semiconductor CorporationSuperjunction structures for power devices
US8928077B2 (en)2007-09-212015-01-06Fairchild Semiconductor CorporationSuperjunction structures for power devices
US7772668B2 (en)2007-12-262010-08-10Fairchild Semiconductor CorporationShielded gate trench FET with multiple channels
US9224853B2 (en)2007-12-262015-12-29Fairchild Semiconductor CorporationShielded gate trench FET with multiple channels
US9431481B2 (en)2008-09-192016-08-30Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US9391193B2 (en)2008-12-082016-07-12Fairchild Semiconductor CorporationTrench-based power semiconductor devices with increased breakdown voltage characteristics
US8563377B2 (en)*2008-12-082013-10-22Fairchild Semiconductor CorporationTrench-based power semiconductor devices with increased breakdown voltage characteristics
US8963212B2 (en)2008-12-082015-02-24Fairchild Semiconductor CorporationTrench-based power semiconductor devices with increased breakdown voltage characteristics
US20120193748A1 (en)*2008-12-082012-08-02Yedinak Joseph ATrench-based power semiconductor devices with increased breakdown voltage characteristics
US8932924B2 (en)2008-12-082015-01-13Fairchild Semiconductor CorporationTrench-based power semiconductor devices with increased breakdown voltage characteristics
US8432000B2 (en)2010-06-182013-04-30Fairchild Semiconductor CorporationTrench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8319290B2 (en)2010-06-182012-11-27Fairchild Semiconductor CorporationTrench MOS barrier schottky rectifier with a planar surface using CMP techniques
US8866218B2 (en)2011-03-292014-10-21Fairchild Semiconductor CorporationWafer level MOSFET metallization
US8836028B2 (en)2011-04-272014-09-16Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8786010B2 (en)2011-04-272014-07-22Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8772868B2 (en)2011-04-272014-07-08Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8673700B2 (en)2011-04-272014-03-18Fairchild Semiconductor CorporationSuperjunction structures for power devices and methods of manufacture
US8872278B2 (en)2011-10-252014-10-28Fairchild Semiconductor CorporationIntegrated gate runner and field implant termination for trench devices

Also Published As

Publication numberPublication date
US5248894A (en)1993-09-28

Similar Documents

PublicationPublication DateTitle
US5436189A (en)Self-aligned channel stop for trench-isolated island
US6172381B1 (en)Source/drain junction areas self aligned between a sidewall spacer and an etched lateral sidewall
US5578508A (en)Vertical power MOSFET and process of fabricating the same
US4737472A (en)Process for the simultaneous production of self-aligned bipolar transistors and complementary MOS transistors on a common silicon substrate
KR100490180B1 (en) Integrated circuits having a dummy structure and manufacturing method thereof
US4795721A (en)Walled slot devices and method of making same
US5140388A (en)Vertical metal-oxide semiconductor devices
US5648283A (en)High density power device fabrication process using undercut oxide sidewalls
US5406111A (en)Protection device for an intergrated circuit and method of formation
US5614750A (en)Buried layer contact for an integrated circuit structure
JP3301062B2 (en) High performance MOSFET device with raised source and drain and method of forming the same
US5043778A (en)Oxide-isolated source/drain transistor
US4536947A (en)CMOS process for fabricating integrated circuits, particularly dynamic memory cells with storage capacitors
US20050233541A1 (en)Semiconductor device having dual isolation structure and method of fabricating the same
JPH06204333A (en)Semiconductor device isolation structure
US5874769A (en)Mosfet isolation structure with planar surface
US3873989A (en)Double-diffused, lateral transistor structure
US5882966A (en)BiDMOS semiconductor device and method of fabricating the same
EP0462270B1 (en)Method of using a semiconductor device comprising a substrate having a dielectrically isolated semiconductor island
US5156992A (en)Process for forming poly-sheet pillar transistor DRAM cell
US5198383A (en)Method of fabricating a composed pillar transistor DRAM Cell
KR970011641B1 (en) Semiconductor device and manufacturing method
US5164801A (en)A p channel mis type semiconductor device
KR0128339B1 (en) Bipolar Transistor Manufacturing Method Using CMOS Technology
US5574306A (en)Lateral bipolar transistor and FET

Legal Events

DateCodeTitleDescription
STCFInformation on status: patent grant

Free format text:PATENTED CASE

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:4

ASAssignment

Owner name:INTERSIL CORPORATION, FLORIDA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARRIS CORPORATION;REEL/FRAME:010247/0043

Effective date:19990813

ASAssignment

Owner name:CREDIT SUISSE FIRST BOSTON, AS COLLATERAL AGENT, N

Free format text:SECURITY INTEREST;ASSIGNOR:INTERSIL CORPORATION;REEL/FRAME:010351/0410

Effective date:19990813

FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12

ASAssignment

Owner name:MORGAN STANLEY & CO. INCORPORATED,NEW YORK

Free format text:SECURITY AGREEMENT;ASSIGNORS:INTERSIL CORPORATION;TECHWELL, INC.;INTERSIL COMMUNICATIONS, INC.;AND OTHERS;REEL/FRAME:024390/0608

Effective date:20100427

ASAssignment

Owner name:INTERSIL CORPORATION,FLORIDA

Free format text:RELEASE BY SECURED PARTY;ASSIGNOR:CREDIT SUISSE FIRST BOSTON;REEL/FRAME:024445/0049

Effective date:20030306


[8]ページ先頭

©2009-2025 Movatter.jp