Movatterモバイル変換


[0]ホーム

URL:


US5267261A - Mobile station assisted soft handoff in a CDMA cellular communications system - Google Patents

Mobile station assisted soft handoff in a CDMA cellular communications system
Download PDF

Info

Publication number
US5267261A
US5267261AUS07/847,148US84714892AUS5267261AUS 5267261 AUS5267261 AUS 5267261AUS 84714892 AUS84714892 AUS 84714892AUS 5267261 AUS5267261 AUS 5267261A
Authority
US
United States
Prior art keywords
base station
mobile station
list
station
system controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/847,148
Inventor
II Robert D. Blakeney
Gadi Karmi
Edward G. Tiedemann, Jr.
Lindsay A. Weaver, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm IncfiledCriticalQualcomm Inc
Priority to US07/847,148priorityCriticalpatent/US5267261A/en
Assigned to QUALCOMM INCORPORATED, A CORP. OF DELAWAREreassignmentQUALCOMM INCORPORATED, A CORP. OF DELAWAREASSIGNMENT OF ASSIGNORS INTEREST.Assignors: BLAKENEY,, ROBERT D., II, KARMI, GADI, TIEDEMANN, EDWARD G., JR., WEAVER, LINDSAY A., JR.
Application grantedgrantedCritical
Publication of US5267261ApublicationCriticalpatent/US5267261A/en
Priority to US08/226,222prioritypatent/US5640414A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

In a code division multiple access (CDMA) spread spectrum cellular communication system in which a mobile station user communicates with another system user via at least one base station, wherein each base station transmits a common pilot signal of a different code phase with respect to other base stations in said system, a method for directing communications between said mobile station user and said base stations. The mobile station monitors the signal strength of pilots and reports the measured signal strength to a system controller via the base station through which it is communicating. Command messages from the system controller to a new base station and the mobiles station establishes communication through the new base station in addition to the communication through the current base station. When the mobile station detects the falling below a predetermined level of the signal strength of a pilot corresponding to at least one of the base stations through which the mobile station is communicating, the mobile station reports the measured signal strength indicative of the corresponding base station to the system controller via the base stations through which it is communicating. Command messages from the system controller to the identified base station and the mobiles station terminates communication through the corresponding base station while communications through the other base station or base stations continue.

Description

BACKGROUND OF THE INVENTION
I. Field of the Invention
The present application is related to copending U.S. patent application Ser. No. 07/433,030, filed Nov. 7, 1989, entitled "METHOD AND SYSTEM FOR PROVIDING A SOFT HANDOFF IN COMMUNICATIONS IN A CDMA CELLULAR TELEPHONE SYSTEM" (now U.S. Pat. No. 5,101,501) and as such also relates cellular communications systems. More specifically, the present invention relates to a novel and improved system for controlling the handoff in communications of a mobile station between cell base stations or sectors thereof in a code division multiple access (CDMA) cellular communications system.
II. Description of the Related Art
The use of code division multiple access (CDMA) modulation techniques is but one of several techniques for facilitating communications in which a large number of system users are present. Although other techniques such as time division multiple access (TDMA), frequency division multiple access (FDMA) and AM modulation schemes such as amplitude companded single sideband (ACSSB) are known, CDMA has significant advantages over these other modulation techniques. The use of CDMA techniques in a multiple access communication system is disclosed in U.S. Pat. No. 4,901,307, entitled "SPREAD SPECTRUM MULTIPLE ACCESS COMMUNICATION SYSTEM USING SATELLITE OR TERRESTRIAL REPEATERS", assigned to the assignee of the present invention, the disclosure thereof incorporated by reference.
In the just mentioned patent, a multiple access technique is disclosed where a large number of mobile telephone system users, each having a transceiver, communicate through satellite repeaters or terrestrial base stations (also known as cell base stations, or cell-sites) using code division multiple access (CDMA) spread spectrum communication signals. In using CDMA communications, the frequency spectrum can be reused multiple times thus permitting an increase in system user capacity. The use of CDMA techniques results in a much higher spectral efficiency than can be achieved using other multiple access techniques.
In the conventional cellular telephone systems the available frequency band is divided into channels typically 30 KHz in bandwidth while analog FM modulation techniques are used. The system service area is divided geographically into cells of varying size. The available frequency channels are divided into sets with each set usually containing an equal number of channels. The frequency sets are assigned to cells in such a way as to minimize the possibility of co-channel interference. For example, consider a system in which there are seven frequency sets and the cells are equal size hexagons. A frequency set used in one cell will not be used in the six nearest or surrounding neighbors of that cell. Furthermore, the frequency set in one cell will not be used in the twelve next nearest neighbors of that cell.
In the conventional cellular telephone system, the handoff scheme implemented is intended to allow a call to continue when a mobile telephone crosses the boundary between two cells. The handoff from one cell to another is initiated when the reciever in the cell base station handling the call notices that the received signal strength from the mobile telephone falls below a predetermined threshold value. A low signal strength indication implies that the mobile telephone must be near the cell border. When the signal level falls below the predetermined threshold value, the base station asks the system controller to determine whether a neighboring base station receives the mobile telephone signal with better signal strength than the current base station.
The system controller in response to the current base station inquiry sends messages to the neighboring base stations with a handoff request. The base stations neighboring the current base station employ special scanning receivers which look for the signal from the mobile telephone on the specified channel. Should one of the neighboring base stations report an adequate signal level to the system controller, then a handoff will be attempted.
Handoff is then initiated when an idle channel from the channel set used in the new base station is selected. A control message is sent to the mobile telephone commanding it to switch from the current channel to the new channel. At the same time, the system controller switches the call from the first base station to the second base station.
In the conventional system a call will be discontinued if the handoff to the new base station is unsuccessful. There are many reasons that a failure in handoff may occur. Handoff can fail if there is no idle channel available in the neighboring cell for communicating the call. Handoff can also fail if another base station reports hearing the mobile telephone in question, when in fact this base station actually hears a different mobile telephone using the same channel in a completely different cell. This reporting error will result in the call being switched to a wrong cell, typically one in which signal strength is insufficient to maintain communications. Furthermore should the mobile telephone fail to hear the command to switch channels, the handoff will fail. Actual operating experience indicates that handoff failures occur frequently which questions the reliability of the system.
Another common problem in the conventional telephone system occurs when the mobile telephone is near the border between two cells. In this situation the signal level tends to fluctuate at both base stations. This signal level fluctuation results in a ping-ponging situation in which repeated requests are made to hand the call back and forth between the two base stations. Such additional unnecessary handoff requests increase the possibility of the mobile station incorrectly hearing the channel switch command or failing to hear the command at all. Furthermore, the ping-ponging situation raises the possibility that the call will be discontinued if it is inadvertently transferred to a cell in which all channels are currently in use and thus unavailable for accepting the handoff.
In the co-pending parent application a method and system are disclosed for providing a communication with the mobile station through more than one cell base stations during the handoff. In this environment communication between the mobile station and the other user is uninterrupted by the eventual handoff from the base station corresponding to cell from which the mobile station is exiting to the base station corresponding to cell from which the mobile station is entering. This type of handoff may be considered as a "soft" handoff in communications between cell base stations with the mobile wherein two or more base stations or sectors of a base station transmit concurrently to the mobile station. Similar are the techniques for a handoff between a sector of one cell and another cell, and a handoff between sectors of a same cell base station for a sectorized cell.
The present invention provides a substantial improvement over current cellular telephone systems with respect to mobile station handoff. The make-before-break handoff mechanism of the present invention is a significant improvement in overall system reliability with lower service disruption. The implementation of a base station diversity mode provides further improvements over conventional cellular telephone systems by providing additional system reliability and quality in communications.
It is therefore an object of the present invention to provide in a cellular communication system an improvement in call handoff in communications of a mobile station between base station so as to provide greater service reliability and quality.
SUMMARY OF THE INVENTION
The present invention provides a novel and improved method and system for directing a handoff in mobile station communication of between bases stations. The present invention is described herein in an exemplary embodiment as a cellular communication system which uses code division multiple access (CDMA) modulation techniques. In the system, each base station transmits a pilot signal of a common PN spreading code offset in code phase from pilot signals of other base stations. In system communications with the mobile station, the mobile station is provided with a list of PN offsets corresponding to base stations of neighboring cells. In addition the mobile is provided with a message which identifies at least one pilot corresponding to a base station to which the mobile station is to communicate through. These lists are stored at the mobile station as a Neighbor Set and an Active Set of pilots. These lists are updated as conditions change.
When communications are established with the mobile station through a base station, one which corresponds to the mobile station Active Set, the mobile station monitors the signal strength of identifiable pilot signal transmitted from the various base stations. When a pilot signal exceeds a predetermined threshold level in signal strength, the pilot is added to a Candidate Set at the mobile. The mobile communicates a message to the base station identifying this new pilot and its signal strength. A system controller then uses this information to decide whether to add this pilot to the mobile station Active Set. Should the system controller decide to do so, a message is transmitted to the mobile station through at least the base station which the mobile station is currently communicating through. This message identifies the pilots of the Active Set which correspond to base stations through which the mobile station is to communicate. The system controller also communicates information to each base station corresponding to a new pilot in the Active Set which instructs each of these base stations to establish communications with the mobile station. The mobile station communications are thus routed through all base stations identified by pilots in the mobile station Active Set.
When the mobile station is communicating through multiple base stations, the pilot signal strength of these base station along with other base stations is monitored by the mobile station. Should a pilot signal corresponding to a pilot of the Active Set drop below a predetermined threshold for a predetermined period of time, the mobile station generates and transmits a message to report the event. The system controller receives this message via at least one of the base stations through which the mobile station is communicating. The system controller may then decide to terminate communications through the base station whose pilot signal strength as measured at the mobile station is below the threshold level.
The system controller upon deciding to terminate communications through a base station generates a new message identifying the pilots of the Active Set to which the mobile station is to communicate through. In this message which identifies pilots of the Active Set, the pilot of the base station to which communications with the mobile station are to be terminated is not identified. The system controller also communicates information to the base station not identified in the Active Set to terminate communications with the mobile station. The mobile station, upon receiving the message identifying pilots of the Active Set, discontinues processing signals from the base station whose pilot is no longer in the Active Set. The mobile station communications are thus routed only through base stations identified by pilots in the mobile station Active Set. In the case where there were previously more than one pilot identified in the Active Set and now only one, the mobile station communicates only to the one base station corresponding to the pilot identified in the mobile station Active Set.
Since the mobile station is communicating with the user via at least one base station at all times throughout the handoff there is no interruption in communications between the mobile station and the user. A soft handoff in communications provides significant benefits in its inherent "make before break" communication over conventional "break before make" techniques employed in other cellular communication systems.
BRIEF DESCRIPTION OF THE DRAWINGS
The features and advantages of the present invention will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters correspond throughout and wherein:
FIG. 1 is a schematic overview of an exemplary CDMA cellular telephone system in accordance with the present invention;
FIG. 2 is a block diagram of a mobile station telephone configured for CDMA communications in a CDMA cellular telephone system;
FIG. 3 is a block diagram of a base station equipment in a CDMA cellular telephone system;
FIG. 4 is a block diagram of a mobile telephone switching office equipment;
FIG. 5 is a timing diagram illustrating the determination of pilot PN phase;
FIG. 6 is a diagram illustrating the various events occurring as a pilot signal rises and falls in signal strength;
FIG. 7 is a diagram illustrating the events as a pilot signal rises in signal strength above Active Set pilot signal;
FIG. 8 is a flow diagram of the call processing for a soft handoff in communications from one base station to another; and
FIG. 9 is a flow diagram of the call processing for a sequential soft handoff in communications between base station.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In a CDMA cellular communication system, the same frequency band can be used for all cells. The CDMA waveform properties that provide processing gain are also used to discriminate between signals that occupy the same frequency band. A mobile station, or for short mobile, such as a vehicle mounted telephone or portable telephone, or personal communications system (PCS) handset, thus need not switch frequencies when handoff of the call is made from one base station to another. Furthermore, the probability that the call will be discontinued if the handoff command is received in error is substantially reduced.
In a CDMA cellular communications system, each base station has a plurality of modulator-demodulator stations or spread spectrum modems. Each modem consists of a digital spread spectrum transmit modulator, at least one digital spread spectrum data receiver and a searcher receiver. Each modem at the base station is assigned to a mobile as needed to facilitate communications with the assigned mobile. Therefore in many instances many modems are available for use while other ones may be Active in communicating with respective mobiles.
In the present invention, a handoff scheme is employed for a CDMA cellular communications system, such as a CDMA cellular telephone, Private Branch Exchange, or PCS system, in which a new base station modem is assigned to a mobile while the old base station continues to service the call. When the mobile is located in the transition region between the two base stations, the call can be provided through the various base stations as signal strength dictates. Since the mobile is always communicating through at least one base station, no disrupting effects to the mobile station or in service will occur. It should be understood that many aspects of the handoff techniques disclosed herein are also applicable to handoffs between sectors in a sectorized cell.
When mobile station communications are firmly established with the new base station, e.g. the mobile is well within the new cell, the old base station discontinues servicing the call. The just described handoff techniques can be considered as a "soft" handoff in communications between base stations with the mobile. The soft handoff is in essence a make-before-break switching function. In contrast, conventional cellular telephone systems can be considered as providing a break-before-make switching function.
In a CDMA cellular communication system of the present invention, a soft handoff technique is implemented which also permits the mobile station to initiate a handoff. The mobile is also permitted to determine the best new base station to which communications are to be transferred to from an old base station or base station sector.
Although it is preferred that the mobile initiate the handoff request and determine the new base station, handoff process decisions may be made as in the conventional cellular telephone system. As discussed previously with respect to conventional systems, the base station determines when a handoff may be appropriate and, via the system controller, requests neighboring cells to search for the mobile's signal. The base station receiving the strongest signal as determined by the system controller than accepts the handoff.
In the CDMA cellular communication system, each base station transmits a upon pilot channel a "pilot carrier" signal or, for short, pilot signal. The pilot signal is an unmodulated, direct sequence, spread spectrum signal transmitted at all times by each base station using a common pseudorandom noise (PN) spreading code. The pilot signal allows the mobile stations to obtain initial system synchronization, i.e. timing, in addition to providing a phase reference for coherent demodulation and a reference for signal strength for comparisons between base stations for handoff determination.
The pilot signal as transmitted by each base station is of the same PN spreading code but with a different code phase offset. For example, in the present invention the pilot signal spreading code is of a PN code length of 215. In this example there are 511 different offsets from the zero offset, where the offsets are in increments of 64 PN chips. It is this phase offset which allows the pilot signals to be distinguished from one another by the mobile station, resulting in a differentiation between base stations from which they originate. Use of the same pilot signal code allows the mobile station to find system timing synchronization by a single search through all pilot signal code phases. The strongest pilot signal, as determined by a correlation process for each code phase, is readily identifable. The identified pilot signal generally corresponds to the pilot signal transmitted by the nearest base station.
Each base station also transmits a sync channel signal which is a modulated, encoded, interleaved, direct sequence, spread spectrum signal used by the mobile stations to acquire additional synchronization, system time and, along with these, other overhead control information. Information such as system identification, network identification, a pilot PN sequence offset index, a long code state, current system time along with other time parameters, and paging channel data rate are transmitted on the sync channel. It should be noted that the pilot PN sequence offset index identifies an offset value from a zero offset pilot PN sequence. The sync channel signal is despread using the same pilot PN sequence offset as the pilot channel.
Each base station also transmits on one or more paging channels corresponding paging channel signals. The paging channel signals are modulated, interleaved, scrambled, direct sequence, spread spectrum signals, which contain control and overhead information. The paging channel is used as such to communicate global and mobile station specific orders, including pages. Overhead messages transmitted on the paging channel include a system parameters message, which contains general system and base station overhead information; an access parameters message, which contains information to be used by the mobile station on an access channel when accessing the system; a neighbors list message which identifies to the mobile station the pilot signal PN sequence offset of the neighboring base stations; and a CDMA channel list identifying the 1.25 MHz CDMA channels available in this base station. The sync channel transmitted long code state message is used by the mobile station to descramble the paging channel scrambled signal. Like the sync channel signals, the paging channel signals spread and despread using the same pilot PN sequence offset as the pilot channel.
Each base station transmits user information to an intended mobile station on a selected one of a plurality of traffic channels. Each mobile station is thus assigned to a unique traffic channel for receiving the mobile station intended information. The traffic channel signals are modulated, interleaved, scrambled, direct sequence, spread spectrum signals transmitted to mobile stations on a respective traffic channel. Information received in the sync channel message is used by the mobile station to descramble the traffic channel scrambled signal.
Further details on the modulation scheme for the various channels of the base station are described in a co-pending U.S. patent application entitled "SYSTEM AND METHOD FOR GENERATING SIGNAL WAVEFORMS IN A CDMA CELLULAR TELEPHONE SYSTEM", Ser. No. 07/543,496, filed Jun. 25, 1990, (now, U.S. Pat. No. 5,103,459) assigned to the assignee of the present invention, the disclosure thereof incorporated by reference.
An exemplary illustration of cellular telephone, which may as easily be shown as a PBX or PCS system, in which the present invention is embodied is provided in FIG. 1. The system illustrated in FIG. 1 utilizes CDMA modulation techniques in communication between the system mobile stations or mobile telephones, and the base stations. Cellular systems in large cities may have hundreds of base stations serving hundreds of thousands of mobile telephones. The use of CDMA techniques readily facilitates increases in user capacity in systems of this size as compared to conventional FM modulation cellular systems.
In FIG. 1, system controller and switch 10, also referred to as mobile telephone switching office (MTSO), typically includes interface and processing circuitry for providing system control to the base stations.Controller 10 also controls the routing of telephone calls from the public switched telephone network (PSTN) to the appropriate base station for transmission to the appropriate mobile station.Controller 10 also controls the routing of calls from the mobile stations, via at least one base station to the PSTN.Controller 10 may direct calls between mobile users via the appropriate base station(s) since such mobile stations do not typically communicate directly with one another.
Controller 10 may be coupled to the base stations by various means such as dedicated telephone lines, optical fiber links or by microwave communication links. In FIG. 1, three such exemplary base stations, 12, 14 and 16 along with an exemplarymobile station 18, which includes a cellular telephone, are illustrated. Arrows 20a-20b define the possible communication link betweenbase station 12 andmobile station 18. Arrows 22a-22b define the possible communication link betweenbase station 14 andmobile station 18. Similarly, arrows 24a-24b define the possible communication link betweenbase station 16 andmobile station 18.
The base station service areas or cells are designed in geographic shapes such that the mobile station will normally be closest to one base station. When the mobile station is idle, i.e., no calls in progress, the mobile station constantly monitors the pilot signal transmissions from each nearby base station. As illustrated in FIG. 1 the pilot signals are respectively transmitted tomobile station 18 bybase stations 12, 14 and 16 respectively uponcommunication links 20b, 22b and 24b. The mobile station then determines which cell it is in by comparing pilot signal strength transmitted from these particular base stations.
In the example illustrated in FIG. 1,mobile station 18 may be considered closest tobase station 16. Whenmobile station 18 initiates a call, a control message is transmitted to the nearest base station,base station 16.Base station 16 upon receiving the call request message, signalssystem controller 10 and transfers the call number.System controller 10 then connects the call through the PSTN to the intended recipient.
Should a call be initiated within the PSTN,controller 10 transmits the call information to all the base stations in the area. The base stations in return transmit a paging message to the intended recipient of mobile station. When the mobile station hears a page message, it responds with a control message that is transmitted to the nearest base station. This control message signals the system controller that this particular base station is in communication with the mobile station.Controller 10 then routes the call through this base station to the mobile station.
Shouldmobile station 18 move out of the coverage area of the initial base station,base station 16, an attempt is made to continue the call by routing the call through another base station. In the handoff process there are two different methods of initiating the handoff of the call or routing through another base station.
The first method, called the base station initiated handoff, is similar to the handoff method employed in the original first generation analog cellular telephone systems currently in use. In the base station initiated handoff method, the initial base station,base station 16, notices that the signal transmitted bymobile station 18 has fallen below a certain threshold level.Base station 16 then transmits a handoff request tosystem controller 10.Controller 10 relays the request to all neighboring base stations, 14, 12 ofbase station 16. The controller transmitted request includes information relating to the channel, including the PN code sequence used bymobile station 18.Base stations 12 and 14 tune a receiver to the channel being used by the mobile station and measure the signal strength, typically using digital techniques. If one ofbase stations 12 and 14 receivers report a stronger signal than the initial base station reported signal strength, then a handoff is made to this base station.
The second method of initiating a handoff is called the mobile initiated handoff. The mobile station is equipped with a search receiver which is used to scan the pilot signal transmission of neighboringbase stations 12 and 14, in addition to performing other functions. If a pilot signal ofbase stations 12 and 14 is found to be stronger than a predetermined threshold,mobile station 18 transmits a message to the current base station,base station 16. An interactive process between the mobile station and the base station then permits the mobile station to communicate through the one or more ofbase stations 12, 14 and 16.
The mobile initiated handoff method has various advantages over the base station initiated handoff method. The mobile station becomes aware of changes in paths between itself and the various neighboring base stations much sooner than the base stations are capable of doing. However, to perform a mobile initiated handoff, each mobile station must be provided with a searching receiver to perform the scan function. However, in the exemplary embodiment described herein of a mobile station CDMA communications capability, the search receiver has additional functions which require its presence.
The mobile initiated handoff relies on the mobile station to detect the presence or absence of pilot signals, and the signal strength of the pilot signals. The mobile station identifies and measures the signal strength of the pilot signals which it receives. This information is communicated via the base station(s) to which the mobile station is communicating through to the MTSO. The MTSO upon receiving this information initiates or tears down the soft handoffs. To streamline the process of searching for pilots, four distinct sets of pilot offsets are defined: the Active Set, the Candidate Set, the Neighbor Set, and the Remaining Set. The Active Set identifies the base station(s) or sector(s) through which the mobile station is communicating. The Candidate Set identifies the base station(s) or sector(s) for which the pilots have been received at the mobile station with sufficient signal strength to make them members of the Active Set, but have not been placed in the Active Set by the base station(s). The Neighbor Set identifies the base station(s) or sector(s) which are likely candidates for the establishment of communication with the mobile station. The Remaining Set identifies the base station(s) or sector(s) having all other possible pilot offsets in the current system, excluding those pilot offsets currently in the Active, the Candidate and Neighbor sets. Further details on the use of these sets in the handoff scheme are discussed later in further detail.
At the mobile station acquisition of the strongest pilot signal, i.e. initial synchronization of the mobile station with the strongest pilot signal, the mobile station obtains further overhead information on the sync channel of same base station. The mobile station then monitors the paging channel for control messages and call pages. The call page is typically used to notify the mobile station that a call is waiting for transfer to the mobile station.
The mobile station continues to scan the received pilot carrier signal code at the PN sequence offsets corresponding to neighboring base station transmitted pilot signals. This scanning is done in order to determine if the pilot signal transmitted from neighboring cells is becoming stronger than the pilot signal first determined to be strongest. If, while in this call inactive mode, a Neighbor base station pilot signal becomes sufficiently stronger than that of the initial base station transmitted pilot signal, the mobile station will acquire the stronger pilot signal and corresponding sync channel of the new base station.
When a call is initiated, a pseudorandom noise (PN) code address is determined for use during the course of this call. Generally this code address is used to mask the PN long sequence code in a manner to make the code unique to the communication between the base station and the mobile station. The code address may be either assigned by the base station or preferably be determined by prearrangement based upon the identity of the mobile station.
After a call is initiated the mobile station continues to scan the pilot signals transmitted by base stations located in neighboring cells. Pilot signal scanning continues in order to determine if one or more of the neighboring base station transmitted pilot signals rises above a predetermined threshold, a level which is indicative that communications may be supported between the base station and the mobile station. When the pilot signal transmitted by a base station located in a neighboring cell rises above the threshold, it serves as an indication to the mobile station that a handoff should be initiated. In response to this pilot signal strength determination, the mobile station generates and transmits a control message to the base station presently servicing the call. This control message is relayed on to the system controller.
The system controller now begins the handoff process. It should be understood that, during handoff, the PN code address of the particular mobile station which is to undergo the handoff process need not change. The system controller begins the handoff by assigning a modem located in the new base station to the call. This modem is given the PN address associated with the call in communications between the mobile station and the current base station modem. The new base station modem assigned to service the call searches for and finds the mobile station transmitted signal. The base station modem also begins transmitting outbound signals to the mobile station. In response to a message from the base station through which the mobile station is currently communicating, the mobile station searches for the outbound signals in accordance with the pilot signal information of the new base station.
When the new base station modem transmitted signal is acquired, the mobile station switches over to listening to this signal. The mobile station may then transmit a control message indicating that handoff is complete. The control message is provided by either or both of the old and new base station modems to the system controller. In response to this control message the system controller switches the call over to the new base station modem alone while discontinuing the call through the old base station modem. The old base station modem then enters a pool of idle modems available for reassignment.
As an additional improvement, the handoff process can introduce a second mode of operation. This second mode is referred to herein as the base station diversity mode. The subject matter on the base station diversity mode is further disclosed in a copending U.S. patent application entitled "DIVERSITY RECEIVER IN A CDMA CELLULAR TELEPHONE SYSTEM", Ser. No. 07/432,552, filed Nov. 7, 1989, assigned to the assignee of the present invention, the disclosure thereof incorporated by reference.
In the base station diversity mode the call is allowed to linger in the in-between state as described above with reference to the call being processed by two or more base stations and/or by two or more sectors of the same base station. In the exemplary embodiment described herein with reference to the mobile telephone of the present invention, multiple demodulator processors or receivers are utilized. One of the receivers is used for the scanning function, while the two or more other receivers are used as a channel diversity receiver. During operation in a single cell, the scanning receiver attempts to find the base station transmitted signal travelling upon multiple paths to the mobile station. These multi-path signals are typically caused by reflections of the signals from terrain buildings, and other signals obstructions. When two or more such reflections are found, the two receivers are assigned to the two strongest paths. The scanning receiver continues to evaluate the multiple paths to keep the receivers synchronized with signals on the strongest paths as path conditions change.
In the base station diversity mode, the strongest paths from each base station is determined by the search receiver. The other receivers are assigned to demodulate the signals on the strongest paths of the paths available from the original base station and from the new base station. The data demodulation process uses information from both of these receivers in a diversity combining operation. The result of this diversity combining operation is a greatly improved resistance to deleterious fading that may occur in the multipath cellular telephone environment.
Although different types of diversity combining techniques are known in the art, the present invention uses diversity combining to significantly advance the quality and reliability of communications in a mobile cellular telephone system. In the present invention a form of maximal ratio combining is utilized. The signal-to-noise ratio is determined for both paths being combined with the contributions from the two paths weighted accordingly. Combining is coherent since pilot signal demodulation allows the phase of each path to be determined.
In the direction from the mobile station to the multiple base stations, path diversity reception is also obtained by having all base stations demodulate the mobile station transmitted signals. Each base station coherently combines the demodulated data signals and provides the data signal to the system controller. Each base station may also generate a quality indicator that is indicative of the quality of the data signal of that bases station. Communicated along with the data signal from each base station may be the signal quality indicator. The system controller then may either combines the base station versions of the mobile station signal or selects the signal with the best quality indication for providing on to the user. It should be understood that it is possible to transmit the undecoded or even the undemodulated signals to the system controller in order to allow a better diversity combining process to be utilized.
The handoff process in the cell diversity mode is initiated as previously discussed. The mobile station determines that a neighboring base station transmitted signal is of a signal strength great enough to allow good quality demodulation of the signal. The mobile station transmits the measurement message to the current base station. The base station then relays this information on to the system controller.
The system controller responds by connecting the call to a modem in the new base station. The system controller then performs either a diversity combining of the signals as received by the two base stations or a selection process as discussed above. The mobile station performs diversity combining of the signals received from the two base stations. The cell diversity mode generally continues for as long as signals received from both base stations are of a level sufficient to permit good quality demodulation, or otherwise terminated by the system controller.
In either of the above situations the mobile station continues to search for signals transmitted from other base stations. If a third base station transmitted signal becomes stronger than one of the original two base station signals, the message is then transmitted by the mobile station via at least one current base station to the system controller. The system controller may then discontinue the call being communicated via the weakest base station signal of the three while providing the call through the two strongest base stations. Should the mobile stations be equipped with additional receivers, such as three receivers, a triple base station or sector diversity mode may be implemented.
It should also be understood that regardless of the number of receivers the mobile station has, reverse link diversity may be employed. In this case additional base stations may receive signal from the mobile station for transfer to the system controller. The additional base stations may or may not transmit signals to the mobile station which are transmitted are not processed.
The base station diversity mode is terminated when it is determined that only one base station is providing adequate signals for quality demodulation. The mobile station, as before, sends a message indicative of the measured pilot signal strengths. From this information a decision is made as to the base station which is to remain in communication with the mobile station upon termination of the base station diversity mode. The base station diversity mode may also be terminated by the system controller if the system were to become overloaded with an insufficient number of modems available to support all mobile station requests for this mode of operation.
FIG. 2 illustrates in block diagram form an exemplary mobile station cellular telephone. The mobile station includes anantenna 30 which is coupled throughdiplexer 32 toanalog receiver 34 and transmitpower amplifier 36.Antenna 30 anddiplexer 32 are of standard design and permit simultaneous transmission and reception through a single antenna.Antenna 30 collects transmitted signals and provides them throughdiplexer 32 toanalog receiver 34.Receiver 34 receives the RF frequency signals fromdiplexer 32 which are typically in the 850 MHz frequency band for amplification and frequency downconversion to an IF frequency. This frequency translation process is accomplished using a frequency synthesizer of standard design which permits the receiver to be tuned to any of the frequencies within the receive frequency band of the overall cellular telephone frequency band.
The IF signal is then passed through a surface acoustic wave (SAW) bandpass filter which in the preferred embodiment is approximately 1.25 MHz in bandwidth. The characteristics of the SAW filter are chosen to match the waveform of the signal transmitted by the base station which has been direct sequence spread spectrum modulated by a PN sequence clocked at a predetermined rate, which in the preferred embodiment is 1.2288 MHz.
Receiver 34 also performs a power control function for adjusting the transmit power of the mobile station.Receiver 34 generates an analog power control signal that is provided to transmitpower control circuitry 38. The control and operation of the mobile station power control feature is disclosed in U.S. Pat. No. 5,056,109 entitled "METHOD AND APPARATUS FOR CONTROLLING TRANSMISSION POWER IN A CDMA CELLULAR MOBILE TELEPHONE SYSTEM", assigned to the assignee of the present invention, to which the disclosure is also incorporated by reference.
Receiver 34 is also provided with an analog to digital (A/D) converter (not shown) for converting the IF signal to a digital signal. The digitized signal is provided to each of three or more signal processors or data receivers, one of which is a searcher receiver with the remainder being data receivers. For purposes of illustration only one searcher receiver and two data receives are shown in FIG. 2.
In FIG. 2, the digitized signal output fromreceiver 34 is provided todigital data receivers 40 and 42 and to searcherreceiver 44. It should be understood that an inexpensive, low performance mobile station might have only a single data receiver while higher performance stations may have two or more, preferably a minimum of three, to allow diversity reception.
The digitized IF signal may contain the signals of many on-going calls together with the pilot carriers transmitted by the current and all neighboring base stations. The function of thereceivers 40 and 42 is to correlate the IF samples with the proper PN sequence. This correlation process provides a property that is well-known in the art as "processing gain" which enhances the signal-to-interference ratio of a signal matching the proper PN sequence while not enhancing other signals. The correlation output is then coherently detected using the pilot carrier offset PN sequence used for the correlation as a carrier phase reference. The result of this detection process is a sequence of encoded data symbols.
A property of the PN sequence as used in the present invention is that discrimination is provided against multipath signals. When the signal arrives at the mobile receiver after passing through more than one path, there will be a difference in the reception time of the signal. This reception time difference corresponds to the difference in distance divided by the speed of light. If this time difference exceeds one PN chip, 0.8138 μsec. in the preferred embodiment, then the correlation process will discriminate against one of the paths. The receiver can choose whether to track and receive the earlier or later path. If two receivers are provided, such asreceivers 40 and 42, then two independent paths can be tracked simultaneously.
Searcher receiver 44, under control ofcontrol processor 46 is for continuously scanning the time domain, around the nominal time of a received pilot signal of the base station, for other multi-path pilot signals from the same base station and for other base station transmitted pilot signals.Receiver 44 will measure the strength of any reception of a desired waveform at times other than the nominal time.Receiver 44 uses the ratio of the received pilot energy per chip to total received spectral density, noise and signals, denoted as Ec /IO, as a measure of the pilot signal strength.Receiver 44 provides a signal strength measurement signal to controlprocessor 46 indicative of the pilot signal and its signal strength.
Processor 46 provides signals todigital data receivers 40 and 42 for each to process a different one of the strongest signals.Receivers 40 and 42 may process a multipath signal from a single base station or signals from two different base stations.
The outputs ofreceivers 40 and 42 are provided to diversity combiner anddecoder circuitry 48. The diversity combiner circuitry contained withincircuitry 48 adjusts the timing of the two streams of received signals into alignment and adds them together. This addition process may be proceeded by multiplying the two streams by a number corresponding to the relative signal strengths of the two streams. This operation can be considered a maximal ratio diversity combiner. The resulting combined signal stream is then decoded using a forward stream error detection decoder also contained withincircuitry 48.
In the exemplary embodiment convolutional encoding is utilized. The optimum decoder for this type of code is of the soft decision Viterbi algorithm decoder design. The resulting decoded information bits are passed to the userdigital baseband circuitry 50.
Baseband circuitry 50 typically includes a digital vocoder (not shown).Baseband circuitry 50 further serves as an interface with a handset or any other type of peripheral device.Baseband circuitry 50 accommodates a variety of different vocoder designs.Baseband circuitry 50 provides output information signals to the user in accordance with the information provided thereto fromcircuitry 48. It should be understood that various other types of service, other than voice, may also be offered to which the disclosure herein is equally applicable.
User analog voice signals typically provided through a handset are provided as an input tobaseband circuitry 50.Baseband circuitry 50 includes an analog to digital (A/D) converter (not shown) which converts the analog signal to digital form. The digital signal is provided to the digital vocoder where it is encoded. The vocoder output is provided to a forward error correction encoding circuit (not shown) for error correction. This voice digitized encoded signal is output frombaseband circuitry 50 to transmitmodulator 52.
Transmitmodulator 52 modulates the encoded signal on a PN carrier signal whose PN sequence is chosen according to the assigned address function for the call. The PN sequence is determined by thecontrol processor 46 from call setup information that is transmitted by the base station and decodedreceivers 40 and 42. In the alternative,control processor 46 may determine the PN sequence through prearrangement with the base station.Control processor 46 provides the PN sequence information to transmitmodulator 52 and toreceivers 40 and 42 for call decoding. Transmitmodulator 52 also modulates the data with a common unshifted version of the PN code that is used by the base station.
The output of transmitmodulator 52 is provided to transmitpower control circuitry 38. Signal transmission power is controlled by the analog power control signal provided fromreceiver 34. Furthermore, control bits are transmitted by the base stations in the form power adjustment command and are processed bydata receivers 40 and 42. The power adjustment command is used by the control processor in setting the power level in mobile station transmission. In response to the power adjustment commands,control processor 46 generates a digital power control signal that is provided tocircuitry 38. Further information on the interrelationship of thereceivers 40 and 42,control processor 46 and transmitpower control 38 are also further described in the above-mentioned copending patent application.
Transmitpower control circuitry 38 outputs the power controlled modulated signal to transmitpower amplifier circuitry 36.Circuitry 36 amplifies and converts the IF signal to an RF frequency by mixing with a frequency synthesizer output signal which tunes the signal to the proper output frequency.Circuitry 36 includes an amplifier which amplifies the power to a final output level. The intended transmission signal is output fromcircuitry 36 todiplexer 32.Diplexer 32 couples the signal toantenna 30 for transmission to the base stations.
Control processor 46 is also capable of generating control messages such as cell-diversity mode requests and base station communication termination commands. These commands are provided to transmitmodulator 52 for transmission.Control processor 46 is responsive to the data received fromdata receivers 40, 42 andsearch receiver 44 for making decisions relative to handoff and diversity combining.
FIG. 3 illustrates in block diagram form an exemplary embodiment of the base station equipment. At the base station, two receiver systems are utilized with each having a separate antenna and analog receiver for space diversity reception. In each of the receiver systems the signals are processed identically until the signals undergo a diversity combination process. The elements within the dashed lines correspond to elements corresponding to the communications between the base station and one mobile station. The output of the analog receivers are also provided to other elements used in communications with other mobile stations.
In FIG. 3, the first receiver system is comprised ofantenna 60,analog receiver 62,searcher receiver 64 anddigital data receiver 66. This receiver system may also include an optionaldigital data receiver 68. Although only one optionaldigital data receiver 68 is illustrated it should be understood that several additional ones may be used. The second receiver system includesantenna 70,analog receiver 72,searcher receiver 74 anddigital data receiver 76. Again additional optional digital data receivers (not shown) may be utilized for this receiver system. Also utilized in signal processing and control for handoff and diversity is basestation control processor 78. Both receiver systems are coupled to diversity combiner anddecoder circuitry 80. Digital link 82 is utilized to communicate signals to and from the MTSO (FIG. 4) with base station transmitmodulator 84 andcircuitry 80 under the control ofcontrol processor 78.
Signals received onantenna 60 are provided toanalog receiver 62. Received signals amplified by an amplifier inreceiver 62 are translated to an IF frequency by mixing with a frequency synthesizer output signal. The IF signals are bandpass filtered and digitized in a process identical to that described with reference to the mobile station analog receiver. The digitized IF signals are provided todigital data receiver 66,optional data receiver 68 andsearcher receiver 64 and are processed respectively in a manner similar to that as disclosed with reference to the digital data receivers and searcher receiver of the mobile station in FIG. 2. However, the processing by the digital data receivers and searcher receivers are different for the mobile to base station link from that used in the base station to mobile link in several respects.
In the inbound, or mobile station to base station link, the mobile station does not transmit a pilot signal that can be used for coherent reference purposes in signal processing at the base station. Thus, the mobile station to base station link utilizes a non-coherent modulation and demodulation scheme using 64-ary orthogonal signaling.
Searcher receiver 64 is again used to scan the time domain about the receiver signal to ensure that the associateddigital data receiver 66, anddata receiver 68 if used, are tracking and processing the strongest available time domain signals. This tracking process is identical to that described with reference to the mobile station.Searcher receiver 64 provides a signal to basestation control processor 78 which provides control signals todigital data receivers 66 and 68 for selecting the appropriate received signals for processing.
In the 64-ary orthogonal signaling process, the mobile station transmitted symbol has one of 64 different possibilities. A 6 bit symbol is encoded into one of 26, i.e. 64, different binary sequences. The set of sequences chosen are known as Walsh functions. The optimum receive function for the Walsh function is the Fast Hadamard Transform (FHT). Insearcher receiver 64 anddigital data receivers 66 and 68, the input signal is correlated as discussed with reference to the mobile station receivers, with the correlator output fed to a FHT processor. The FHT processor produces a set of 64 coefficients for every 6 symbols. The 64 symbols are then multiplied by a weighting function generated in the receiver. The weighting function is linked to measured signal strength. The weighted data is then provided as an output to diversity combiner anddecoder circuitry 80.
The second receiver system processes the received signals in a manner similar to that discussed with respect to the first receiver system of FIG. 3. The weighted 64 symbols output fromreceivers 66 and 76 are provided to diversity combiner anddecoder circuitry 80.Circuitry 80 includes an adder which adds the weighted 64 symbols fromreceiver 66 to the weighted 64 symbols fromreceiver 76. The resulting 64 coefficients are compared with one another in order to determine the largest coefficient. The magnitude of the comparison result, together with the identity or the largest of the 64 coefficients, is used to determine a set of decoder weights and symbols for use within a Viterbi algorithm decoder implemented incircuitry 80.
The Viterbi decoder is utilized to determine the most likely information bit sequence. For each vocoder data block, nominally 20 msec. of data, a signal quality estimate is obtained and transmitted as a mobile station power adjustment command along with data to the mobile station. Further information on the generation of this quality estimate is discussed in further detail in the co-pending application mentioned above. This quality estimate is the average signal-to-noise ratio over the 20 msec. interval.
In FIG. 3, optionaldigital data receiver 68 may be included for improved performance of the system. This additional data receiver alone or in combination with additional receivers can track and receive other possible delay paths of mobile station transmitted signals. The structure and operation in this receiver is similar to that described with reference to thedigital data receivers 66 and 76.Receiver 68 is utilized to obtain additional diversity modes. Optional additional digital data receivers providing additional diversity modes are extremely useful in those base stations which are located in dense urban areas where many possibilities for multipath signals occur.
Signals from the MTSO are coupled to the appropriate transmit modulator viadigital link 82 under the control ofcontrol processor 78. Transmitmodulator 84 spread spectrum modulates, according to a predetermined spreading function (PN code) as assigned bycontrol processor 78, the data for transmission to the intended recipient mobile station. The output of transmitmodulator 84 is provided to transmitpower control circuitry 86 where under the control ofcontrol processor 78 the transmission power may be controlled. The output ofcircuitry 86 is provided to transmitpower amplifier circuitry 88.
In the preferred implementation, each of a traffic channel (user data communication channel), sync channel, one or more paging channels, and pilot channel are modulated by a different Walsh function sequence. Although only the traffic channels are modulated with each unique PN code, each traffic channel along with the other channels are modulated by a common PN sequence. In the exemplary implementation the pilot channel Walsh function sequence is the "all zero" sequence thus resulting the pilot signal being the common PN sequence itself. All signals as modulated by the common PN sequence are provided to transmitpower amplifier circuitry 88.
Circuitry 88 includes a summer for summing the output of transmitmodulator 84 with the output of other transmit modulators at the base station.Circuitry 88 further includes a summer for summing the pilot signal/sync channel signal/paging channel signal output fromgenerator 90 with the summed transmit modulator output signals.Circuitry 88 also includes a digital to analog converter, frequency upconversion circuitry and an amplifier for respectively converting the digital signals to analog signals, converting the IF frequency signals as output from the transmit modulators to an RF frequency and amplifying the RF signal. The output fromcircuitry 88 is provided toantenna 92 where it is radiated to mobile stations within the base station service area.
Basestation control processor 78 has the responsibility for assignment of digital data receivers and modulators to a particular call.Control processor 78 also monitors the progress of the call, quality of the signals and initiates teardown on loss of signal. The base station communicates with the MTSO vialink 82 where it is coupled by a standard telephone wire, optical fiber, or microwave link.
FIG. 4 illustrates in block diagram form the equipment utilized in the MTSO. The MTSO typically includes a system controller orsystem control processor 100,digital switch 102,diversity combiner 104,digital vocoder 106 anddigital switch 108. Although not illustrated, additional diversity combiners and digital vocoders are coupled betweendigital switches 102 and 108.
When the cell-diversity mode is active, or the MTSO is in the handoff process with the call processed by two or more base stations, signals will arrive at the MTSO from more than one base station with nominally the same information. However, because of fading and interference on the inbound link from the mobile station to the base stations, the signal from one base station may be of better quality than the signal from the other base station.
Digital switch 102 is used in routing the information stream corresponding to a given mobile station from one or more base stations todiversity combiner 104 or the corresponding diversity combiner as determined by a signal fromsystem control processor 100. When the system is not in the cell-diversity mode,diversity combiner 104 may be either bypassed or fed the same information on each input port.
A multiplicity of serial coupled diversity combiners (or selectors) and vocoders are provided in parallel, nominally, one for each call to be processed.Diversity combiner 104 compares the signal quality indicators accompanying the information bits from the two or more base station signals.Diversity combiner 104 selects the bits corresponding to the highest quality base station signal on a frame-by-frame basis of the information for output tovocoder 106.
Vocoder 106 converts the format of the digitized voice signal to standard 64 Kbps PCN telephone format, analog, or any other standard format. The resultant signals are transmitted fromvocoder 106 todigital switch 108. Under the control ofsystem control processor 100, the call is routed to the PSTN.
Voice signals coming from the PSTN intended for the mobile station are provided todigital switch 108 to an appropriate digital vocoder such asvocoder 106 under control ofsystem control processor 100.Vocoder 106 encodes the input digitized voice signals and provides the resulting information bit stream directly todigital switch 102.Digital switch 102 under system control processor control directs the encoded data to the base station or base stations to which the mobile station is communicating. If the mobile station is in a handoff mode communicating to multiple base stations or in a cell diversity mode,digital switch 102 routes the calls to the appropriate base stations for transmission by the appropriate base station transmitter to the intended recipient mobile station. However, if the mobile station is communicating with only a single base station or not in a cell diversity mode, the signal is directed only to a single base station.
System control processor 100 provides control overdigital switches 102 and 108 for routing data to and from the MTSO.System control processor 100 also determines the assignment of calls to the base stations and to the vocoders at the MTSO. Furthermore,system control processor 100 communicates with each base station control processor about the assignment of particular calls between the MTSO and base station, and the assignment of PN codes for the calls. It should be further understood that as illustrated in FIG. 4digital switches 102 and 108 are illustrated as two separate switches, however, this function may be performed by a single physical switching station.
It should also be understood the embodiment provided herein with respect to the system architecture is merely and exemplary embodiment of the system and that other system architecture may be employed. For example, as described herein the system controller is located at the MTSO for control of many of the base station functions and handoff function. In an equally preferred mode, many of the functions of the system controller may be distributed throughout the base station. In this example the system controller functions remaining at the MTSO would be primarily directed to the classical MTSO function of call switching control.
Turning now to an exemplary processing of the handoff or diversity mode operation various messages are provided between the base station and the mobile station. Generally decisions regarding handoff are made by system control processor with the base station acting on these decisions in addition to relaying them on to the mobile station.
The system control processor generates various messages for relay by the base station to the mobile station. One such message is the System Parameters Message, communicated on a paging channel by the base station, which contains default values for various handoff parameters. The parameters included in this message are as follows and whose usage is defined later herein: Handoff Detection Threshold (T-- ADDS); Handoff Drop Threshold (T-- DROPS), Active/Candidate Comparison Threshold (T-- COMPS), Handoff Drop Timer (T-- TDROPS), Neighbor Set Maximum Age (NGHBR-- MAX-- AGES); Search Window Size for the Active Set and Candidate Set (SRCH-- WIN-- AS); Search Window Size for the Neighbor Set (SRCH-- WIN-- NS); Search Window Size for the Remaining Set (SRCH-- WIN-- Rs). These values are demodulated and decoded, and then stored in the mobile station control processor.
Other messages generated by system control processor and communicated via at least one base station to the mobile station are the Pilot Measurement Request Order, the Handoff Direction Message, the In-Traffic System Parameters Message, and the Neighbor List Update Message. These messages are demodulated and decoded, and then provided to the mobile station control processor. The mobile station acts upon the each of these messages in support of a handoff as discussed below.
In response to the Pilot Measurement Request Order the mobile station reports the current estimate of the pilot strengths of all the pilots in its Active Set and Candidate Set. In a preferred implementation the mobile station responds with a Pilot Strength Measurement Report Message within 200 ms. The mobile station control processor upon receiving the Pilot Measurement Request Order the mobile station reports the estimate of the signal strength of each pilot in the Active Set and the Candidate Set.
The Handoff Direction Message as communicated to the mobile station identifies the pilots in the Active Set of the mobile station, i.e. pilot offsets and corresponding base station identifications, and the channel code assigned to the mobile station in each base station. The mobile station, which stores the sets in its control processor, modifies its Active Set of pilots to be equal to the list of pilots received in the Handoff Direction Message. If the Handoff Direction Message specifies multiple base stations, the mobile station is to accordingly begin diversity combining the traffic channel signals from those base stations identified in the message. The mobile station under control of the mobile station control processor discontinues using communications of all base station not specified in the Handoff Direction Message. It should be noted that the Handoff Direction Message is also used to end a soft handoff. In this case, the Handoff Direction Message specifies only one pilot for the Active Set.
The In-Traffic System Parameters Message as communicated to the mobile station is used by the mobile station to update the above mentioned stored handoff overhead parameters of the System Parameters Message. The parameters to be replaced are as follows where the Handoff Detection Threshold (T-- ADDr replaces T-- ADDs); Handoff Drop Threshold (T-- DROPr replaces T-- DROPs); Active/Candidate Comparison Threshold (T-- COMPr replaces T-- COMPs); Handoff Drop Timer (T-- TDROPr replaces T-- TDROPs); Neighbor Set Maximum Age (NGHBR-- MAX-- AGEr replaces NGHBR-- MAX-- AGEs); Search Window Size for the Active Set and Candidate Set (SRCH-- WIN-- Ar replaces SRCH-- WIN-- As); Search Window Size for the Neighbor Set (SRCH-- WIN-- Nr replaces SRCH-- WIN-- Ns); Search Window Size for the Remaining Set (SRCH-- WIN-- Rr replaces SRCH-- WIN-- Rs). The In-Traffic System Parameters Message is communicated to the mobile station on a traffic channel since the mobile station is unable to receive paging channel messages when receiving data on the traffic channel.
The Neighbor List Update Messages communicated to the mobile station is used by the mobile station such that for each of the Neighbor records received in the Neighbor List Update Message, the mobile station adds that Neighbor to the Neighbor Set as stored in the mobile station control processor.
The mobile station also sends messages on a traffic channel to the base station(s) to support of handoff. The mobile station as mentioned previously generates and sends the Pilot Strength Measurement Report Message as a result of receiving a Pilot Measurement Request Order from the base station. However, more importantly is the fact that the mobile station generates and transmits the Pilot Strength Measurement Report Message autonomously. This independent action on the part of the mobile station as discussed in further detail below, greatly enhances the ability of the system to provide handoffs and diversity in communication. The pilots contained within the Pilot Strength Measurement Report Message are preferably all the pilots in the Active Set and the Candidate Set.
The Pilot Strength Measurement Report Message contains a list of pilots and their measured strengths. The first pilot in the list is the pilot used to derive the time reference of the mobile station. In a preferred embodiment the earliest arriving multipath component that is demodulated is used as the time reference for the mobile station. The mobile station measures the phase of the reported pilot relative to the zero offset pilot PN sequence using timing derived from the pilot used as the time reference. With each reported pilot the mobile station returns the value PILOT-- PN-- PHASE where this value is defined according to Equation (1).
PILOT.sub.-- PN.sub.-- PHASE.sub.j =[64×PILOT.sub.-- PN.sub.j +τ.sub.j -τ.sub.i ]modulo 2.sup.15.               (1)
where PILOT-- PN-- PHASEj is the phase of the pilot of base station j; and
τi and τj respectively denote the one-way delays in PN chips from the respective base stations to the mobile station.
The concept of time reference and calculation of PN phase offsets for pilots from other base stations is illustrated in FIG. 5. It should be noted that timing in the mobile station is offset from timing in the base stations by τi chips. The required pilot PN phase φj, is obtained from FIG. 5 by observing that:
φ.sub.j -φ.sub.i =P.sub.j +τ.sub.j -[P.sub.i +τ.sub.i ](2)
with the time reference Pii ; and where
P.sub.i =64×PILOT.sub.-- PN.sub.i and                (3)
P.sub.j =64×PILOT.sub.-- PN.sub.j.                   (4)
While the mobile station is in a traffic channel mode of communication with the base station, under the control of the mobile station control processor the searcher receiver systematically surveys the strengths of all pilots in the four pilot sets, on the current CDMA frequency assignment. The results of the survey are provided to the mobile station control processor for further use.
The search rates for members of the Active Set and the Candidate Set are preferably identical. The search range for all members of the Active Set and the Candidate Set is specified by the System Parameters Message and the In-Traffic System Parameters Message as the variable SRCH-- WIN-- A. The actual windown values the mobile station preferably should use as a function of SRCH-- WIN-- A are defined in Table I. For each member of the Active Set and the Candidate Set, the search window is centered around the earliest arriving usable multipath component. A multipath component is termed usable if it is of sufficient strength so that the mobile station would use it to demodulate data. It should be noted that a usable multipath component may actually not be used for demodulation as it is not in the Active Set or there are insufficient numbers of demodulators (receivers) available. If the mobile station performs any filtering on search results, it is preferred that the same filter parameters for Active Set and Candidate Set members be used.
              TABLE I                                                     ______________________________________                                              Actual                 Actual                                             Range                  Range                                    Parameter (chips)      Parameter (chips)                                  ______________________________________                                    0          2            8         40                                      1          4            9         56                                      2          6           10         80                                      3          8           11        114                                      4         10           12        160                                      5         14           13        226                                      6         20           14        320                                      7         28           15        452                                      ______________________________________
The search range for all members of the Neighbor Set is also specified by the System Parameters Message and the In-Traffic System Parameters Message as the variable SRCH-- WIN-- N. The actual window values the mobile station should use as a function of SRCH-- WIN-- Ns are also defined in Table I. The search window is centered around the pilot PN sequence offset of each member of the Neighbor Set using timing defined by the mobile station time reference.
The search range for all members of the Remaining Set is also specified by the System Parameters Message and the In-Traffic System Parameters Message as the variable SRCH-- WIN-- R. The actual window values the mobile station should use as a function of SRCH-- WIN-- R are also defined in Table I. The search window is again centered around the pilot PN sequence offset of each member of the Remaining Set using timing defined by the mobile station time reference.
The mobile station under the control of the mobile station control processor autonomously generates and sends a Pilot Strength Measurement Report Message to a base station whenever any of several events occur as a result of the survey.
(1) The strength of a Candidate Set, Neighbor Set, or Remaining Set member is found to be above T-- ADD (the pilot is added to the Candidate Set) and a Pilot Strength Measurement Report Message carrying this information has not been generated since the last Handoff Direction Message was received. In the case where the measured pilot is not currently a member of the Candidate Set, the pilot is so added to the Candidate Set.
(2) The strength of a Candidate Set member exceeds the strength of an Active Set member by T-- COMP dB and a Pilot Strength Measurement Report Message carrying this information has not been generated since the last Handoff Direction Message was received.
(3) The strength of an Active Set member has been less than T-- DROP for a period of T-- TDROP seconds. The parameter T-- TDROP is given as a 4-bit value defining one of 16 timer values. The mobile station control processor keeps track of the time which Active Set pilots drop below the T-- DROP value. The value that the mobile station uses is preferably within the greater of ±100 msec. or ten percent of the values given in Table II as follows.
              TABLE II                                                    ______________________________________                                              Actual                Actual                                              Value                 Value                                     T.sub.-- TDROP                                                                      (seconds)   T.sub.-- TDROP                                                                      (seconds)                                 ______________________________________                                    0         0            8        10                                        1         0.5          9        13                                        2         1           10        16                                        3         2           11        20                                        4         3           12        25                                        5         4           13        30                                        6         5           14        45                                        7         8           15        60                                        ______________________________________
FIG. 6 illustrates an example of the signaling pertaining to the changes in a pilot's strength and the pilot's membership in the various sets during a typical handoff process. In FIG. 6, prior to time t0 the pilot PA is in the Neighbor Set with a rising signal strength as measured by the mobile station searcher receiver. However the pilot signal strength is below the threshold T-- ADD which would qualify the pilot to enter the Candidate Set. The mobile station control processor makes a decision to place an non-Active or non-Candidate Set member in the Candidate Set when the measured pilot exceeds the threshold value T-- ADD, an event to which the mobile station control processor generates and transmits a Pilot Strength Measurement Report Message.
At time t0 the pilot PA signal strength as measured by the searcher receiver exceeds the value T-- ADD. The mobile station control processor compares the measured value with the T-- ADD value and determines that the T-- ADD value has been exceeded. The mobile station control processor thus generates and transmits a corresponding Pilot Strength Measurement Report Message.
It should be noted that the searcher may detect several multipath versions of pilot PA which may be different from one another by the order of several chips. The strongest version of the multipath versions or an average of the strength of all detected multipath versions of the pilot may be used for identifying the strength of the pilot. Either the searcher or the mobile station control processor may compute the average if so desired.
The decision for placing a Candidate Set member into the Active Set is made by the system controller. For example, when the measured Candidate pilot is of a signal strength which exceeds the signal strength of one other Active Set member pilot by a predetermined value it may join the Active Set. However there may be limits placed on the number of Active Set members. Should the addition of a pilot to the Active Set exceed the Active Set limit, the weakest Active Set pilot may be removed to another set.
Once a decision is made by the system controller that a pilot should enter the Active Set, a Handoff Direction Message is sent to the mobile station, all base stations that have a traffic channel assigned to the mobile station, which includes the pilot PA in the Active Set. In FIG. 6 at time t1 the Handoff Direction Message is received at the mobile station where the identified pilots, including pilot PA, are used to demodulate received signals from the base station from which pilot PA was transmitted and/or from another base station. Once a pilot is identified in the Handoff Direction Message, one version or multipath versions of the information signals if present corresponding to the identified pilot from the same base station may be demodulated. The signals ultimately demodulated may therefore be transmitted from one or more base station and may be multipath versions thereof. During the soft handoff the mobile station diversity combines at the received signals at the symbol level. Therefore, all base stations participating in the soft handoff must transmit identical symbols, except for closed loop power control subchannel data as discussed later herein.
In FIG. 6 between the times t1 and t2 the pilot PA falls in signal strength to where at time t2 the signal strength drops below a predetermined threshold value T-- DROP. When the signal strength of a pilot drops the value T-- DROP for a predetermined period of time, the mobile station control processor again generates and transmits, at time t3, a Pilot Strength Measurement Report Message.
In response to this Pilot Strength Measurement Report Message, the system controller generates a Handoff Direction Message that is sent to the mobile station, by all base stations having a traffic channel assigned to the mobile station, which no longer includes the pilot PA in the Active Set. At time t4 the Handoff Direction Message is received at the mobile station for removing the pilot PA from the Active Set, for example to the Neighbor Set. Once removed from the Active Set this pilot is no longer used for signal demodulation.
FIG. 7 illustrates the signaling triggered by a member of the Candidate Set as its strength rises above members of the Active Set. It should be noted that the mobile station reports that a Candidate Set member is greater than an Active Set member only if the difference between them is at least T-- COMP dB. In FIG. 7, pilots P1, P2 and P3 are members of the Active Set while pilot P0 is initially a member of another set such as the Neighbor Set.
Generally the number of Active Set members correspond to the number of data receivers available, however the Active Set may be of a greater number of pilots. The mobile station is therefore permitted to select from the Active Set member pilots those of greatest signal strength for demodulation of the corresponding data signals. It should be understood that one or more pilots of the Active sets may have multipath propagations of the same base station or sector transmitted pilot as received at the mobile station. In the case of multipath propagations, the mobile station again selects signals for demodulation corresponding to those multipath versions of the pilots identified in the Active Set pilots of greatest signal strength. Therefore the actual base station signals demodulated by the mobile station may be from different base stations or from a same base station.
At time t0 the pilot P0 as measured by the searcher receiver and compared with the value T-- ADD by the mobile station control processor is determined to be greater than the value T-- ADD. As discussed above, this event results in the mobile station control processor generating a Pilot Strength Measurement Report Message which is transmitted by the mobile station to a base station for relay to the system control processor. The mobile station also adds the pilot P0 to the Candidate Set.
As time continues on the pilot P0 grows stronger. At time t1 the pilot P0 has grown stronger than pilot P1 by a value greater than the value T-- COMP. Due to this fact the mobile station control processor generates another Pilot Strength Measurement Report Message which is transmitted by the mobile station to a base station for relay to the system control processor. It should be noted that only pilots that are already members of the Candidate Set are compared to Active Set members using the T-- COMP criteria. Since the pilot P0 has exceed the pilot P1 by the value T-- COMP, the system controller may begin setting up a modem at another base station or sector for communicating with the mobile station. However if the pilot is not of another base station or sector no setup is necessary. In either case the system controller would then communicate a Handoff Direction Message to the mobile station including the pilot if not already an Active Set member.
Similar is the procedure as pilot P0 grows stronger. At time t2 the pilot P0 has grown stronger than the next strongest pilot P2 by a value greater than the value T-- COMP. Like before, the mobile station control processor generates another Pilot Strength Measurement Report Message which is transmitted by the mobile station to a base station for relay to the system control processor. Since the pilot P0 has exceed the pilot P2 by the value T-- COMP, the system controller may add the pilot to the Active Set as discussed above if not yet already done. Similar is the procedure at time t3 where pilot P0 has grown stronger than the strongest pilot P3 by a value greater than the value T-- COMP.
Each reported pilot strength shall be as a value LEVEL according to Equation (3) as follows:
LEVEL= -2×10×log.sub.10 E.sub.c /I.sub.0  ,    (5)
where x is the largest integer less than or equal to x; and Ec /I0 is the ratio of received pilot energy per chip to received overall spectral density.
The value returned in the Pilot Strength Measurement Report Message is therefore preferably a 6-bit, unsigned, fixed-point number. Out-of-range values preferably limited to the bounding values of 0 and 63 (`111111`).
The mobile station control processor is responsible for maintenance of the sets. With respect to the Active Set, it is preferable that the mobile station be capable of supporting an Active Set size of at least six pilots. A pilot is added to the Active Set if it appears in a Handoff Direction Message received from the base station. A pilot is deleted from the Active Set if it is a member of the Active Set and a Handoff Direction Message is received from the base station in which it does not appear.
It is also preferred that the mobile station be capable of supporting a Candidate Set size of at least six pilots. A pilot is added to the Candidate Set whenever (1) the strength of a Neighbor Set member is determined to be above T-- ADD; (2) the strength of a Remaining Set member is determined to be above T-- ADD; or (3) a Handoff Direction Message is received removing an Active Set member and that pilot's strength has not been less than T-- DROP for a period of T-- TDROP seconds.
Pilots are deleted from the Candidate Set whenever (1) a Handoff Direction Message is received adding a Candidate Set member to the Active Set; (2) the strength of a Candidate Set member is determined to be less than T-- DROP for a period of T-- TDROP seconds, in which case the pilot is moved to the Neighbor Set; or (3) an attempt to move a pilot into the Candidate Set is made when there are already six pilots (or more if desired) in the Candidate Set. In case of a Candidate Set overflow, i.e. case (3), the mobile station shall move to the Neighbor Set the member whose timer is closest to expiration, or if all members are greater than T-- DROP, a member that has minimum strength.
It is also preferred that the mobile station be capable of supporting a Neighbor Set size of at least 20 pilots. The mobile station preferably maintains an aging mechanism for members of the Neighbor Set. The purpose of the aging mechanism is to allow the mobile station to maintain in its Neighbor Set those pilots that have been strong recently and thus are likely candidates for handoff. With each pilot in the Neighbor Set, the mobile station shall associate an age variable, herein denoted by AGE. The AGE of a pilot shall be initialized upon insertion in the Neighbor Set and shall be incremented upon receipt of a Neighbor List Update Message as described below.
When the mobile station is first assigned a forward traffic channel, the Neighbor Set is comprised of the pilots specified in the most recently received Neighbor List Message. The AGE of each pilot shall be initialized to the value NGHBR-- MAX-- AGE.
Pilots are added to the Neighbor Set whenever (1) a Neighbor List Update Message is received, each pilot named in the Neighbor List Update Message is added to the Neighbor Set, if it is not already a member of the Candidate Set or Active Set, with the AGE of each of these pilots set to NGHBR-- MAX-- AGE; (2) when the pilot survey detects a pilot in the Candidate Set whose strength has been below T-- DROP for a period of T-- TDROP seconds, that pilot is added to the Neighbor Set with its AGE set to zero; (3) when an Active Set member is removed from the Active Set by a Handoff Direction Message, it is added to the Neighbor Set, if its energy has been below T-- DROP for a period of T-- TDROP seconds, with its AGE set to zero; or (4) when a Candidate Set member has been moved to the Neighbor Set due to Candidate Set overflow, AGE=0.
A pilot is deleted from the Neighbor Set whenever (1) the strength of the pilot is determined to be above T-- ADD with the pilot being moved to the Candidate Set; (2) a Handoff Direction Message is received placing the pilot in the Active Set; (3) the AGE of the pilot is incremented above NGHBR-- MAX-- AGE with the pilot being moved to the Remaining Set; or (4) an attempt to move a pilot into the Neighbor Set is made when there are already 20 pilots (or more if desired)in the Neighbor Set. In case (4) the mobile station moves to the Remaining Set the pilot whose AGE is maximum. If more than one such pilot exists, the mobile station moves to the Remaining Set a pilot whose signal strength is minimum.
Table III as set forth below summarizes the events moving pilots between the different sets.
              TABLE III                                                   ______________________________________                                            Destination                                                       Origin Set                                                                        Set       Event                                                   ______________________________________                                    Active  Candidate Handoff Direction Message not                                             including the pilot and the T.sub.-- TDROP                                timer has not expired                                   Active  Neighbor  Handoff Direction Message not                                             including the pilot and the T.sub.-- TDROP                                timer has expired                                       Active  Remaining Not used                                                Candidate                                                                         Active    Handoff Direction Message including                                       the pilot                                               Candidate                                                                         Neighbor  T.sub.-- TDROP time has expired                         Candidate                                                                         Remaining Not used                                                Neighbor                                                                          Active    Handoff Direction Message including                                       the pilot                                               Neighbor                                                                          Candidate Pilot strength is greater than T.sub.-- ADD             Neighbor                                                                          Remaining AGE is greater than                                                       NGHBR.sub.-- MAX.sub.-- AGE                             Remaining                                                                         Active    Handoff Direction Message including                                       the pilot                                               Remaining                                                                         Candidate Pilot strength is greater than T.sub.-- ADD             Remaining                                                                         Neighbor  Neighbor List Update Message                                              including the pilot                                     ______________________________________
It should be noted that in Table III for the transition from Active to Remaining Set and the transition from Candidate to Remaining Set are listed as not used. However it should be understood that a pilot may be moved from the Active Set to the Remaining Set if the base station sets the NGHBR-- MAX-- AGE to zero and the Neighbor Set already contains the maximum number of pilots, 20 pilots for this example. Similarly, a pilot may be moved from the Candidate Set to the Remaining Set if the base station sets the NGHBR-- MAX-- AGE to zero and the Neighbor Set already contains the maximum number of pilots, 20 pilots again for this example.
With respect to the mobile station a soft handoff begins, or a cell diversity mode is entered, when the base station sends a Handoff Direction Message which includes more than one pilot. As discussed previously the purpose of a soft handoff is to provide diversity in communication of signals between the mobile station and the base stations on the boundaries between base stations. In addition, soft handoff provides uninterrupted transmission between the mobile station and the base station in transitions between base station coverage areas. Using the techniques discussed above, an example of call processing during a soft handoff from one base station to another is shown in FIG. 8.
In FIG. 8, the blocks illustrated on the left hand side of the dashed line relate to the actions of a mobile station while the blocks on the right hand side of the dashed line indicate the actions of base stations A and B. At the time a handoff is to begin the mobile station is communicating with another user via base station A and the MTSO, block 200.
As the mobile station approaches the boundary of the cell serviced by base station A its searcher receiver detects an increase in the pilot signal strength of the pilot of neighboring base station B, block 202. When the pilot is determined to increase above the threshold value T-- ADD the mobile station generates and transmits a pilot strength measurement message, block 204. Base station A which is currently in communication with the mobile station receives the Pilot Strength Measurement Report Message and relays it on to the MTSO. At the MTSO the system controller determines that the pilot of base station B should be entered into the Active Set of the mobile station. The MTSO communicates with base station B relevant setup information relative to the mobile station to establish communications with the mobile station. Base station B in response to this information begins transmitting user signals, provided via the MTSO, to the mobile station using the assigned PN codes in addition to acquiring signals received from the mobile station, block 208.
The MTSO also sends a Handoff Direction Message to both of base stations A and B for transmission to the mobile station. The Handoff Direction Message indicates to the mobile station that the pilots of base station A and base station B are to be entered into the mobile station Active Set, block 210. The mobile station receives the Handoff Direction Message, block 212, and enters the pilots of base stations A and B into its Active Set. The mobile station in response to this Handoff Direction Message begins to acquire the communications signals transmitted by base station B with diversity combining of the signals of base stations B and A, block 214. The mobile station is thus communicating with the other user through both of base stations A and B.
The mobile unit continues travelling through the system, such as by leaving the coverage area of base station A and entering the coverage area of base station B. As the mobile station travels further into the coverage area of base station B the mobile station searcher receiver measures a signal strength of the Active pilot of base station A which has fallen, block 216. As discussed previously, when the pilot of base station A drops below the threshold T-- DROP for a period of time determined by the parameter T-- TDROP, the mobile station generates and transmits a corresponding Pilot Strength Measurement Report Message to both bases stations A and B, block 218. One or both of base stations A and B should receive the Pilot Strength Measurement Report Message and transfer it on to the MTSO, block 220.
The MTSO in response to the Pilot Strength Measurement Report Message makes a decision that the pilot of base station A is to be removed from the mobile station Active list so as to terminate communications through base station A. Accordingly, the MTSO generates a Handoff Direction Message that is communicated to both of base stations A and B. This Handoff Direction Message identifies only the pilot of base station B and is transmitted by both of base stations A and B to the mobile station, block 222.
The mobile station receives this Handoff Direction Message, block 224. The mobile station in response removes the base station A pilot from the Active Set and discontinues using signals transmitted from base station A. The mobile station discontinues diversity combining of the signals from base stations A and B and demodulates only the signals received from base station B, block 226.
Contemporaneous with the communication of the Handoff Direction Message to the mobile station, the MTSO also begins tearing down the call communicated through base station A. The MTSO sends messages to base station A, which in response thereto discontinues communications with the mobile station, block 228. Handoff is now complete in that the mobile station which originally communicated with the other user through base station A alone, then through both base stations A and B, now only communicates with the other user through base station B, block 230.
A mobile station already in soft handoff and already receiving more than one base station signal, may be directed to perform a second soft handoff before the first is complete. That is, one of the base stations participating in the soft handoff may be replaced with another. The mobile station, in this case, replaces the pilot associated with the specified base station in its Active Set and continues in soft handoff with the new base station(s). An example of call processing during sequential soft handoff is shown in FIG. 9. A sequential soft handoff may occur as shown in FIG. 9 where a mobile station travels along the boundary of multiple base stations.
In FIG. 9 a soft handoff is in process wherein the user conversation is between a mobile station and another user via base stations A and B and the MTSO, block 250. The mobile station may for example be closest to the boundary of cells serviced by base stations A and B while travelling towards a boundary of a cell serviced by base station C. The mobile station detects a falling in signal strength of Active pilot A while also detecting a rise in signal strength of a non-Active Set pilot, pilot C, block 252. With the Active pilot A falling below the level T-- DROP for the predetermined period of time along with the rising of pilot C above the threshold T-- ADD, a pilot strength measurement message is generated and transmitted, to base stations A and B, block 254. Base stations A and B receive the pilot strength measurement message and relay the message on to the MTSO, block 256.
In response to this message the MTSO determines that the Active Set for the mobile should contain only the pilots of base stations B and C and not that of base station A. Accordingly the MTSO sends a set-up message to base station C for it to establish communications with the user. Base station C in response begins transmitting the message signals from the user, provided thereto via the MTSO, in addition to acquiring signals from the mobile station for transfer to the MTSO, block 258.
The MTSO generates the Handoff Direction Message, which identifies only base stations B and C for Active Set members, and communicates this message to base stations A, B and C. Each of base stations A, B and C transmit the Handoff Direction Message to the mobile station, block 260.
The mobile station receives this Handoff Direction Message, block 262. The mobile station in response to the Handoff Direction Message removes the base station A pilot from the Active Set and discontinues demodulation signals transmitted from base station A. The mobile station thus discontinues diversity combining of the signals from base stations A and B. However the mobile station begins to demodulate the signals received from base station C along with those received from base station B and diversity combines with the signals received from base station B and C, block 264.
Contemporaneous with the communication of the Handoff Direction Message to the mobile station, the MTSO also begins tearing down the call communicated through base station A. The MTSO sends messages to base station A, which in response thereto discontinues communications with the mobile station, block 266.
The mobile unit continues travelling through the system, such as by leaving the coverage area of base station B and entering the coverage area of base station C. As the mobile station travels further into the coverage area of base station C the mobile station searcher receiver detects a falling in signal strength of the Active pilot of base station B, block 268. When the pilot of base station B drops below the threshold T-- DROP for a predetermined period of time the mobile station generates and transmits a corresponding Pilot Strength Measurement Report Message to both bases stations B and C, block 270. One or both of base stations B and C receive the Pilot Strength Measurement Report Message and transfer it on to the MTSO, block 272.
The MTSO in response to the Pilot Strength Measurement Report Message makes a decision that the pilot of base station B is to be removed from the mobile station Active list so as to terminate communications through base station B. Accordingly, the MTSO generates a Handoff Direction Message that is communicated to both of base stations B and C. This Handoff Direction Message identifies only the pilot of base station C and is transmitted by both of base stations B and C to the mobile station, block 274.
The mobile station receives this Handoff Direction Message, block 276. The mobile station in response removes the base station B pilot from the Active Set and discontinues using signals transmitted from base station B. The mobile station discontinues diversity combining of the signals from base stations B and C and demodulates only the signals received from base station C, block 278.
Contemporaneous with the communication of the Handoff Direction Message to mobile station, the MTSO also begins tearing down the call communicated through base station B. The MTSO sends messages to base station B, which in response thereto discontinues communications with the mobile station, block 280. The sequential soft handoff is now complete in that the mobile station which originally communicated with the other user through base stations A and B, then through base stations B and C, now only communicates with the other user through base station C, block 282.
All base stations participating in a soft handoff transmit identical modulation symbols, with the exception of the closed loop power control signals as mentioned in the U.S. Pat. No. 5,056,109, on the communication channel dedicated to the mobile station. The mobile station is capable of providing diversity combining of these signals from the various base stations. In diversity combining, the mobile station should provide for differential path delays of up to at least 150 μsec.
It should be noted that mobile station transmission power control is continued during a soft handoff. For example, the power control bits transmitted from each base station are received and demodulated by the mobile station and are used in the control of the mobile station transmitter power. The Handoff Direction Message preferably identifies base stations transmission by groups by indicating which base station transmissions carry identical power control bits. The mobile station then may provide diversity combining of power control bits within each group. The mobile station may then obtain one power control decision bit from each group. If all resulting bits request an increase, i.e., are equal to `0`, the mobile station increases its transmitter power, and if any one of these bits indicates a decreases, i.e., is equal to `1`, the mobile station decrease its transmitter power.
The previous description of the preferred embodiments are provided to enable any person skilled in the art to make or use the present invention. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without the use of the inventive faculty. Thus, the present invention is not intended to be limited to the embodiment herein, but is to be accorded the widest scope consistent with the principles as novel features disclosed herein.

Claims (37)

We claim:
1. In a code division multiple access (CDMA) spread spectrum cellular communication system in which a mobile station user communicates with another system user via at least one base station, wherein each base station transmits a common pilot signal of a different code phase with respect to other base stations in said system, a method for directing communications between said mobile station user and said base stations comprising the steps of:
measuring at a mobile station signal strength of base station transmitted pilot signals;
communicating a signal strength message, from said mobile station via at least one base station said mobile station is in communication with, when at least one measured pilot signal each corresponding to a base station to which said mobile station is not currently in communication with, exceeds a first predetermined level;
communicating, from at least one of said base stations said mobile station is in communication with and each base station corresponding to said mobile station measured pilot signal exceeding said first predetermined level, a direction message; and
establishing, at said mobile station in response to said direction message, communications through each base station corresponding to said mobile station measured pilot signal exceeding said first predetermined level.
2. The method of claim 1 further comprising the steps of:
communicating another signal strength message, from said mobile station via at least one base station said mobile station is in communication with, when at least one measured pilot signal each corresponding to a base station to which said mobile station is currently in communication with, falls below a second predetermined level;
communicating, from at least one of said base stations said mobile station is in communication with, another direction message; and
terminating, at said mobile station in response to said another direction message, communications through each base station corresponding to said mobile station measured pilot signal fallen below said second predetermined level.
3. The method of claim 1 further comprising the step of generating said direction message identifying base stations, whose pilot signals have previously exceeded said first predetermined level, to which said mobile station is to communicate through.
4. The method of claim 2 further comprising the step of generating said another direction message identifying base stations, exclusive of those base stations whose mobile station measured pilot signals have fallen below said second predetermined level, to which said mobile station is to remain communicating through.
5. The method of claim 3 further comprising the step of generating said another direction message identifying base stations, exclusive of those base stations whose mobile station measured pilot signals have fallen below said second predetermined level, to which said mobile station is to remain communicating through.
6. In a spread spectrum cellular communication system in which a mobile station user communicates with another system user via at least one base station, wherein each base station transmits an identifying pilot signal of a different code phase with respect to other base stations in said system, a method for directing communications between said mobile station user and said base stations by a system controller comprising the steps of:
providing to said mobile station a first list identifying a first set of base stations;
measuring at said mobile station signal strength of said pilot signals transmitted by of each base station of said first set of base stations;
comparing said measured pilot signal strength to a first predetermined level;
generating at said mobile station a second list identifying a second set of base stations by removing from said first list a base station listing having a pilot signal strength measurement of a corresponding base station which exceeds said first predetermined level and placing said base station listing in said second list;
providing by said mobile station said second list to said system controller;
providing to said system controller from said base station identified in said second list availability information about resources at each of said base stations identified in said second list;
generating at said system controller a third list identifying a third set of base stations based on said first list, said second list and said base station availability information;
providing to said mobile station by said system controller said third list;
removing at said mobile station each base station listing of said third set of base stations from said first list and said second list; and
communicating by said mobile station through said third set of base stations.
7. The method of claim 6 further comprising the steps of:
measuring at said mobile station signal strength of said pilot signals transmitted by each base station of said second and third sets of base stations; and
providing by said mobile station a particular base station listing of said second list to said system controller, wherein a pilot signal strength measurement of a particular base station corresponding to said particular base station listing exceeds a pilot signal strength measurement of a base station corresponding to a base station listing of said third list by a predetermined amount.
8. The method of claim 7 further comprising the steps of:
providing to said system controller from said particular base station information about an availability of resources at said particular base station;
generating at said system controller an updated third list comprising said particular base station listing;
providing to said mobile station by said system controller said updated third list;
removing said particular base station listing from said second list; and
establishing communication by said mobile station with said particular base station.
9. The method of claim 7 further comprising the steps of:
comparing said pilot signal strength measurements for said third set of base stations to a second predetermined level;
providing by said mobile station a second particular base station listing of said third list to said system controller wherein a pilot signal strength measurement of a second particular base station corresponding to said second particular base station listing is less than said second predetermined level for at least a predetermined time interval;
generating at said system controller an updated third list by removing said second particular base station listing from said third list;
providing to said mobile station said updated third list; and
discontinuing communication by said mobile station through said second particular base station.
10. The method of claim 7 further comprising the steps of:
providing to said system controller from said particular base station information about an unavailability of resources at said particular base station; and
maintaining at said system controller said third list unchanged.
11. The method of claim 7 further comprising the steps of:
generating at said mobile station a fourth list identifying a fourth set of base stations, said fourth list identifying all base stations unlisted in said first, second, or third lists;
measuring at said mobile station signal strength of said pilot signals transmitted by each base station of said fourth set base stations;
comparing said signal strength measurements of said fourth set of base stations to said first predetermined level; and
removing a second particular base station listing from said fourth list and placing said second particular base station listing in said second list if said signal strength measurement of a second particular base corresponding to said second particular base station listing exceeds said first predetermined level.
12. The method of claim 11 further comprising the steps of:
identifying by said mobile station said second particular base station to said system controller;
providing to said system controller from said second particular base station information about an availability of resources at said second particular base station;
generating at said system controller an updated third list comprising said second particular base station listing;
providing to said mobile station from said system controller said updated third list;
removing said second particular base station listing from said second list; and
establishing communication by said mobile station with said second particular base station.
13. The method of claim 11 further comprising at said mobile station the step of, for each base station listing that has been in said first list for more than a predetermined time interval, removing each such base station listing from said first list and placing each such base station listing in said fourth list.
14. The method of claim 7 further comprising at said mobile station the step of, for each base station having a corresponding signal strength measurement less than a second predetermined level for at least a predetermined time interval, removing each corresponding base station listing from said second list and placing each such base station listing in said first list.
15. The method of claim 7 further comprising the steps of:
generating at said system controller a next third list identifying a next third set of base stations;
providing to said mobile station said next third list;
comparing said next third list to said third list to identify a second particular base station listing included only on said third list; and
placing said second particular base station listing in said second list if a pilot signal strength measurement of a second particular base station corresponding to said second particular base station listing has exceeded a second predetermined level for a predetermined time interval.
16. The method of claim 7 further comprising the steps of:
generating at said system controller a next third list identifying a next third set of base stations;
providing to said mobile station said next third list;
comparing said next third list to said third list to identify a second particular base station listing included only on said third list; and
placing said second particular base station listing in said first list if a signal strength measurement of a second particular base station corresponding to said second particular base station listing is less than a second predetermined level for a predetermined time interval.
17. The method of claim 11 further comprising the steps of:
generating at said system controller a next third list identifying a next third set of base stations;
providing to said mobile station said next third list;
comparing said next third list to said third list and identifying a third particular base station listing included only on said third list; and
placing said third particular base station listing in said fourth list if a signal strength measurement of a third particular base station corresponding to said third particular base station listing is less than a second predetermined level for a predetermined time interval and said first list contains more than a predetermined number of base station listings.
18. The method of claim 11 further comprising at said mobile station the step of, for each base station having a corresponding signal strength measurement less than a second predetermined level for at least a predetermined time interval, if said first list contains more than a predetermined number of base station listings, removing each corresponding base station listing from said second list and placing each such base station listing in said fourth list.
19. The method of claim 11 further comprising the steps of:
providing to said mobile station an update message containing an update list identifying a set of base stations; and
removing a third particular base station listing from said fourth list corresponding to a third particular base station identified by said update list and placing said third particular base station listing on said first list.
20. The method of claim 6 wherein the step of providing by said mobile station said second list to said system controller comprises the steps of:
transmitting a message containing said second list by said mobile station to least one of said base stations; and
communicating by said at least one of said base stations to said system controller said second list.
21. The method of claim 11 further comprising the steps of:
removing a third particular base station listing from said first list when said first list contains more than a predetermined number of base station listings wherein an age parameter of said third particular base station listing equals or exceeds an age parameter of all other base station listing in said first list; and
placing said third particular base station listing in said fourth list.
22. The method of claim 11 wherein said step of measuring at said mobile station signal strengths of said fourth set of base stations is executed periodically upon execution of a fixed number of executions of said step of measuring at said mobile station signal strengths of said first set of base stations.
23. In a cellular communication system in which a system controller directs communications between a mobile station and at least one base station, a method for mobile station assisted communications directing, comprising the steps of:
storing in said mobile station an active list of base stations entries, wherein each entry in said active list corresponds to a base station in communication with said mobile station;
storing in said mobile station a candidate list of base stations entries, wherein each entry in said candidate list corresponds to a base station having sufficient signal strength to establish communication with said mobile station;
transmitting from each base station of said current system a signal identifying said base station;
measuring at said mobile station a signal strength of said corresponding base station transmitted signal for each of said entries in said active list;
measuring at said mobile station a signal strength of said corresponding base station transmitted signal for each of said entries in said candidate list;
comparing said measurement of each of said candidate list entries to each of said measurements of said active list entries; and
identifying by said mobile station to said system controller a particular base station having an entry on said candidate list and another base station having an entry on said active list, if a measurement of said particular base station exceeds a measurement of said another base station by a predetermined amount, T-- COMP.
24. A method of claim 23 further comprising the steps of:
advising said particular base station by said system controller to prepare for communication with said mobile station;
generating at said system controller an updated active list containing said entry corresponding to said particular base station;
communicating said updated active list to said mobile station from said system controller; and
establishing communication between said mobile station and said particular base station.
25. A method of claim 23 further comprising the steps of:
advising said another base station by said system controller to terminate communication with said mobile station;
generating at said system controller an updated active list excluding said entry corresponding to said particular base station;
communicating said updated active list to said mobile station from said system controller; and
terminating communication by said mobile station through said another base station.
26. A method of claim 25 further comprising the steps of:
storing in said mobile station a neighbor list of base stations entries, wherein each entry in said neighbor list corresponds to a base station in a predetermined proximity of said mobile station;
storing in said mobile station a remaining list of base stations entries, each of said base station entries corresponding to a base station of a current system;
comparing said base station signal strength measurements of entry corresponding to said another base station to a first predetermined level, T-- DROP;
placing by said mobile station said entry corresponding to said another base station in said candidate list if one of said measurement of said another base station has exceeded said first predetermined level, T-- DROP, within a first predetermined time interval, T-- TDROP;
placing by said mobile station said entry corresponding to said another base station in said neighbor list if each of said measurements said another base station has been less than said first predetermined level, T-- DROP, for at least said first predetermined time interval, T-- TDROP;
placing by said mobile station said entry corresponding to said another base station in said remaining list if each of said measurements of said first base station has been less than said first predetermined level, T-- DROP, for at least said first predetermined time interval, T-- TDROP, and said neighbor list contains more than a predetermined number of entries.
27. A method of claim 23 further comprising the steps of:
comparing at said mobile station said base station signal strength measurements of each of said candidate list entries to a second predetermined level, T-- ADD;
identifying by said mobile station to said system controller a second particular base station having an entry on said candidate list if said measurement of said second particular base station exceeds said second predetermined level, T-- ADD;
advising said second particular base station by said system controller to prepare for communication with said mobile station;
generating at said system controller an updated active list containing said entry corresponding to said second particular base station;
communicating said updated active list to said mobile station from said system controller; and
establishing communication between said mobile station and said second particular base station.
28. A method of claim 23 further comprising the steps of:
storing in said mobile station a neighbor list of base stations entries, wherein each entry in said neighbor list corresponds to a base station in a predetermined proximity of said mobile station;
measuring at said mobile station a signal strength of said corresponding base station transmitted signal for each of said entries in said neighbor list;
comparing at said mobile station said base station signal strength measurements of each of said neighbor list entries to a second predetermined level, T-- ADD;
identifying by said mobile station to said system controller a second particular base station having a second particular entry on said neighbor list if said measurement of said second particular base station exceeds said second predetermined level, T-- ADD;
removing by said mobile station said second particular entry from said neighbor list and placing said second particular entry in said candidate list;
advising said second particular base station by said system controller to prepare for communication with said mobile station;
generating at said system controller an updated active list comprised of said second particular entry;
communicating said updated active list to said mobile station from said system controller; and
establishing communication between said mobile station and said second particular base station.
29. A method of claim 23 further comprising the steps of:
comparing at said mobile station said base station signal strength measurement of a second particular base station having a second particular entry in said candidate list to a first predetermined level, T-- DROP;
removing by said mobile station said second particular entry from said candidate list and placing said second particular entry in said neighbor list if said measurement of said second particular base station has been less than said first predetermined level, T-- DROP, for at least a first predetermined time interval, T-- TDROP.
30. A method of claim 23 further comprising the steps of:
comparing at said mobile station said base station signal strength measurements of a second particular base station having a second particular entry in said active list to a first predetermined level, T-- DROP;
identifying by said mobile station to said system controller said second particular entry if said measurement is less than said first predetermined level, T-- DROP, for at least a first predetermined time interval, T-- TDROP;
advising said second particular base station by said system controller to cease communicating with said mobile station;
generating at said system controller an updated active list excluding said second particular entry;
communicating said updated active list to said mobile station from said system controller; and
terminating communication by said mobile station through said second particular base station.
31. The method of claim 23 further comprising the steps of:
storing in said mobile station a neighbor list of base stations entries, wherein each entry in said neighbor list corresponds to a base station in a predetermined proximity of said mobile station;
storing in said mobile station a remaining list of base stations entries, each of said base station entries corresponding to a base station of a current system;
communicating an updated neighbor list to said mobile station from said system controller containing an second particular entry corresponding to a second particular base station; and
removing by said mobile station said second particular entry from said remaining list and placing said second particular entry in said neighbor list.
32. The method of claim 31 further comprising the steps of:
storing in said mobile station a neighbor list of base stations entries, wherein each entry in said neighbor list corresponds to a base station in a predetermined proximity of said mobile station;
storing in said mobile station a remaining list of base stations entries, each of said base station entries corresponding to a base station of a current system;
associating at said mobile station with each of said entries in said neighbor list an age parameter;
incrementing each of said associated age parameters upon communication of an updated neighbor list at said mobile station from said system controller; and
removing by said mobile station a third particular entry from said neighbor list and placing said third particular entry in said remaining list if said associated age parameter of said third particular entry exceeds a predetermined age limit.
33. The method of claim 23 further comprising the steps of:
storing in said mobile station a neighbor list of base stations entries, wherein each entry in said neighbor list corresponds to a base station in a predetermined proximity of said mobile station;
storing in said mobile station a remaining list of base stations entries, each of said base station entries corresponding to a base station of a current system;
measuring at said mobile station a signal strength of said corresponding base station transmitted signal for each of said entries in said remaining list;
comparing at said mobile station said base station signal strength measurement of each of said remaining list entries to a second predetermined level, T-- ADD;
identifying by said mobile station to said system controller a second particular base station having a second particular entry on said remaining list if said measurement of said second particular base station exceeds said second predetermined level, T-- ADD;
removing by said mobile station said second particular entry from said neighbor list and placing said second particular entry in said candidate list;
advising said second particular base station by said system controller to prepare for communication with said mobile station;
generating at said system controller an updated active list containing second particular entry;
communicating said updated active list to said mobile station from said system controller; and
establishing communication between said mobile station and said second particular base station.
34. In a cellular communication system in which a system controller directs communications between a mobile station and at least one base station, a method for mobile station assisted communications directing, comprising the steps of:
identifying by said system controller to said mobile station a first set of base stations which are in a predetermined proximity of said mobile station;
measuring at said mobile station a signal strength of a signal transmitted by each base station in said first set of base stations;
identifying to said system controller by said mobile station a second set of base stations from said first set of base stations having said measured signal strengths sufficient at said mobile station to establish communications therewith;
identifying by said system controller to said mobile station a third set of base stations corresponding to at least one base station of said second set having available resources to establish communication with said mobile station;
notifying by said system controller each base station of said third set of base stations not currently in communication with said mobile station to establish communication with said mobile station; and
establishing communications by said mobile station and each base station of said third set of base stations not currently in communication therewith.
35. A method of claim 34 further comprising the step of terminating existing communication between said mobile station and each base station absent from said third set of base stations.
36. A method of claim 34 further comprising the steps of:
measuring at said mobile station a signal strength of a signal transmitted by each base station of said third set of base stations;
identifying to said system controller by said mobile station each base station of said third set of base stations having a measured signal strength which has fallen below a first predetermined level for at least a first predetermined time interval;
notifying by said system controller each said identified base station of said third set of base stations to cease communication with said mobile station;
identifying by said system controller to said mobile station a new third set of base stations wherein each said identified base station of said third set of base stations is absent from said identified new third set of base stations; and
ceasing communications by said mobile station with base stations in said third set of base stations absent from said new third set of base stations.
37. In a cellular communication system in which a system controller controls a handoff in communications between a mobile station and a plurality of base stations, a method for mobile station assisted handoff in said communications comprising the steps of:
identifying by said system controller to said mobile station a first set of base stations which are in a predetermined proximity of said mobile station;
measuring at said mobile station a signal strength of a signal transmitted by each base station in said first set of base stations;
determining at said mobile station from said signal strength measurements a second set of base stations, wherein said signal strength measurement of each base station of said second set of base stations is indicative of signal level sufficient to establish communication with said mobile station;
identifying by said mobile station to said system controller said second set of base stations;
determining at said system controller from said second set of base stations a third set of base stations having resources available to establish communication with said mobile station;
notifying by said system controller each base station of said third set of base stations and said mobile station to establish communications between each base station of said third set of base stations if communications therebetween are not currently present;
establishing communication between each base station of said third set of base stations and said mobile station if communications therebetween are not currently present; and
terminating existing communication between said mobile station and each base station absent from said third set of base stations.
US07/847,1481992-03-051992-03-05Mobile station assisted soft handoff in a CDMA cellular communications systemExpired - LifetimeUS5267261A (en)

Priority Applications (2)

Application NumberPriority DateFiling DateTitle
US07/847,148US5267261A (en)1992-03-051992-03-05Mobile station assisted soft handoff in a CDMA cellular communications system
US08/226,222US5640414A (en)1992-03-051994-04-11Mobile station assisted soft handoff in a CDMA cellular communications system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US07/847,148US5267261A (en)1992-03-051992-03-05Mobile station assisted soft handoff in a CDMA cellular communications system

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US13435693AContinuation1992-03-051993-10-08

Publications (1)

Publication NumberPublication Date
US5267261Atrue US5267261A (en)1993-11-30

Family

ID=25299890

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US07/847,148Expired - LifetimeUS5267261A (en)1992-03-051992-03-05Mobile station assisted soft handoff in a CDMA cellular communications system
US08/226,222Expired - LifetimeUS5640414A (en)1992-03-051994-04-11Mobile station assisted soft handoff in a CDMA cellular communications system

Family Applications After (1)

Application NumberTitlePriority DateFiling Date
US08/226,222Expired - LifetimeUS5640414A (en)1992-03-051994-04-11Mobile station assisted soft handoff in a CDMA cellular communications system

Country Status (1)

CountryLink
US (2)US5267261A (en)

Cited By (585)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5335246A (en)*1992-08-201994-08-02Nexus Telecommunication Systems, Ltd.Pager with reverse paging facility
US5379047A (en)*1992-08-201995-01-03Nexus Telecommunication Systems, Inc.Remote position determination system
US5410538A (en)*1993-11-091995-04-25At&T Corp.Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system
US5420863A (en)*1992-07-091995-05-30Nec CorporationMobile communication system with cell-site switching for intra-cell handoff
US5430759A (en)*1992-08-201995-07-04Nexus 1994 LimitedLow-power frequency-hopped spread spectrum reverse paging system
US5432651A (en)*1992-06-091995-07-11Mitsubishi Denki Kabushiki KaishaData conversion device and recording/reproduction apparatus
US5436956A (en)*1992-07-171995-07-25Nec CorporationMethod and arrangement for reducing the number of handoff requests in a cellular mobile communications system
US5444766A (en)*1993-10-011995-08-22At&T Corp.Mobile-synchronized handoff in a wireless communications system
US5448569A (en)*1994-04-121995-09-05International Business Machines CorporationHandoff monitoring in cellular communication networks using slow frequency hopping
US5457680A (en)*1993-05-181995-10-10International Business Machines CorporationData gateway for mobile data radio terminals in a data communication network
US5463315A (en)*1993-06-151995-10-31Hewlett-Packard CompanySpike suppression for a tester circuit for integrated circuits
WO1995026593A3 (en)*1994-03-211995-11-16Nokia Telecommunications OyMethod for interference cancellation in a cellular cdma network
US5483669A (en)*1993-09-091996-01-09Hughes Aircraft CompanyDynamic thresholding for mobile assisted handoff in a digital cellular communication system
US5487083A (en)*1993-05-121996-01-23Ntt Mobile Communications Network Inc.Hand-off method and mobile station for spread spectrum mobile communication
US5490165A (en)*1993-10-281996-02-06Qualcomm IncorporatedDemodulation element assignment in a system capable of receiving multiple signals
WO1996010871A1 (en)*1994-09-301996-04-11Qualcomm IncorporatedMultiple band radio
WO1996012380A1 (en)*1994-10-161996-04-25Qualcomm IncorporatedMethod and apparatus for handoff between different cellular communications systems
EP0680160A3 (en)*1994-04-271996-05-15Nippon Telegraph & TelephoneMethod and apparatus for transmission power control of a mobile station during soft handoff in a CDMA system.
US5539749A (en)*1993-09-131996-07-23Siemens AktiengesellschaftMethod for merging data streams
WO1996016524A3 (en)*1994-11-221996-08-08Qualcomm IncPilot signal searching technique for a cellular communications system
US5548808A (en)*1993-12-081996-08-20Motorola, Inc.Method for performing a handoff in a communication system
US5570349A (en)*1994-06-071996-10-29Stanford Telecommunications, Inc.Wireless direct sequence spread spectrum digital cellular telephone system
US5577047A (en)*1993-11-101996-11-19Telefonaktiebolaget Lm EricssonSystem and method for providing macrodiversity TDMA radio communications
WO1996037083A1 (en)*1995-05-171996-11-21Nokia Mobile Phones LimitedA method for improving the reliability of a handover and call establishment, and a cellular radio system
WO1996037970A1 (en)*1995-05-241996-11-28Nokia Telecommunications OyMethod for transmitting pilot channels, and a cellular radio system
WO1996037969A1 (en)*1995-05-241996-11-28Nokia Telecommunications OyMethod for transmitting a pilot signal, and a cellular radio system
FR2735305A1 (en)*1995-06-081996-12-13Motorola Inc METHOD AND DEVICE FOR MODIFYING A SERVICE OPTION IN A MULTI-CODE DIVISION ACCESS COMMUNICATION SYSTEM
US5590172A (en)*1993-07-021996-12-31Motorola, Inc.Method and system for transferring a radiotelephone call from one coverage area to another
US5594718A (en)*1995-03-301997-01-14Qualcomm IncorporatedMethod and apparatus for providing mobile unit assisted hard handoff from a CDMA communication system to an alternative access communication system
US5602833A (en)*1994-12-191997-02-11Qualcomm IncorporatedMethod and apparatus for using Walsh shift keying in a spread spectrum communication system
WO1997006648A1 (en)*1995-08-081997-02-20Telefonaktiebolaget Lm Ericsson (Publ)Neighbor cell list creation and verification in a telecommunications system
US5608722A (en)*1995-04-031997-03-04Qualcomm IncorporatedMulti-user communication system architecture with distributed receivers
WO1997008911A1 (en)*1995-08-311997-03-06Nokia Telecommunications OyA handover method, and a cellular radio system
WO1997008910A1 (en)*1995-08-311997-03-06Nokia Telecommunications OyA method for selecting the way to perform a handover, and a cellular radio system
US5610940A (en)1994-09-091997-03-11Omnipoint CorporationMethod and apparatus for noncoherent reception and correlation of a continous phase modulated signal
WO1997009794A1 (en)*1995-09-081997-03-13Qualcomm IncorporatedApparatus and method for controlling the actual transmission power of a base station in a cellular communications system
US5623484A (en)*1993-09-241997-04-22Nokia Telecommunications OyMethod and apparatus for controlling signal quality in a CDMA cellular telecommunications
US5625876A (en)*1993-10-281997-04-29Qualcomm IncorporatedMethod and apparatus for performing handoff between sectors of a common base station
US5627835A (en)*1995-04-041997-05-06Oki TelecomArtificial window size interrupt reduction system for CDMA receiver
US5627856A (en)1994-09-091997-05-06Omnipoint CorporationMethod and apparatus for receiving and despreading a continuous phase-modulated spread spectrum signal using self-synchronizing correlators
US5627879A (en)*1992-09-171997-05-06Adc Telecommunications, Inc.Cellular communications system with centralized base stations and distributed antenna units
US5629956A (en)1994-09-091997-05-13Omnipoint CorporationMethod and apparatus for reception and noncoherent serial correlation of a continuous phase modulated signal
FR2742291A1 (en)*1995-12-121997-06-13Alcatel Mobile Comm FranceNeighbouring cell monitoring device for mobile communication networks
US5648955A (en)1993-11-011997-07-15Omnipoint CorporationMethod for power control in a TDMA spread spectrum communication system
US5648982A (en)1994-09-091997-07-15Omnipoint CorporationSpread spectrum transmitter
WO1997029604A1 (en)*1996-02-121997-08-14Nokia Mobile Phones Ltd.Simplified mobile assisted handoff of signal between cells
US5659574A (en)1994-09-091997-08-19Omnipoint CorporationMulti-bit correlation of continuous phase modulated signals
WO1997031503A1 (en)*1996-02-231997-08-28Qualcomm IncorporatedCoexisting gsm and cdma wireless telecommunications networks
US5680414A (en)1994-09-091997-10-21Omnipoint CorporationSynchronization apparatus and method for spread spectrum receiver
US5680395A (en)*1995-08-151997-10-21Qualcomm IncorporatedMethod and apparatus for time division duplex pilot signal generation
US5692007A (en)1994-09-091997-11-25Omnipoint CorporationMethod and apparatus for differential phase encoding and decoding in spread-spectrum communication systems with continuous-phase modulation
US5691974A (en)*1995-01-041997-11-25Qualcomm IncorporatedMethod and apparatus for using full spectrum transmitted power in a spread spectrum communication system for tracking individual recipient phase, time and energy
US5697053A (en)*1994-07-281997-12-09Lucent Technologies Inc.Method of power control and cell site selection
WO1997044970A3 (en)*1996-05-221997-12-31Qualcomm IncMethod and apparatus for measurement directed hard handoff in a cdma system
WO1997044969A3 (en)*1996-05-221997-12-31Qualcomm IncMethod and apparatus for providing a cone of silence in a cellular communication system
WO1997044984A3 (en)*1996-05-231997-12-31Qualcomm IncMethod and apparatus for hard handoff in a cdma system
GB2314731A (en)*1996-06-271998-01-07Motorola LtdHandover management system for cellular network
US5722068A (en)*1994-01-261998-02-24Oki Telecom, Inc.Imminent change warning
US5722074A (en)*1993-09-241998-02-24Nokia Telecommunications OySoft handoff in a cellular telecommunications system
GB2317077A (en)*1996-09-061998-03-11Motorola IncPilot set maintenance
WO1998000999A3 (en)*1996-06-281998-03-26Motorola LtdMethod and apparatus for monitoring channels to enable handoff in mobile communication systems
WO1998006230A3 (en)*1996-08-071998-03-26Qualcomm IncMethod and apparatus for reliable intersystem handoff in a cdma system
US5737703A (en)*1994-12-231998-04-07Nokia Mobile Phones LimitedMulti-mode radio telephone which executes handover between different system
GB2318256A (en)*1996-10-111998-04-15Motorola IncSoft handoff in a CDMA communication system
WO1998020640A1 (en)*1996-11-061998-05-14Motorola Inc.Method and apparatus for mitigating an orphan condition in a spread-spectrum communication system
US5754585A (en)1994-09-091998-05-19Omnipoint CorporationMethod and apparatus for serial noncoherent correlation of a spread spectrum signal
US5754584A (en)1994-09-091998-05-19Omnipoint CorporationNon-coherent spread-spectrum continuous-phase modulation communication system
US5757847A (en)1994-09-091998-05-26Omnipoint CorporationMethod and apparatus for decoding a phase encoded signal
US5757767A (en)*1995-04-181998-05-26Qualcomm IncorporatedMethod and apparatus for joint transmission of multiple data signals in spread spectrum communication systems
WO1998023118A1 (en)*1996-11-151998-05-28Nokia Telecommunications OyDynamic channel allocation
WO1998012678A3 (en)*1996-09-181998-06-04Method of facilitating transmission level measurement, and base station
US5771451A (en)*1995-09-041998-06-23Nec CorporationMethod of transmission power control in a cellular mobile communication system and apparatus thereof
US5771452A (en)*1995-10-251998-06-23Northern Telecom LimitedSystem and method for providing cellular communication services using a transcoder
FR2757734A1 (en)*1996-12-191998-06-26Motorola Inc COMMUNICATION PASSING METHOD AND WIRELESS COMMUNICATION DEVICE
US5781541A (en)*1995-05-031998-07-14Bell Atlantic Network Services, Inc.CDMA system having time-distributed transmission paths for multipath reception
US5787076A (en)1993-11-011998-07-28Omnipoint CorporationMulti-mode TDMA spread spectrum communication system
US5790589A (en)*1996-08-141998-08-04Qualcomm IncorporatedSystem and method for rapidly reacquiring a pilot channel
US5794149A (en)*1995-12-291998-08-11Lucent Technologies Inc.Base station controlled handoff method and apparatus
WO1998019492A3 (en)*1996-10-281998-10-01Northern Telecom LtdMethod of optimizing neighbor set during soft handoff of a mobile unit in a CDMA cellular environment
RU2120180C1 (en)*1997-08-131998-10-10Закрытое акционерное общество "Кодофон"Method of reception of multiray signals and device for its realization
US5826190A (en)*1995-01-041998-10-20Motorola, Inc.Emergency handoff method of redirecting calls in a satellite communication system
WO1998047242A1 (en)*1997-04-121998-10-22Motorola Inc.Method and apparatus for freeing a frame to aid in handoff determination in a code division multiple access communication system
WO1998030043A3 (en)*1996-12-311998-10-29Ericsson Telefon Ab L MCompensation for mobile assisted handoff measurement inaccuracies
US5832028A (en)1994-09-091998-11-03Omnipoint CorporationMethod and apparatus for coherent serial correlation of a spread spectrum signal
WO1998033288A3 (en)*1997-01-291998-11-12Qualcomm IncMethod and apparatus for performing soft hand-off in a wireless communication system
US5839052A (en)*1996-02-081998-11-17Qualcom IncorporatedMethod and apparatus for integration of a wireless communication system with a cable television system
WO1998053620A1 (en)*1997-05-191998-11-26Northern Telecom LimitedBoundary sector hard handoff trigger
US5844898A (en)*1995-05-161998-12-01Nec CorporationMethod of radio channel switching over in a mobile radio communications system
FR2764157A1 (en)*1997-05-291998-12-04Samsung Electronics Co Ltd SWING SWITCH SWITCHING METHOD IN CDMA CELLULAR SYSTEM
WO1998036588A3 (en)*1997-02-131998-12-10Qualcomm IncMethod of and apparatus for merging pilot neighbor lists in a mobile telephone system
US5850607A (en)*1993-09-241998-12-15Nokia Telecommunications OyMethod and apparatus for providing control handoff in a cellular telecommunications system
US5850394A (en)*1994-06-101998-12-15Oki Electric Industry Co., Ltd.CDMA communications system using multiplexed signaling data lines
WO1998035525A3 (en)*1997-02-111998-12-17Qualcomm IncA method of and apparatus for controlling handoff in a communication system
WO1998032262A3 (en)*1997-01-151998-12-23Qualcomm IncMethod and apparatus for performing mobile assisted hard handoff between communication systems
USRE36017E (en)*1988-02-291998-12-29Telefonaktiebolaget Lm EricssonCellular digital mobile radio system and method of transmitting information in a digital cellular mobile radio system
US5854785A (en)*1996-12-191998-12-29Motorola, Inc.System method and wireless communication device for soft handoff
US5856998A (en)1994-09-091999-01-05Omnipoint CorporationMethod and apparatus for correlating a continuous phase modulated spread spectrum signal
US5864760A (en)*1993-10-281999-01-26Qualcomm IncorporatedMethod and apparatus for reducing the average transmit power from a sectorized base station
WO1998048530A3 (en)*1997-04-241999-01-28Ericsson Telefon Ab L MSystem and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
WO1998048529A3 (en)*1997-04-241999-01-28Ericsson Telefon Ab L MSystem and method for allocating channel elements in a code division multiple access radio telecommunications network
USRE36078E (en)*1988-06-141999-02-02Telefonaktiebolaget Lm EricssonHandover method for mobile radio system
US5867763A (en)*1996-02-081999-02-02Qualcomm IncorporatedMethod and apparatus for integration of a wireless communication system with a cable T.V. system
US5878350A (en)*1996-05-221999-03-02Ntt Mobile Communication Network Inc.Scheme for controlling transmission powers during soft handover in a CDMA mobile communication system
US5881368A (en)*1996-06-061999-03-09Qualcomm IncorporatedMethod and apparatus of power control in a CDMA dispatch system
US5881100A (en)1994-09-091999-03-09Omnipoint CorporationMethod and apparatus for coherent correlation of a spread spectrum signal
US5884187A (en)*1996-03-131999-03-16Ziv; Noam A.Method and apparatus for providing centralized power control administration for a set of base stations
US5883888A (en)*1996-12-031999-03-16Telefonaktiebolaget Lm EricssonSeamless soft handoff in a CDMA cellular communications system
US5884196A (en)*1996-06-061999-03-16Qualcomm IncorporatedMethod and apparatus of preserving power of a remote unit in a dispatch system
WO1999013675A1 (en)*1997-09-081999-03-18Qualcomm IncorporatedMethod and system for changing forward traffic channel power allocation during soft handoff
US5887021A (en)*1996-09-231999-03-23Nokia Telecommunications OyBase station receiver and a method for receiving a signal
US5889768A (en)*1996-08-301999-03-30Motorola, Inc.Method of and apparatus for pilot channel acquisition
WO1999003245A3 (en)*1997-07-091999-04-01Northern Telecom LtdMethod and system for improving handoff in a cellular network
EP0899981A3 (en)*1997-08-291999-04-14Lucent Technologies Inc.A method for performing a soft handoff
WO1999020074A1 (en)*1997-10-091999-04-22Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US5898924A (en)*1994-12-301999-04-27Siemens AktiengesellschaftMethod for connection handling in communication systems with wireless signal transmission
US5901145A (en)*1997-02-281999-05-04Telefonaktiebolaget L M Ericsson (Publ)Mobile station handoff between a spread spectrum communications system and a frequency division communications system
WO1999014975A3 (en)*1997-09-161999-05-14Qualcomm IncChannel structure for communication systems
WO1999023847A1 (en)*1997-10-311999-05-14Motorola Inc.Method and apparatus for handoff within a communication system
US5907813A (en)*1995-11-301999-05-25Qualcomm IncorporatedSignal acquisition in a wireless communication system by transmitting repeated access probes from a terminal to a hub
US5914948A (en)*1995-10-051999-06-22Alcatel N.V.Mobile radio system with time-division multiplexing
WO1999033196A1 (en)*1997-12-191999-07-01Advanced Communications Consultancy (Uk) Ltd.Apparatus and method for signal detection by base station in a mobile communication system
US5920549A (en)*1996-12-191999-07-06Motorola, Inc.Method of handing off and a wireless communication device
US5920551A (en)*1995-06-231999-07-06Electronics And Telecommunications Research InstituteChannel structure with burst pilot in reverse link
US5926470A (en)*1996-05-221999-07-20Qualcomm IncorporatedMethod and apparatus for providing diversity in hard handoff for a CDMA system
US5930727A (en)*1995-07-211999-07-27Ericsson Inc.Analog fax and modem requests in a D-AMPS multi-line terminal system
US5933787A (en)*1995-03-131999-08-03Qualcomm IncorporatedMethod and apparatus for performing handoff between sectors of a common base station
US5940762A (en)*1996-05-011999-08-17Lee; Kuo-ChunInter-system calling supporting inter-system soft handoff
US5950131A (en)*1996-10-291999-09-07Motorola, Inc.Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone
US5953320A (en)*1997-08-081999-09-14Qualcomm IncorporatedMethod and apparatus for constructing a temporary list of neighboring base stations in a wireless communication device
US5953370A (en)1994-09-091999-09-14Omnipoint CorporationApparatus for receiving and correlating a spread spectrum signal
WO1999049588A1 (en)*1998-03-251999-09-30Qualcomm IncorporatedMethod and system for providing an estimate of the signal strength of a received signal
US5963586A (en)1994-09-091999-10-05Omnipoint CorporationMethod and apparatus for parallel noncoherent correlation of a spread spectrum signal
US5966430A (en)*1994-05-301999-10-12Canon Kabushiki KaishaCommunication apparatus capable of communicating data and speech selectively through single communication line
EP0949709A1 (en)*1998-04-101999-10-13Nec CorporationDirectivity control circuitry for an adaptive antenna
EP0797367A3 (en)*1996-03-191999-10-20Ntt Mobile Communications Network Inc.Scheme for wire line data transmission in mobile communication system
US5983099A (en)*1996-06-111999-11-09Qualcomm IncorporatedMethod/apparatus for an accelerated response to resource allocation requests in a CDMA push-to-talk system using a CDMA interconnect subsystem to route calls
US5982760A (en)*1997-06-201999-11-09Qualcomm Inc.Method and apparatus for power adaptation control in closed-loop communications
US5987013A (en)*1996-04-101999-11-16Nec CorporationHandoff control with a pilot used in a cell of a neighboring cell in a CDMA mobile communication network on a service frequency of the neighboring cell
US5991625A (en)*1991-06-031999-11-23Omnipoint CorporationSpread spectrum wireless telephone system
WO1999062278A1 (en)*1998-05-281999-12-02Motorola Inc.Method for improving communication coverage in multi-cell communication systems using location information
US5999816A (en)*1997-02-181999-12-07Qualcomm IncorporatedMethod and apparatus for performing mobile assisted hard handoff between communication systems
US6002933A (en)*1997-04-291999-12-14Qualcomm IncorporatedInter-system soft handoff
US6009328A (en)*1993-09-241999-12-28Nokia Telecommunications OyInter-exchange soft handoff in a cellular telecommunications system
WO2000001184A1 (en)*1998-06-302000-01-06Siemens AktiengesellschaftMethod of communicating data using radio signals and radio communications apparatus
WO1999060797A3 (en)*1998-05-152000-01-13Ericsson Telefon Ab L MMethod and system for soft handoff control based on access network capacity
KR100240451B1 (en)*1997-05-222000-01-15서평원Reducing method of continuing hard handoff between base stations
WO2000003501A1 (en)*1998-07-132000-01-20Infineon Technologies North America Corp.Method and aparatus for performing an inter-frequency search
US6021122A (en)*1996-06-072000-02-01Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
EP0881852A3 (en)*1997-05-282000-03-01Nec CorporationLow traffic handoff method for CDMA cellular network using different frequencies among base stations
US6035197A (en)*1994-12-292000-03-07Cellco PartnershipMethod and system for providing a handoff from a CDMA cellular telephone system
US6038448A (en)*1997-07-232000-03-14Nortel Networks CorporationWireless communication system having hand-off based upon relative pilot signal strengths
US6038450A (en)*1997-09-122000-03-14Lucent Technologies, Inc.Soft handover system for a multiple sub-carrier communication system and method thereof
US6041046A (en)*1995-07-142000-03-21Omnipoint CorporationCyclic time hopping in time division multiple access communication system
US6044272A (en)*1997-02-252000-03-28Sbc Technology Resources, Inc.Mobile assisted handoff system and method
WO2000018173A1 (en)*1998-09-222000-03-30Qualcomm IncorporatedMethod for robust handoff in wireless communication system
EP0926915A3 (en)*1997-12-242000-04-05Nokia Mobile Phones Ltd.Prioritizing pilot set searching for a CDMA telecommunications system
US6049715A (en)*1994-06-012000-04-11Nortel Networks CorporationMethod and apparatus for evaluating a received signal in a wireless communication utilizing long and short term values
EP0884918A3 (en)*1997-06-092000-04-12Nec CorporationCellular communication system with soft handover and apparatus therefor
EP0897251A3 (en)*1997-08-112000-04-12Nec CorporationCDMA type mobile radio communication system capable of realizing an effective system operation with neither an excess nor a deficiency of simultaneously connected radio base stations
US6052594A (en)*1997-04-302000-04-18At&T Corp.System and method for dynamically assigning channels for wireless packet communications
EP0948231A3 (en)*1998-03-302000-04-19Lucent Technologies Inc.Signal strength triggered handoff in wireless communication systems
US6055428A (en)*1997-07-212000-04-25Qualcomm IncorporatedMethod and apparatus for performing soft hand-off in a wireless communication system
US6061556A (en)*1997-04-242000-05-09Telefonaktiebolaget Lm Ericsson (Publ)System and method for secondary traffic charging in a radio telecommunications network
US6061565A (en)*1996-04-022000-05-09Hewlett-Packard CompanyMobile radio systems
US6061386A (en)*1997-03-192000-05-09I.C. Com Ltd.Method of chip interleaving in direct sequence spread spectrum communications
US6069871A (en)*1997-07-212000-05-30Nortel Networks CorporationTraffic allocation and dynamic load balancing in a multiple carrier cellular wireless communication system
US6075990A (en)*1997-05-212000-06-13Lg Information & Communications, Ltd.Handoff control method and communication system in a multiple frequency environment
US6078813A (en)*1997-12-162000-06-20Telefonaktiebolaget L M Ericsson (Publ)Handover quality control in a mobile communications system
US6091717A (en)*1997-05-052000-07-18Nokia Mobile Phones LimitedMethod for scheduling packet data transmission
US6094575A (en)1993-11-012000-07-25Omnipoint CorporationCommunication system and method
US6104927A (en)*1998-05-282000-08-15Motorola, Inc.Communication system, mobile station, and method for mobile station registration
US6108548A (en)*1997-03-192000-08-22Fujitsu LimitedMobile station and soft handoff method
US6108364A (en)*1995-08-312000-08-22Qualcomm IncorporatedTime division duplex repeater for use in a CDMA system
EP0971554A3 (en)*1998-07-062000-08-23Nec CorporationAccess method for CDMA mobile communication system
US6111864A (en)*1996-09-272000-08-29Nec CorporationHand-off method and apparatus in CDMA cellular system
US6112086A (en)*1997-02-252000-08-29Adc Telecommunications, Inc.Scanning RSSI receiver system using inverse fast fourier transforms for a cellular communications system with centralized base stations and distributed antenna units
AU724112B2 (en)*1996-01-162000-09-14AlcatelAllocation of pilot carrier in multi-carrier system
KR100266758B1 (en)*1996-01-222000-09-15가나이 쓰도무 How to set up mobile communication system and communication line
US6134438A (en)*1995-05-312000-10-17Telefonaktiebolaget L M EricssonLocal control enhancement in a telecommunications system
KR100270451B1 (en)*1996-03-062000-11-01다치카와 게이지Cell selection method, base station and mobile terminal of cdma mobile communication system using spreading code and phase of spreading code
US6151311A (en)*1997-09-192000-11-21Qualcomm Inc.Mobile station assisted timing synchronization in a CDMA communication system
US6157668A (en)*1993-10-282000-12-05Qualcomm Inc.Method and apparatus for reducing the average transmit power of a base station
US6157837A (en)*1996-01-232000-12-05Ntt Mobile Communications Network Inc.Mobile communication system, network and mobile station
WO2000074427A1 (en)*1999-05-282000-12-07Telia AbProcedure for load control in a cellular cdma communications system
WO2000074421A1 (en)*1999-05-262000-12-07Nokia CorporationA method for initiating in a terminal of a cellular network the measurement of power levels of signals and a terminal
EP1006746A3 (en)*1998-12-022000-12-20Infineon Technologies North America Corp.Soft handoff between second and third generation CDMA systems
AU728459B2 (en)*1996-10-282001-01-11Ericsson Inc.Mobile assisted handoff in radiocommunication systems
US6175587B1 (en)1997-12-302001-01-16Motorola, Inc.Communication device and method for interference suppression in a DS-CDMA system
US6175560B1 (en)*1995-06-022001-01-16Airspan Networks, Inc.Apparatus and method of establishing and maintaining communication paths in a wireless telecommunications system
US6175588B1 (en)1997-12-302001-01-16Motorola, Inc.Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
EP0961513A3 (en)*1998-05-292001-01-17Lucent Technologies Inc.Wireless CDMA system having a unique forward configuration control channel
US6178164B1 (en)1996-06-072001-01-23Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US6181942B1 (en)*1997-01-312001-01-30Qualcomm IncorporatedMethod and apparatus for providing an alert with information signal between a mobile switching center and a base station
US6185199B1 (en)1997-07-232001-02-06Qualcomm Inc.Method and apparatus for data transmission using time gated frequency division duplexing
US6198930B1 (en)1994-08-192001-03-06Trimble Navigation LimitedAutomatic cellular phone tracking
US6201802B1 (en)*1997-08-292001-03-13Qualcomm Inc.Method and apparatus for analyzing base station timing
US6201969B1 (en)*1998-06-022001-03-13Lucent Technologies Inc.Control of handoff in CDMA cellular systems
US6215777B1 (en)1997-09-152001-04-10Qualcomm Inc.Method and apparatus for transmitting and receiving data multiplexed onto multiple code channels, frequencies and base stations
US6216004B1 (en)1998-06-232001-04-10Qualcomm IncorporatedCellular communication system with common channel soft handoff and associated method
GB2356781A (en)*1996-10-112001-05-30Motorola IncSoft hadoff in a CDMA communication system
US6256501B1 (en)*1997-07-032001-07-03Oki Electric Industry Co., Ltd.Cellular mobile telecommunications system for controlling a hand-off by a mobile station
WO2001052432A1 (en)*2000-01-132001-07-19Xircom, Inc.Wireless local loop with intelligent base station
SG82060A1 (en)*1999-01-082001-07-24Nec CorpCall control method in mobile communication and system therefor
US6272122B1 (en)*1997-04-142001-08-07Samsung Electronics, Co., Ltd.Pilot PN offset assigning method for digital mobile telecommunications system
US6275704B1 (en)1997-03-032001-08-14Xircom, Inc.Multiple access communication system with polarized antennas
RU2172558C2 (en)*1995-03-302001-08-20Квэлкомм ИнкорпорейтедMethod and device to switch communication from code- division multiple access system to alternate system with use of mobile unit
US6278877B1 (en)*1993-01-082001-08-21Agere Systems Guardian CorporationHandover method for mobile wireless station
US6282228B1 (en)1997-03-202001-08-28Xircom, Inc.Spread spectrum codes for use in communication
US20010018347A1 (en)*1995-09-292001-08-30Ziv Noam A.Method and system for processing telephone calls involving two digital wireless subscriber units that avoid double vocoding
US6301288B1 (en)1997-03-192001-10-09Infineon Technologies AgMethod of chip interleaving in direct sequence spread spectrum communications
US6304562B1 (en)1997-06-262001-10-16Samsung Electronics Co., Ltd.Asymmetric forward power control in a CDMA communication
US6310856B1 (en)*1998-08-072001-10-30Motorola, Inc.CDMA communications system having a searcher receiver and method therefor
WO2001035681A3 (en)*1999-11-112001-11-22Qualcomm IncMethod and apparatus for re-synchronization of a stream cipher during handoff
EP1069797A3 (en)*1999-07-152001-12-12Lucent Technologies Inc.Method and apparatus for enhanced soft handoff in a CDMA wireless communication system
US6337984B1 (en)*1998-11-042002-01-08Lg Information & Communications, Ltd.Method for controlling a handoff in a communication system
RU2178240C2 (en)*1998-01-242002-01-10Самсунг Электроникс Ко., Лтд.Method for data transmission in mobile communication system
EP0935400A4 (en)*1997-06-042002-01-30Ntt Docomo IncMobile radio communication system, mobile station, and method for controlling diversity hand-over branch
US20020012385A1 (en)*2000-06-212002-01-31Samsung Electronics Co., Ltd.Apparatus and method for reporting service load to mobile station in mobile telecommunication system
US6351460B1 (en)*1999-05-242002-02-26Qualcomm IncorporatedMethod and apparatus for a dedicated control channel in an early soft handoff in a code division multiple access communication system
US6356595B1 (en)*1997-10-142002-03-12Sony CorporationMethod and apparatus for decoding continuously coded convolutionally encoded messages
WO2002023763A1 (en)*2000-09-152002-03-21Koninklijke Philips Electronics N.V.Secondary station and method of operating the station.
US6370397B1 (en)1998-05-012002-04-09Telefonaktiebolaget Lm Ericsson (Publ)Search window delay tracking in code division multiple access communication systems
US20020041577A1 (en)*1997-11-062002-04-11Lg Information & Communications, Ltd.Method and system for providing inter-frequency handoff in a telephone system
US6374103B1 (en)*1998-09-302002-04-16Lucent Technologies, Inc.Method and system for overhead message updates
US6393281B1 (en)1993-03-262002-05-21At&T Wireless Services IncSeamless hand-off for air-to-ground systems
US20020061751A1 (en)*2000-05-192002-05-23Huawei Technologies Co., Ltd.Soft handover method for CDMA mobile communication system
US20020065071A1 (en)*2000-11-282002-05-30Denso CorporationRetry limits for connection rescue procedures in telecommunication systems
US6400952B2 (en)*1998-09-082002-06-04Samsung Electronics Co., Ltd.Method and apparatus for idle handoff in a cellular system
US20020068567A1 (en)*2000-12-042002-06-06Staffan JohanssonUsing statistically ascertained position for starting synchronization searcher during diversity handover
US20020068566A1 (en)*2000-12-042002-06-06Jonas OhlssonPreliminary performance of handover function in telecommunications system
USRE37754E1 (en)*1988-02-292002-06-18Telefonaktiebolaget Lm Ericsson (Publ)Cellular digital mobile radio system and method of transmitting information in a digital cellular mobile radio system
US20020077104A1 (en)*2000-12-052002-06-20Tao ChenMethod and apparatus for call recovery in a wireless communication system
EP0883251A3 (en)*1997-06-052002-07-03Nokia CorporationPower control of mobile station transmission during handoff in a cellular system
US6418320B2 (en)*1997-08-122002-07-09Nec CorporationMobile station and a method of reducing interference among radio channels in the mobile station
US20020090965A1 (en)*2001-01-052002-07-11Tao ChenMethod and apparatus for power level adjustment in a wireless communication system
US20020098838A1 (en)*2000-11-142002-07-25Takehiro IkedaMobile communication system and method for controlling receiving quality
US20020111158A1 (en)*2000-12-042002-08-15Denso CorporationMethod and apparatus for dynamically determining a mobile station's active set during a connection rescue procedure
US6442398B1 (en)1998-12-032002-08-27Qualcomm IncorporatedMethod and apparatus for reverse link loading estimation
US20020119787A1 (en)*2000-12-202002-08-29Denso CorporationForward-link rescue synchronization method and apparatus
CN1090438C (en)*1997-01-172002-09-04三星电子株式会社Hand-off method in personal communication service system
US20020137535A1 (en)*2001-01-192002-09-26Denso CorporationOpen-loop power control enhancement for blind rescue channel operation
US20020141414A1 (en)*1997-06-172002-10-03Ramin RezaiifarMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US20020142772A1 (en)*2000-12-052002-10-03Hunzinger Jason F.Minimum interference multiple-access method and system for connection rescue
WO2002041513A3 (en)*2000-11-172002-10-10Koninkl Philips Electronics NvPilot signal search method with decimation reordering in a cdma system
US6470188B1 (en)*1996-12-262002-10-22Ntt Mobile Communications Network, Inc.Method for handover
US6473614B1 (en)*1998-12-182002-10-29Telefonaktielbolaget Lm EricssonMethod and means for determining a handover in a radio communication system
US20020160785A1 (en)*2001-04-102002-10-31Fredrik OvesjoCommanding handover between differing radio access technologies
US6477155B1 (en)*1998-03-042002-11-05Samsung Electronics, Co., Ltd.Method for determining the number of effective channels and the effective channel rate in a CDMA network
US6483866B1 (en)*1993-10-122002-11-19Ntt Mobile Communications Network Inc.Multi-station transmission method and receiver for inverse transforming two pseudo-orthogonal transmission sequences used for metric calculation and base station selection based thereon
US20020173271A1 (en)*2001-03-212002-11-21Blair John L.Controller and transceiver employable in a wireless communications network
US20020177412A1 (en)*1997-10-202002-11-28Matsushita Electric Industrial Co., Ltd.Radio communication apparatus and radio communication method
US20020197997A1 (en)*2001-06-262002-12-26Attar Rashid AhmedMethod and apparatus for adaptive set management in a communication system
US20030003938A1 (en)*2001-06-272003-01-02O'neill AlanMethods and apparatus for supporting group communications
US20030002460A1 (en)*2001-06-292003-01-02Sean EnglishCommunication system employing multiple handoff criteria
US6507568B2 (en)*1997-08-272003-01-14Lucent Technologies Inc.Enhanced access in wireless communication systems under rapidly fluctuating fading conditions
US6510172B1 (en)1997-03-042003-01-21Qualcomm, Inc.Multi-user communication system architecture with distributed transmitters
US20030018715A1 (en)*2001-06-142003-01-23O'neill AlanEnabling foreign network multicasting for a roaming mobile node, in a foreign network, using a persistent address
US20030032430A1 (en)*2001-08-082003-02-13Samsung Electronics Co., Ltd.Method and system for performing fast access handoff in mobile telecommunications system
US20030045291A1 (en)*2001-08-292003-03-06Nec CorporationMobile communications system, mobile station, control method and recording medium
US6535740B1 (en)*1998-11-092003-03-18Nec CorporationSystem and method of controlling transmission electric power in a CDMA base station
US6535739B1 (en)2000-04-072003-03-18Qualcomm IncorporatedMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US6539236B2 (en)*1996-02-062003-03-25Nokia Telecommunications OyEstablishment of a connection between a base station and a mobile station using random access channels
US6539225B1 (en)*1999-06-212003-03-25Lucent Technologies Inc.Seamless data network telecommunication service during mobile wireless call handoff
US6542471B1 (en)*1997-09-242003-04-01Toyota Jidosha Kabushiki KaishaRadio communication system for mobile objects and radio communication mobile station used in the system
GB2332340B (en)*1997-12-122003-04-02Orange Personal Comm Serv LtdTransmission of measurement reports in a cellular communication system
US6546248B1 (en)*2000-02-102003-04-08Qualcomm, IncorporatedMethod and apparatus for generating pilot strength measurement messages
US20030072294A1 (en)*2001-10-152003-04-17Yongbin WeiMethod and apparatus for managing imbalance in a communication system
US20030072278A1 (en)*2001-10-162003-04-17Qiang WuMethod and system for selecting a best serving sector in a CDMA data communication system
US20030078044A1 (en)*2001-10-242003-04-24Leung Nikolai K.N.Method and system for hard handoff in a broadcast communication system
US6556551B1 (en)1999-05-272003-04-29Lgc Wireless, Inc.Multi-frequency pilot beacon for CDMA systems
US6556829B1 (en)*1997-06-302003-04-29Telefonaktiebolaget Lm Ericsson (Publ)Mobile communications system
US20030081538A1 (en)*2001-10-182003-05-01Walton Jay R.Multiple-access hybrid OFDM-CDMA system
US20030087640A1 (en)*2001-11-062003-05-08Ron RotsteinMethod and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US6563810B1 (en)1999-09-302003-05-13Qualcomm IncorporatedClosed loop resource allocation
US6564042B1 (en)2000-03-032003-05-13Qualcomm IncorporatedVelocity-estimation-based gain tables
WO2002033982A3 (en)*2000-10-172003-05-15Denso CorpForward link based rescue channel method and apparatus for telecommunication systems
US20030099306A1 (en)*2001-11-282003-05-29Johan NilssonMethod and apparatus for channel estimation using plural channels
US6584315B1 (en)*1999-04-282003-06-24Hyundai Electronics Industries Co., LtdMethod of allocating frame offset and link in base station
US20030118136A1 (en)*1998-05-212003-06-26Tiedemann Edward G.Method and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US20030119489A1 (en)*2001-02-262003-06-26Jahangir MohammedUnlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US6591100B1 (en)*1998-11-192003-07-08Ericsson Inc.Cellular communication device with scanning receiver and continuous mobile communication system employing same
US6600917B1 (en)1999-10-042003-07-29Telefonaktiebolaget Lm Ericsson (Publ)Telecommunications network broadcasting of service capabilities
US6603745B1 (en)1998-10-282003-08-05Qualcomm IncorporatedMethod and apparatus for reverse link overload detection
US6603972B1 (en)*1999-08-262003-08-05Lucent Technologies Inc.Apparatus, method and system for voice communication hand-off in a mobile packet data network environment
US20030157935A1 (en)*2000-02-282003-08-21Timo KauhanenIntersystem handover with modified parameters
US20030156561A1 (en)*2002-02-192003-08-21Roberto PadovaniMethod and apparatus for receive diversity in a communication system
JP3439976B2 (en)1998-01-272003-08-25松下電器産業株式会社 CDMA communication system and CDMA communication method
US6611510B2 (en)*2001-06-182003-08-26Telcordia Technologies Inc.Method and system for soft handoff of mobile terminals in IP wireless networks.
US6621804B1 (en)1999-10-072003-09-16Qualcomm IncorporatedMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US20030190924A1 (en)*2002-04-052003-10-09Agashe Parag A.Method and apparatus for determining receive diversity in mobile station
US20030193952A1 (en)*2002-02-042003-10-16O'neill AlanMobile node handoff methods and apparatus
US20030193912A1 (en)*2002-02-042003-10-16O'neill AlanPacket forwarding methods for use in handoffs
US20030195013A1 (en)*1994-02-242003-10-16Zicker Robert G.Cellular radiotelephone system with remotely programmed mobile stations
US20030198204A1 (en)*1999-01-132003-10-23Mukesh TanejaResource allocation in a communication system supporting application flows having quality of service requirements
US20030210668A1 (en)*2002-05-132003-11-13Malladi Durga P.Mitigation of link imbalance in a wireless communication system
US6658045B1 (en)1999-02-222003-12-02Nortel Networks LimitedCDMA communications system adaptive to mobile unit speed
US20030223439A1 (en)*2002-04-082003-12-04O'neill AlanSupport of disparate addressing plans and dynamic HA address allocation in mobile IP
US6661996B1 (en)*1998-07-142003-12-09Globalstar L.P.Satellite communication system providing multi-gateway diversity to a mobile user terminal
US20030231586A1 (en)*2001-12-102003-12-18Nortel Networks LimitedSystem and method for maximizing capacity in a telecommunications system
RU2219662C2 (en)*1998-03-062003-12-20Телефонактиеболагет Лм Эрикссон (Пабл)Interstation communication overload control
US20040013089A1 (en)*2001-11-082004-01-22Mukesh TanejaAdmission control and resource allocation in a communication system supporting application flows having quality of service requirements
US20040023653A1 (en)*2002-02-042004-02-05O'neill AlanControlling hand-off in a mobile node with two mobile IP clients
US20040029586A1 (en)*2002-08-082004-02-12Rajiv LaroiaMethods and apparatus for operating mobile nodes in multiple states
US20040038697A1 (en)*2002-08-232004-02-26Attar Rashid AhmedMethod and system for a data transmission in a communication system
US20040038682A1 (en)*1992-04-172004-02-26Persson Bengt YngveMobile assisted handover using CDMA
US20040047348A1 (en)*2002-02-042004-03-11O'neill AlanMethods and apparatus for aggregating MIP and AAA messages
US6711208B2 (en)2000-12-042004-03-23Qualcomm, IncorporatedEstimation of traffic-to-pilot ratios
US20040063430A1 (en)*2002-09-272004-04-01Interdigital Technology CorporationMobile communications system and method for providing mobile unit handover in wireless communication systems that employ beamforming antennas
US6724739B1 (en)1999-02-252004-04-20Qualcomm, IncorporatedMethod for handoff between an asynchronous CDMA base station and a synchronous CDMA base station
US6728540B1 (en)*1998-03-092004-04-27Avaya Technology Corp.Assisted handover in a wireless communication system
US6731622B1 (en)1998-05-012004-05-04Telefonaktiebolaget Lm Ericsson (Publ)Multipath propagation delay determining means using periodically inserted pilot symbols
US6731936B2 (en)2001-08-202004-05-04Qualcomm IncorporatedMethod and system for a handoff in a broadcast communication system
US20040106435A1 (en)*2002-12-032004-06-03Adc Telecommunications, Inc.Distributed digital antenna system
US20040106412A1 (en)*2002-08-082004-06-03Rajiv LaroiaMethod of creating and utilizing diversity in multiple carrier communication system
US6751206B1 (en)2000-06-292004-06-15Qualcomm IncorporatedMethod and apparatus for beam switching in a wireless communication system
US6754497B1 (en)*1997-10-092004-06-22Interdigital Technology CorporationSeamless handoff system and method
US20040121770A1 (en)*2002-12-232004-06-24Karl TigerstedtHandover method, system and radio network controller
US6760587B2 (en)2001-02-232004-07-06Qualcomm IncorporatedForward-link scheduling in a wireless communication system during soft and softer handoff
RU2233045C2 (en)*1997-11-032004-07-20Квэлкомм ИнкорпорейтедMethod and device for high-speed burst data transfer
US20040146033A1 (en)*2001-02-092004-07-29Raul SoderstromMethod, system and equipment for retransmission in communications systems
US6771691B1 (en)2000-09-152004-08-03Texas Instruments IncorporatedSystem and method for extracting soft symbols in direct sequence spread spectrum communications
US6775252B1 (en)*2000-03-312004-08-10Qualcomm, Inc.Dynamic adjustment of search window size in response to signal strength
US6778507B1 (en)*1999-09-012004-08-17Qualcomm IncorporatedMethod and apparatus for beamforming in a wireless communication system
US20040162073A1 (en)*1999-09-082004-08-19Sanyo Electric Co., Ltd.Bobile station and base station
US6781966B1 (en)*1999-08-312004-08-24Hyundai Electronics Industries Co. Ltd.Forward direction power control method using backward direction power control sub-channel for mobile communication system
US6788963B2 (en)2002-08-082004-09-07Flarion Technologies, Inc.Methods and apparatus for operating mobile nodes in multiple a states
US20040176091A1 (en)*2001-05-092004-09-09Gabor BajkoSubscriber registrations in a mobile communication system
EP1458209A2 (en)*2003-03-082004-09-15Samsung Electronics Co., Ltd.System and method for deciding on a base station requested handover in a broadband wireless communication system
US20040179469A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a data transmission in a communication system
US20040179494A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a power control in a communication system
US20040181569A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a data transmission in a communication system
US20040179480A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for estimating parameters of a link for data transmission in a communication system
US20040180658A1 (en)*2002-02-182004-09-16Shigenori UchidaWireless communication system, wireless communication device and wireless communication method, and computer program
US6801772B1 (en)*1998-12-082004-10-05British Telecommunications PlcCellular mobile telephone network operation
US20040202120A1 (en)*2002-04-172004-10-14Hanson Norman L.Internet protocol collaborative mobility
US20040203704A1 (en)*2002-06-102004-10-14Andrew CorporationIndoor wireless voice and data distribution system
US20040213198A1 (en)*2003-04-232004-10-28Hamid MahmoodRouting quality-of-service traffic in a wireless system
US6819923B1 (en)*1998-12-162004-11-16Nokia Networks OyMethod for communication of neighbor cell information
US20040233867A1 (en)*2001-01-052004-11-25Wheatley Charles E.Method and apparatus for forward power control in a communication system
US20050002242A1 (en)*2003-01-312005-01-06O'neill AlanMethods and apparatus for the utilization of core based nodes for state transfer
AU779184B2 (en)*2000-01-282005-01-13Qualcomm IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (PPP) session requests
US6845238B1 (en)1999-09-152005-01-18Telefonaktiebolaget Lm Ericsson (Publ)Inter-frequency measurement and handover for wireless communications
US20050014533A1 (en)*2002-08-072005-01-20Interdigital Technology CorporationMobile communications system and method for providing common channel coverage using beamforming antennas
US6850506B1 (en)1999-10-072005-02-01Qualcomm IncorporatedForward-link scheduling in a wireless communication system
US20050037714A1 (en)*2002-07-192005-02-17Thomas MauckschTime delay evaluation
US20050037757A1 (en)*2003-08-122005-02-17Samsung Electronics Co., Ltd.Mobile communication system for handoff between heterogeneous mobile communication networks and handoff method using the same
US20050063324A1 (en)*2003-01-312005-03-24O'neill AlanEnhanced techniques for using core based nodes for state transfer
US20050070284A1 (en)*2003-09-262005-03-31Cheng Steven D.Method for mobile device communications
US20050070316A1 (en)*2003-09-292005-03-31Lucent Technologies, Inc.Controlled timing during soft hand offs in a wireless system
US20050070289A1 (en)*2003-09-302005-03-31Nokia CorporationDistribution of processing in a radio network
US20050083892A1 (en)*2000-08-252005-04-21Mcdonough John G.System and method for assigning combiner channels in spread spectrum communications
US20050085265A1 (en)*2003-10-162005-04-21Rajiv LaroiaMethods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US20050083900A1 (en)*2002-05-152005-04-21Nokia CorporationEvent based reporting method
US20050094608A1 (en)*2003-08-282005-05-05Kyocera CorporationCommunication control apparatus, communication apparatus and communication system
US20050096051A1 (en)*2003-09-042005-05-05Samsung Electronics Co., Ltd.Method for compulsorily performing handover in broadband wireless communication system
US20050099977A1 (en)*2003-11-072005-05-12Brett WilliamsWireless network monitoring methods, configuration devices, communications systems, and articles of manufacture
US6895245B2 (en)*1998-03-062005-05-17Telefonaktiebolaget Lm Ericssion(Publ)Telecommunications interexchange measurement transfer
US20050113093A1 (en)*1998-10-292005-05-26Behzad MohebbiSoft hand-off in cellular mobile communications networks
US20050111397A1 (en)*2002-12-062005-05-26Attar Rashid A.Hybrid TDM/OFDM/CDM reverse link transmission
US6904080B1 (en)*1998-09-292005-06-07Nec CorporationReceiving circuit, mobile terminal with receiving circuit, and method of receiving data
US20050124349A1 (en)*2003-12-052005-06-09Chun-Hsiung LinControl method capable of reducing call dropped rate of mobile station in wireless communication system, control circuit and mobile station thereof
US20050124345A1 (en)*2003-12-052005-06-09Raiv LaroiaMethods and apparatus for performing handoffs in a multi-carrier wireless communications system
US20050124344A1 (en)*2003-12-052005-06-09Rajiv LaroiaBase station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US6907245B2 (en)2000-12-042005-06-14Telefonaktiebolaget Lm Ericsson (Publ)Dynamic offset threshold for diversity handover in telecommunications system
US20050136925A1 (en)*2003-12-172005-06-23Toshiaki YamauchiVariable expiration parameter of a wireless communication device based upon signal strength
US20050143080A1 (en)*2001-08-202005-06-30Ragulan SinnarajahMethod and system for signaling in broadcast communication system
US20050174984A1 (en)*2004-02-062005-08-11O'neill AlanMethods and apparatus for separating home agent functionality
KR100491518B1 (en)*1996-05-232005-08-12콸콤 인코포레이티드Method and apparatus for hard handoff in a cdma system
US20050186957A1 (en)*2003-06-272005-08-25Mitsubishi Denki Kabushiki KaishaMobile communication system, mobile unit and network host processor
US20050197150A1 (en)*2000-06-212005-09-08Qualcomm IncorporatedMethod and apparatus for adaptive power control in a wireless voice and data communication system
US20050197132A1 (en)*2004-03-052005-09-08Samsung Electronics Co., Ltd.Method and apparatus for allocating channels in an orthogonal frequency division multiple access system
US20050197126A1 (en)*2004-03-052005-09-08Samsung Electronics Co., Ltd.Handover system and method for minimizing service delay due to pingpong effect in a broadband wireless access communication system
US20050201321A1 (en)*2003-09-112005-09-15Ragulan SinnarajahMethod and system for signaling in broadcast communication system
US6947469B2 (en)1999-05-072005-09-20Intel CorporationMethod and Apparatus for wireless spread spectrum communication with preamble processing period
US20050207374A1 (en)*2002-12-202005-09-22Matsushita Electric Industrial Co., LtdMethod for cell modification in mobile communication system
US20050215265A1 (en)*2004-03-232005-09-29Sharma Sanjeev KMethod and system for load balancing in a wireless communication system
US6954644B2 (en)2000-12-042005-10-11Telefonaktiebolaget Lm Ericsson (Publ)Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
EP1350400A4 (en)*2000-12-142005-10-12Pulse Link IncHand-off between ultra-wideband cell sites
US20050232199A1 (en)*2004-04-022005-10-20Jing LiuMethods and apparatus for searching a list of pilot signals
EP1211910A3 (en)*2000-11-302005-11-02Lucent Technologies Inc.System and method for preventing dropped calls
US20050255847A1 (en)*2004-05-172005-11-17Samsung Electronics Co., Ltd.Fast handover method optimized for IEEE 802.11 Networks
US6975604B1 (en)1999-07-212005-12-13Hitachi, Ltd.Base station controller and mobile station
EP1104977A4 (en)*1999-06-152005-12-21Ntt Docomo IncPeripheral base station information updating method, information control method for cell search in mobile communication system, cell search method in mobile station, mobile communication system, base station and control station
US6980527B1 (en)2000-04-252005-12-27Cwill Telecommunications, Inc.Smart antenna CDMA wireless communication system
US6985466B1 (en)*1999-11-092006-01-10Arraycomm, Inc.Downlink signal processing in CDMA systems utilizing arrays of antennae
US6987799B2 (en)2001-05-032006-01-17Texas Instruments IncorporatedSystem and method for demodulating associated information channels in direct sequence spread spectrum communications
US20060013187A1 (en)*2004-06-232006-01-19High Tech Computer, Corp.Methods for establishing wireless network communication and device utilizing same
US20060028995A1 (en)*2004-08-052006-02-09Canoy Michael-David NMethod and apparatus for receiving broadcast in a wireless multiple-access communications system
US6999766B1 (en)1997-05-192006-02-14Qualcomm IncorporatedMethod and apparatus for optimization of a cellular network
US7003290B1 (en)1998-02-172006-02-21Nokia CorporationMeasurement reporting in a telecommunication system
US7016320B1 (en)1999-08-312006-03-21Telefonaktiebolaget Lm Ericsson (Publ)Subscriber station, network control means and method for carrying out inter-frequency measurements in a mobile communication system
US20060068779A1 (en)*2004-09-222006-03-30Nisbet Rex ARoaming of mobile radio units in a multicast digital network
US7031374B1 (en)2000-10-062006-04-18Texas Instruments IncorporatedSystem and method for selecting sample streams in direct sequence spread spectrum communications
US20060084404A1 (en)*2004-04-152006-04-20Rajiv LaroiaMethods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US7042869B1 (en)2000-09-012006-05-09Qualcomm, Inc.Method and apparatus for gated ACK/NAK channel in a communication system
US20060099910A1 (en)*2001-10-252006-05-11Anderson Jon JAiding beam identification in a satellite system
US20060105768A1 (en)*2004-11-182006-05-18Mediatek IncorporationHandoff methods, and devices utilizing same
US20060136603A1 (en)*1999-03-042006-06-22Canon Kabushiki KaishaMethod and device for communicating a message on a network and systems using them
US7072311B1 (en)*1999-10-122006-07-04Via Telecom Co., Ltd.Method and apparatus for initiating a reverse link intergenerational handoff in a CDMA communication system
USRE39177E1 (en)*1997-01-292006-07-11Qualcomm, Inc.Method and apparatus for performing soft hand-off in a wireless communication system
US7088701B1 (en)2000-04-142006-08-08Qualcomm, Inc.Method and apparatus for adaptive transmission control in a high data rate communication system
US20060187877A1 (en)*2000-10-252006-08-24Lundby Stein AMethod and apparatus for high rate packet data and low delay data transmissions
US7099384B1 (en)2000-09-012006-08-29Qualcomm, Inc.Method and apparatus for time-division power assignments in a wireless communication system
EP1667482A3 (en)*1994-02-242006-09-06GTE Wireless Service CorporationMethod for authorising communication between a radiotelephone and a base station based on signal strength
US20060199578A1 (en)*1997-04-242006-09-07Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US7107055B2 (en)2002-10-182006-09-12Kineto, Wireless, Inc.Mobile station GPRS implementation for switching between licensed and unlicensed wireless systems
US20060217119A1 (en)*2005-03-252006-09-28Peter BoschFine grain downlink active set control
RU2286030C1 (en)*2005-05-272006-10-20Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет"High frequency system and method for exchanging packet data
US7127252B1 (en)*1999-04-302006-10-24Fujitsu LimitedRadio terminal equipment
US7133380B1 (en)2000-01-112006-11-07At&T Corp.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive array
US20060251123A1 (en)*1998-06-262006-11-09Aware, Inc.Multicarrier communication with variable overhead rate
US20060256794A1 (en)*1998-05-202006-11-16Qualcomm IncorporatedMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US7139274B2 (en)2002-08-232006-11-21Qualcomm, IncorporatedMethod and system for a data transmission in a communication system
US20060281463A1 (en)*2005-06-102006-12-14Lg Electronics Inc.Method for triggering handover of mobile terminal and system thereof
US7158790B1 (en)*2002-07-162007-01-02Verizon Corporate Services Group Inc.Determining service coverage for metropolitan wireless networks
US20070037584A1 (en)*2005-08-092007-02-15Lg Electronics Inc.Method for triggering handover of mobile terminal and system thereof
RU2294059C2 (en)*1998-01-162007-02-20Квэлкомм ИнкорпорейтедTime setting synchronization supported by mobile station in cdma system
US20070054664A1 (en)*2005-09-012007-03-08Pantech & Curitel Communications, Inc.Wireless communication terminal and method for emergency call connection using hand-off
US7190687B1 (en)2000-01-042007-03-13Qualcomm IncorporatedMethod and apparatus for requesting point-to-point protocol (PPP) instances from a packet data services network
US20070058588A1 (en)*2005-09-092007-03-15Mcmaster UniversityReducing Handoff Latency in a Wireless Local Area Network
US7197017B1 (en)2000-01-042007-03-27Qualcomm, IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (PPP) session requests
US7206580B2 (en)*1999-11-042007-04-17Qualcomm IncorporatedMethod and apparatus for performing handoff in a high speed communication system
US7209745B1 (en)*2000-06-092007-04-24Intel CorporationCellular wireless re-use structure that allows spatial multiplexing and diversity communication
WO2007050846A1 (en)*2005-10-272007-05-03Qualcomm IncorporatedA method and apparatus for monitoring other channel interference in wireless communication system
US20070097924A1 (en)*2004-11-222007-05-03Motorola, Inc.Method and system for inter-technology active handoff of a hybrid communication device
US20070123260A1 (en)*2005-11-282007-05-31Won-Ik KimMethod for discovering wireless network for inter-system handover, multi-mode terminal unit and inter-working service server using the method
US20070123262A1 (en)*2002-03-082007-05-31Proctor James A JrAntenna adaptation to manage the active set to manipulate soft hand-off regions
CN1324921C (en)*2004-06-012007-07-04日本电气株式会社Mobile station, radio communication system, base station switching control method, program, and recording medium
RU2305900C2 (en)*2003-03-082007-09-10Самсунг Электроникс Ко., Лтд.System and method for implementing service transfer operation in broadband wireless access communication system
US20070213063A1 (en)*1998-02-132007-09-13Qualcomm IncorporatedMethod and system for performing a handoff in a wireless communication system, such as a hard handoff
US7272397B2 (en)2003-10-172007-09-18Kineto Wireless, Inc.Service access control interface for an unlicensed wireless communication system
CN100342750C (en)*2003-12-052007-10-10联发科技股份有限公司 Control method and circuit for improving call disconnection rate of mobile station in wireless communication system
US7283822B2 (en)2003-10-172007-10-16Kineto Wireless, Inc.Service access control interface for an unlicensed wireless communication system
US20070243899A1 (en)*2006-04-122007-10-18Adc Telecommunications, Inc.Systems and methods for analog transport of rf voice/data communications
US20070249355A1 (en)*2004-03-052007-10-25Samsung Electronics Co., Ltd.System and method for handover to minimize service delay due to ping pong effect in BWA communication system
CN100350815C (en)*1998-07-202007-11-21高通股份有限公司Base station handover in a hybrid GSM/CDMA network
US7308263B2 (en)2001-02-262007-12-11Kineto Wireless, Inc.Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US20070286081A1 (en)*2002-12-162007-12-13Corazza Giovanni EClosed Loop Resource Allocation
US20080004071A1 (en)*2001-05-112008-01-03Kyocera CorporationPortable communication terminal and wireless communication system therefore
US20080032735A1 (en)*2006-08-072008-02-07Research In Motion LimitedApparatus, and associated method, for performing cell selection in a packet radio communication system
US7349698B2 (en)2002-10-182008-03-25Kineto Wireless, Inc.Registration messaging in an unlicensed mobile access telecommunications system
US20080076415A1 (en)*2006-09-272008-03-27Samsung Electronics Co., Ltd.Apparatus and method for controlling pilot channel search in a communication system
US7369859B2 (en)2003-10-172008-05-06Kineto Wireless, Inc.Method and system for determining the location of an unlicensed mobile access subscriber
KR100837351B1 (en)*2002-04-062008-06-12엘지전자 주식회사 How to update radio link parameter of mobile communication system
US7397777B1 (en)1999-11-012008-07-08Hitachi, Ltd.Handoff control method and a mobile station employing the same
US7424390B2 (en)2002-10-182008-09-09Rohde & Schwarz Gmbh & Co. KgMethod to evaluate whether a time delay is better than a time limit
CN100421523C (en)*2005-12-052008-09-24华为技术有限公司 A method for establishing a reverse supplementary channel branch
US20080247360A1 (en)*2007-04-062008-10-09Qualcomm IncorporatedHandoff of Data Attachment Point
US7447506B1 (en)*2002-03-292008-11-04Good Technology, Inc.Apparatus and method for reducing network congestion
US7457267B1 (en)2001-10-102008-11-25Qualcomm IncorporatedMethods and apparatus for quickly exploiting a new link during hand-off in a wireless network
US7471655B2 (en)2003-10-172008-12-30Kineto Wireless, Inc.Channel activation messaging in an unlicensed mobile access telecommunications system
US7474650B2 (en)2001-06-262009-01-06Qualcomm IncorporatedMethods and apparatus for controlling resource allocation where tunneling and access link packet aggregation are used in combination
US7499427B2 (en)1997-11-032009-03-03Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7502406B2 (en)1995-06-302009-03-10Interdigital Technology CorporationAutomatic power control system for a code division multiple access (CDMA) communications system
US7515575B1 (en)2005-08-262009-04-07Kineto Wireless, Inc.Intelligent access point scanning with self-learning capability
US20090097452A1 (en)*2007-10-122009-04-16Qualcomm IncorporatedFemto cell synchronization and pilot search methodology
DE19882841B4 (en)*1997-11-252009-04-23Motorola, Inc., Schaumburg Method and apparatus for determining handover candidates in a Neighbor Set in a CDMA communication system
US20090109948A1 (en)*2007-10-292009-04-30Infineon Technologies AgRadio communication device for generating and transmitting data, radio communication device for receiving and decoding data, method for transmitting data and method for receiving data
US7535874B2 (en)1995-06-302009-05-19Interdigital Technology CorporationMethod and apparatus for adaptive power control for spread-spectrum communications
CN100499543C (en)*2004-05-172009-06-10三星电子株式会社Fast handover method for IEEE 802.11 networks
US20090154440A1 (en)*2003-11-072009-06-18Brett WilliamsWireless Communications Systems and Wireless Communications Methods
US20090156167A1 (en)*2007-12-132009-06-18Mooney Philip DCell phone extension using wireless piconet
US20090154424A1 (en)*2007-10-312009-06-18Kyrocera CorporationMethod for controlling a handover that switches connection from a source base station apparatus to a destination base station apparatus, and control apparatus and terminal apparatus utilizing the same
US7565145B2 (en)2002-10-182009-07-21Kineto Wireless, Inc.Handover messaging in an unlicensed mobile access telecommunications system
CN100527863C (en)*2000-10-172009-08-12株式会社电装Forward link based rescue channel method and apparatus for telecommunication systems
US20090247164A1 (en)*2008-03-282009-10-01Qualcomm IncorporatedHandoff algorithm and architecture for mobile system
US7606190B2 (en)2002-10-182009-10-20Kineto Wireless, Inc.Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
EP2110968A1 (en)2001-12-072009-10-21Qualcomm IncorporatedHandoff in a hybrid communication network
US7634269B2 (en)2002-10-182009-12-15Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7640008B2 (en)2002-10-182009-12-29Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7649994B1 (en)*2002-11-012010-01-19Nortel Networks LimitedSystem and method for decoding CDMA quality channel
US20100015985A1 (en)*2008-07-212010-01-21Mediatek Inc.Methods for controlling radio links in a cellular communication system
US20100041387A1 (en)*2008-08-152010-02-18Amit KhetawatMethod and Apparatus for Inter Home Node B Cell Update Handling
US7693521B1 (en)2004-08-042010-04-06Sprint Spectrum L.P.Method and system for mobile station handoff
US7706332B2 (en)1995-06-302010-04-27Interdigital Technology CorporationMethod and subscriber unit for performing power control
US20100105381A1 (en)*2007-02-272010-04-29Kyocera CorporationRadio communication terminal and in-cell return processing method
US7715461B2 (en)1996-05-282010-05-11Qualcomm, IncorporatedHigh data rate CDMA wireless communication system using variable sized channel codes
US20100118695A1 (en)*2008-11-102010-05-13Qualcomm IncorporatedSpectrum sensing of bluetooth using a sequence of energy detection measurements
US7751370B2 (en)2001-07-132010-07-06Qualcomm IncorporatedMethod and apparatus for forward link rate scheduling
US7756546B1 (en)2005-03-302010-07-13Kineto Wireless, Inc.Methods and apparatuses to indicate fixed terminal capabilities
US20100177746A1 (en)*2009-01-122010-07-15Qualcomm IncorporatedSemi-static resource allocation to support coordinated multipoint (comp) transmission in a wireless communication network
US20100265920A1 (en)*2001-11-092010-10-21Qualcomm IncorporatedCommunications in an asynchronous cellular wireless network
US20100265883A1 (en)*2009-02-132010-10-21Qualcomm IncorporatedMethod and apparatus for inter-sector mimo cross-reference to related applications
US7843900B2 (en)2005-08-102010-11-30Kineto Wireless, Inc.Mechanisms to extend UMA or GAN to inter-work with UMTS core network
US20100311423A1 (en)*2003-05-292010-12-09Kyocera CorporationCommunication Terminal Out of Range Determination Method, Wireless Communication System Switching Method and Communication Terminal
US7852817B2 (en)2006-07-142010-12-14Kineto Wireless, Inc.Generic access to the Iu interface
EP2268080A1 (en)2001-12-072010-12-29Qualcomm IncorporatedHandoff in a hybrid communication network
US20100330943A1 (en)*2009-06-262010-12-30Infineon Technologies AgMethods for measuring received signal strength indication, measurement devices, and radio communication device
US7869803B2 (en)2002-10-152011-01-11Qualcomm IncorporatedProfile modification for roaming in a communications environment
US7873015B2 (en)2002-10-182011-01-18Kineto Wireless, Inc.Method and system for registering an unlicensed mobile access subscriber with a network controller
US20110013594A1 (en)*2002-04-112011-01-20Qualcomm IncorporatedHandoff Between Base Stations of Different Protocol Revisions in a CDMA System
US7876729B1 (en)1998-07-202011-01-25Qualcomm IncorporatedIntersystem base station handover
US7882346B2 (en)2002-10-152011-02-01Qualcomm IncorporatedMethod and apparatus for providing authentication, authorization and accounting to roaming nodes
US7885644B2 (en)2002-10-182011-02-08Kineto Wireless, Inc.Method and system of providing landline equivalent location information over an integrated communication system
US7894816B1 (en)2005-03-162011-02-22Sprint Spectrum L.P.Method of selecting carrier frequency for call origination
EP2291027A1 (en)1998-05-072011-03-02Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US7903613B2 (en)1995-06-302011-03-08Interdigital Technology CorporationCode division multiple access (CDMA) communication system
US7912004B2 (en)2006-07-142011-03-22Kineto Wireless, Inc.Generic access to the Iu interface
US7929498B2 (en)1995-06-302011-04-19Interdigital Technology CorporationAdaptive forward power control and adaptive reverse power control for spread-spectrum communications
US7933598B1 (en)2005-03-142011-04-26Kineto Wireless, Inc.Methods and apparatuses for effecting handover in integrated wireless systems
US7953423B2 (en)2002-10-182011-05-31Kineto Wireless, Inc.Messaging in an unlicensed mobile access telecommunications system
US7957348B1 (en)2004-04-212011-06-07Kineto Wireless, Inc.Method and system for signaling traffic and media types within a communications network switching system
US7961616B2 (en)2001-06-072011-06-14Qualcomm IncorporatedMethod and apparatus for congestion control in a wireless communication system
US7962111B2 (en)2002-02-252011-06-14ADC Wireless, Inc.Distributed automatic gain control system
US20110170467A1 (en)*2000-07-192011-07-14Ipr Licensing, Inc.Method and apparatus for allowing soft handoff of a cdma reverse link utilizing an orthogonal channel structure
US20110170486A1 (en)*2003-03-252011-07-14Fujitsu LimitedRadio base station apparatus and base station controller
CN101262422B (en)*2007-02-022011-07-27索尼株式会社Wireless communication system, wireless wireless communication device and wireless communication method
US7995994B2 (en)2006-09-222011-08-09Kineto Wireless, Inc.Method and apparatus for preventing theft of service in a communication system
US20110195743A1 (en)*2008-09-122011-08-11Electronics And Telecommunications Research InstituteMethod and apparatus for power management
US8000241B2 (en)2001-06-262011-08-16Qualcomm IncorporatedMethods and apparatus for controlling access link packet flow aggregation and resource allocation in a mobile communications system
US8005076B2 (en)2006-07-142011-08-23Kineto Wireless, Inc.Method and apparatus for activating transport channels in a packet switched communication system
US20110212727A1 (en)*2007-10-152011-09-01Zte CorporationMethod for processing handoff confirm messages
US8019331B2 (en)2007-02-262011-09-13Kineto Wireless, Inc.Femtocell integration into the macro network
US8023410B2 (en)2001-06-262011-09-20Qualcomm IncorporatedMessages and control methods for controlling resource allocation and flow admission control in a mobile communications system
US8036664B2 (en)2006-09-222011-10-11Kineto Wireless, Inc.Method and apparatus for determining rove-out
US8041385B2 (en)2004-05-142011-10-18Kineto Wireless, Inc.Power management mechanism for unlicensed wireless communication systems
US8041335B2 (en)2008-04-182011-10-18Kineto Wireless, Inc.Method and apparatus for routing of emergency services for unauthorized user equipment in a home Node B system
CN101018407B (en)*2000-12-052011-11-16高通股份有限公司Method and apparatus for call recovery in a wireless communication system
US8064409B1 (en)1999-08-252011-11-22Qualcomm IncorporatedMethod and apparatus using a multi-carrier forward link in a wireless communication system
US8073428B2 (en)2006-09-222011-12-06Kineto Wireless, Inc.Method and apparatus for securing communication between an access point and a network controller
DE102011050850A1 (en)*2010-06-242011-12-29Intel Mobile Communications Technology GmbH Cell reselection method and mobile terminal
US8094623B2 (en)2001-06-262012-01-10Qualcomm IncorporatedMethod and apparatus for choosing a sector based on a scaled forward link metric
US20120051254A1 (en)*2009-06-242012-03-01Verizon Patent And Licensing Inc.Voice over internet protocol diagnostics
US20120069765A1 (en)*2006-05-192012-03-22Agere Systems Inc.Virtual gateway node for dual-mode wireless phones
RU2446628C2 (en)*2007-04-062012-03-27Квэлкомм ИнкорпорейтедTransfer of data attachment point servicing
US8150397B2 (en)2006-09-222012-04-03Kineto Wireless, Inc.Method and apparatus for establishing transport channels for a femtocell
US8165086B2 (en)2006-04-182012-04-24Kineto Wireless, Inc.Method of providing improved integrated communication system data service
US8190163B2 (en)2002-08-082012-05-29Qualcomm IncorporatedMethods and apparatus of enhanced coding in multi-user communication systems
US8199716B2 (en)1999-08-112012-06-12Qualcomm IncorporatedMethod and system for performing handoff in wireless communication systems
US8204502B2 (en)2006-09-222012-06-19Kineto Wireless, Inc.Method and apparatus for user equipment registration
US8238289B2 (en)2005-10-272012-08-07Qualcomm IncorporatedMethod and apparatus for requesting selected interlace mode in wireless communication systems
US20120236745A1 (en)*2009-11-272012-09-20Sanyo Electric Co., LtdTerminal apparatus for transmitting or receiving a signal including predetermined information
US8315662B2 (en)2003-08-132012-11-20Qualcomm IncorporatedUser specific downlink power control channel Q-bit
EP2557852A1 (en)*2011-08-102013-02-13Alcatel LucentMethod, apparatus and computer program for selecting cells and for a mobile transceiver
DE112005002494B4 (en)*2004-10-152013-02-14Meshnetworks, Inc. A system and method for enabling inter-frequency handover of mobile terminals in a wireless communications network
US20130083682A1 (en)*2011-10-032013-04-04Samsung Electronics Co., LtdDownlink timing reference for coordinated multipoint communication
US8457092B2 (en)2005-06-162013-06-04Qualcomm IncorporatedQuick paging channel with reduced probability of missed page
US8509799B2 (en)2005-09-192013-08-13Qualcomm IncorporatedProvision of QoS treatment based upon multiple requests
US8553595B2 (en)2003-02-192013-10-08Qualcomm IncorporatedControlled superposition coding in multi-user communication systems
US8583100B2 (en)2007-01-252013-11-12Adc Telecommunications, Inc.Distributed remote base station system
EP1615460B1 (en)*2004-07-092013-11-20Alcatel LucentCell switching and packet combining in a wireless communication system
US8593932B2 (en)2003-05-162013-11-26Qualcomm IncorporatedEfficient signal transmission methods and apparatus using a shared transmission resource
US8615241B2 (en)2010-04-092013-12-24Qualcomm IncorporatedMethods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems
US8738020B2 (en)2000-12-152014-05-27Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8737454B2 (en)2007-01-252014-05-27Adc Telecommunications, Inc.Modular wireless communications platform
US8755313B2 (en)2007-01-112014-06-17Qualcomm IncorporatedUsing DTX and DRX in a wireless communication system
US8760992B2 (en)2004-12-072014-06-24Adaptix, Inc.Method and system for switching antenna and channel assignments in broadband wireless networks
US8761080B2 (en)2005-03-152014-06-24Qualcomm IncorporatedMultiple other sector information combining for power control in a wireless communication system
US8811200B2 (en)2009-09-222014-08-19Qualcomm IncorporatedPhysical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US8830818B2 (en)2007-06-072014-09-09Qualcomm IncorporatedForward handover under radio link failure
US20140269638A1 (en)*2005-12-202014-09-18Qualcomm IncorporatedMethods and systems for providing enhanced position location in wireless communications
US8861466B2 (en)2002-08-072014-10-14Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US8874105B2 (en)2010-11-292014-10-28Motorola Mobility LlcMethod and apparatus for obtaining overhead information within a communication system
US8982835B2 (en)2005-09-192015-03-17Qualcomm IncorporatedProvision of a move indication to a resource requester
US8982778B2 (en)2005-09-192015-03-17Qualcomm IncorporatedPacket routing in a wireless communications environment
US8983468B2 (en)2005-12-222015-03-17Qualcomm IncorporatedCommunications methods and apparatus using physical attachment point identifiers
US9001811B2 (en)2009-05-192015-04-07Adc Telecommunications, Inc.Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes
US9055552B2 (en)2005-06-162015-06-09Qualcomm IncorporatedQuick paging channel with reduced probability of missed page
US9066344B2 (en)2005-09-192015-06-23Qualcomm IncorporatedState synchronization of access routers
US9078084B2 (en)2005-12-222015-07-07Qualcomm IncorporatedMethod and apparatus for end node assisted neighbor discovery
US9083355B2 (en)2006-02-242015-07-14Qualcomm IncorporatedMethod and apparatus for end node assisted neighbor discovery
US9094173B2 (en)2007-06-252015-07-28Qualcomm IncorporatedRecovery from handoff error due to false detection of handoff completion signal at access terminal
US9107109B2 (en)2000-10-252015-08-11Qualcomm IncorporatedMethod and apparatus for determining a data rate in a high rate packet data wireless communications system
US9106286B2 (en)2000-06-132015-08-11Comcast Cable Communications, LlcNetwork communication using diversity
US9118387B2 (en)1997-11-032015-08-25Qualcomm IncorporatedPilot reference transmission for a wireless communication system
US9155008B2 (en)2007-03-262015-10-06Qualcomm IncorporatedApparatus and method of performing a handoff in a communication network
US9277467B2 (en)2011-12-082016-03-01Samsung Electronics Co., Ltd.Communication system with adaptive handover controller and method of operation thereof
US9426707B1 (en)*2014-03-262016-08-23Sprint Spectrum L.P.Handoff based on uplink and downlink reference signals
US9490857B2 (en)2002-09-202016-11-08Iii Holdings 1, LlcSystems and methods for parallel signal cancellation
US9496915B2 (en)2001-07-172016-11-15Ipr Licensing, Inc.Use of orthogonal or near orthogonal codes in reverse link
DE19900436B4 (en)*1999-01-082016-12-01Ipcom Gmbh & Co. Kg Handover method, mobile station for handover and base station for handover
US9577922B2 (en)2014-02-182017-02-21Commscope Technologies LlcSelectively combining uplink signals in distributed antenna systems
US9648644B2 (en)2004-08-242017-05-09Comcast Cable Communications, LlcDetermining a location of a device for calling via an access point
CN101653026B (en)*2007-04-062017-05-10高通股份有限公司 Switching to Data Attachment Points
US9736752B2 (en)2005-12-222017-08-15Qualcomm IncorporatedCommunications methods and apparatus using physical attachment point identifiers which support dual communications links
US9832664B2 (en)2000-07-192017-11-28Ipr Licensing, Inc.Receiving and transmitting reverse link signals from subscriber units
CN103889063B (en)*2006-06-192018-10-09高智第二有限责任公司System for eliminating inter-cell interference and scheduler
US20180295657A1 (en)*2017-04-062018-10-11Samsung Electronics Co., Ltd.Device for connecting external device and updating data
NO343611B1 (en)*2004-08-022019-04-15Huawei Tech Co Ltd Method of handover at the cell transition in the central system
RU2702622C1 (en)*2018-12-182019-10-09Акционерное общество "Научно-производственное предприятие "Полет"Radio communication system with movable objects
US10498434B2 (en)2000-07-192019-12-03CommScope Technolgies LLCPoint-to-multipoint digital radio frequency transport
US10499269B2 (en)2015-11-122019-12-03Commscope Technologies LlcSystems and methods for assigning controlled nodes to channel interfaces of a controller
DE112011100149B4 (en)*2010-10-212021-02-25Spreadtrum Communications (Shanghai) Co., Ltd. Method and device for sequencing frequency points
US20210246004A1 (en)*2018-04-232021-08-12Kabushiki Kaisha Toyota JidoshokkiIndustrial vehicle remote operation system, industrial vehicle, computer-readable storage medium storing industrial vehicle remote operation program, and industrial vehicle remote operation method
EP2809011B1 (en)*2007-01-242023-05-31NEC CorporationWireless mobile station, wireless base station control device, wireless system and wireless cell management method

Families Citing this family (179)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5870393A (en)*1995-01-201999-02-09Hitachi, Ltd.Spread spectrum communication system and transmission power control method therefor
GB2290195B (en)*1994-06-101998-08-05Northern Telecom LtdAutomatic determination and tuning of pico-cell topology for low-power wireless systems
SE502656C2 (en)*1994-11-291995-12-04Telia Ab Method for synchronizing transmitters and receivers with mobile radio systems
GB2297460B (en)*1995-01-281999-05-26Motorola LtdCommunications system and a method therefor
JP3036407B2 (en)*1995-09-122000-04-24トヨタ自動車株式会社 Mobile radio communication system
JP2986388B2 (en)*1995-10-191999-12-06エヌ・ティ・ティ移動通信網株式会社 Perch channel setting method in mobile communication
US6580700B1 (en)*1995-10-272003-06-17Symbol Technologies, Inc.Data rate algorithms for use in wireless local area networks
JP3126105B2 (en)*1995-12-062001-01-22株式会社エヌ・ティ・ティ・ドコモ Apparatus for soft handoff in spread spectrum communication
JP2959458B2 (en)*1996-01-191999-10-06日本電気株式会社 Transmission power control method
US6205132B1 (en)*1996-02-222001-03-20Korea Mobile Telecommunications Corp.Method for accessing a cell using two pilot channels in a CDMA communication system of an asynchronous or quasi-synchronous mode
US5930710A (en)*1996-03-071999-07-27Telefonaktiebolaget L M EricssonControl/pilot channel reselection between cells belonging to different registration areas
US5940381A (en)*1996-03-141999-08-17Motorola, Inc.Asynchronous transfer mode radio communications system with handoff and method of operation
US5828662A (en)*1996-06-191998-10-27Northern Telecom LimitedMedium access control scheme for data transmission on code division multiple access (CDMA) wireless systems
US6215982B1 (en)1996-06-282001-04-10Cisco Systems, Inc.Wireless communication method and device with auxiliary receiver for selecting different channels
US6047175A (en)*1996-06-282000-04-04Aironet Wireless Communications, Inc.Wireless communication method and device with auxiliary receiver for selecting different channels
US6055427A (en)*1996-07-182000-04-25Nokia Telecommunications OyHard handoff and a radio system
US6646995B1 (en)*1996-10-112003-11-11Alcatel CitMethod of adapting the air interface and mobile radio system and corresponding base transceiver station, mobile station and transmission mode
JP3369063B2 (en)*1996-10-182003-01-20松下電器産業株式会社 Mobile communication terminal
US6819927B1 (en)1996-10-182004-11-16Matsushita Electric Industrial Co., Ltd.Communication method for use by a mobile station in a mobile communication system of CDMA
US6044249A (en)*1996-11-122000-03-28Motorola, Inc.Method for determining handover margins in a cellular communication system
US6021328A (en)*1996-12-192000-02-01Northern Telecom LimitedRadio link quality handoff trigger
US5913167A (en)*1997-02-281999-06-15Motorola, Inc.Method for transferring a communication link in a wireless communication system
CN1115008C (en)*1997-03-272003-07-16西门子公司Method and device for data transmission
US5923650A (en)*1997-04-081999-07-13Qualcomm IncorporatedMethod and apparatus for reverse link rate scheduling
KR100236982B1 (en)*1997-04-252000-01-15정선종Method for controlling handoff of mobile terminal in cdma cellular system
JP2954086B2 (en)*1997-05-161999-09-27埼玉日本電気株式会社 Mobile communication system
US6073021A (en)*1997-05-302000-06-06Lucent Technologies, Inc.Robust CDMA soft handoff
AU3434997A (en)*1997-06-171999-01-04Motorola LimitedWireless device, control system and methods for protected sites with operation according to interference parameters
KR100265855B1 (en)*1997-07-102000-09-15정선종Method for processing handoff call in wireless communication system
US6160999A (en)*1997-08-182000-12-12Nortel Networks LimitedWireless communication system providing improved forward link management and method of operation
US6154450A (en)*1997-08-222000-11-28Telefonaktiebolaget Lm EricssonSignaling method for CDMA quality based power control
US6097972A (en)*1997-08-292000-08-01Qualcomm IncorporatedMethod and apparatus for processing power control signals in CDMA mobile telephone system
US6078571A (en)*1997-09-192000-06-20Motorola, Inc.Apparatus and method for transmitting beacon signals in a communication system
US5960347A (en)*1997-10-091999-09-28Interdigital Technology CorporationSeamless handoff system and method
US6246876B1 (en)*1997-11-132001-06-12Telefonaktiebolaget L M Ericsson (Publ)Synchronization messages for hand-off operations
US6044271A (en)*1997-12-232000-03-28Ericsson Inc.System and method for handing off a cellular call with system and capability change indication
JPH11262043A (en)*1998-03-061999-09-24Nec Saitama LtdCdma mobile communication system
US6252861B1 (en)*1998-03-262001-06-26Lucent Technologies, Inc.Methods and apparatus for interfrequency handoff in a wireless communication system
US5999814A (en)*1998-05-051999-12-07Telefonaktiebolaget Lm Ericsson (Publ)Method of detecting and inhibiting mobile station handoff oscillations in a cellular telecommunications network
GB2337413A (en)*1998-05-151999-11-17Nokia Mobile Phones Ltdalternative Channel Measurement in a Radio Communication system
KR100291279B1 (en)*1998-05-152001-06-01박종섭Device for controlling digital auto gain
KR100291476B1 (en)*1998-05-252001-07-12윤종용A method and a system for controlling a pilot measurement request order in cellular system
US6526035B1 (en)*1998-06-092003-02-25Telefonaktiebolaget Lm Ericsson (Publ)Method and apparatus for identifying the source of a digital signal
JP2984653B1 (en)*1998-06-111999-11-29埼玉日本電気株式会社 Base station wireless device for CDMA cellular system
EP1784041B1 (en)*1998-06-232010-04-28Qualcomm, IncorporatedCellular communication system with common channel soft handoff and associated method
US5978365A (en)*1998-07-071999-11-02Orbital Sciences CorporationCommunications system handoff operation combining turbo coding and soft handoff techniques
BR9906675A (en)*1998-08-052000-12-05Samsung Electronics Co Ltd Process and arrangement for combining signals by a diversity technique on a common channel in a code division multiple access communication system
US6771963B1 (en)1998-08-172004-08-03Lucent Technologies Inc.Triggering handdowns and handoffs of mobile stations between bordering cells of cellular wireless communication systems
JP2985881B1 (en)1998-08-201999-12-06日本電気株式会社 Mobile communication system
KR100308661B1 (en)*1998-08-282001-10-19윤종용Hand-off apparatus and method of mobile comunication system
US6633554B1 (en)*1998-09-012003-10-14Samsung Electronics Co., Ltd.System and method for soft handoff setup during system access idle handoff in a wireless network
JP3149399B2 (en)*1998-09-242001-03-26松下電器産業株式会社 CDMA base station apparatus and code allocation method
US6166622A (en)*1998-10-282000-12-26Texas Instruments IncorporatedTime slot structure for improved TPC estimation in WCDMA
US6341222B1 (en)*1998-11-042002-01-22Motorola, Inc.Method and apparatus for performing selection and distribution in a communication system
US6411819B1 (en)*1998-11-192002-06-25Scoreboard, Inc.Method of modeling a neighbor list for a mobile unit in a CDMA cellular telephone system
US6754493B1 (en)1998-12-182004-06-22Telefonaktiebolaget Lm EricssonMethod and systems for dynamic threshold adjustment for handoffs in radio communication systems
FR2787671B1 (en)*1998-12-222001-02-16Nortel Matra Cellular CELL RADIO COMMUNICATION METHOD, MONITORING EQUIPMENT AND MOBILE STATIONS USING THE SAME
KR20000050428A (en)*1999-01-082000-08-05김영환multiple sector base transceiver station in mobile communication system
JP3149928B2 (en)1999-02-122001-03-26日本電気株式会社 Channel selection method and channel selection device for wireless packet communication system
CA2365007A1 (en)*1999-02-262000-08-31Edward G. Tiedemann, Jr.Method and system for handoff between an asynchronous cdma base station and a synchronous cdma base station
US6546249B1 (en)*1999-02-262003-04-08Sumitomo Electric Industries, LtdSeamless two-way roadway communication system
USRE47895E1 (en)1999-03-082020-03-03Ipcom Gmbh & Co. KgMethod of allocating access rights to a telecommunications channel to subscriber stations of a telecommunications network and subscriber station
US7072656B2 (en)1999-03-162006-07-04Telefonaktiebolaget Lm Ericsson (Publ)Handover in a shared radio access network environment using subscriber-dependent neighbor cell lists
US7003297B2 (en)*1999-04-062006-02-21Telefonaktiebolaget Lm Ericsson (Publ)Partial support of mobility between radio access networks
US7778641B1 (en)1999-04-062010-08-17Telefonaktiebolaget L M Ericsson (Publ)Inter-system handover—generic handover mechanism
US6603748B1 (en)*1999-04-082003-08-05Lucent Technologies Inc.System and method for prevention of reverse jamming due to link imbalance in wireless communication systems
US6925067B2 (en)*1999-04-232005-08-02Qualcomm, IncorporatedConfiguration of overhead channels in a mixed bandwidth system
US6072790A (en)*1999-05-132000-06-06Motorola, Inc.Method and apparatus for performing distribution in a communication system
US6445917B1 (en)1999-05-192002-09-03Telefonaktiebolaget Lm Ericsson (Publ)Mobile station measurements with event-based reporting
US6253085B1 (en)*1999-05-272001-06-26Qualcomm IncorporatedForward power gain adjustment during a soft handoff operation
US6584087B1 (en)*1999-06-092003-06-24Infineon Technologies North America Corp.Power control during inter-generation soft handoffs
EP1063787A1 (en)*1999-06-182000-12-27AlcatelOperating a cellular telecommunication system
JP3383618B2 (en)*1999-08-182003-03-04松下電器産業株式会社 Mobile communication terminal apparatus and reception strength detection method
US6831902B1 (en)*1999-09-082004-12-14Qwest Communications International, Inc.Routing information packets in a distributed network
US7388846B1 (en)*1999-09-082008-06-17Qwest Communications International Inc.Cellularized packetized voice and data
US8005077B1 (en)1999-09-082011-08-23Qwest Communications International Inc.Distributively routed VDSL and high-speed information packets
US6987769B1 (en)*1999-09-082006-01-17Qwest Communications International Inc.System and method for dynamic distributed communication
US7023822B1 (en)*2000-10-122006-04-04Via Telecom Co., Ltd.Method and apparatus for initiating a reverse link intergenerational handoff in a CDMA communication system
JP3276619B2 (en)*1999-10-272002-04-22松下電器産業株式会社 Mobile communication terminal device and handover control method
JP3734393B2 (en)*1999-10-292006-01-11富士通株式会社 Soft handoff method and system in mobile communication with code division multiple access
US6859463B1 (en)*1999-11-082005-02-22Itt Manufacturing Enterprises, Inc.Methods and apparatus for organizing selection of operational parameters in a communication system
CA2360734C (en)*1999-11-262005-08-02Jae-Yoel KimMethod of providing site selection diversity in mobile communication system
JP3458803B2 (en)*1999-12-272003-10-20日本電気株式会社 Mobile radio communication system and line connection control method used therefor
JP3454775B2 (en)*2000-03-292003-10-06三洋電機株式会社 Mobile station and handoff method for CDMA communication system
US6560292B1 (en)*2000-04-072003-05-06Qualcomm IncorporatedMethod for coding in a telecommunications system
US7254118B1 (en)*2000-05-222007-08-07Qualcomm IncorporatedMethod and apparatus in a CDMA communication system
US20020128032A1 (en)*2000-06-162002-09-12Akito FukuiRadio communication system
EP1170973B1 (en)*2000-07-082013-03-27LG Electronics Inc.Code combining soft handoff method
RU2258310C2 (en)*2000-10-042005-08-10Самсунг Электроникс Ко., Лтд.Device and method for controlling power of shared direct communications channel in mobile communication system
US6963550B2 (en)*2000-10-242005-11-08Lg Electronics Inc.Handoff method in CDMA communication system
US20020071403A1 (en)*2000-12-072002-06-13Crowe M. ShaneMethod and system for performing a CDMA soft handoff
US6664460B1 (en)*2001-01-052003-12-16Harman International Industries, IncorporatedSystem for customizing musical effects using digital signal processing techniques
US7184710B2 (en)2001-02-132007-02-27Telefonaktiebolaget Lm Ericsson (Publ)Transmission of filtering/filtered information over the lur interface
US7957721B2 (en)*2001-02-132011-06-07Telefonaktiebolaget Lm Ericsson (Publ)Coordinated subscriber access handling for shared network support
JP3496646B2 (en)*2001-02-222004-02-16日本電気株式会社 Base station designating system and base station designating method in CDMA system
CA2442102C (en)*2001-03-262010-06-08Samsung Electronics Co., Ltd.Method of controlling reverse transmission in a mobile communication system
US7065129B2 (en)*2001-06-292006-06-20Qualcomm, Inc.Acquisition of a gated pilot by avoiding partial correlation peaks
US20040032845A1 (en)*2002-08-132004-02-19Rex Huan-Yueh ChenAutonomous updating of a virtual active set for a wireless device
US8504054B2 (en)*2002-09-102013-08-06Qualcomm IncorporatedSystem and method for multilevel scheduling
US7630321B2 (en)*2002-09-102009-12-08Qualcomm IncorporatedSystem and method for rate assignment
EP1582017A1 (en)*2003-01-112005-10-05Samsung Electronics Co., Ltd.System and method for controlling traffic distribution in a mobile communication system
US8165148B2 (en)*2003-01-132012-04-24Qualcomm IncorporatedSystem and method for rate assignment
US7450943B2 (en)*2003-02-122008-11-11Qualcomm IncorporatedMethod and apparatus for determining coverage and switching between overlay communication systems
US7239676B2 (en)*2003-06-042007-07-03Honeywell Federal Manufacturing & Technologies, LlcMethod of differential-phase/absolute-amplitude QAM
US7929921B2 (en)*2003-06-102011-04-19Motorola Mobility, Inc.Diversity control in wireless communications devices and methods
US20050021935A1 (en)*2003-06-182005-01-27Openwave Systems Inc.Method and system for downloading configurable user interface elements over a data network
US7016698B2 (en)*2003-06-262006-03-21Motorola, Inc.Method and apparatus for mitigating power-control errors during a soft handoff in a wireless communication system
US20050059406A1 (en)*2003-09-172005-03-17Trapeze Networks, Inc.Wireless LAN measurement feedback
US20050059405A1 (en)*2003-09-172005-03-17Trapeze Networks, Inc.Simulation driven wireless LAN planning
US20080132207A1 (en)*2003-10-172008-06-05Gallagher Michael DService access control interface for an unlicensed wireless communication system
US7221927B2 (en)*2004-02-132007-05-22Trapeze Networks, Inc.Station mobility between access points
US20050215289A1 (en)*2004-03-262005-09-29Samsung Electronics Co., Ltd.Apparatus and method for dynamic control of downlink beam width of an adaptive antenna array in a wireless network
US7805142B2 (en)*2004-04-022010-09-28Alcatel-Lucent Usa Inc.Methods and device for varying a hand-off base station list based on traffic conditions
KR20060012242A (en)*2004-08-022006-02-07엘지전자 주식회사 Interworking method between base station and mobile terminal in broadband wireless access system
JP4507765B2 (en)*2004-08-262010-07-21富士通株式会社 Program, relay device control method, wireless communication device control method and system
US20060239277A1 (en)*2004-11-102006-10-26Michael GallagherTransmitting messages across telephony protocols
US7489913B2 (en)*2005-01-042009-02-10Motorola, Inc.Method for controlling diversity receivers in a wireless communication device
KR101249625B1 (en)*2005-02-052013-04-01엘지전자 주식회사 Handoff Method of Mobile Terminal in Mobile Communication System
WO2006086756A2 (en)*2005-02-092006-08-17Kineto Wireless Inc.Unlicensed mobile access network (uman) system and method
WO2006099540A2 (en)*2005-03-152006-09-21Trapeze Networks, Inc.System and method for distributing keys in a wireless network
US7551574B1 (en)*2005-03-312009-06-23Trapeze Networks, Inc.Method and apparatus for controlling wireless network access privileges based on wireless client location
JP4592547B2 (en)*2005-08-242010-12-01株式会社エヌ・ティ・ティ・ドコモ Transmission power control method and mobile communication system
WO2007044986A2 (en)2005-10-132007-04-19Trapeze Networks, Inc.System and method for remote monitoring in a wireless network
US7573859B2 (en)2005-10-132009-08-11Trapeze Networks, Inc.System and method for remote monitoring in a wireless network
US7724703B2 (en)2005-10-132010-05-25Belden, Inc.System and method for wireless network monitoring
US8638762B2 (en)2005-10-132014-01-28Trapeze Networks, Inc.System and method for network integrity
US7551619B2 (en)2005-10-132009-06-23Trapeze Networks, Inc.Identity-based networking
US8250587B2 (en)*2005-10-272012-08-21Trapeze Networks, Inc.Non-persistent and persistent information setting method and system for inter-process communication
EP1977539A4 (en)*2006-01-062013-08-21Nokia Corp DEDICATED SYNCHRONIZATION SIGNAL FOR AN OFDMA SYSTEM
JP4674176B2 (en)*2006-03-142011-04-20株式会社日立製作所 Wireless communication system, management method of neighboring station information in this system, and management apparatus therefor
US8920343B2 (en)2006-03-232014-12-30Michael Edward SabatinoApparatus for acquiring and processing of physiological auditory signals
MY187399A (en)2006-04-282021-09-22Qualcomm IncMethod and apparatus for enhanced paging
US7558266B2 (en)*2006-05-032009-07-07Trapeze Networks, Inc.System and method for restricting network access using forwarding databases
US20070260720A1 (en)*2006-05-032007-11-08Morain Gary EMobility domain
US8966018B2 (en)2006-05-192015-02-24Trapeze Networks, Inc.Automated network device configuration and network deployment
US20070268506A1 (en)*2006-05-192007-11-22Paul ZeldinAutonomous auto-configuring wireless network device
US20070268515A1 (en)*2006-05-192007-11-22Yun FreundSystem and method for automatic configuration of remote network switch and connected access point devices
US20070268514A1 (en)*2006-05-192007-11-22Paul ZeldinMethod and business model for automated configuration and deployment of a wireless network in a facility without network administrator intervention
US20070268516A1 (en)*2006-05-192007-11-22Jamsheed BugwadiaAutomated policy-based network device configuration and network deployment
US9071321B2 (en)*2006-05-312015-06-30Apple Inc.Methods and system for wireless networks with relays involving pseudo-random noise sequences
US7577453B2 (en)*2006-06-012009-08-18Trapeze Networks, Inc.Wireless load balancing across bands
US8818322B2 (en)2006-06-092014-08-26Trapeze Networks, Inc.Untethered access point mesh system and method
US9258702B2 (en)2006-06-092016-02-09Trapeze Networks, Inc.AP-local dynamic switching
US9191799B2 (en)2006-06-092015-11-17Juniper Networks, Inc.Sharing data between wireless switches system and method
US7912982B2 (en)2006-06-092011-03-22Trapeze Networks, Inc.Wireless routing selection system and method
US7844298B2 (en)*2006-06-122010-11-30Belden Inc.Tuned directional antennas
US7724704B2 (en)*2006-07-172010-05-25Beiden Inc.Wireless VLAN system and method
US8340110B2 (en)2006-09-152012-12-25Trapeze Networks, Inc.Quality of service provisioning for wireless networks
US20080076392A1 (en)*2006-09-222008-03-27Amit KhetawatMethod and apparatus for securing a wireless air interface
WO2008044208A2 (en)*2006-10-112008-04-17Nokia CorporationControl method for network configuration measurements
US8072952B2 (en)*2006-10-162011-12-06Juniper Networks, Inc.Load balancing
US20080107077A1 (en)*2006-11-032008-05-08James MurphySubnet mobility supporting wireless handoff
US7873061B2 (en)2006-12-282011-01-18Trapeze Networks, Inc.System and method for aggregation and queuing in a wireless network
WO2008083339A2 (en)2006-12-282008-07-10Trapeze Networks, Inc.Application-aware wireless network system and method
US8195204B1 (en)*2007-07-252012-06-05Sprint Spectrum L.P.Method and apparatus for scanning sectors in order of distance from mobile station
KR101454021B1 (en)*2007-08-072014-10-27삼성전자주식회사 MEASUREMENT DEVICE AND METHOD OF HOMELESS / PERSONNEL NETWORK CELL IN MOBILE COMMUNICATION SYSTEMS
US8902904B2 (en)2007-09-072014-12-02Trapeze Networks, Inc.Network assignment based on priority
US8261168B2 (en)*2007-09-172012-09-04Lg Electronics Inc.Code combining soft handoff in wireless communication system
WO2009039318A1 (en)*2007-09-182009-03-26Kineto Wireless, Inc.Method and system for supporting large number of data paths in an integrated communication system
US8509128B2 (en)*2007-09-182013-08-13Trapeze Networks, Inc.High level instruction convergence function
US8189768B2 (en)2007-10-312012-05-29First Principles, Inc.Secure messaging
US8238942B2 (en)2007-11-212012-08-07Trapeze Networks, Inc.Wireless station location detection
US8140076B2 (en)*2007-12-172012-03-20Motorola Mobility, Inc.Method for facilitating a mobile station to perform a fast handoff
WO2009114738A2 (en)2008-03-122009-09-17Hypres, Inc.Digital radio-frequency tranceiver system and method
US8150357B2 (en)2008-03-282012-04-03Trapeze Networks, Inc.Smoothing filter for irregular update intervals
US8474023B2 (en)2008-05-302013-06-25Juniper Networks, Inc.Proactive credential caching
US8978105B2 (en)2008-07-252015-03-10Trapeze Networks, Inc.Affirming network relationships and resource access via related networks
US8238298B2 (en)2008-08-292012-08-07Trapeze Networks, Inc.Picking an optimal channel for an access point in a wireless network
US8488572B2 (en)*2008-09-172013-07-16Qualcomm IncorporatedMethods and systems for multi-mode signal quality reporting
US8107888B2 (en)*2009-03-042012-01-31Clearwire IP Holdings, LLCCommunication operating mode selection based on multi-path signal power measurement
US8351944B2 (en)*2009-06-162013-01-08Verizon Patent And Licensing Inc.Soft handover for mobile device
US9232446B2 (en)*2010-06-012016-01-05Nec CorporationBase station, mobile communication system, and call admission control method and call admission control program of base station
US8744506B2 (en)*2010-06-172014-06-03Qualcomm IncorporatedDevice discovery on white space frequencies
US8542836B2 (en)2010-12-012013-09-24Juniper Networks, Inc.System, apparatus and methods for highly scalable continuous roaming within a wireless network
US8538472B2 (en)2010-12-142013-09-17Intel Mobile Communications GmbHUser equipment and method for performing downlink and/or uplink power control
US9144020B2 (en)*2012-03-192015-09-22Intel Deutschland GmbhDynamic RxDiv for idle mode in a user equipment
JPWO2014050449A1 (en)*2012-09-252016-08-22シャープ株式会社 Base stations and terminals
DE102013210307A1 (en)*2013-06-042014-12-04Bayerische Motoren Werke Aktiengesellschaft Communication device, system and method for communication between a communication device and at least two base stations
US9775191B2 (en)*2015-09-182017-09-26Global Eagle Entertainment Inc.Physical layer hand-off and diversity combining in non-geostationary satellite constellation

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4222115A (en)*1978-03-131980-09-09Purdue Research FoundationSpread spectrum apparatus for cellular mobile communication systems
US4475010A (en)*1983-05-051984-10-02At&T Bell LaboratoriesHigh density cellular mobile radio communications
US5054110A (en)*1989-12-291991-10-01Motorola, Inc.Multi-site dispatching system cell registration
US5056109A (en)*1989-11-071991-10-08Qualcomm, Inc.Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5101501A (en)*1989-11-071992-03-31Qualcomm IncorporatedMethod and system for providing a soft handoff in communications in a cdma cellular telephone system
US5109390A (en)*1989-11-071992-04-28Qualcomm IncorporatedDiversity receiver in a cdma cellular telephone system
US5127100A (en)*1989-04-271992-06-30Motorola, Inc.Digital radio communication system and two way radio
US5179571A (en)*1991-07-101993-01-12Scs Mobilecom, Inc.Spread spectrum cellular handoff apparatus and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4112257A (en)*1977-03-241978-09-05Frost Edward GComprehensive automatic mobile radio telephone system
US4672658A (en)*1985-10-161987-06-09At&T Company And At&T Bell LaboratoriesSpread spectrum wireless PBX
DE3607687A1 (en)*1986-03-081987-09-10Philips Patentverwaltung METHOD AND CIRCUIT ARRANGEMENT FOR SWITCHING A RADIO CONNECTION INTO ANOTHER RADIO CELL OF A DIGITAL RADIO TRANSMISSION SYSTEM
US4718081A (en)*1986-11-131988-01-05General Electric CompanyMethod and apparatus for reducing handoff errors in a cellular radio telephone communications system
SE8802229D0 (en)*1988-06-141988-06-14Ericsson Telefon Ab L M MOBILE RADIO STATION PROCEDURE
US5327577A (en)*1988-06-141994-07-05Telefonaktiebolaget L M EricssonHandover method for mobile radio system
US5265119A (en)*1989-11-071993-11-23Qualcomm IncorporatedMethod and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5267262A (en)*1989-11-071993-11-30Qualcomm IncorporatedTransmitter power control system
US5103459B1 (en)*1990-06-251999-07-06Qualcomm IncSystem and method for generating signal waveforms in a cdma cellular telephone system
US5164958A (en)*1991-05-221992-11-17Cylink CorporationSpread spectrum cellular handoff method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4222115A (en)*1978-03-131980-09-09Purdue Research FoundationSpread spectrum apparatus for cellular mobile communication systems
US4475010A (en)*1983-05-051984-10-02At&T Bell LaboratoriesHigh density cellular mobile radio communications
US5127100A (en)*1989-04-271992-06-30Motorola, Inc.Digital radio communication system and two way radio
US5056109A (en)*1989-11-071991-10-08Qualcomm, Inc.Method and apparatus for controlling transmission power in a cdma cellular mobile telephone system
US5101501A (en)*1989-11-071992-03-31Qualcomm IncorporatedMethod and system for providing a soft handoff in communications in a cdma cellular telephone system
US5109390A (en)*1989-11-071992-04-28Qualcomm IncorporatedDiversity receiver in a cdma cellular telephone system
US5054110A (en)*1989-12-291991-10-01Motorola, Inc.Multi-site dispatching system cell registration
US5179571A (en)*1991-07-101993-01-12Scs Mobilecom, Inc.Spread spectrum cellular handoff apparatus and method

Cited By (1254)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
USRE36017E (en)*1988-02-291998-12-29Telefonaktiebolaget Lm EricssonCellular digital mobile radio system and method of transmitting information in a digital cellular mobile radio system
USRE37754E1 (en)*1988-02-292002-06-18Telefonaktiebolaget Lm Ericsson (Publ)Cellular digital mobile radio system and method of transmitting information in a digital cellular mobile radio system
USRE37685E1 (en)1988-06-142002-04-30Telefonaktiebolaget Lm Ericsson (Publ)Handover method for mobile radio system
USRE36078E (en)*1988-06-141999-02-02Telefonaktiebolaget Lm EricssonHandover method for mobile radio system
USRE36079E (en)*1988-06-141999-02-02Telefonaktiebolaget Lm EricssonHandover method for mobile radio system
USRE37787E1 (en)1988-06-142002-07-09Telefonaktiebolaget Lm Ericsson (Publ)Handover method for mobile radio system
US5991625A (en)*1991-06-031999-11-23Omnipoint CorporationSpread spectrum wireless telephone system
US7212820B2 (en)*1992-04-172007-05-01Telefonaktiebolaget Lm Ericsson (Publ)Mobile assisted handover using CDMA
US20040038682A1 (en)*1992-04-172004-02-26Persson Bengt YngveMobile assisted handover using CDMA
US7248874B2 (en)*1992-04-172007-07-24Telefonaktiebolaget Lm Ericsson (Publ)Mobile assisted handover using CDMA
US5432651A (en)*1992-06-091995-07-11Mitsubishi Denki Kabushiki KaishaData conversion device and recording/reproduction apparatus
US5420863A (en)*1992-07-091995-05-30Nec CorporationMobile communication system with cell-site switching for intra-cell handoff
US5436956A (en)*1992-07-171995-07-25Nec CorporationMethod and arrangement for reducing the number of handoff requests in a cellular mobile communications system
US5519718A (en)*1992-08-201996-05-21Nexus 1994 LimitedRemote unit for use with remote pager
US5379047A (en)*1992-08-201995-01-03Nexus Telecommunication Systems, Inc.Remote position determination system
US5335246A (en)*1992-08-201994-08-02Nexus Telecommunication Systems, Ltd.Pager with reverse paging facility
US5499266A (en)*1992-08-201996-03-12Nexus 1994 LimitedLow-power frequency-hopped spread spectrum acknowledgement paging system
US5430759A (en)*1992-08-201995-07-04Nexus 1994 LimitedLow-power frequency-hopped spread spectrum reverse paging system
USRE40564E1 (en)1992-09-172008-11-04Adc Telecommunications, Inc.Cellular communications system with sectorization
USRE45321E1 (en)1992-09-172015-01-06Adc Telecommunications, Inc.Cellular communications system with sectorization
US5852651A (en)*1992-09-171998-12-22Adc Telecommunications, Inc.Cellular communications system with sectorization
USRE43964E1 (en)1992-09-172013-02-05Adc Telecommunications, Inc.Cellular communications system with sectorization
US5627879A (en)*1992-09-171997-05-06Adc Telecommunications, Inc.Cellular communications system with centralized base stations and distributed antenna units
US5644622A (en)*1992-09-171997-07-01Adc Telecommunications, Inc.Cellular communications system with centralized base stations and distributed antenna units
US5657374A (en)*1992-09-171997-08-12Adc Telecommunications, Inc.Cellular communications system with centralized base stations and distributed antenna units
US5642405A (en)*1992-09-171997-06-24Adc Telecommunications, Inc.Cellular communications system with centralized base stations and distributed antenna units
US6278877B1 (en)*1993-01-082001-08-21Agere Systems Guardian CorporationHandover method for mobile wireless station
US6393281B1 (en)1993-03-262002-05-21At&T Wireless Services IncSeamless hand-off for air-to-ground systems
US5487083A (en)*1993-05-121996-01-23Ntt Mobile Communications Network Inc.Hand-off method and mobile station for spread spectrum mobile communication
US5457680A (en)*1993-05-181995-10-10International Business Machines CorporationData gateway for mobile data radio terminals in a data communication network
US5463315A (en)*1993-06-151995-10-31Hewlett-Packard CompanySpike suppression for a tester circuit for integrated circuits
US5590172A (en)*1993-07-021996-12-31Motorola, Inc.Method and system for transferring a radiotelephone call from one coverage area to another
US5483669A (en)*1993-09-091996-01-09Hughes Aircraft CompanyDynamic thresholding for mobile assisted handoff in a digital cellular communication system
US5539749A (en)*1993-09-131996-07-23Siemens AktiengesellschaftMethod for merging data streams
US5623484A (en)*1993-09-241997-04-22Nokia Telecommunications OyMethod and apparatus for controlling signal quality in a CDMA cellular telecommunications
US6009328A (en)*1993-09-241999-12-28Nokia Telecommunications OyInter-exchange soft handoff in a cellular telecommunications system
US5722074A (en)*1993-09-241998-02-24Nokia Telecommunications OySoft handoff in a cellular telecommunications system
US5850607A (en)*1993-09-241998-12-15Nokia Telecommunications OyMethod and apparatus for providing control handoff in a cellular telecommunications system
US5444766A (en)*1993-10-011995-08-22At&T Corp.Mobile-synchronized handoff in a wireless communications system
US6483866B1 (en)*1993-10-122002-11-19Ntt Mobile Communications Network Inc.Multi-station transmission method and receiver for inverse transforming two pseudo-orthogonal transmission sequences used for metric calculation and base station selection based thereon
EP0722649B1 (en)*1993-10-282005-10-26QUALCOMM IncorporatedMethod and apparatus for reducing the average downlink transmitted power from base stations during soft handoff
US5864760A (en)*1993-10-281999-01-26Qualcomm IncorporatedMethod and apparatus for reducing the average transmit power from a sectorized base station
US5625876A (en)*1993-10-281997-04-29Qualcomm IncorporatedMethod and apparatus for performing handoff between sectors of a common base station
US6157668A (en)*1993-10-282000-12-05Qualcomm Inc.Method and apparatus for reducing the average transmit power of a base station
US5490165A (en)*1993-10-281996-02-06Qualcomm IncorporatedDemodulation element assignment in a system capable of receiving multiple signals
US6161013A (en)1993-11-012000-12-12Omnipoint CorporationWireless communication system and method
US5787076A (en)1993-11-011998-07-28Omnipoint CorporationMulti-mode TDMA spread spectrum communication system
US5818820A (en)1993-11-011998-10-06Omnipoint CorporationMethod and system for data link expansion or contraction using spread spectrum TDMA communication
US6532365B1 (en)1993-11-012003-03-11Intel CorporationPCS pocket phone/microcell communication over-air protocol
US6094575A (en)1993-11-012000-07-25Omnipoint CorporationCommunication system and method
US5648955A (en)1993-11-011997-07-15Omnipoint CorporationMethod for power control in a TDMA spread spectrum communication system
US5768264A (en)1993-11-011998-06-16Omnipoint CorporationTime division multiple access base station supporting ISDN messages
US6229792B1 (en)1993-11-012001-05-08Xircom, Inc.Spread spectrum communication system
US6005856A (en)*1993-11-011999-12-21Omnipoint CorporationCommunication protocol for spread spectrum wireless communication system
US6088590A (en)1993-11-012000-07-11Omnipoint CorporationMethod and system for mobile controlled handoff and link maintenance in spread spectrum communication
US6112080A (en)1993-11-012000-08-29Omnipoint CorporationWireless communication method and system
US5671219A (en)1993-11-011997-09-23Omnipoint CorporationCommunication protocol for spread spectrum communication
US5410538A (en)*1993-11-091995-04-25At&T Corp.Method and apparatus for transmitting signals in a multi-tone code division multiple access communication system
US5577047A (en)*1993-11-101996-11-19Telefonaktiebolaget Lm EricssonSystem and method for providing macrodiversity TDMA radio communications
US5548808A (en)*1993-12-081996-08-20Motorola, Inc.Method for performing a handoff in a communication system
US5732347A (en)*1994-01-261998-03-24Oki Telecom, Inc.Imminent change warning
US5722068A (en)*1994-01-261998-02-24Oki Telecom, Inc.Imminent change warning
US6018655A (en)*1994-01-262000-01-25Oki Telecom, Inc.Imminent change warning
US8107997B2 (en)1994-02-242012-01-31Gte Wireless IncorporatedSystem and method of telephonic dialing simulation
US20030195013A1 (en)*1994-02-242003-10-16Zicker Robert G.Cellular radiotelephone system with remotely programmed mobile stations
US8165626B2 (en)1994-02-242012-04-24Gte Wireless IncorporatedSystem and method of telephonic dialing simulation
EP1667482A3 (en)*1994-02-242006-09-06GTE Wireless Service CorporationMethod for authorising communication between a radiotelephone and a base station based on signal strength
US7146156B2 (en)1994-02-242006-12-05Gte Wireless IncorporatedCellular radiotelephone system with remotely programmed mobile stations
US20050026649A1 (en)*1994-02-242005-02-03Zicker Robert G.System and method of telephonic dialing simulation
WO1995026593A3 (en)*1994-03-211995-11-16Nokia Telecommunications OyMethod for interference cancellation in a cellular cdma network
AU693530B2 (en)*1994-03-211998-07-02Nokia Telecommunications OyMethod for interference cancellation in a cellular CDMA network
US5862124A (en)*1994-03-211999-01-19Nokia Telecommunications OyMethod for interference cancellation in a cellular CDMA network
CN1086076C (en)*1994-03-212002-06-05诺基亚电信公司Method for interference cancellation in cellular CDMA network
US5448569A (en)*1994-04-121995-09-05International Business Machines CorporationHandoff monitoring in cellular communication networks using slow frequency hopping
EP0680160A3 (en)*1994-04-271996-05-15Nippon Telegraph & TelephoneMethod and apparatus for transmission power control of a mobile station during soft handoff in a CDMA system.
US5966430A (en)*1994-05-301999-10-12Canon Kabushiki KaishaCommunication apparatus capable of communicating data and speech selectively through single communication line
US6049715A (en)*1994-06-012000-04-11Nortel Networks CorporationMethod and apparatus for evaluating a received signal in a wireless communication utilizing long and short term values
US5570349A (en)*1994-06-071996-10-29Stanford Telecommunications, Inc.Wireless direct sequence spread spectrum digital cellular telephone system
US5850394A (en)*1994-06-101998-12-15Oki Electric Industry Co., Ltd.CDMA communications system using multiplexed signaling data lines
US6873845B2 (en)1994-07-282005-03-29Lucent Technologies Inc.Method of power control and cell site selection based upon path gain and interference level
US5697053A (en)*1994-07-281997-12-09Lucent Technologies Inc.Method of power control and cell site selection
US6198930B1 (en)1994-08-192001-03-06Trimble Navigation LimitedAutomatic cellular phone tracking
US5610940A (en)1994-09-091997-03-11Omnipoint CorporationMethod and apparatus for noncoherent reception and correlation of a continous phase modulated signal
US5832028A (en)1994-09-091998-11-03Omnipoint CorporationMethod and apparatus for coherent serial correlation of a spread spectrum signal
US5692007A (en)1994-09-091997-11-25Omnipoint CorporationMethod and apparatus for differential phase encoding and decoding in spread-spectrum communication systems with continuous-phase modulation
US5757847A (en)1994-09-091998-05-26Omnipoint CorporationMethod and apparatus for decoding a phase encoded signal
US5754584A (en)1994-09-091998-05-19Omnipoint CorporationNon-coherent spread-spectrum continuous-phase modulation communication system
US5754585A (en)1994-09-091998-05-19Omnipoint CorporationMethod and apparatus for serial noncoherent correlation of a spread spectrum signal
US5856998A (en)1994-09-091999-01-05Omnipoint CorporationMethod and apparatus for correlating a continuous phase modulated spread spectrum signal
US5881100A (en)1994-09-091999-03-09Omnipoint CorporationMethod and apparatus for coherent correlation of a spread spectrum signal
US6317452B1 (en)1994-09-092001-11-13Xircom, Inc.Method and apparatus for wireless spread spectrum communication with preamble sounding gap
US5627856A (en)1994-09-091997-05-06Omnipoint CorporationMethod and apparatus for receiving and despreading a continuous phase-modulated spread spectrum signal using self-synchronizing correlators
US5629956A (en)1994-09-091997-05-13Omnipoint CorporationMethod and apparatus for reception and noncoherent serial correlation of a continuous phase modulated signal
US5680414A (en)1994-09-091997-10-21Omnipoint CorporationSynchronization apparatus and method for spread spectrum receiver
US5963586A (en)1994-09-091999-10-05Omnipoint CorporationMethod and apparatus for parallel noncoherent correlation of a spread spectrum signal
US5648982A (en)1994-09-091997-07-15Omnipoint CorporationSpread spectrum transmitter
US5953370A (en)1994-09-091999-09-14Omnipoint CorporationApparatus for receiving and correlating a spread spectrum signal
US5659574A (en)1994-09-091997-08-19Omnipoint CorporationMulti-bit correlation of continuous phase modulated signals
US5722053A (en)*1994-09-301998-02-24Qualcomm IncorporatedMultiple frequency communication device
US5758266A (en)*1994-09-301998-05-26Qualcomm IncorporatedMultiple frequency communication device
CN1086075C (en)*1994-09-302002-06-05夸尔柯姆股份有限公司Multiple band radio
RU2180769C2 (en)*1994-09-302002-03-20Квэлкомм ИнкорпорейтедMultiband radio station
WO1996010871A1 (en)*1994-09-301996-04-11Qualcomm IncorporatedMultiple band radio
WO1996012380A1 (en)*1994-10-161996-04-25Qualcomm IncorporatedMethod and apparatus for handoff between different cellular communications systems
US5697055A (en)*1994-10-161997-12-09Qualcomm IncorporatedMethod and apparatus for handoff between different cellular communications systems
RU2150176C1 (en)*1994-11-222000-05-27Квэлкомм ИнкорпорейтедMethod and device for searching pilot signal in cellular communication network
US5577022A (en)*1994-11-221996-11-19Qualcomm IncorporatedPilot signal searching technique for a cellular communications system
JP3112950B2 (en)1994-11-222000-11-27クゥアルコム・インコーポレーテッド Pilot Signal Search Technique for Cellular Communication System
WO1996016524A3 (en)*1994-11-221996-08-08Qualcomm IncPilot signal searching technique for a cellular communications system
US5602833A (en)*1994-12-191997-02-11Qualcomm IncorporatedMethod and apparatus for using Walsh shift keying in a spread spectrum communication system
US5737703A (en)*1994-12-231998-04-07Nokia Mobile Phones LimitedMulti-mode radio telephone which executes handover between different system
US6240292B1 (en)1994-12-292001-05-29Cellco PartnershipMethod and system for providing a handoff from a CDMA cellular telephone system
US6035197A (en)*1994-12-292000-03-07Cellco PartnershipMethod and system for providing a handoff from a CDMA cellular telephone system
US5898924A (en)*1994-12-301999-04-27Siemens AktiengesellschaftMethod for connection handling in communication systems with wireless signal transmission
US5691974A (en)*1995-01-041997-11-25Qualcomm IncorporatedMethod and apparatus for using full spectrum transmitted power in a spread spectrum communication system for tracking individual recipient phase, time and energy
US5826190A (en)*1995-01-041998-10-20Motorola, Inc.Emergency handoff method of redirecting calls in a satellite communication system
US5933787A (en)*1995-03-131999-08-03Qualcomm IncorporatedMethod and apparatus for performing handoff between sectors of a common base station
RU2172558C2 (en)*1995-03-302001-08-20Квэлкомм ИнкорпорейтедMethod and device to switch communication from code- division multiple access system to alternate system with use of mobile unit
AU697734B2 (en)*1995-03-301998-10-15Qualcomm IncorporatedMethod and apparatus for mobile unit assisted CDMA to alternative system hard handoff
US5594718A (en)*1995-03-301997-01-14Qualcomm IncorporatedMethod and apparatus for providing mobile unit assisted hard handoff from a CDMA communication system to an alternative access communication system
US5608722A (en)*1995-04-031997-03-04Qualcomm IncorporatedMulti-user communication system architecture with distributed receivers
US5726982A (en)*1995-04-041998-03-10Oki TelecomArtificial window size interrupt reduction system for CDMA receiver
US5627835A (en)*1995-04-041997-05-06Oki TelecomArtificial window size interrupt reduction system for CDMA receiver
US5757767A (en)*1995-04-181998-05-26Qualcomm IncorporatedMethod and apparatus for joint transmission of multiple data signals in spread spectrum communication systems
US5781541A (en)*1995-05-031998-07-14Bell Atlantic Network Services, Inc.CDMA system having time-distributed transmission paths for multipath reception
US5844898A (en)*1995-05-161998-12-01Nec CorporationMethod of radio channel switching over in a mobile radio communications system
US5710974A (en)*1995-05-171998-01-20Nokia Mobile Phones Ltd.Method for improving the reliability of a handover and call establishment, and a cellular radio system
WO1996037083A1 (en)*1995-05-171996-11-21Nokia Mobile Phones LimitedA method for improving the reliability of a handover and call establishment, and a cellular radio system
WO1996037970A1 (en)*1995-05-241996-11-28Nokia Telecommunications OyMethod for transmitting pilot channels, and a cellular radio system
WO1996037969A1 (en)*1995-05-241996-11-28Nokia Telecommunications OyMethod for transmitting a pilot signal, and a cellular radio system
US6415163B1 (en)1995-05-242002-07-02Nokia Telecommunications OyMethod for transmitting pilot channels and a cellular radio system
US5966670A (en)*1995-05-241999-10-12Nokia Telecommunications OyMethod for transmitting a pilot signal, and a cellular radio system
US6134438A (en)*1995-05-312000-10-17Telefonaktiebolaget L M EricssonLocal control enhancement in a telecommunications system
US6175560B1 (en)*1995-06-022001-01-16Airspan Networks, Inc.Apparatus and method of establishing and maintaining communication paths in a wireless telecommunications system
FR2735305A1 (en)*1995-06-081996-12-13Motorola Inc METHOD AND DEVICE FOR MODIFYING A SERVICE OPTION IN A MULTI-CODE DIVISION ACCESS COMMUNICATION SYSTEM
WO1996042174A1 (en)*1995-06-081996-12-27Motorola Inc.Changing a service option in a cdma communication system
GB2306277A (en)*1995-06-081997-04-30Motorola IncChanging a service option in a cdma communication system
US5920551A (en)*1995-06-231999-07-06Electronics And Telecommunications Research InstituteChannel structure with burst pilot in reverse link
US7706332B2 (en)1995-06-302010-04-27Interdigital Technology CorporationMethod and subscriber unit for performing power control
US7929498B2 (en)1995-06-302011-04-19Interdigital Technology CorporationAdaptive forward power control and adaptive reverse power control for spread-spectrum communications
US7502406B2 (en)1995-06-302009-03-10Interdigital Technology CorporationAutomatic power control system for a code division multiple access (CDMA) communications system
US7903613B2 (en)1995-06-302011-03-08Interdigital Technology CorporationCode division multiple access (CDMA) communication system
US8737363B2 (en)1995-06-302014-05-27Interdigital Technology CorporationCode division multiple access (CDMA) communication system
US7756190B2 (en)1995-06-302010-07-13Interdigital Technology CorporationTransferring voice and non-voice data
US7535874B2 (en)1995-06-302009-05-19Interdigital Technology CorporationMethod and apparatus for adaptive power control for spread-spectrum communications
US9564963B2 (en)1995-06-302017-02-07Interdigital Technology CorporationAutomatic power control system for a code division multiple access (CDMA) communications system
US6041046A (en)*1995-07-142000-03-21Omnipoint CorporationCyclic time hopping in time division multiple access communication system
US5930727A (en)*1995-07-211999-07-27Ericsson Inc.Analog fax and modem requests in a D-AMPS multi-line terminal system
AU735269B2 (en)*1995-08-082001-07-05Telefonaktiebolaget Lm Ericsson (Publ)Neighbor cell list creation and verification in a telecommunications system
WO1997006648A1 (en)*1995-08-081997-02-20Telefonaktiebolaget Lm Ericsson (Publ)Neighbor cell list creation and verification in a telecommunications system
US5915221A (en)*1995-08-081999-06-22Telefonaktiebolaget Lm EricssonNeighbor cell list creation and verification in a telecommunications system
US5680395A (en)*1995-08-151997-10-21Qualcomm IncorporatedMethod and apparatus for time division duplex pilot signal generation
CN1098611C (en)*1995-08-152003-01-08夸尔柯姆股份有限公司Method and apparatus for time division duplex pilot signal generation
US6198928B1 (en)1995-08-312001-03-06Nokia Telecommunications OyHandover method, and a cellular radio system
US6570862B2 (en)*1995-08-312003-05-27Nokia CorporationMethod for selecting the way to perform a handover, and a cellular radio system
US6108364A (en)*1995-08-312000-08-22Qualcomm IncorporatedTime division duplex repeater for use in a CDMA system
AU712159B2 (en)*1995-08-311999-10-28Qualcomm IncorporatedA handover method, and a cellular radio system
WO1997008910A1 (en)*1995-08-311997-03-06Nokia Telecommunications OyA method for selecting the way to perform a handover, and a cellular radio system
AU712633B2 (en)*1995-08-311999-11-11Nokia Telecommunications OyA method for selecting the way to perform a handover, and a cellular radio system
WO1997008911A1 (en)*1995-08-311997-03-06Nokia Telecommunications OyA handover method, and a cellular radio system
US5771451A (en)*1995-09-041998-06-23Nec CorporationMethod of transmission power control in a cellular mobile communication system and apparatus thereof
CN1130036C (en)*1995-09-082003-12-03夸尔柯姆股份有限公司Apparatus and method for controlling the actual transmission power of a base station in a cellular communications system
WO1997009794A1 (en)*1995-09-081997-03-13Qualcomm IncorporatedApparatus and method for controlling the actual transmission power of a base station in a cellular communications system
AU704781B2 (en)*1995-09-081999-05-06Qualcomm IncorporatedApparatus and method for controlling the actual transmission power of a base station in a cellular communications system
KR100443111B1 (en)*1995-09-082004-11-09퀄컴 인코포레이티드 Apparatus and method for controlling the actual transmit power of a base station of a cellular communication system
US20010018347A1 (en)*1995-09-292001-08-30Ziv Noam A.Method and system for processing telephone calls involving two digital wireless subscriber units that avoid double vocoding
US7778642B2 (en)1995-09-292010-08-17Qualcomm IncorporatedMethod and system for processing telephone calls involving two digital wireless subscriber units that avoid double vocoding
US5914948A (en)*1995-10-051999-06-22Alcatel N.V.Mobile radio system with time-division multiplexing
US5771452A (en)*1995-10-251998-06-23Northern Telecom LimitedSystem and method for providing cellular communication services using a transcoder
US5907813A (en)*1995-11-301999-05-25Qualcomm IncorporatedSignal acquisition in a wireless communication system by transmitting repeated access probes from a terminal to a hub
FR2742291A1 (en)*1995-12-121997-06-13Alcatel Mobile Comm FranceNeighbouring cell monitoring device for mobile communication networks
US5794149A (en)*1995-12-291998-08-11Lucent Technologies Inc.Base station controlled handoff method and apparatus
AU724112B2 (en)*1996-01-162000-09-14AlcatelAllocation of pilot carrier in multi-carrier system
KR100266758B1 (en)*1996-01-222000-09-15가나이 쓰도무 How to set up mobile communication system and communication line
US6157837A (en)*1996-01-232000-12-05Ntt Mobile Communications Network Inc.Mobile communication system, network and mobile station
US6539236B2 (en)*1996-02-062003-03-25Nokia Telecommunications OyEstablishment of a connection between a base station and a mobile station using random access channels
USRE39381E1 (en)*1996-02-062006-11-07Nokia CorporationEstablishment of a connection between a base station and a mobile station using random access channels
US5867763A (en)*1996-02-081999-02-02Qualcomm IncorporatedMethod and apparatus for integration of a wireless communication system with a cable T.V. system
US5839052A (en)*1996-02-081998-11-17Qualcom IncorporatedMethod and apparatus for integration of a wireless communication system with a cable television system
RU2187905C2 (en)*1996-02-082002-08-20Квэлкомм ИнкорпорейтедMethod and device for integrating wireless communication system into cable television system
WO1997029604A1 (en)*1996-02-121997-08-14Nokia Mobile Phones Ltd.Simplified mobile assisted handoff of signal between cells
US5774809A (en)*1996-02-121998-06-30Nokia Mobile Phones LimitedSimplified mobile assisted handoff of signal between cells
WO1997031503A1 (en)*1996-02-231997-08-28Qualcomm IncorporatedCoexisting gsm and cdma wireless telecommunications networks
JP3515125B2 (en)1996-02-232004-04-05カルコム・インコーポレーテッド Method and system for coexisting GSM and CDMA wireless communication systems
RU2193290C2 (en)*1996-02-232002-11-20Квэлкомм ИнкорпорейтедWireless telecommunication networks jointly employing global mobile communication system and code-division multiple access to channels
US5978679A (en)*1996-02-231999-11-02Qualcomm Inc.Coexisting GSM and CDMA wireless telecommunications networks
KR100270451B1 (en)*1996-03-062000-11-01다치카와 게이지Cell selection method, base station and mobile terminal of cdma mobile communication system using spreading code and phase of spreading code
US5884187A (en)*1996-03-131999-03-16Ziv; Noam A.Method and apparatus for providing centralized power control administration for a set of base stations
EP2288046A1 (en)1996-03-132011-02-23Qualcomm IncorporatedMethod and system for providing centralized power control administration for a set of base stations
EP0797367A3 (en)*1996-03-191999-10-20Ntt Mobile Communications Network Inc.Scheme for wire line data transmission in mobile communication system
US6122265A (en)*1996-03-192000-09-19Ntt Mobile Communications Network, Inc.Scheme for wire line data transmission in mobile communication system
US6061565A (en)*1996-04-022000-05-09Hewlett-Packard CompanyMobile radio systems
US5987013A (en)*1996-04-101999-11-16Nec CorporationHandoff control with a pilot used in a cell of a neighboring cell in a CDMA mobile communication network on a service frequency of the neighboring cell
US5940762A (en)*1996-05-011999-08-17Lee; Kuo-ChunInter-system calling supporting inter-system soft handoff
US5828661A (en)*1996-05-221998-10-27Qualcomm IncorporatedMethod and apparatus for providing a cone of silence in a cellular communication system
WO1997044969A3 (en)*1996-05-221997-12-31Qualcomm IncMethod and apparatus for providing a cone of silence in a cellular communication system
US5926470A (en)*1996-05-221999-07-20Qualcomm IncorporatedMethod and apparatus for providing diversity in hard handoff for a CDMA system
US5917811A (en)*1996-05-221999-06-29Qualcomm IncorporatedMethod and apparatus for measurement directed hard handoff in a CDMA system
AU715780B2 (en)*1996-05-222000-02-10Qualcomm IncorporatedMethod and apparatus for providing a cone of silence in a cellular communication system
WO1997044970A3 (en)*1996-05-221997-12-31Qualcomm IncMethod and apparatus for measurement directed hard handoff in a cdma system
US5878350A (en)*1996-05-221999-03-02Ntt Mobile Communication Network Inc.Scheme for controlling transmission powers during soft handover in a CDMA mobile communication system
WO1997044984A3 (en)*1996-05-231997-12-31Qualcomm IncMethod and apparatus for hard handoff in a cdma system
KR100491518B1 (en)*1996-05-232005-08-12콸콤 인코포레이티드Method and apparatus for hard handoff in a cdma system
US5848063A (en)*1996-05-231998-12-08Qualcomm IncorporatedMethod and apparatus for hard handoff in a CDMA system
CN1297175C (en)*1996-05-232007-01-24高通股份有限公司Method and apparatus for hard handoff in a CDMA system
EP1492373A3 (en)*1996-05-232006-05-31Qualcomm IncorporatedMethod and apparatus for hard handoff in a CDMA system
AU717479B2 (en)*1996-05-232000-03-30Qualcomm IncorporatedMethod and apparatus for hard handoff in a CDMA system
US8213485B2 (en)1996-05-282012-07-03Qualcomm IncorporatedHigh rate CDMA wireless communication system using variable sized channel codes
US8588277B2 (en)1996-05-282013-11-19Qualcomm IncorporatedHigh data rate CDMA wireless communication system using variable sized channel codes
US7715461B2 (en)1996-05-282010-05-11Qualcomm, IncorporatedHigh data rate CDMA wireless communication system using variable sized channel codes
US5881368A (en)*1996-06-061999-03-09Qualcomm IncorporatedMethod and apparatus of power control in a CDMA dispatch system
US5884196A (en)*1996-06-061999-03-16Qualcomm IncorporatedMethod and apparatus of preserving power of a remote unit in a dispatch system
US6654611B2 (en)1996-06-072003-11-25Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US6178164B1 (en)1996-06-072001-01-23Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US6021122A (en)*1996-06-072000-02-01Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US7496073B2 (en)1996-06-072009-02-24Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US6674736B1 (en)1996-06-072004-01-06Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US5983099A (en)*1996-06-111999-11-09Qualcomm IncorporatedMethod/apparatus for an accelerated response to resource allocation requests in a CDMA push-to-talk system using a CDMA interconnect subsystem to route calls
GB2314731A (en)*1996-06-271998-01-07Motorola LtdHandover management system for cellular network
WO1998000999A3 (en)*1996-06-281998-03-26Motorola LtdMethod and apparatus for monitoring channels to enable handoff in mobile communication systems
AU718981B2 (en)*1996-08-072000-05-04Qualcomm IncorporatedMethod and apparatus for reliable intersystem handoff in a CDMA system
CN1098613C (en)*1996-08-072003-01-08夸尔柯姆股份有限公司 Method and device for reliable intersystem handover in CDMA system
US5937019A (en)*1996-08-071999-08-10Qualcomm IncorporatedMethod and apparatus for reliable intersystem handoff in a CDMA system
WO1998006230A3 (en)*1996-08-071998-03-26Qualcomm IncMethod and apparatus for reliable intersystem handoff in a cdma system
US5790589A (en)*1996-08-141998-08-04Qualcomm IncorporatedSystem and method for rapidly reacquiring a pilot channel
US5889768A (en)*1996-08-301999-03-30Motorola, Inc.Method of and apparatus for pilot channel acquisition
US6160799A (en)*1996-09-062000-12-12Motorola, Inc.Method of and apparatus for pilot set maintenance
GB2317077A (en)*1996-09-061998-03-11Motorola IncPilot set maintenance
GB2317077B (en)*1996-09-061998-11-11Motorola IncA method of and apparatus for pilot set maintenance
WO1998012678A3 (en)*1996-09-181998-06-04Method of facilitating transmission level measurement, and base station
US6639908B1 (en)1996-09-182003-10-28Nokia Telecommunications OyMethod of facilitating transmission level measurement, and base station
AU727513B2 (en)*1996-09-182000-12-14Nokia Telecommunications OyMethod of facilitating transmission level measurement, and base station
US5887021A (en)*1996-09-231999-03-23Nokia Telecommunications OyBase station receiver and a method for receiving a signal
US6111864A (en)*1996-09-272000-08-29Nec CorporationHand-off method and apparatus in CDMA cellular system
CN1114325C (en)*1996-10-112003-07-09摩托罗拉公司System method and apparatus for soft handoff
GB2318256A (en)*1996-10-111998-04-15Motorola IncSoft handoff in a CDMA communication system
GB2356781B (en)*1996-10-112001-08-08Motorola IncSystem method and apparatus for soft handoff
GB2318256B (en)*1996-10-112001-08-08Motorola IncSystem,method and apparatus for soft handoff
DE19744177B4 (en)*1996-10-112005-11-17Motorola, Inc., Schaumburg Moving station and base station for soft forwarding
GB2356781A (en)*1996-10-112001-05-30Motorola IncSoft hadoff in a CDMA communication system
AU728459B2 (en)*1996-10-282001-01-11Ericsson Inc.Mobile assisted handoff in radiocommunication systems
WO1998019492A3 (en)*1996-10-281998-10-01Northern Telecom LtdMethod of optimizing neighbor set during soft handoff of a mobile unit in a CDMA cellular environment
AU728459C (en)*1996-10-282001-08-23Ericsson Inc.Mobile assisted handoff in radiocommunication systems
US5950131A (en)*1996-10-291999-09-07Motorola, Inc.Method and apparatus for fast pilot channel acquisition using a matched filter in a CDMA radiotelephone
CN1092881C (en)*1996-11-062002-10-16摩托罗拉公司 Method and device for improving out-of-control situation in spread spectrum communication system
WO1998020640A1 (en)*1996-11-061998-05-14Motorola Inc.Method and apparatus for mitigating an orphan condition in a spread-spectrum communication system
US5812540A (en)*1996-11-061998-09-22Motorola, Inc.Method and apparatus for mitigating an orphan condition in a spread-spectrum communication system
WO1998023118A1 (en)*1996-11-151998-05-28Nokia Telecommunications OyDynamic channel allocation
AU711875B2 (en)*1996-11-151999-10-21Nokia Networks OyDynamic channel allocation
US5883888A (en)*1996-12-031999-03-16Telefonaktiebolaget Lm EricssonSeamless soft handoff in a CDMA cellular communications system
DE19754204B4 (en)*1996-12-192004-08-26Motorola Inc. (N.D.Ges.D. Staates Delaware), Schaumburg Distribution method and communication device for wireless information transmission
FR2757734A1 (en)*1996-12-191998-06-26Motorola Inc COMMUNICATION PASSING METHOD AND WIRELESS COMMUNICATION DEVICE
US5920549A (en)*1996-12-191999-07-06Motorola, Inc.Method of handing off and a wireless communication device
US5987012A (en)*1996-12-191999-11-16Motorola, Inc.Method of handing off and a wireless communication device
US5854785A (en)*1996-12-191998-12-29Motorola, Inc.System method and wireless communication device for soft handoff
US6591104B2 (en)1996-12-262003-07-08Ntt Mobile Communications Network, Inc.Method for handover
US6470188B1 (en)*1996-12-262002-10-22Ntt Mobile Communications Network, Inc.Method for handover
US5970407A (en)*1996-12-311999-10-19Telefonaktiebolaget L M Ericsson (Publ)Compensation for mobile assisted handoff measurement inaccuracies
WO1998030043A3 (en)*1996-12-311998-10-29Ericsson Telefon Ab L MCompensation for mobile assisted handoff measurement inaccuracies
US6810254B2 (en)1997-01-152004-10-26Qualcomm IncorporatedMethod and apparatus for performing mobile assisted hard handoff between communication systems
US6304755B1 (en)1997-01-152001-10-16Qualcomm IncorporatedMethod and apparatus for performing mobile assisted hard handoff between communication systems
WO1998032262A3 (en)*1997-01-151998-12-23Qualcomm IncMethod and apparatus for performing mobile assisted hard handoff between communication systems
US5940761A (en)*1997-01-151999-08-17Qaulcomm IncorporatedMethod and apparatus for performing mobile assisted hard handoff between communication systems
CN1090438C (en)*1997-01-172002-09-04三星电子株式会社Hand-off method in personal communication service system
USRE39177E1 (en)*1997-01-292006-07-11Qualcomm, Inc.Method and apparatus for performing soft hand-off in a wireless communication system
RU2217871C2 (en)*1997-01-292003-11-27Квэлкомм ИнкорпорейтедMethod and device for relocating communication channels in wireless communication system
WO1998033288A3 (en)*1997-01-291998-11-12Qualcomm IncMethod and apparatus for performing soft hand-off in a wireless communication system
US6151502A (en)*1997-01-292000-11-21Qualcomm IncorporatedMethod and apparatus for performing soft hand-off in a wireless communication system
US6181942B1 (en)*1997-01-312001-01-30Qualcomm IncorporatedMethod and apparatus for providing an alert with information signal between a mobile switching center and a base station
US8396033B2 (en)1997-02-112013-03-12Qualcomm IncorporatedMethod and apparatus for forward link rate scheduling
WO1998035525A3 (en)*1997-02-111998-12-17Qualcomm IncA method of and apparatus for controlling handoff in a communication system
US5987326A (en)*1997-02-111999-11-16Qualcomm IncorporatedTransmit power reduction for a high speed CDMA link in soft handoff
CN1110223C (en)*1997-02-132003-05-28夸尔柯姆股份有限公司 Method and apparatus for merging pilot neighbor list in mobile phone system
US5982758A (en)*1997-02-131999-11-09Hamdy; Walid M.Method and apparatus for merging neighbor lists in a CDMA mobile telephone system
WO1998036588A3 (en)*1997-02-131998-12-10Qualcomm IncMethod of and apparatus for merging pilot neighbor lists in a mobile telephone system
EP1487230A1 (en)1997-02-132004-12-15QUALCOMM IncorporatedMethod and apparatus for merging pilot neighbor lists in a mobile telephone system
EP2229026A1 (en)1997-02-182010-09-15Qualcomm IncorporatedMethod of and apparatus for avoiding lost communication with a mobile station
US5999816A (en)*1997-02-181999-12-07Qualcomm IncorporatedMethod and apparatus for performing mobile assisted hard handoff between communication systems
US6836660B1 (en)1997-02-252004-12-28Adc Tolocommunications, Inc. And Adc Mobile Systems, Inc.Methods and systems for communicating in a cellular network
US7242938B2 (en)1997-02-252007-07-10Sbc Technology Resources, Inc.Mobile assisted handoff system and method
US7043243B2 (en)1997-02-252006-05-09Sbc Technology Resources, Inc.Mobile assisted handoff system and method
US6044272A (en)*1997-02-252000-03-28Sbc Technology Resources, Inc.Mobile assisted handoff system and method
US6694138B1 (en)1997-02-252004-02-17Sbc Technology Resources, Inc.Mobile assisted handoff system and method
US6112086A (en)*1997-02-252000-08-29Adc Telecommunications, Inc.Scanning RSSI receiver system using inverse fast fourier transforms for a cellular communications system with centralized base stations and distributed antenna units
US20040048616A1 (en)*1997-02-252004-03-11Kobylinski Richard A.Mobile assisted handoff system and method
US20060189316A1 (en)*1997-02-252006-08-24Sbc Technology Resources, Inc:Mobile assisted handoff system and method
US5901145A (en)*1997-02-281999-05-04Telefonaktiebolaget L M Ericsson (Publ)Mobile station handoff between a spread spectrum communications system and a frequency division communications system
US6275704B1 (en)1997-03-032001-08-14Xircom, Inc.Multiple access communication system with polarized antennas
US6510172B1 (en)1997-03-042003-01-21Qualcomm, Inc.Multi-user communication system architecture with distributed transmitters
US6301288B1 (en)1997-03-192001-10-09Infineon Technologies AgMethod of chip interleaving in direct sequence spread spectrum communications
US6108548A (en)*1997-03-192000-08-22Fujitsu LimitedMobile station and soft handoff method
US6061386A (en)*1997-03-192000-05-09I.C. Com Ltd.Method of chip interleaving in direct sequence spread spectrum communications
US6282228B1 (en)1997-03-202001-08-28Xircom, Inc.Spread spectrum codes for use in communication
US20080056197A1 (en)*1997-04-062008-03-06Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
US20090011766A1 (en)*1997-04-062009-01-08Ntt Docomo, Inc.Mobile communication system and mobile station performing diversity handover
US20060128386A1 (en)*1997-04-062006-06-15Tomoyuki OhtaniMobile communication system, mobile station and diversity handover branch control method
US7873014B2 (en)1997-04-062011-01-18Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
US5970058A (en)*1997-04-121999-10-19Motorola, Inc.Method and apparatus for freeing a frame to aid in handoff determination in a code division multiple access communication system
WO1998047242A1 (en)*1997-04-121998-10-22Motorola Inc.Method and apparatus for freeing a frame to aid in handoff determination in a code division multiple access communication system
US6272122B1 (en)*1997-04-142001-08-07Samsung Electronics, Co., Ltd.Pilot PN offset assigning method for digital mobile telecommunications system
US6061556A (en)*1997-04-242000-05-09Telefonaktiebolaget Lm Ericsson (Publ)System and method for secondary traffic charging in a radio telecommunications network
US8259675B2 (en)1997-04-242012-09-04Ntt Docomo, Inc.Method and system for mobile communications
GB2339511A (en)*1997-04-242000-01-26Ericsson Telefon Ab L MSystem and method for allocating channel elements in a code division multiple access radio telecommunications network
GB2339511B (en)*1997-04-242002-02-27Ericsson Telefon Ab L MSystem and method for allocating channel elements in a code division multiple access radio telecommunications network
US20070298804A1 (en)*1997-04-242007-12-27Ntt Mobile Communications Network, Inc.Method and system for mobile communications
DE19882331B3 (en)*1997-04-242014-05-28Telefonaktiebolaget Lm Ericsson (Publ) A system and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
US8542835B2 (en)1997-04-242013-09-24Ntt Docomo, Inc.Method and system for mobile communications
US8185158B2 (en)1997-04-242012-05-22Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US7664507B2 (en)1997-04-242010-02-16Ntt Docomo, Inc.Method and system for mobile communications
US7630716B2 (en)1997-04-242009-12-08Ntt Docomo, Inc.Method and system for mobile communications
US7577435B2 (en)1997-04-242009-08-18Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US20090197646A1 (en)*1997-04-242009-08-06Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US7236787B1 (en)*1997-04-242007-06-26Ntt Mobile Communications Network, Inc.Method and system for mobile communications
GB2339512A (en)*1997-04-242000-01-26Ericsson Telefon Ab L MSystem and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
WO1998048529A3 (en)*1997-04-241999-01-28Ericsson Telefon Ab L MSystem and method for allocating channel elements in a code division multiple access radio telecommunications network
WO1998048530A3 (en)*1997-04-241999-01-28Ericsson Telefon Ab L MSystem and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
US20080108356A1 (en)*1997-04-242008-05-08Ntt Mobile Communications Network, Inc.Method and system for mobile communications
DE19882323B3 (en)*1997-04-242012-02-02Telefonaktiebolaget Lm Ericsson (Publ) System and method for allocating channel elements in a CDMA radio telecommunications network
GB2339512B (en)*1997-04-242002-05-22Ericsson Telefon Ab L MSystem and method for dynamically increasing the capacity of a code division multiple access radio telecommunications network
US7383045B2 (en)1997-04-242008-06-03Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US5933777A (en)*1997-04-241999-08-03Telefonaktiebolaget Lm Ericsson (Publ)System and method for allocating channel elements in a code division multiple access radio telecommunications network
US7907730B2 (en)1997-04-242011-03-15Ntt Docomo, Inc.Method and system for mobile communications
US8275133B2 (en)1997-04-242012-09-25Ntt Docomo, Inc.Method and system for mobile communications
US6078817A (en)*1997-04-242000-06-20Telefonaktiebolaget Lm EricssonSystem and method of dynamically increasing the capacity of a code division multiple access radio telecommunications network
US20060199578A1 (en)*1997-04-242006-09-07Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US8331935B2 (en)1997-04-242012-12-11Ntt Docomo, Inc.Method and system for mobile communications
US7953414B2 (en)1997-04-242011-05-31Ntt DocomoMethod and system for mobile communications
US20060264207A1 (en)*1997-04-242006-11-23Ntt Mobile Communications Network, Inc.Method and system for mobile communications
US20060251038A1 (en)*1997-04-242006-11-09Ntt Mobile Communications Network, IncMethod and system for mobile communications
US7792531B2 (en)1997-04-242010-09-07Ntt Docomo, Inc.Method and system for mobile communications
US6002933A (en)*1997-04-291999-12-14Qualcomm IncorporatedInter-system soft handoff
US6052594A (en)*1997-04-302000-04-18At&T Corp.System and method for dynamically assigning channels for wireless packet communications
US10098128B2 (en)1997-04-302018-10-09At&T Intellectual Property Ii, L.P.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive antenna array
US9681453B2 (en)1997-04-302017-06-13At&T Intellectual Property Ii, L.P.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive array
US6091717A (en)*1997-05-052000-07-18Nokia Mobile Phones LimitedMethod for scheduling packet data transmission
US20080219198A1 (en)*1997-05-052008-09-11Nokia CorporationMethod for scheduling packet data transmission
US8054811B2 (en)1997-05-052011-11-08Nokia CorporationMethod for scheduling packet data transmission
WO1998053620A1 (en)*1997-05-191998-11-26Northern Telecom LimitedBoundary sector hard handoff trigger
US6999766B1 (en)1997-05-192006-02-14Qualcomm IncorporatedMethod and apparatus for optimization of a cellular network
AU735575B2 (en)*1997-05-192001-07-12David BoettgerBoundary sector hard handoff trigger
US6075990A (en)*1997-05-212000-06-13Lg Information & Communications, Ltd.Handoff control method and communication system in a multiple frequency environment
KR100240451B1 (en)*1997-05-222000-01-15서평원Reducing method of continuing hard handoff between base stations
EP0881852A3 (en)*1997-05-282000-03-01Nec CorporationLow traffic handoff method for CDMA cellular network using different frequencies among base stations
FR2764157A1 (en)*1997-05-291998-12-04Samsung Electronics Co Ltd SWING SWITCH SWITCHING METHOD IN CDMA CELLULAR SYSTEM
GB2327574B (en)*1997-05-291999-07-14Samsung Electronics Co LtdSoft swap handoff method in a CDMA cellular system
DE19824160B4 (en)*1997-05-292011-12-15Samsung Electronics Co., Ltd. A method of performing a soft swap handoff in a CDMA cellular system
GB2327574A (en)*1997-05-291999-01-27Samsung Electronics Co LtdSoft swap handoff method in a cdma cellular system
USRE43296E1 (en)1997-06-042012-04-03Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
US20040180662A1 (en)*1997-06-042004-09-16Tomoyuki OhtaniMobile communication system, mobile station and diversity handover branch control method
EP1571857A3 (en)*1997-06-042007-09-05NTT DoCoMo, Inc.Mobile radio communiction system, mobile station, and method for controlling diversity hand-over branch
US8090373B2 (en)1997-06-042012-01-03Ntt Docomo, Inc.Center for a mobile communication system performing diversity handover
EP0935400A4 (en)*1997-06-042002-01-30Ntt Docomo IncMobile radio communication system, mobile station, and method for controlling diversity hand-over branch
US8064908B2 (en)1997-06-042011-11-22Ntt Docomo, Inc.Mobile communication system and mobile station performing diversity handover
US7570950B2 (en)1997-06-042009-08-04Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
EP1571858A3 (en)*1997-06-042007-09-05NTT DoCoMo, Inc.Mobile radio communication system, mobile station, and method for controllling diversity hand-over branch
US7289809B2 (en)1997-06-042007-10-30Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
US20110032905A1 (en)*1997-06-042011-02-10Ntt Docomo, Inc.Mobile communication system and mobile station performing diversity handover
US20070058589A1 (en)*1997-06-042007-03-15Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
US6728227B1 (en)1997-06-042004-04-27Ntt Docomo, Inc.Mobile radio communication system, mobile station, and method for controlling diversity hand-over branch
US7403777B2 (en)1997-06-042008-07-22Ntt Docomo, Inc.Mobile communication system, mobile station and diversity handover branch control method
EP0883251A3 (en)*1997-06-052002-07-03Nokia CorporationPower control of mobile station transmission during handoff in a cellular system
US6141555A (en)*1997-06-092000-10-31Nec CorporationCellular communication system, and mobile and base stations used in the same
USRE41891E1 (en)*1997-06-092010-10-26Nec CorporationCellular communication system, and mobile and base stations used in the same
USRE39735E1 (en)1997-06-092007-07-17Nec CorporationCellular communication system, and mobile and base stations used in the same
EP1511344A3 (en)*1997-06-092005-03-16Nec CorporationCellular communication system with soft handover and apparatus therefor
US20040229617A1 (en)*1997-06-092004-11-18Nec CorporationCellular communication system, and mobile and base stations used in the same
EP1511343A3 (en)*1997-06-092005-03-16Nec CorporationCellular communication system with soft handover and apparatus therefor
EP0884918A3 (en)*1997-06-092000-04-12Nec CorporationCellular communication system with soft handover and apparatus therefor
KR100362074B1 (en)*1997-06-092004-08-11닛본 덴기 가부시끼가이샤 A cellular system, a mobile station and a base station used in a cellular system
US20020141414A1 (en)*1997-06-172002-10-03Ramin RezaiifarMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US7068658B2 (en)1997-06-172006-06-27Qualcomm IncorporatedMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US5982760A (en)*1997-06-201999-11-09Qualcomm Inc.Method and apparatus for power adaptation control in closed-loop communications
US6304562B1 (en)1997-06-262001-10-16Samsung Electronics Co., Ltd.Asymmetric forward power control in a CDMA communication
US6556829B1 (en)*1997-06-302003-04-29Telefonaktiebolaget Lm Ericsson (Publ)Mobile communications system
US6256501B1 (en)*1997-07-032001-07-03Oki Electric Industry Co., Ltd.Cellular mobile telecommunications system for controlling a hand-off by a mobile station
WO1999003245A3 (en)*1997-07-091999-04-01Northern Telecom LtdMethod and system for improving handoff in a cellular network
US6112089A (en)*1997-07-092000-08-29Northern Telecom LimitedMethod and system for increasing capacity and improving performance of a cellular network
US6192246B1 (en)1997-07-092001-02-20Nortel Networks LimitedMethod and system for increasing capacity and improving performance of a cellular network
US5974318A (en)*1997-07-091999-10-26Northern Telecom LimitedMethod and system for increasing capacity and improving performance of a cellular network
US6055428A (en)*1997-07-212000-04-25Qualcomm IncorporatedMethod and apparatus for performing soft hand-off in a wireless communication system
US6069871A (en)*1997-07-212000-05-30Nortel Networks CorporationTraffic allocation and dynamic load balancing in a multiple carrier cellular wireless communication system
RU2219661C2 (en)*1997-07-212003-12-20Квэлкомм ИнкорпорейтедMethod and device for selecting base station to communicate with remote station
KR100702432B1 (en)*1997-07-212007-04-03콸콤 인코포레이티드 Method and apparatus for selecting a base station for communicating with a mobile station
US6185199B1 (en)1997-07-232001-02-06Qualcomm Inc.Method and apparatus for data transmission using time gated frequency division duplexing
US6038448A (en)*1997-07-232000-03-14Nortel Networks CorporationWireless communication system having hand-off based upon relative pilot signal strengths
US5953320A (en)*1997-08-081999-09-14Qualcomm IncorporatedMethod and apparatus for constructing a temporary list of neighboring base stations in a wireless communication device
US6400953B1 (en)*1997-08-112002-06-04Nec CorporationCDMA type mobile radio communication system capable of realizing an effective system operation without excess and deficiency of radio base stations simultaneously connected
EP0897251A3 (en)*1997-08-112000-04-12Nec CorporationCDMA type mobile radio communication system capable of realizing an effective system operation with neither an excess nor a deficiency of simultaneously connected radio base stations
US6418320B2 (en)*1997-08-122002-07-09Nec CorporationMobile station and a method of reducing interference among radio channels in the mobile station
RU2120180C1 (en)*1997-08-131998-10-10Закрытое акционерное общество "Кодофон"Method of reception of multiray signals and device for its realization
US6507568B2 (en)*1997-08-272003-01-14Lucent Technologies Inc.Enhanced access in wireless communication systems under rapidly fluctuating fading conditions
US6201802B1 (en)*1997-08-292001-03-13Qualcomm Inc.Method and apparatus for analyzing base station timing
US6097954A (en)*1997-08-292000-08-01Lucent Technologies, Inc.Method for performing a soft handoff
EP0899981A3 (en)*1997-08-291999-04-14Lucent Technologies Inc.A method for performing a soft handoff
US6307849B1 (en)1997-09-082001-10-23Qualcomm IncorporatedMethod and system for changing forward traffic channel power allocation during soft handoff
AU740612B2 (en)*1997-09-082001-11-08Qualcomm IncorporatedMethod and system for changing forward traffic channel power allocation during soft handoff
US7009953B2 (en)1997-09-082006-03-07Qualcomm IncorporatedMethod and system for changing forward traffic channel power allocation during soft handoff
WO1999013675A1 (en)*1997-09-081999-03-18Qualcomm IncorporatedMethod and system for changing forward traffic channel power allocation during soft handoff
US6038450A (en)*1997-09-122000-03-14Lucent Technologies, Inc.Soft handover system for a multiple sub-carrier communication system and method thereof
US6215777B1 (en)1997-09-152001-04-10Qualcomm Inc.Method and apparatus for transmitting and receiving data multiplexed onto multiple code channels, frequencies and base stations
US6167270A (en)*1997-09-162000-12-26Qualcomm Inc.Soft handoff in the transmission of supplemental channel data
WO1999014975A3 (en)*1997-09-161999-05-14Qualcomm IncChannel structure for communication systems
US6526030B2 (en)1997-09-162003-02-25Qualcomm IncorporatedChannel structure for communication systems
KR100803956B1 (en)*1997-09-162008-02-15퀄컴 인코포레이티드 Channel structure for communication system
KR100685687B1 (en)*1997-09-162007-02-23퀄컴 인코포레이티드 Channel structure for communication system
NO337557B1 (en)*1997-09-162016-05-09Qualcomm Inc Channel structure for radio connection systems
US6377809B1 (en)1997-09-162002-04-23Qualcomm IncorporatedChannel structure for communication systems
US7519044B1 (en)1997-09-162009-04-14Qualcomm IncorporatedChannel structure for communication systems
AU758322B2 (en)*1997-09-162003-03-20Qualcomm IncorporatedChannel structure for communication systems
EP1933476A2 (en)1997-09-162008-06-18Qualcomm IncorporatedChannel structure for communication systems
EP1933476A3 (en)*1997-09-162009-03-11Qualcomm IncorporatedChannel structure for communication systems
EP1641147A1 (en)*1997-09-162006-03-29Qualcomm, IncorporatedChannel structure for communication systems
US8184611B2 (en)1997-09-192012-05-22Qualcomm IncorporatedMobile station assisted timing synchronization in a CDMA communication system
US6151311A (en)*1997-09-192000-11-21Qualcomm Inc.Mobile station assisted timing synchronization in a CDMA communication system
US20080285539A1 (en)*1997-09-192008-11-20Qualcomm IncorporatedMobile station assisted timing synchronization in a cdma communication system
US6542471B1 (en)*1997-09-242003-04-01Toyota Jidosha Kabushiki KaishaRadio communication system for mobile objects and radio communication mobile station used in the system
US20060140152A1 (en)*1997-10-092006-06-29Jun WangMethod and apparatus for performing idle handoff in a multiple access communication system
US7519027B2 (en)*1997-10-092009-04-14Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US20080032693A1 (en)*1997-10-092008-02-07Interdigital Technology CorporationSeamless handoff system and method
WO1999020074A1 (en)*1997-10-091999-04-22Qualcomm IncorporatedMethod and apparatus for performing idle handoff in a multiple access communication system
US6754497B1 (en)*1997-10-092004-06-22Interdigital Technology CorporationSeamless handoff system and method
US7006470B1 (en)1997-10-092006-02-28Qualcomm IncMethod and apparatus for performing idle handoff in a multiple access communication system
US6356595B1 (en)*1997-10-142002-03-12Sony CorporationMethod and apparatus for decoding continuously coded convolutionally encoded messages
US20020177412A1 (en)*1997-10-202002-11-28Matsushita Electric Industrial Co., Ltd.Radio communication apparatus and radio communication method
WO1999023847A1 (en)*1997-10-311999-05-14Motorola Inc.Method and apparatus for handoff within a communication system
US7499427B2 (en)1997-11-032009-03-03Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
EP2114040A1 (en)1997-11-032009-11-04Qualcom IncorporatedMethod and apparatus for high rate packet data transmission
RU2233045C2 (en)*1997-11-032004-07-20Квэлкомм ИнкорпорейтедMethod and device for high-speed burst data transfer
US8189540B2 (en)1997-11-032012-05-29Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8009625B2 (en)1997-11-032011-08-30Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848282B2 (en)1997-11-032010-12-07Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848283B2 (en)1997-11-032010-12-07Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US9001735B2 (en)1997-11-032015-04-07Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US9118387B2 (en)1997-11-032015-08-25Qualcomm IncorporatedPilot reference transmission for a wireless communication system
US8351372B2 (en)1997-11-032013-01-08Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US9124344B2 (en)1997-11-032015-09-01Qualcomm IncorporatedPilot reference transmission for a wireless communication system
US8077655B2 (en)1997-11-032011-12-13Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
EP2094042A1 (en)1997-11-032009-08-26Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8005042B2 (en)1997-11-032011-08-23Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848284B2 (en)1997-11-032010-12-07Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7848285B2 (en)1997-11-032010-12-07Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US7995531B2 (en)1997-11-032011-08-09Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8311027B2 (en)1997-11-032012-11-13Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US8089924B2 (en)1997-11-032012-01-03Qualcomm IncorporatedMethod and apparatus for high rate packet data transmission
US20020041577A1 (en)*1997-11-062002-04-11Lg Information & Communications, Ltd.Method and system for providing inter-frequency handoff in a telephone system
US7136366B2 (en)*1997-11-062006-11-14Lg Electronics Inc.Method and system for providing inter-frequency handoff in a telephone system
DE19882841B4 (en)*1997-11-252009-04-23Motorola, Inc., Schaumburg Method and apparatus for determining handover candidates in a Neighbor Set in a CDMA communication system
US6859654B1 (en)1997-12-122005-02-22Orange Personal Communications Services LimitedMethod for transmitting measurement reports in a mobile communications system
GB2332340B (en)*1997-12-122003-04-02Orange Personal Comm Serv LtdTransmission of measurement reports in a cellular communication system
US6078813A (en)*1997-12-162000-06-20Telefonaktiebolaget L M Ericsson (Publ)Handover quality control in a mobile communications system
WO1999033196A1 (en)*1997-12-191999-07-01Advanced Communications Consultancy (Uk) Ltd.Apparatus and method for signal detection by base station in a mobile communication system
EP0926915A3 (en)*1997-12-242000-04-05Nokia Mobile Phones Ltd.Prioritizing pilot set searching for a CDMA telecommunications system
US6175587B1 (en)1997-12-302001-01-16Motorola, Inc.Communication device and method for interference suppression in a DS-CDMA system
US6175588B1 (en)1997-12-302001-01-16Motorola, Inc.Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
RU2425469C2 (en)*1998-01-162011-07-27Квэлкомм ИнкорпорейтедMobile station assisted timing synchronisation in cdma communication system
RU2294059C2 (en)*1998-01-162007-02-20Квэлкомм ИнкорпорейтедTime setting synchronization supported by mobile station in cdma system
RU2178240C2 (en)*1998-01-242002-01-10Самсунг Электроникс Ко., Лтд.Method for data transmission in mobile communication system
JP3439976B2 (en)1998-01-272003-08-25松下電器産業株式会社 CDMA communication system and CDMA communication method
US7603123B2 (en)1998-02-132009-10-13Qualcomm IncorporatedMethod and system for performing a handoff in a wireless communication system, such as a hard handoff
US20100046478A1 (en)*1998-02-132010-02-25Qualcomm IncorporatedMethod and system for performing a handoff in a wireless communication system, such as a hard handoff
US8170558B2 (en)1998-02-132012-05-01Qualcomm IncorporatedMethod and system for performing a handoff in a wireless communication system, such as a hard handoff
US20070213063A1 (en)*1998-02-132007-09-13Qualcomm IncorporatedMethod and system for performing a handoff in a wireless communication system, such as a hard handoff
US7003290B1 (en)1998-02-172006-02-21Nokia CorporationMeasurement reporting in a telecommunication system
US20060084390A1 (en)*1998-02-172006-04-20Nokia CorporationMeasurement reporting in a telecommunication system
US7499701B2 (en)1998-02-172009-03-03Qualcomm, IncorporatedMeasurement reporting in a telecommunication system
US6477155B1 (en)*1998-03-042002-11-05Samsung Electronics, Co., Ltd.Method for determining the number of effective channels and the effective channel rate in a CDMA network
US6895245B2 (en)*1998-03-062005-05-17Telefonaktiebolaget Lm Ericssion(Publ)Telecommunications interexchange measurement transfer
RU2219662C2 (en)*1998-03-062003-12-20Телефонактиеболагет Лм Эрикссон (Пабл)Interstation communication overload control
US6728540B1 (en)*1998-03-092004-04-27Avaya Technology Corp.Assisted handover in a wireless communication system
US6201954B1 (en)*1998-03-252001-03-13Qualcomm Inc.Method and system for providing an estimate of the signal strength of a received signal
EP1605606A3 (en)*1998-03-252006-09-06QUALCOMM IncorporatedMethod and system for providing an estimate of the signal strength of a received signal
WO1999049588A1 (en)*1998-03-251999-09-30Qualcomm IncorporatedMethod and system for providing an estimate of the signal strength of a received signal
US6181943B1 (en)1998-03-302001-01-30Lucent Technologies Inc.Method and apparatus for inter-frequency hand-off in wireless communication systems
EP0948231A3 (en)*1998-03-302000-04-19Lucent Technologies Inc.Signal strength triggered handoff in wireless communication systems
US6140961A (en)*1998-04-102000-10-31Nec CorporationDirectivity control circuitry for an adaptive antenna
EP0949709A1 (en)*1998-04-101999-10-13Nec CorporationDirectivity control circuitry for an adaptive antenna
US6370397B1 (en)1998-05-012002-04-09Telefonaktiebolaget Lm Ericsson (Publ)Search window delay tracking in code division multiple access communication systems
US6731622B1 (en)1998-05-012004-05-04Telefonaktiebolaget Lm Ericsson (Publ)Multipath propagation delay determining means using periodically inserted pilot symbols
EP2291027A1 (en)1998-05-072011-03-02Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US6381458B1 (en)*1998-05-152002-04-30Telefonaktiebolaget Lm Ericsson (Publ)Method and system for soft handoff control based on access network capacity
WO1999060797A3 (en)*1998-05-152000-01-13Ericsson Telefon Ab L MMethod and system for soft handoff control based on access network capacity
AU753734B2 (en)*1998-05-152002-10-24Telefonaktiebolaget Lm Ericsson (Publ)Method and system for soft handoff control based on access network capacity
US7593408B2 (en)1998-05-202009-09-22Qualcomm IncorporatedMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US20060256794A1 (en)*1998-05-202006-11-16Qualcomm IncorporatedMethod and apparatus for resolving ambiguity in reception of multiple retransmitted frames
US20030118136A1 (en)*1998-05-212003-06-26Tiedemann Edward G.Method and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US20030194033A1 (en)*1998-05-212003-10-16Tiedemann Edward G.Method and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US7010068B2 (en)*1998-05-212006-03-07Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US7653157B2 (en)*1998-05-212010-01-26Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US7664209B2 (en)*1998-05-212010-02-16Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US20060120490A1 (en)*1998-05-212006-06-08Tiedemann Edward G JrMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
US20070153941A1 (en)*1998-05-212007-07-05Qualcomm IncorporatedMethod and apparatus for coordinating transmission of short messages with hard handoff searches in a wireless communications system
WO1999062278A1 (en)*1998-05-281999-12-02Motorola Inc.Method for improving communication coverage in multi-cell communication systems using location information
EP1082832A4 (en)*1998-05-282003-10-01Motorola IncCommunication system, mobile station, and method for mobile station registration
CN100348054C (en)*1998-05-282007-11-07摩托罗拉公司Method for improving communication coverage in multi-cell communication systems using location information
US6161015A (en)*1998-05-282000-12-12Motorola, Inc.Method for improving communication coverage in multi-cell communication systems using location information
US6104927A (en)*1998-05-282000-08-15Motorola, Inc.Communication system, mobile station, and method for mobile station registration
US6381235B1 (en)*1998-05-292002-04-30Lucent Technologies Inc.Wireless CDMA system having a unique forward configuration control channel
EP0961513A3 (en)*1998-05-292001-01-17Lucent Technologies Inc.Wireless CDMA system having a unique forward configuration control channel
US6201969B1 (en)*1998-06-022001-03-13Lucent Technologies Inc.Control of handoff in CDMA cellular systems
AU748260B2 (en)*1998-06-022002-05-30Lucent Technologies Inc.Control of handoff in CDMA cellular systems
US6216004B1 (en)1998-06-232001-04-10Qualcomm IncorporatedCellular communication system with common channel soft handoff and associated method
US20060251123A1 (en)*1998-06-262006-11-09Aware, Inc.Multicarrier communication with variable overhead rate
US8718179B2 (en)1998-06-262014-05-06Intellectual Ventures Ii LlcMulticarrier communication with variable overhead rate
WO2000001184A1 (en)*1998-06-302000-01-06Siemens AktiengesellschaftMethod of communicating data using radio signals and radio communications apparatus
EP1628500A3 (en)*1998-07-062006-06-07NEC CorporationCDMA communication system with mobile terminal using a diffusing code specific to said terminal
EP1667483A3 (en)*1998-07-062006-07-26NEC CorporationA mobile communication system and a method thereof
EP1628500A2 (en)1998-07-062006-02-22NEC CorporationCDMA communication system with mobile terminal using a diffusing code specific to said terminal
US6477159B1 (en)*1998-07-062002-11-05Nec CorporationMobile communication system and a method thereof
EP0971554A3 (en)*1998-07-062000-08-23Nec CorporationAccess method for CDMA mobile communication system
US6865173B1 (en)1998-07-132005-03-08Infineon Technologies North America Corp.Method and apparatus for performing an interfrequency search
WO2000003501A1 (en)*1998-07-132000-01-20Infineon Technologies North America Corp.Method and aparatus for performing an inter-frequency search
US6661996B1 (en)*1998-07-142003-12-09Globalstar L.P.Satellite communication system providing multi-gateway diversity to a mobile user terminal
CN100350815C (en)*1998-07-202007-11-21高通股份有限公司Base station handover in a hybrid GSM/CDMA network
US7876729B1 (en)1998-07-202011-01-25Qualcomm IncorporatedIntersystem base station handover
US6310856B1 (en)*1998-08-072001-10-30Motorola, Inc.CDMA communications system having a searcher receiver and method therefor
US6400952B2 (en)*1998-09-082002-06-04Samsung Electronics Co., Ltd.Method and apparatus for idle handoff in a cellular system
US6360100B1 (en)1998-09-222002-03-19Qualcomm IncorporatedMethod for robust handoff in wireless communication system
AU764067B2 (en)*1998-09-222003-08-07Qualcomm IncorporatedMethod for robust handoff in wireless communication system
US7233794B2 (en)1998-09-222007-06-19Qualcomm IncorporatedMethod for robust handoff in wireless communication system
JP2010226732A (en)*1998-09-222010-10-07Qualcomm IncMethod for robust handoff in wireless communication system
CN100444680C (en)*1998-09-222008-12-17高通股份有限公司 Method and system for soft handover
CN101394669B (en)*1998-09-222014-09-17高通股份有限公司Method and system for soft handover
RU2233560C2 (en)*1998-09-222004-07-27Квэлкомм ИнкорпорейтедMethod for reliable service transmission in radio communication system
WO2000018173A1 (en)*1998-09-222000-03-30Qualcomm IncorporatedMethod for robust handoff in wireless communication system
US8588777B2 (en)*1998-09-222013-11-19Qualcomm IncorporatedMethod and apparatus for robust handoff in wireless communication systems
KR100696031B1 (en)*1998-09-222007-03-15콸콤 인코포레이티드 Method for Robust Handoff in a Wireless Communication System
EP2120495A1 (en)1998-09-222009-11-18Qualcomm IncorporatedApparatus and method for wireless communications
JP2002526000A (en)*1998-09-222002-08-13クゥアルコム・インコーポレイテッド Robust handoff method in wireless communication system
EP1765033A3 (en)*1998-09-222007-05-09QUALCOMM IncorporatedApparatus and method for wireless communications
CN101394669A (en)*1998-09-222009-03-25高通股份有限公司Method and system for soft handover
JP2010226731A (en)*1998-09-222010-10-07Qualcomm IncMethod for robust handoff in wireless communication system
US20020049060A1 (en)*1998-09-222002-04-25Grob Matthew S.Method for robust handoff in wireless communication system
US6904080B1 (en)*1998-09-292005-06-07Nec CorporationReceiving circuit, mobile terminal with receiving circuit, and method of receiving data
US6374103B1 (en)*1998-09-302002-04-16Lucent Technologies, Inc.Method and system for overhead message updates
US7440426B2 (en)1998-10-282008-10-21Qualcomm, IncorporatedMethod and apparatus for reverse link overload detection
US20030198203A1 (en)*1998-10-282003-10-23Antonio Franklin P.Method and apparatus for reverse link overload detection
US6603745B1 (en)1998-10-282003-08-05Qualcomm IncorporatedMethod and apparatus for reverse link overload detection
US20050113093A1 (en)*1998-10-292005-05-26Behzad MohebbiSoft hand-off in cellular mobile communications networks
US7236788B2 (en)1998-10-292007-06-26Fujitsu LimitedSoft hand-off in cellular mobile communications networks
US6337984B1 (en)*1998-11-042002-01-08Lg Information & Communications, Ltd.Method for controlling a handoff in a communication system
EP1001555A3 (en)*1998-11-092003-05-14Nec CorporationSystem and method of controlling transmission electric power in a CDMA base station
US6535740B1 (en)*1998-11-092003-03-18Nec CorporationSystem and method of controlling transmission electric power in a CDMA base station
US6591100B1 (en)*1998-11-192003-07-08Ericsson Inc.Cellular communication device with scanning receiver and continuous mobile communication system employing same
US7050802B2 (en)*1998-11-192006-05-23Ericsson Inc.Cellular communication device with scanning receiver and continuous mobile communication system employing same
US6804519B1 (en)*1998-12-022004-10-12Infineon Technologies North America Corp.Forward link inter-generation soft handoff between 2G and 3G CDMA systems
US6567666B2 (en)1998-12-022003-05-20Infineon Technologies North America Corp.Forward link inter-generation soft handoff between 2G and 3G CDMA systems
EP1006746A3 (en)*1998-12-022000-12-20Infineon Technologies North America Corp.Soft handoff between second and third generation CDMA systems
US6442398B1 (en)1998-12-032002-08-27Qualcomm IncorporatedMethod and apparatus for reverse link loading estimation
US6801772B1 (en)*1998-12-082004-10-05British Telecommunications PlcCellular mobile telephone network operation
US6819923B1 (en)*1998-12-162004-11-16Nokia Networks OyMethod for communication of neighbor cell information
US6473614B1 (en)*1998-12-182002-10-29Telefonaktielbolaget Lm EricssonMethod and means for determining a handover in a radio communication system
SG82060A1 (en)*1999-01-082001-07-24Nec CorpCall control method in mobile communication and system therefor
US6539233B1 (en)1999-01-082003-03-25Nec CorporationCall control method in mobile communication and system therefor
DE19900436B4 (en)*1999-01-082016-12-01Ipcom Gmbh & Co. Kg Handover method, mobile station for handover and base station for handover
US7406098B2 (en)1999-01-132008-07-29Qualcomm IncorporatedResource allocation in a communication system supporting application flows having quality of service requirements
US20030198204A1 (en)*1999-01-132003-10-23Mukesh TanejaResource allocation in a communication system supporting application flows having quality of service requirements
US6658045B1 (en)1999-02-222003-12-02Nortel Networks LimitedCDMA communications system adaptive to mobile unit speed
US6724739B1 (en)1999-02-252004-04-20Qualcomm, IncorporatedMethod for handoff between an asynchronous CDMA base station and a synchronous CDMA base station
US7747783B2 (en)1999-03-042010-06-29Canon Kabushiki KaishaMethod and device for communicating a message on a network and systems using them
US20060136603A1 (en)*1999-03-042006-06-22Canon Kabushiki KaishaMethod and device for communicating a message on a network and systems using them
US7159042B1 (en)*1999-03-042007-01-02Canon Kabushiki KaishaMethod and device for communicating a message on a network and systems using them
US6584315B1 (en)*1999-04-282003-06-24Hyundai Electronics Industries Co., LtdMethod of allocating frame offset and link in base station
US7127252B1 (en)*1999-04-302006-10-24Fujitsu LimitedRadio terminal equipment
US6947469B2 (en)1999-05-072005-09-20Intel CorporationMethod and Apparatus for wireless spread spectrum communication with preamble processing period
US20040184423A1 (en)*1999-05-242004-09-23Tiedmann Edward G.Method and apparatus for a dedicated control channel in an early soft handoff in a code division multiple access communication system
US7626922B2 (en)*1999-05-242009-12-01Qualcomm IncorporatedMethod and apparatus for a dedicated control channel in an early soft handoff in a code division multiple access communication system
US6351460B1 (en)*1999-05-242002-02-26Qualcomm IncorporatedMethod and apparatus for a dedicated control channel in an early soft handoff in a code division multiple access communication system
WO2000074421A1 (en)*1999-05-262000-12-07Nokia CorporationA method for initiating in a terminal of a cellular network the measurement of power levels of signals and a terminal
US7096021B1 (en)1999-05-262006-08-22Nokia CorporationMethod for initiating in a terminal of a cellular network the measurement of power levels of signals and a terminal
US6556551B1 (en)1999-05-272003-04-29Lgc Wireless, Inc.Multi-frequency pilot beacon for CDMA systems
WO2000074427A1 (en)*1999-05-282000-12-07Telia AbProcedure for load control in a cellular cdma communications system
US7693106B1 (en)1999-06-152010-04-06Ntt Docomo, Inc.Neighboring base station information update method, information management method for cell search in mobile communications system, cell search method of mobile station, mobile communications system, mobile station, base station and control station
CN100344206C (en)*1999-06-152007-10-17株式会社Ntt都科摩 Information management method, cell search method, mobile communication system, mobile station, base station and control station
EP1104977A4 (en)*1999-06-152005-12-21Ntt Docomo IncPeripheral base station information updating method, information control method for cell search in mobile communication system, cell search method in mobile station, mobile communication system, base station and control station
EP1765025A3 (en)*1999-06-152008-03-05NTT DoCoMo, Inc.Neighbouring base station information update method, information management method for cell search in mobile communications system, cell search method of mobile station, mobile communications system, mobile station, base station and control station
US6539225B1 (en)*1999-06-212003-03-25Lucent Technologies Inc.Seamless data network telecommunication service during mobile wireless call handoff
US6594243B1 (en)1999-07-152003-07-15Lucent Technologies Inc.Methods and apparatus for enhanced soft handoff in a CDMA wireless communication system
EP1069797A3 (en)*1999-07-152001-12-12Lucent Technologies Inc.Method and apparatus for enhanced soft handoff in a CDMA wireless communication system
US6975604B1 (en)1999-07-212005-12-13Hitachi, Ltd.Base station controller and mobile station
US8199716B2 (en)1999-08-112012-06-12Qualcomm IncorporatedMethod and system for performing handoff in wireless communication systems
US8064409B1 (en)1999-08-252011-11-22Qualcomm IncorporatedMethod and apparatus using a multi-carrier forward link in a wireless communication system
US6603972B1 (en)*1999-08-262003-08-05Lucent Technologies Inc.Apparatus, method and system for voice communication hand-off in a mobile packet data network environment
US6781966B1 (en)*1999-08-312004-08-24Hyundai Electronics Industries Co. Ltd.Forward direction power control method using backward direction power control sub-channel for mobile communication system
US7016320B1 (en)1999-08-312006-03-21Telefonaktiebolaget Lm Ericsson (Publ)Subscriber station, network control means and method for carrying out inter-frequency measurements in a mobile communication system
EP3203653A1 (en)1999-09-012017-08-09QUALCOMM IncorporatedMethod and apparatus for beamforming in a wireless communication system
EP2262126A2 (en)1999-09-012010-12-15Qualcomm IncorporatedMethod and apparatus for beamforming in a wireless communication system
US6778507B1 (en)*1999-09-012004-08-17Qualcomm IncorporatedMethod and apparatus for beamforming in a wireless communication system
US20040162073A1 (en)*1999-09-082004-08-19Sanyo Electric Co., Ltd.Bobile station and base station
US6845238B1 (en)1999-09-152005-01-18Telefonaktiebolaget Lm Ericsson (Publ)Inter-frequency measurement and handover for wireless communications
US6563810B1 (en)1999-09-302003-05-13Qualcomm IncorporatedClosed loop resource allocation
US7339894B2 (en)1999-09-302008-03-04Qualcomm IncorporatedClosed loop resource allocation
EP2107841A1 (en)1999-09-302009-10-07Qualcomm IncorporatedClosed loop resource allocation in a high speed wireless communications network
US6600917B1 (en)1999-10-042003-07-29Telefonaktiebolaget Lm Ericsson (Publ)Telecommunications network broadcasting of service capabilities
US8068453B2 (en)1999-10-072011-11-29Qualcomm IncorporatedMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US20040008644A1 (en)*1999-10-072004-01-15Jack HoltzmanMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US6850506B1 (en)1999-10-072005-02-01Qualcomm IncorporatedForward-link scheduling in a wireless communication system
EP2262121A2 (en)1999-10-072010-12-15Qualcomm IncorporatedMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US6621804B1 (en)1999-10-072003-09-16Qualcomm IncorporatedMethod and apparatus for predicting favored supplemental channel transmission slots using transmission power measurements of a fundamental channel
US7072311B1 (en)*1999-10-122006-07-04Via Telecom Co., Ltd.Method and apparatus for initiating a reverse link intergenerational handoff in a CDMA communication system
US7397777B1 (en)1999-11-012008-07-08Hitachi, Ltd.Handoff control method and a mobile station employing the same
EP1855503A1 (en)1999-11-042007-11-14QUALCOMM IncorporatedMethod for performing handoff by sequentially using up- and downlink signal quality
US7580709B2 (en)1999-11-042009-08-25Qualcomm IncorporatedMethod and apparatus for performing handoff in communications systems
EP2257105A2 (en)1999-11-042010-12-01Qualcomm IncorporatedMethod for performing handoff by sequentially using up- and downlink signal quality
US20070123261A1 (en)*1999-11-042007-05-31Qualcomm IncorporatedMethod and apparatus for performing handoff in communications systems
US7206580B2 (en)*1999-11-042007-04-17Qualcomm IncorporatedMethod and apparatus for performing handoff in a high speed communication system
US8010113B2 (en)1999-11-042011-08-30Qualcomm IncorporatedMethod and apparatus for performing handoff in communication systems
US6985466B1 (en)*1999-11-092006-01-10Arraycomm, Inc.Downlink signal processing in CDMA systems utilizing arrays of antennae
US8538024B2 (en)1999-11-112013-09-17Qualcomm IncorporatedMethod and apparatus for initializing a new stream cipher during handoff
US20080013730A1 (en)*1999-11-112008-01-17Rose Gregory GMethod and apparatus for re-synchronization of a stream cipher during handoff
WO2001035681A3 (en)*1999-11-112001-11-22Qualcomm IncMethod and apparatus for re-synchronization of a stream cipher during handoff
US6771776B1 (en)1999-11-112004-08-03Qualcomm IncorporatedMethod and apparatus for re-synchronization of a stream cipher during handoff
US7158640B2 (en)*1999-11-112007-01-02Qualcomm IncorporatedMethod and apparatus for re-synchronization of a stream cipher during handoff
US20040247127A1 (en)*1999-11-112004-12-09Rose Gregory G.Method and apparatus for re-synchronization of a stream cipher during handoff
US20070217365A1 (en)*2000-01-042007-09-20Qualcomm, IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (ppp) session requests
US7773547B2 (en)2000-01-042010-08-10Qualcomm IncorporatedMethod and apparatus for requesting point-to-point protocol (PPP) instances from a packet data services network
US7190687B1 (en)2000-01-042007-03-13Qualcomm IncorporatedMethod and apparatus for requesting point-to-point protocol (PPP) instances from a packet data services network
US8363616B2 (en)2000-01-042013-01-29Qualcomm IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (PPP) session requests
US7197017B1 (en)2000-01-042007-03-27Qualcomm, IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (PPP) session requests
US8855081B2 (en)2000-01-112014-10-07At&T Intellectual Property Ii, L.P.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive array
US8036164B1 (en)2000-01-112011-10-11At&T Intellectual Property Ii, L.P.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive array
US7133380B1 (en)2000-01-112006-11-07At&T Corp.System and method for selecting a transmission channel in a wireless communication system that includes an adaptive array
US7050799B2 (en)2000-01-132006-05-23Intel CorporationWireless local loop with intelligent base station
US6496694B1 (en)*2000-01-132002-12-17Intel CorporationWireless local loop with intelligent base station
WO2001052432A1 (en)*2000-01-132001-07-19Xircom, Inc.Wireless local loop with intelligent base station
US20030008632A1 (en)*2000-01-132003-01-09Menon Narayan P.Wireless local loop with intelligent base station
CN100380827C (en)*2000-01-132008-04-09舍尔科姆公司Wireless local loop with intelligent base station
GB2376852A (en)*2000-01-132002-12-24Xircom IncWireless local loop with intelligent base station
GB2376852B (en)*2000-01-132004-06-23Xircom IncWireless local loop with intelligent base station
AU779184B2 (en)*2000-01-282005-01-13Qualcomm IncorporatedMethod and apparatus for channel optimization during point-to-point protocol (PPP) session requests
KR100785121B1 (en)2000-02-102007-12-11콸콤 인코포레이티드 Method and apparatus for generating a pilot strength measurement message
US6546248B1 (en)*2000-02-102003-04-08Qualcomm, IncorporatedMethod and apparatus for generating pilot strength measurement messages
RU2258322C2 (en)*2000-02-102005-08-10Квэлкомм ИнкорпорейтедMethod and device for forming messages of measurements of control channel strength
AU778519B2 (en)*2000-02-102004-12-09Qualcomm IncorporatedMethod and apparatus for generating pilot strength measurement messages
US6728538B2 (en)*2000-02-102004-04-27Qualcomm IncorporatedMethod and apparatus for generating pilot strength measurement messages
US7254392B2 (en)*2000-02-282007-08-07Nokia CorporationIntersystem handover with modified parameters
US20030157935A1 (en)*2000-02-282003-08-21Timo KauhanenIntersystem handover with modified parameters
US6564042B1 (en)2000-03-032003-05-13Qualcomm IncorporatedVelocity-estimation-based gain tables
US6775252B1 (en)*2000-03-312004-08-10Qualcomm, Inc.Dynamic adjustment of search window size in response to signal strength
US7151933B2 (en)*2000-04-072006-12-19Qualcomm IncorporatedMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US20050059401A1 (en)*2000-04-072005-03-17Tao ChenMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US7373149B2 (en)2000-04-072008-05-13Qualcomm IncorporatedMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US6535739B1 (en)2000-04-072003-03-18Qualcomm IncorporatedMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US6853843B2 (en)2000-04-072005-02-08Qualcomm IncorporatedMethod of handoff within a telecommunications system containing digital base stations with different spectral capabilities
US7088701B1 (en)2000-04-142006-08-08Qualcomm, Inc.Method and apparatus for adaptive transmission control in a high data rate communication system
US6980527B1 (en)2000-04-252005-12-27Cwill Telecommunications, Inc.Smart antenna CDMA wireless communication system
US7006473B2 (en)*2000-05-192006-02-28Huawei Technologies Co., Ltd.Soft handover method for CDMA mobile communication system
US20020061751A1 (en)*2000-05-192002-05-23Huawei Technologies Co., Ltd.Soft handover method for CDMA mobile communication system
US7209745B1 (en)*2000-06-092007-04-24Intel CorporationCellular wireless re-use structure that allows spatial multiplexing and diversity communication
US9722842B2 (en)2000-06-132017-08-01Comcast Cable Communications, LlcTransmission of data using a plurality of radio frequency channels
US9356666B1 (en)2000-06-132016-05-31Comcast Cable Communications, LlcOriginator and recipient based transmissions in wireless communications
US9515788B2 (en)2000-06-132016-12-06Comcast Cable Communications, LlcOriginator and recipient based transmissions in wireless communications
US9209871B2 (en)2000-06-132015-12-08Comcast Cable Communications, LlcNetwork communication using diversity
US9820209B1 (en)2000-06-132017-11-14Comcast Cable Communications, LlcData routing for OFDM transmissions
US9401783B1 (en)2000-06-132016-07-26Comcast Cable Communications, LlcTransmission of data to multiple nodes
USRE45807E1 (en)2000-06-132015-11-17Comcast Cable Communications, LlcApparatus for transmitting a signal including transmit data to a multiple-input capable node
USRE45775E1 (en)2000-06-132015-10-20Comcast Cable Communications, LlcMethod and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
US10349332B2 (en)2000-06-132019-07-09Comcast Cable Communications, LlcNetwork communication using selected resources
US9391745B2 (en)2000-06-132016-07-12Comcast Cable Communications, LlcMulti-user transmissions
US9106286B2 (en)2000-06-132015-08-11Comcast Cable Communications, LlcNetwork communication using diversity
US10257765B2 (en)2000-06-132019-04-09Comcast Cable Communications, LlcTransmission of OFDM symbols
US9654323B2 (en)2000-06-132017-05-16Comcast Cable Communications, LlcData routing for OFDM transmission based on observed node capacities
US9344233B2 (en)2000-06-132016-05-17Comcast Cable Communications, LlcOriginator and recipient based transmissions in wireless communications
US9197297B2 (en)2000-06-132015-11-24Comcast Cable Communications, LlcNetwork communication using diversity
US7298773B2 (en)2000-06-212007-11-20Samsung Electronics Co., Ltd.Apparatus and method for reporting service load to mobile station in mobile telecommunication system
US20050111521A1 (en)*2000-06-212005-05-26Samsung Electronic Co., Ltd.Apparatus and method for reporting service load to mobile station in mobile telecommunication system
US7881739B2 (en)2000-06-212011-02-01Qualcomm, Inc.Method and apparatus for adaptive power control in a wireless voice and data communication system
US6937640B2 (en)2000-06-212005-08-30Samsung Electronics Co., LtdApparatus and method for reporting service load to mobile station in mobile telecommunication system
US20020012385A1 (en)*2000-06-212002-01-31Samsung Electronics Co., Ltd.Apparatus and method for reporting service load to mobile station in mobile telecommunication system
US20050197150A1 (en)*2000-06-212005-09-08Qualcomm IncorporatedMethod and apparatus for adaptive power control in a wireless voice and data communication system
US20040196800A1 (en)*2000-06-292004-10-07Roberto PadovaniMethod and apparatus for beam switching in a wireless communication system
US6751206B1 (en)2000-06-292004-06-15Qualcomm IncorporatedMethod and apparatus for beam switching in a wireless communication system
US7400606B2 (en)2000-06-292008-07-15Qualcomm IncorporatedMethod and apparatus for beam switching in a wireless communication system
US9832664B2 (en)2000-07-192017-11-28Ipr Licensing, Inc.Receiving and transmitting reverse link signals from subscriber units
US10505635B2 (en)2000-07-192019-12-10Commscope Technologies LlcPoint-to-multipoint digital radio frequency transport
US8676131B2 (en)*2000-07-192014-03-18Ipr Licensing, Inc.Method and apparatus for allowing soft handoff of a CDMA reverse link utilizing an orthogonal channel structure
US20110170467A1 (en)*2000-07-192011-07-14Ipr Licensing, Inc.Method and apparatus for allowing soft handoff of a cdma reverse link utilizing an orthogonal channel structure
US9456428B2 (en)2000-07-192016-09-27Ipr Licensing, Inc.Method and apparatus for allowing soft handoff of a CDMA reverse link utilizing an orthogonal channel structure
US9867101B2 (en)2000-07-192018-01-09Ipr Licensing, Inc.Method and apparatus for allowing soft handoff of a CDMA reverse link utilizing an orthogonal channel structure
US10498434B2 (en)2000-07-192019-12-03CommScope Technolgies LLCPoint-to-multipoint digital radio frequency transport
US20050083892A1 (en)*2000-08-252005-04-21Mcdonough John G.System and method for assigning combiner channels in spread spectrum communications
US6959033B1 (en)2000-08-252005-10-25Texas Instruments IncorporatedSystem and method for assigning combiner channels in spread spectrum communications
US7042869B1 (en)2000-09-012006-05-09Qualcomm, Inc.Method and apparatus for gated ACK/NAK channel in a communication system
US7099384B1 (en)2000-09-012006-08-29Qualcomm, Inc.Method and apparatus for time-division power assignments in a wireless communication system
US6771691B1 (en)2000-09-152004-08-03Texas Instruments IncorporatedSystem and method for extracting soft symbols in direct sequence spread spectrum communications
US7715858B2 (en)2000-09-152010-05-11Koninklijke Philips Electronics N.V.Secondary station and method of operating the station
WO2002023763A1 (en)*2000-09-152002-03-21Koninklijke Philips Electronics N.V.Secondary station and method of operating the station.
US20020034957A1 (en)*2000-09-152002-03-21Koninklijke Philips Electronics N.V.Secondary station and method of operating the station
KR100810925B1 (en)2000-09-152008-03-10코닌클리케 필립스 일렉트로닉스 엔.브이. Secondary station and how to operate it
US7031374B1 (en)2000-10-062006-04-18Texas Instruments IncorporatedSystem and method for selecting sample streams in direct sequence spread spectrum communications
US20070015512A1 (en)*2000-10-172007-01-18Denso CorporationForward link based rescue channel method and apparatus for telecommunication systems
US7133675B2 (en)2000-10-172006-11-07Denso CorporationForward link based rescue channel method and apparatus for telecommunication systems
CN100527863C (en)*2000-10-172009-08-12株式会社电装Forward link based rescue channel method and apparatus for telecommunication systems
WO2002033982A3 (en)*2000-10-172003-05-15Denso CorpForward link based rescue channel method and apparatus for telecommunication systems
US20060187877A1 (en)*2000-10-252006-08-24Lundby Stein AMethod and apparatus for high rate packet data and low delay data transmissions
US9107109B2 (en)2000-10-252015-08-11Qualcomm IncorporatedMethod and apparatus for determining a data rate in a high rate packet data wireless communications system
US9426821B2 (en)2000-10-252016-08-23Qualcomm IncorporatedMethod and apparatus for high rate packet data and low delay data transmissions
US20020098838A1 (en)*2000-11-142002-07-25Takehiro IkedaMobile communication system and method for controlling receiving quality
US7072655B2 (en)*2000-11-142006-07-04Ntt Docomo, Inc.Mobile communication system and method for controlling receiving quality
WO2002041513A3 (en)*2000-11-172002-10-10Koninkl Philips Electronics NvPilot signal search method with decimation reordering in a cdma system
US20020065071A1 (en)*2000-11-282002-05-30Denso CorporationRetry limits for connection rescue procedures in telecommunication systems
US7187930B2 (en)2000-11-282007-03-06Denso CorporationRetry limits for connection rescue procedures in telecommunication systems
EP1211910A3 (en)*2000-11-302005-11-02Lucent Technologies Inc.System and method for preventing dropped calls
US6907245B2 (en)2000-12-042005-06-14Telefonaktiebolaget Lm Ericsson (Publ)Dynamic offset threshold for diversity handover in telecommunications system
US6980803B2 (en)2000-12-042005-12-27Telefonaktiebolaget Lm Ericsson (Publ)Using statistically ascertained position for starting synchronization searcher during diversity handover
US6954644B2 (en)2000-12-042005-10-11Telefonaktiebolaget Lm Ericsson (Publ)Using geographical coordinates to determine mobile station time position for synchronization during diversity handover
US20020111158A1 (en)*2000-12-042002-08-15Denso CorporationMethod and apparatus for dynamically determining a mobile station's active set during a connection rescue procedure
US20020068566A1 (en)*2000-12-042002-06-06Jonas OhlssonPreliminary performance of handover function in telecommunications system
US8526510B2 (en)2000-12-042013-09-03Qualcomm IncorporatedEstimation of traffic-to-pilot ratios
US6711208B2 (en)2000-12-042004-03-23Qualcomm, IncorporatedEstimation of traffic-to-pilot ratios
US7006821B2 (en)2000-12-042006-02-28Denso CorporationMethod and apparatus for dynamically determining a mobile station's active set during a connection rescue procedure
US20020068567A1 (en)*2000-12-042002-06-06Staffan JohanssonUsing statistically ascertained position for starting synchronization searcher during diversity handover
EP2249502A2 (en)2000-12-042010-11-10Qualcomm IncorporatedEstimation of traffic-to-pilot ratios
US20040105409A1 (en)*2000-12-042004-06-03Leonid RazoumovEstimation of traffic-to-pilot ratios
US20020142772A1 (en)*2000-12-052002-10-03Hunzinger Jason F.Minimum interference multiple-access method and system for connection rescue
US20020077104A1 (en)*2000-12-052002-06-20Tao ChenMethod and apparatus for call recovery in a wireless communication system
CN101018407B (en)*2000-12-052011-11-16高通股份有限公司Method and apparatus for call recovery in a wireless communication system
CN1303840C (en)*2000-12-052007-03-07高通股份有限公司Method and apparatus for call recovery in a wireless communication system
US6928285B2 (en)2000-12-052005-08-09Denso CorporationMinimum interference multiple-access method and system for connection rescue
WO2002047402A3 (en)*2000-12-052003-02-27Qualcomm IncMethod and apparatus for call recovery in a wireless communication system
US7945266B2 (en)2000-12-052011-05-17Qualcomm IncorporatedMethod and apparatus for call recovery in a wireless communication system
AU2002217922B2 (en)*2000-12-052007-07-12Qualcomm IncorporatedMethod and apparatus for call recovery in a wireless communication system
EP1350400A4 (en)*2000-12-142005-10-12Pulse Link IncHand-off between ultra-wideband cell sites
US9191138B2 (en)2000-12-152015-11-17Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US8934445B2 (en)2000-12-152015-01-13Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US9344211B2 (en)2000-12-152016-05-17Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US9219572B2 (en)2000-12-152015-12-22Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US9210708B1 (en)2000-12-152015-12-08Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US9203553B1 (en)2000-12-152015-12-01Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US8964719B2 (en)2000-12-152015-02-24Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US8958386B2 (en)2000-12-152015-02-17Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8934375B2 (en)2000-12-152015-01-13Adaptix, Inc.OFDMA with adaptive subcarrier-cluster configuration and selective loading
US8738020B2 (en)2000-12-152014-05-27Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8891414B2 (en)2000-12-152014-11-18Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8767702B2 (en)2000-12-152014-07-01Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8750238B2 (en)2000-12-152014-06-10Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8743729B2 (en)2000-12-152014-06-03Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US8743717B2 (en)2000-12-152014-06-03Adaptix, Inc.Multi-carrier communications with adaptive cluster configuration and switching
US20020119787A1 (en)*2000-12-202002-08-29Denso CorporationForward-link rescue synchronization method and apparatus
US6996391B2 (en)2000-12-202006-02-07Denso CorporationForward-link rescue synchronization method and apparatus
US6850499B2 (en)2001-01-052005-02-01Qualcomm IncorporatedMethod and apparatus for forward power control in a communication system
US20020090965A1 (en)*2001-01-052002-07-11Tao ChenMethod and apparatus for power level adjustment in a wireless communication system
US20040233867A1 (en)*2001-01-052004-11-25Wheatley Charles E.Method and apparatus for forward power control in a communication system
US7567781B2 (en)2001-01-052009-07-28Qualcomm, IncorporatedMethod and apparatus for power level adjustment in a wireless communication system
EP2194658A2 (en)2001-01-052010-06-09Qualcom IncorporatedMethod and apparatus for forward power control in a communication system
US7515580B2 (en)2001-01-052009-04-07Qualcomm, IncorporatedMethod and apparatus for forward power control in a communication system
US7010319B2 (en)2001-01-192006-03-07Denso CorporationOpen-loop power control enhancement for blind rescue channel operation
US20020137535A1 (en)*2001-01-192002-09-26Denso CorporationOpen-loop power control enhancement for blind rescue channel operation
US20060046767A1 (en)*2001-01-192006-03-02Denso CorporationOpen-loop power control enhancement for blind rescue channel operation
US7522560B2 (en)*2001-02-092009-04-21Telefonaktiebolaget Lm Ericsson (Publ)Method, system and equipment for retransmission in communications systems
US20040146033A1 (en)*2001-02-092004-07-29Raul SoderstromMethod, system and equipment for retransmission in communications systems
US6760587B2 (en)2001-02-232004-07-06Qualcomm IncorporatedForward-link scheduling in a wireless communication system during soft and softer handoff
US7308263B2 (en)2001-02-262007-12-11Kineto Wireless, Inc.Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US7720481B2 (en)2001-02-262010-05-18Kineto Wireless, Inc.Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US6922559B2 (en)2001-02-262005-07-26Kineto Wireless, Inc.Unlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US20030119489A1 (en)*2001-02-262003-06-26Jahangir MohammedUnlicensed wireless communications base station to facilitate unlicensed and licensed wireless communications with a subscriber device, and method of operation
US6647426B2 (en)2001-02-262003-11-11Kineto Wireless, Inc.Apparatus and method for integrating an unlicensed wireless communications system and a licensed wireless communications system
US8160588B2 (en)2001-02-262012-04-17Kineto Wireless, Inc.Method and apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US7890099B2 (en)2001-02-262011-02-15Kineto Wireless, Inc.Method for automatic and seamless call transfers between a licensed wireless system and an unlicensed wireless system
US20030119480A1 (en)*2001-02-262003-06-26Jahangir MohammedApparatus and method for provisioning an unlicensed wireless communications base station for operation within a licensed wireless communications system
US7996009B2 (en)2001-02-262011-08-09Kineto Wireless, Inc.Method for authenticating access to an unlicensed wireless communications system using a licensed wireless communications system authentication process
US7574213B2 (en)2001-02-262009-08-11Kineto Wireless, Inc.Apparatus for supporting the handover of a telecommunication session between a licensed wireless system and an unlicensed wireless system
US8731569B2 (en)2001-03-142014-05-20Agere Systems LlcCell phone extension using wireless piconet
US20020173271A1 (en)*2001-03-212002-11-21Blair John L.Controller and transceiver employable in a wireless communications network
US7079847B2 (en)*2001-03-212006-07-18Agere Systems Inc.Controller and transceiver employable in a wireless communications network
US20020160785A1 (en)*2001-04-102002-10-31Fredrik OvesjoCommanding handover between differing radio access technologies
US7181218B2 (en)2001-04-102007-02-20Telefonaktiebolaget Lm Ericsson (Publ)Commanding handover between differing radio access technologies
US6987799B2 (en)2001-05-032006-01-17Texas Instruments IncorporatedSystem and method for demodulating associated information channels in direct sequence spread spectrum communications
US20040176091A1 (en)*2001-05-092004-09-09Gabor BajkoSubscriber registrations in a mobile communication system
USRE44358E1 (en)2001-05-092013-07-09Nokia CorporationSubscriber registrations in a mobile communication system
US7818002B2 (en)*2001-05-092010-10-19Nokia CorporationSubscriber registrations in a mobile communication system
US20080004071A1 (en)*2001-05-112008-01-03Kyocera CorporationPortable communication terminal and wireless communication system therefore
US7961616B2 (en)2001-06-072011-06-14Qualcomm IncorporatedMethod and apparatus for congestion control in a wireless communication system
US8102792B2 (en)2001-06-142012-01-24Qualcomm IncorporatedEnabling foreign network multicasting for a roaming mobile node, in a foreign network, using a persistent address
US20030018715A1 (en)*2001-06-142003-01-23O'neill AlanEnabling foreign network multicasting for a roaming mobile node, in a foreign network, using a persistent address
US7339903B2 (en)2001-06-142008-03-04Qualcomm IncorporatedEnabling foreign network multicasting for a roaming mobile node, in a foreign network, using a persistent address
US6611510B2 (en)*2001-06-182003-08-26Telcordia Technologies Inc.Method and system for soft handoff of mobile terminals in IP wireless networks.
US7054632B2 (en)2001-06-262006-05-30Qualcomm IncorporatedMethod and apparatus for adaptive set management in a communication system
US20020197997A1 (en)*2001-06-262002-12-26Attar Rashid AhmedMethod and apparatus for adaptive set management in a communication system
US7474650B2 (en)2001-06-262009-01-06Qualcomm IncorporatedMethods and apparatus for controlling resource allocation where tunneling and access link packet aggregation are used in combination
US8094623B2 (en)2001-06-262012-01-10Qualcomm IncorporatedMethod and apparatus for choosing a sector based on a scaled forward link metric
US8023410B2 (en)2001-06-262011-09-20Qualcomm IncorporatedMessages and control methods for controlling resource allocation and flow admission control in a mobile communications system
US6757520B2 (en)2001-06-262004-06-29Qualcomm IncorporatedMethod and apparatus for selecting a serving sector in a data communication system
US7239847B2 (en)2001-06-262007-07-03Qualcomm IncorporatedMethod and apparatus for adaptive server selection in a data communication system
US20040087276A1 (en)*2001-06-262004-05-06Attar Rashid A.Method and apparatus for selecting a serving sector in a data communication system
US7177648B2 (en)2001-06-262007-02-13Qualcomm IncorporatedMethod and apparatus for selecting a serving sector in a data communication system
US20020196752A1 (en)*2001-06-262002-12-26Attar Rashid A.Method and apparatus for adaptive server selection in a data communication system
US8000241B2 (en)2001-06-262011-08-16Qualcomm IncorporatedMethods and apparatus for controlling access link packet flow aggregation and resource allocation in a mobile communications system
US20030003938A1 (en)*2001-06-272003-01-02O'neill AlanMethods and apparatus for supporting group communications
US7421281B2 (en)2001-06-272008-09-02Qualcomm IncorporatedMethods and apparatus for supporting group communications
US20050213559A1 (en)*2001-06-272005-09-29O'neill AlanMethods and apparatus for supporting group communications
US6922547B2 (en)2001-06-272005-07-26Flarion Technologies, Inc.Methods and apparatus for supporting group communications
US7505436B2 (en)*2001-06-292009-03-17Qualcomm CorporationCommunication system employing multiple handoff criteria
US7058035B2 (en)2001-06-292006-06-06Qualcomm, IndorporatedCommunication system employing multiple handoff criteria
US20030002460A1 (en)*2001-06-292003-01-02Sean EnglishCommunication system employing multiple handoff criteria
EP2169998A3 (en)*2001-06-292010-06-30Qualcomm IncorporatedCommunication system employing multiple handoff criteria
WO2003003761A3 (en)*2001-06-292003-05-15Qualcomm IncCommunication system employing multiple handoff criteria
US20060159051A1 (en)*2001-06-292006-07-20Sean EnglishCommunication system employing multiple handoff criteria
US7751370B2 (en)2001-07-132010-07-06Qualcomm IncorporatedMethod and apparatus for forward link rate scheduling
US10211940B2 (en)2001-07-172019-02-19Ipr Licensing, Inc.Use of orthogonal or near orthogonal codes in reverse link
US9496915B2 (en)2001-07-172016-11-15Ipr Licensing, Inc.Use of orthogonal or near orthogonal codes in reverse link
US20030032430A1 (en)*2001-08-082003-02-13Samsung Electronics Co., Ltd.Method and system for performing fast access handoff in mobile telecommunications system
US7937086B2 (en)2001-08-202011-05-03Qualcomm IncorporatedMethod and system for a handoff in a broadcast communication system
US7254394B2 (en)2001-08-202007-08-07Qualcomm, IncorporatedMethod and system for a handoff in a broadcast communication system
EP2375819A1 (en)2001-08-202011-10-12Qualcomm IncorporatedMethod and system for a handoff in a broadcast communication system
US20050143080A1 (en)*2001-08-202005-06-30Ragulan SinnarajahMethod and system for signaling in broadcast communication system
US20070243871A1 (en)*2001-08-202007-10-18Qualcomm, IncorporatedMethod and system for a handoff in a broadcast communication system
US20040180661A1 (en)*2001-08-202004-09-16Tao ChenMethod and system for a handoff in a broadcast communication system
US6731936B2 (en)2001-08-202004-05-04Qualcomm IncorporatedMethod and system for a handoff in a broadcast communication system
US7689226B2 (en)2001-08-202010-03-30Qualcomm IncorporatedMethod and system for signaling in broadcast communication system
EP2375820A1 (en)2001-08-202011-10-12Qualcomm IncorporatedMethod and system for a handoff in a broadcast communication system
US20030045291A1 (en)*2001-08-292003-03-06Nec CorporationMobile communications system, mobile station, control method and recording medium
US6947746B2 (en)*2001-08-292005-09-20Nec CorporationMobile communications system, mobile station, control method and recording medium
US20090040967A1 (en)*2001-10-102009-02-12Qualcomm IncorporatedMethods and apparatus for quickly exploiting a new link during hand-off in a wireless network
US8411639B2 (en)2001-10-102013-04-02Qualcomm IncorporatedMethods and apparatus for quickly exploiting a new link during hand-off in a wireless network
US9220044B2 (en)2001-10-102015-12-22Qualcomm IncorporatedMethods and apparatus for quickly exploiting a new link during hand-off in a wireless network
US7457267B1 (en)2001-10-102008-11-25Qualcomm IncorporatedMethods and apparatus for quickly exploiting a new link during hand-off in a wireless network
US7813740B2 (en)2001-10-152010-10-12Qualcomm IncorporatedMethod and apparatus for managing imbalance in a communication system
EP2273830A1 (en)2001-10-152011-01-12Qualcomm IncorporatedMethod and apparatus for managing imbalance in a communication system
US20030072294A1 (en)*2001-10-152003-04-17Yongbin WeiMethod and apparatus for managing imbalance in a communication system
US7796563B2 (en)2001-10-162010-09-14Qualcomm IncorporatedMethod and system for selecting a best serving sector in a CDMA data communication system
US20040095908A1 (en)*2001-10-162004-05-20Qiang WuMethod and system for selecting a best serving sector in a CDMA data communication system
US6680925B2 (en)*2001-10-162004-01-20Qualcomm IncorporatedMethod and system for selecting a best serving sector in a CDMA data communication system
US20030072278A1 (en)*2001-10-162003-04-17Qiang WuMethod and system for selecting a best serving sector in a CDMA data communication system
US8472306B2 (en)2001-10-182013-06-25Qualcomm IncorporatedMulti-access hybrid OFDM-CDMA system
US20060274638A1 (en)*2001-10-182006-12-07Walton Jay RMultiple-access hybrid OFDM-CDMA system
US20040085892A1 (en)*2001-10-182004-05-06Walton Jay R.Multiple-access hybrid OFDM-CDMA system
US20100246642A1 (en)*2001-10-182010-09-30Qualcomm IncorporatedMulti-access hybrid ofdm-cdma system
US8427936B2 (en)2001-10-182013-04-23Qualcomm IncorporatedMultiple-access hybrid OFDM-CDMA system
US7764594B2 (en)2001-10-182010-07-27Qualcomm IncorporatedMultiple-access hybrid OFDM-CDMA system
US8948705B2 (en)2001-10-182015-02-03Qualcomm IncorporatedMultiple-access hybrid OFDM-CDMA system
US20030081538A1 (en)*2001-10-182003-05-01Walton Jay R.Multiple-access hybrid OFDM-CDMA system
US7336952B2 (en)2001-10-242008-02-26Qualcomm, IncorporatedMethod and system for hard handoff in a broadcast communication system
EP2242290A1 (en)2001-10-242010-10-20Qualcomm IncorporatedMethod and apparatus for hard handoff in a broadcast communication system
US8526394B2 (en)2001-10-242013-09-03Qualcomm IncorporatedMethod and system for hard handoff in a broadcast communication system
US20030078044A1 (en)*2001-10-242003-04-24Leung Nikolai K.N.Method and system for hard handoff in a broadcast communication system
US20060099910A1 (en)*2001-10-252006-05-11Anderson Jon JAiding beam identification in a satellite system
US7260411B2 (en)2001-10-252007-08-21Qualcomm IncorporatedAiding beam identification in a satellite system
US20030087640A1 (en)*2001-11-062003-05-08Ron RotsteinMethod and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US6909707B2 (en)*2001-11-062005-06-21Motorola, Inc.Method and apparatus for pseudo-random noise offset reuse in a multi-sector CDMA system
US7453801B2 (en)2001-11-082008-11-18Qualcomm IncorporatedAdmission control and resource allocation in a communication system supporting application flows having quality of service requirements
US20040013089A1 (en)*2001-11-082004-01-22Mukesh TanejaAdmission control and resource allocation in a communication system supporting application flows having quality of service requirements
EP2485545A3 (en)*2001-11-092013-04-03Qualcomm Incorporated(1/3)Communications in an asynchronous wireless network
US8711805B2 (en)2001-11-092014-04-29Qualcomm IncorporatedCommunications in an asynchronous cellular wireless network
EP2312768A3 (en)*2001-11-092013-04-03QUALCOMM IncorporatedCommunications in an asynchronous wireless network
US20100265920A1 (en)*2001-11-092010-10-21Qualcomm IncorporatedCommunications in an asynchronous cellular wireless network
CN100388641C (en)*2001-11-282008-05-14艾利森电话股份有限公司Method for Determining Gain Offset Between Transmission Channels
US7346126B2 (en)2001-11-282008-03-18Telefonaktiebolaget L M Ericsson (Publ)Method and apparatus for channel estimation using plural channels
US20030099306A1 (en)*2001-11-282003-05-29Johan NilssonMethod and apparatus for channel estimation using plural channels
EP2110968A1 (en)2001-12-072009-10-21Qualcomm IncorporatedHandoff in a hybrid communication network
EP2268081A1 (en)2001-12-072010-12-29Qualcomm IncorporatedHandoff in a hybrid communication network
EP2268080A1 (en)2001-12-072010-12-29Qualcomm IncorporatedHandoff in a hybrid communication network
US20030231586A1 (en)*2001-12-102003-12-18Nortel Networks LimitedSystem and method for maximizing capacity in a telecommunications system
US6944147B2 (en)2001-12-102005-09-13Nortel Networks LimitedSystem and method for maximizing capacity in a telecommunications system
US20090225688A1 (en)*2002-02-042009-09-10Qualcomm IncorporatedMethod for extending mobile ip and aaa to enable integrated support for local access and roaming access connectivity
US20060111102A1 (en)*2002-02-042006-05-25O'neill AlanControlling hand-off in a mobile node with two mobile IP clients
US20040023653A1 (en)*2002-02-042004-02-05O'neill AlanControlling hand-off in a mobile node with two mobile IP clients
US7525937B2 (en)2002-02-042009-04-28Qualcomm IncorporatedMethod for extending mobile IP and AAA to enable integrated support for local access and roaming access connectivity
US20050041650A1 (en)*2002-02-042005-02-24O'neill AlanMethod for extending mobile IP and AAA to enable integrated support for local access and roaming access connectivity
US7509123B2 (en)2002-02-042009-03-24Qualcomm IncorporatedControlling hand-off in a mobile node with two mobile IP clients
US7564824B2 (en)2002-02-042009-07-21Qualcomm IncorporatedMethods and apparatus for aggregating MIP and AAA messages
US20090247155A1 (en)*2002-02-042009-10-01Qualcomm IncorporatedControlling hand-off in a mobile node with two mobile ip clients
US20030193912A1 (en)*2002-02-042003-10-16O'neill AlanPacket forwarding methods for use in handoffs
US20030193952A1 (en)*2002-02-042003-10-16O'neill AlanMobile node handoff methods and apparatus
US20040047348A1 (en)*2002-02-042004-03-11O'neill AlanMethods and apparatus for aggregating MIP and AAA messages
US8179840B2 (en)2002-02-042012-05-15Qualcomm IncorporatedMethod for extending mobile IP and AAA to enable integrated support for local access and roaming access connectivity
US8649352B2 (en)2002-02-042014-02-11Qualcomm IncorporatedPacket forwarding methods for use in handoffs
US7020465B2 (en)2002-02-042006-03-28Flarion Technologies, Inc.Controlling hand-off in a mobile node with two mobile IP clients
US8095130B2 (en)2002-02-042012-01-10Qualcomm IncorporatedControlling hand-off in a mobile node with two mobile IP clients
US7502614B2 (en)*2002-02-182009-03-10Sony CorporationRadio communication system, radio communication apparatus and radio communication method, and computer program
US20040180658A1 (en)*2002-02-182004-09-16Shigenori UchidaWireless communication system, wireless communication device and wireless communication method, and computer program
US8031622B2 (en)2002-02-192011-10-04Qualcomm, IncorporatedMethod and apparatus for receive diversity in a communication system
US20030156561A1 (en)*2002-02-192003-08-21Roberto PadovaniMethod and apparatus for receive diversity in a communication system
US7962111B2 (en)2002-02-252011-06-14ADC Wireless, Inc.Distributed automatic gain control system
US8265630B2 (en)*2002-03-082012-09-11Ipr Licensing Inc.Antenna adaptation to manage the active set to manipulate soft hand-off regions
US20070123262A1 (en)*2002-03-082007-05-31Proctor James A JrAntenna adaptation to manage the active set to manipulate soft hand-off regions
US7447506B1 (en)*2002-03-292008-11-04Good Technology, Inc.Apparatus and method for reducing network congestion
CN100401651C (en)*2002-04-052008-07-09高通股份有限公司 Method and apparatus for determining receive diversity in a mobile station
KR101050061B1 (en)2002-04-052011-07-19콸콤 인코포레이티드 Method and apparatus for determining receive diversity at mobile station
US20030190924A1 (en)*2002-04-052003-10-09Agashe Parag A.Method and apparatus for determining receive diversity in mobile station
WO2003088521A3 (en)*2002-04-052004-03-18Qualcomm IncMethod and apparatus for determining receive diversity in mobile station
KR100837351B1 (en)*2002-04-062008-06-12엘지전자 주식회사 How to update radio link parameter of mobile communication system
US7356020B2 (en)2002-04-082008-04-08Qualcomm IncorporatedSupport of disparate addressing plans and dynamic HA address allocation in mobile IP
US20030223439A1 (en)*2002-04-082003-12-04O'neill AlanSupport of disparate addressing plans and dynamic HA address allocation in mobile IP
US9131367B2 (en)2002-04-082015-09-08Qualcomm IncorporatedSupport of disparate addressing plans and dynamic HA address allocation in mobile IP
US8559411B2 (en)2002-04-082013-10-15Qualcomm IncorporatedSupport of disparate addressing plans and dynamic HA address allocation in mobile IP
US20110013594A1 (en)*2002-04-112011-01-20Qualcomm IncorporatedHandoff Between Base Stations of Different Protocol Revisions in a CDMA System
US7961682B2 (en)2002-04-112011-06-14Qualcomm IncorporatedHandoff between base stations of different protocol revisions in a CDMA system
US20110235616A1 (en)*2002-04-112011-09-29Qualcomm IncorporatedHandoff between base stations of different protocol revisions in a cdma system
US8477728B2 (en)2002-04-112013-07-02Qualcomm IncorporatedHandoff between base stations of different protocol revisions in a CDMA system
US8885602B2 (en)2002-04-112014-11-11Qualcomm IncorporatedHandoff between base stations of different protocol revisions in a CDMA system
US20040202120A1 (en)*2002-04-172004-10-14Hanson Norman L.Internet protocol collaborative mobility
US8923191B2 (en)*2002-04-172014-12-30Northrop Grumman Systems CorporationInternet protocol collaborative mobility
US20030210668A1 (en)*2002-05-132003-11-13Malladi Durga P.Mitigation of link imbalance in a wireless communication system
US8014363B2 (en)2002-05-132011-09-06Qualcomm IncorporatedMitigation of link imbalance in a wireless communication system
US7352722B2 (en)*2002-05-132008-04-01Qualcomm IncorporatedMitigation of link imbalance in a wireless communication system
KR100979396B1 (en)*2002-05-132010-09-01퀄컴 인코포레이티드 How to Check Communication Link Reliability
US20050083900A1 (en)*2002-05-152005-04-21Nokia CorporationEvent based reporting method
US20040203704A1 (en)*2002-06-102004-10-14Andrew CorporationIndoor wireless voice and data distribution system
US7263293B2 (en)2002-06-102007-08-28Andrew CorporationIndoor wireless voice and data distribution system
US7158790B1 (en)*2002-07-162007-01-02Verizon Corporate Services Group Inc.Determining service coverage for metropolitan wireless networks
US20050037714A1 (en)*2002-07-192005-02-17Thomas MauckschTime delay evaluation
US7146289B2 (en)2002-07-192006-12-05Rohde & Schwarz Gmbh & Co. KgTime delay evaluation
US20050014533A1 (en)*2002-08-072005-01-20Interdigital Technology CorporationMobile communications system and method for providing common channel coverage using beamforming antennas
CN1871836B (en)*2002-08-072010-07-21美商内数位科技公司Mobile communications system and method for providing common channel coverage using beamforming antennas
US10645690B2 (en)2002-08-072020-05-05Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US8861466B2 (en)2002-08-072014-10-14Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US9844055B2 (en)2002-08-072017-12-12Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US9125204B2 (en)2002-08-072015-09-01Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US9414383B2 (en)2002-08-072016-08-09Interdigital Technology CorporationMobile communication system and method for providing common channel coverage using beamforming antennas
US8213994B2 (en)*2002-08-072012-07-03Interdigital Technology CorporationMobile communications system and method for providing common channel coverage using beamforming antennas
US8620332B2 (en)2002-08-082013-12-31Qualcomm IncorporatedWireless timing and power control
US20040097254A1 (en)*2002-08-082004-05-20Rajiv LaroiaPower and timing control methods and apparatus
US7778643B2 (en)2002-08-082010-08-17Qualcomm IncorporatedPower and timing control methods and apparatus
US7398111B2 (en)2002-08-082008-07-08Qualcomm IncorporatedMethods and apparatus for operating mobile nodes in multiple states
US7363039B2 (en)2002-08-082008-04-22Qualcomm IncorporatedMethod of creating and utilizing diversity in multiple carrier communication system
US20040029586A1 (en)*2002-08-082004-02-12Rajiv LaroiaMethods and apparatus for operating mobile nodes in multiple states
US20040106412A1 (en)*2002-08-082004-06-03Rajiv LaroiaMethod of creating and utilizing diversity in multiple carrier communication system
US6788963B2 (en)2002-08-082004-09-07Flarion Technologies, Inc.Methods and apparatus for operating mobile nodes in multiple a states
US20040106431A1 (en)*2002-08-082004-06-03Rajiv LaroiaWireless timing and power control
US7668573B2 (en)2002-08-082010-02-23Qualcomm IncorporatedWireless timing and power control
US8190163B2 (en)2002-08-082012-05-29Qualcomm IncorporatedMethods and apparatus of enhanced coding in multi-user communication systems
US8374613B2 (en)2002-08-082013-02-12Qualcomm IncorporatedMethod of creating and utilizing diversity in a multiple carrier communication system
US9277470B2 (en)2002-08-082016-03-01Qualcomm IncorporatedMethod of creating and utilizing diversity in a multiple carrier communication system
US20050245264A1 (en)*2002-08-082005-11-03Rajiv LaroiaMethods and apparatus for operating mobile nodes in multiple states
US6961595B2 (en)2002-08-082005-11-01Flarion Technologies, Inc.Methods and apparatus for operating mobile nodes in multiple states
US20040038697A1 (en)*2002-08-232004-02-26Attar Rashid AhmedMethod and system for a data transmission in a communication system
US20060291389A1 (en)*2002-08-232006-12-28Attar Rashid AMethod and system for a data transmission in a communication system
US8194598B2 (en)2002-08-232012-06-05Qualcomm IncorporatedMethod and system for a data transmission in a communication system
US7050405B2 (en)2002-08-232006-05-23Qualcomm IncorporatedMethod and system for a data transmission in a communication system
US7139274B2 (en)2002-08-232006-11-21Qualcomm, IncorporatedMethod and system for a data transmission in a communication system
US9490857B2 (en)2002-09-202016-11-08Iii Holdings 1, LlcSystems and methods for parallel signal cancellation
US9647708B2 (en)2002-09-202017-05-09Iii Holdings 1, LlcAdvanced signal processors for interference cancellation in baseband receivers
US9544044B2 (en)2002-09-202017-01-10Iii Holdings 1, LlcSystems and methods for parallel signal cancellation
US20040063430A1 (en)*2002-09-272004-04-01Interdigital Technology CorporationMobile communications system and method for providing mobile unit handover in wireless communication systems that employ beamforming antennas
US7869803B2 (en)2002-10-152011-01-11Qualcomm IncorporatedProfile modification for roaming in a communications environment
US7882346B2 (en)2002-10-152011-02-01Qualcomm IncorporatedMethod and apparatus for providing authentication, authorization and accounting to roaming nodes
US7885644B2 (en)2002-10-182011-02-08Kineto Wireless, Inc.Method and system of providing landline equivalent location information over an integrated communication system
US7953423B2 (en)2002-10-182011-05-31Kineto Wireless, Inc.Messaging in an unlicensed mobile access telecommunications system
US7684803B2 (en)2002-10-182010-03-23Kineto Wireless, Inc.Network controller messaging for ciphering in an unlicensed wireless communication system
US7634271B2 (en)2002-10-182009-12-15Kineto Wireless, Inc.GSM signaling protocol architecture for an unlicensed wireless communication system
US7171205B2 (en)2002-10-182007-01-30Kineto Wireless, Inc.Architecture of an unlicensed wireless communication system with a generic access point
US7873015B2 (en)2002-10-182011-01-18Kineto Wireless, Inc.Method and system for registering an unlicensed mobile access subscriber with a network controller
US7369854B2 (en)2002-10-182008-05-06Kineto Wireless, Inc.Release of radio resources in an unlicensed wireless communication system
US8130703B2 (en)2002-10-182012-03-06Kineto Wireless, Inc.Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
US7773993B2 (en)2002-10-182010-08-10Kineto Wireless, Inc.Network controller messaging for channel activation in an unlicensed wireless communication system
US7197309B2 (en)2002-10-182007-03-27Kineto Wireless, Inc.Mobile station ciphering configuration procedure in an unlicensed wireless communication system
US7283821B2 (en)2002-10-182007-10-16Kineto Wireless, Inc.Radio resources messaging for a mobile station in an unlicensed wireless communication system
US7769385B2 (en)2002-10-182010-08-03Kineto Wireless, Inc.Mobile station messaging for registration in an unlicensed wireless communication system
US7200399B2 (en)2002-10-182007-04-03Kineto Wireless, Inc.Ciphering configuration procedure in an unlicensed wireless communication system
US7209744B2 (en)2002-10-182007-04-24Kineto Wireless, Inc.Registration messaging for an unlicensed wireless communication system
US7634269B2 (en)2002-10-182009-12-15Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7606190B2 (en)2002-10-182009-10-20Kineto Wireless, Inc.Apparatus and messages for interworking between unlicensed access network and GPRS network for data services
US7424390B2 (en)2002-10-182008-09-09Rohde & Schwarz Gmbh & Co. KgMethod to evaluate whether a time delay is better than a time limit
US7127250B2 (en)2002-10-182006-10-24Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7212819B2 (en)2002-10-182007-05-01Kineto Wireless, Inc.GPRS signaling protocol architecture for an unlicensed wireless communication system
US20090082022A1 (en)*2002-10-182009-03-26Gallagher Michael DMobile station messaging for ciphering in an unlicensed wireless communication system
US7349698B2 (en)2002-10-182008-03-25Kineto Wireless, Inc.Registration messaging in an unlicensed mobile access telecommunications system
US7949326B2 (en)2002-10-182011-05-24Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US8090371B2 (en)2002-10-182012-01-03Kineto Wireless, Inc.Network controller messaging for release in an unlicensed wireless communication system
US8165585B2 (en)2002-10-182012-04-24Kineto Wireless, Inc.Handover messaging in an unlicensed mobile access telecommunications system
US7668558B2 (en)2002-10-182010-02-23Kineto Wireless, Inc.Network controller messaging for paging in an unlicensed wireless communication system
US7324818B2 (en)2002-10-182008-01-29Kineto Wireless, IncMobile station implementation for switching between licensed and unlicensed wireless systems
US7606568B2 (en)2002-10-182009-10-20Kineto Wireless, Inc.Messaging for registration in an unlicensed wireless communication system
US7215961B2 (en)2002-10-182007-05-08Kineto Wireless, Inc.Registration messaging for a mobile station in an unlicensed wireless communication system
US7818007B2 (en)2002-10-182010-10-19Kineto Wireless, Inc.Mobile station messaging for ciphering in an unlicensed wireless communication system
US7974624B2 (en)2002-10-182011-07-05Kineto Wireless, Inc.Registration messaging in an unlicensed mobile access telecommunications system
US7640008B2 (en)2002-10-182009-12-29Kineto Wireless, Inc.Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7565145B2 (en)2002-10-182009-07-21Kineto Wireless, Inc.Handover messaging in an unlicensed mobile access telecommunications system
US7245916B2 (en)2002-10-182007-07-17Kineto Wireless, Inc.Radio resources messaging in an unlicensed wireless communication system
US7634270B2 (en)2002-10-182009-12-15Kineto Wireless, Inc.GPRS data protocol architecture for an unlicensed wireless communication system
US7107055B2 (en)2002-10-182006-09-12Kineto, Wireless, Inc.Mobile station GPRS implementation for switching between licensed and unlicensed wireless systems
US7649994B1 (en)*2002-11-012010-01-19Nortel Networks LimitedSystem and method for decoding CDMA quality channel
USRE50112E1 (en)2002-12-032024-09-03Outdoor Wireless Networks LLCDistributed digital antenna system
USRE49377E1 (en)2002-12-032023-01-17Commscope Technologies LlcDistributed digital antenna system
US20040106435A1 (en)*2002-12-032004-06-03Adc Telecommunications, Inc.Distributed digital antenna system
US8958789B2 (en)2002-12-032015-02-17Adc Telecommunications, Inc.Distributed digital antenna system
US8179833B2 (en)2002-12-062012-05-15Qualcomm IncorporatedHybrid TDM/OFDM/CDM reverse link transmission
US20050111397A1 (en)*2002-12-062005-05-26Attar Rashid A.Hybrid TDM/OFDM/CDM reverse link transmission
US20070286081A1 (en)*2002-12-162007-12-13Corazza Giovanni EClosed Loop Resource Allocation
US7680052B2 (en)2002-12-162010-03-16Qualcomm IncorporatedClosed loop resource allocation
US20050207374A1 (en)*2002-12-202005-09-22Matsushita Electric Industrial Co., LtdMethod for cell modification in mobile communication system
US7085570B2 (en)*2002-12-232006-08-01Nokia CorporationHandover method, system and radio network controller
US20040121770A1 (en)*2002-12-232004-06-24Karl TigerstedtHandover method, system and radio network controller
US6990337B2 (en)2003-01-312006-01-24Flarion Technologies, Inc.Methods and apparatus for the utilization of core based nodes for state transfer
US7962142B2 (en)2003-01-312011-06-14Qualcomm IncorporatedMethods and apparatus for the utilization of core based nodes for state transfer
US20060030326A1 (en)*2003-01-312006-02-09O'neill AlanMethods and apparatus for the utilization of core based nodes for state transfer
US8886180B2 (en)2003-01-312014-11-11Qualcomm IncorporatedEnhanced techniques for using core based nodes for state transfer
US20050002242A1 (en)*2003-01-312005-01-06O'neill AlanMethods and apparatus for the utilization of core based nodes for state transfer
US20050063324A1 (en)*2003-01-312005-03-24O'neill AlanEnhanced techniques for using core based nodes for state transfer
US7369855B2 (en)2003-01-312008-05-06Qualcomm IncorporatedMethods and apparatus for the utilization of core based nodes for state transfer
US7668541B2 (en)2003-01-312010-02-23Qualcomm IncorporatedEnhanced techniques for using core based nodes for state transfer
US8553595B2 (en)2003-02-192013-10-08Qualcomm IncorporatedControlled superposition coding in multi-user communication systems
US10271248B2 (en)*2003-03-082019-04-23Samsung Electronics Co., LtdSystem and method for performing handover operation in broadband wireless access communication system
EP1458209A2 (en)*2003-03-082004-09-15Samsung Electronics Co., Ltd.System and method for deciding on a base station requested handover in a broadband wireless communication system
RU2305900C2 (en)*2003-03-082007-09-10Самсунг Электроникс Ко., Лтд.System and method for implementing service transfer operation in broadband wireless access communication system
US20080159231A1 (en)*2003-03-082008-07-03Samsung Electronics Co., Ltd.System and method for performing handover operation in broadband wireless access communication system
EP1469697B1 (en)*2003-03-082015-05-20Samsung Electronics Co., Ltd.Handover requested and controlled by the mobile station in a broadband wireless access communication system
US20040179469A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a data transmission in a communication system
US7746816B2 (en)2003-03-132010-06-29Qualcomm IncorporatedMethod and system for a power control in a communication system
US8514832B2 (en)2003-03-132013-08-20Qualcomm IncorporatedMethods and apparatus enabling increased throughput on the reverse link
US20040179494A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a power control in a communication system
US20040179480A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for estimating parameters of a link for data transmission in a communication system
US20040181569A1 (en)*2003-03-132004-09-16Attar Rashid AhmedMethod and system for a data transmission in a communication system
US20100014487A1 (en)*2003-03-132010-01-21Qualcomm IncorporatedMethod and system for a data transmission in a communication system
US20110170486A1 (en)*2003-03-252011-07-14Fujitsu LimitedRadio base station apparatus and base station controller
US8189513B2 (en)*2003-03-252012-05-29Fujitsu LimitedRadio base station apparatus and base station controller
US20040213198A1 (en)*2003-04-232004-10-28Hamid MahmoodRouting quality-of-service traffic in a wireless system
US10476619B2 (en)*2003-04-232019-11-12Apple Inc.Routing quality-of-service traffic in a wireless system
US8593932B2 (en)2003-05-162013-11-26Qualcomm IncorporatedEfficient signal transmission methods and apparatus using a shared transmission resource
US8145204B2 (en)*2003-05-292012-03-27Kyocera CorporationCommunication terminal out of range determination method, wireless communication system switching method and communication terminal
US20100311423A1 (en)*2003-05-292010-12-09Kyocera CorporationCommunication Terminal Out of Range Determination Method, Wireless Communication System Switching Method and Communication Terminal
US20050186957A1 (en)*2003-06-272005-08-25Mitsubishi Denki Kabushiki KaishaMobile communication system, mobile unit and network host processor
US7047003B2 (en)*2003-06-272006-05-16Mitsubishi Denki Kabushiki KaishaMobile communication system, mobile unit and network host processor
US20050037757A1 (en)*2003-08-122005-02-17Samsung Electronics Co., Ltd.Mobile communication system for handoff between heterogeneous mobile communication networks and handoff method using the same
US8315662B2 (en)2003-08-132012-11-20Qualcomm IncorporatedUser specific downlink power control channel Q-bit
US8200148B2 (en)2003-08-282012-06-12Kyocera CorporationCommunication control apparatus, communication apparatus and communication system
US20050094608A1 (en)*2003-08-282005-05-05Kyocera CorporationCommunication control apparatus, communication apparatus and communication system
US7444153B2 (en)*2003-08-282008-10-28Kyocera CorporationCommunication apparatus controller, communication apparatus and communication system
US20100029279A1 (en)*2003-09-042010-02-04Samsung Electronics Co., Ltd.Method for compulsorily performing handover in broadband wireless communication system
US8374611B2 (en)2003-09-042013-02-12Samsung Electronics Co., LtdMethod for compulsorily performing handover in broadband wireless communication system
US8112088B2 (en)2003-09-042012-02-07Samsung Electronics Co., LtdMethod for compulsorily performing handover in broadband wireless communication system
US20050096051A1 (en)*2003-09-042005-05-05Samsung Electronics Co., Ltd.Method for compulsorily performing handover in broadband wireless communication system
EP1791385A1 (en)*2003-09-042007-05-30Samsung Electronics Co., Ltd.Method for rejecting an ongoing handover in a broadband wireless communication system
AU2004303040B2 (en)*2003-09-042008-04-03Samsung Electronics Co., Ltd.Method for compulsorily performing handover in broadband wireless communication system
EP1791386B1 (en)*2003-09-042014-11-05Samsung Electronics Co., Ltd.Method for cancelling an ongoing handover in a broadband wireless communication system
US7877093B2 (en)2003-09-042011-01-25Samsung Electronics Co., LtdMethod for compulsorily performing handover in broadband wireless communication system
EP1513364A3 (en)*2003-09-042006-04-12Samsung Electronics Co., Ltd.Method for compulsorily performing handover in broadband wireless communication system
US7912485B2 (en)2003-09-112011-03-22Qualcomm IncorporatedMethod and system for signaling in broadcast communication system
US20050201321A1 (en)*2003-09-112005-09-15Ragulan SinnarajahMethod and system for signaling in broadcast communication system
US8644862B2 (en)2003-09-112014-02-04Qualcomm IncorporatedMethod and system for signaling in broadcast communication system
US20110170470A1 (en)*2003-09-112011-07-14Qualcomm IncorporatedMethod and system for signaling in broadcast communication system
US20050070284A1 (en)*2003-09-262005-03-31Cheng Steven D.Method for mobile device communications
US20050070316A1 (en)*2003-09-292005-03-31Lucent Technologies, Inc.Controlled timing during soft hand offs in a wireless system
US20050070289A1 (en)*2003-09-302005-03-31Nokia CorporationDistribution of processing in a radio network
US20060052108A1 (en)*2003-10-162006-03-09Rajiv LaroiaMethods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US6993333B2 (en)2003-10-162006-01-31Flarion Technologies, Inc.Methods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US20050085265A1 (en)*2003-10-162005-04-21Rajiv LaroiaMethods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US7720479B2 (en)2003-10-162010-05-18Qualcomm IncorporatedMethods and apparatus of improving inter-sector and/or inter-cell handoffs in a multi-carrier wireless communications system
US8428594B2 (en)2003-10-162013-04-23Qualcomm IncorporatedMethods and apparatus of improving inter-sector and/or inter cell handoffs in a multi-carrier wireless communications system
US7454207B2 (en)2003-10-172008-11-18Kineto Wireless, Inc.Service access control interface for an unlicensed wireless communication system
US7272397B2 (en)2003-10-172007-09-18Kineto Wireless, Inc.Service access control interface for an unlicensed wireless communication system
US7471655B2 (en)2003-10-172008-12-30Kineto Wireless, Inc.Channel activation messaging in an unlicensed mobile access telecommunications system
US7929977B2 (en)2003-10-172011-04-19Kineto Wireless, Inc.Method and system for determining the location of an unlicensed mobile access subscriber
US7369859B2 (en)2003-10-172008-05-06Kineto Wireless, Inc.Method and system for determining the location of an unlicensed mobile access subscriber
US7283822B2 (en)2003-10-172007-10-16Kineto Wireless, Inc.Service access control interface for an unlicensed wireless communication system
US20050099977A1 (en)*2003-11-072005-05-12Brett WilliamsWireless network monitoring methods, configuration devices, communications systems, and articles of manufacture
US20090154440A1 (en)*2003-11-072009-06-18Brett WilliamsWireless Communications Systems and Wireless Communications Methods
US7639642B2 (en)*2003-11-072009-12-29Hewlett-Packard Development Company, L.P.Wireless network monitoring methods, configuration devices, communications systems, and articles of manufacture
US20070173256A1 (en)*2003-12-052007-07-26Rajiv LaroiaMethods and apparatus for performing handoffs in a multi-carrier wireless communications system
US9485695B2 (en)2003-12-052016-11-01Qualcomm IncorporatedMethods and apparatus for performing handoffs in a multi-carrier wireless communications systems
US20050124349A1 (en)*2003-12-052005-06-09Chun-Hsiung LinControl method capable of reducing call dropped rate of mobile station in wireless communication system, control circuit and mobile station thereof
US7047009B2 (en)2003-12-052006-05-16Flarion Technologies, Inc.Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US8554226B2 (en)2003-12-052013-10-08Qualcomm IncorporatedBase station base methods and apparatus for supporting break before making handoffs in a multi-carrier system
US7376425B2 (en)2003-12-052008-05-20Qualcomm IncorporatedBase station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US20080287130A1 (en)*2003-12-052008-11-20Qualcomm IncorporatedBase Station Base Methods and Apparatus For Supporting Break Before Making Handoffs In A Multi-Carrier System
US20060073836A1 (en)*2003-12-052006-04-06Rajiv LaroiaBase station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US7212821B2 (en)2003-12-052007-05-01Qualcomm IncorporatedMethods and apparatus for performing handoffs in a multi-carrier wireless communications system
US20050124344A1 (en)*2003-12-052005-06-09Rajiv LaroiaBase station based methods and apparatus for supporting break before make handoffs in a multi-carrier system
US7321771B2 (en)2003-12-052008-01-22Mediatek IncorporationControl method capable of reducing call dropped rate of mobile station in wireless communication system, control circuit and mobile station thereof
CN100342750C (en)*2003-12-052007-10-10联发科技股份有限公司 Control method and circuit for improving call disconnection rate of mobile station in wireless communication system
US20050124345A1 (en)*2003-12-052005-06-09Raiv LaroiaMethods and apparatus for performing handoffs in a multi-carrier wireless communications system
US20050136925A1 (en)*2003-12-172005-06-23Toshiaki YamauchiVariable expiration parameter of a wireless communication device based upon signal strength
US7043226B2 (en)*2003-12-172006-05-09Motorola, Inc.Variable expiration parameter of a wireless communication device based upon signal strength
US8457099B2 (en)2004-02-062013-06-04Qualcomm IncorporatedMethods and apparatus for separating home agent functionality
US20050174984A1 (en)*2004-02-062005-08-11O'neill AlanMethods and apparatus for separating home agent functionality
US7697501B2 (en)2004-02-062010-04-13Qualcomm IncorporatedMethods and apparatus for separating home agent functionality
US8077695B2 (en)2004-02-062011-12-13Qualcomm IncorporatedMethods and apparatus for separating home agent functionality
EP1816794A3 (en)*2004-03-052008-01-02Samsung Electronics Co., LtdSystem and method for handover to minimize service delay due to ping pong effect in BWA communication system
US20050197126A1 (en)*2004-03-052005-09-08Samsung Electronics Co., Ltd.Handover system and method for minimizing service delay due to pingpong effect in a broadband wireless access communication system
US7636571B2 (en)*2004-03-052009-12-22Samsung Electronics Co., LtdMethod and apparatus for allocating channels in an orthogonal frequency division multiple access system
US7623864B2 (en)2004-03-052009-11-24Samsung Electronics Co., LtdSystem and method for handover to minimize service delay due to ping pong effect in BWA communication system
US7813734B2 (en)2004-03-052010-10-12Samsung Electronics Co., LtdSystem and method to perform a handover in a broadband wireless access communication system
US20070249355A1 (en)*2004-03-052007-10-25Samsung Electronics Co., Ltd.System and method for handover to minimize service delay due to ping pong effect in BWA communication system
US7480509B2 (en)*2004-03-052009-01-20Samsung Electronics Co., LtdHandover system and method for minimizing service delay due to pingpong effect in a broadband wireless access communication system
US20050197132A1 (en)*2004-03-052005-09-08Samsung Electronics Co., Ltd.Method and apparatus for allocating channels in an orthogonal frequency division multiple access system
US20050215265A1 (en)*2004-03-232005-09-29Sharma Sanjeev KMethod and system for load balancing in a wireless communication system
KR100855147B1 (en)2004-04-022008-08-28콸콤 인코포레이티드 Method and apparatus for searching list of pilot signals
WO2005099119A3 (en)*2004-04-022006-02-02Qualcomm IncMethods and apparatus for searching a list of pilot signals
US7423994B2 (en)*2004-04-022008-09-09Qualcomm IncorporatedMethods and apparatus for searching a list of pilot signals
US20050232199A1 (en)*2004-04-022005-10-20Jing LiuMethods and apparatus for searching a list of pilot signals
US9118358B2 (en)2004-04-152015-08-25Qualcomm IncorporatedMethods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US20060084404A1 (en)*2004-04-152006-04-20Rajiv LaroiaMethods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
EP2254255A3 (en)*2004-04-152012-05-09Qualcomm IncorporatedMethods and apparatus for selecting between multiple carriers using a single receiver chain tuned to a single carrier
US7957348B1 (en)2004-04-212011-06-07Kineto Wireless, Inc.Method and system for signaling traffic and media types within a communications network switching system
US8041385B2 (en)2004-05-142011-10-18Kineto Wireless, Inc.Power management mechanism for unlicensed wireless communication systems
US7676226B2 (en)2004-05-172010-03-09Samsung Electronics Co., Ltd.Fast handover method optimized for IEEE 802.11 networks
US20050255847A1 (en)*2004-05-172005-11-17Samsung Electronics Co., Ltd.Fast handover method optimized for IEEE 802.11 Networks
CN100499543C (en)*2004-05-172009-06-10三星电子株式会社Fast handover method for IEEE 802.11 networks
CN1324921C (en)*2004-06-012007-07-04日本电气株式会社Mobile station, radio communication system, base station switching control method, program, and recording medium
US20060013187A1 (en)*2004-06-232006-01-19High Tech Computer, Corp.Methods for establishing wireless network communication and device utilizing same
US7672291B2 (en)*2004-06-232010-03-02Htc CorporationMethods for establishing wireless network communication and device utilizing same
EP1615460B1 (en)*2004-07-092013-11-20Alcatel LucentCell switching and packet combining in a wireless communication system
NO343611B1 (en)*2004-08-022019-04-15Huawei Tech Co Ltd Method of handover at the cell transition in the central system
US11129062B2 (en)2004-08-042021-09-21Qualcomm IncorporatedEnhanced techniques for using core based nodes for state transfer
US7693521B1 (en)2004-08-042010-04-06Sprint Spectrum L.P.Method and system for mobile station handoff
US8570880B2 (en)2004-08-052013-10-29Qualcomm IncorporatedMethod and apparatus for receiving broadcast in a wireless multiple-access communications system
US20060028995A1 (en)*2004-08-052006-02-09Canoy Michael-David NMethod and apparatus for receiving broadcast in a wireless multiple-access communications system
US9648644B2 (en)2004-08-242017-05-09Comcast Cable Communications, LlcDetermining a location of a device for calling via an access point
US10517140B2 (en)2004-08-242019-12-24Comcast Cable Communications, LlcDetermining a location of a device for calling via an access point
US11956852B2 (en)2004-08-242024-04-09Comcast Cable Communications, LlcPhysical location management for voice over packet communication
US11252779B2 (en)2004-08-242022-02-15Comcast Cable Communications, LlcPhysical location management for voice over packet communication
US10070466B2 (en)2004-08-242018-09-04Comcast Cable Communications, LlcDetermining a location of a device for calling via an access point
US20060068779A1 (en)*2004-09-222006-03-30Nisbet Rex ARoaming of mobile radio units in a multicast digital network
DE112005002494B4 (en)*2004-10-152013-02-14Meshnetworks, Inc. A system and method for enabling inter-frequency handover of mobile terminals in a wireless communications network
DE102005051558B4 (en)*2004-11-182012-03-01Mediatek Inc. Method of handover and devices using the method
US20060105768A1 (en)*2004-11-182006-05-18Mediatek IncorporationHandoff methods, and devices utilizing same
US8086241B2 (en)2004-11-182011-12-27Mediatek IncorporationHandoff methods, and devices utilizing same
US20070097924A1 (en)*2004-11-222007-05-03Motorola, Inc.Method and system for inter-technology active handoff of a hybrid communication device
US8760992B2 (en)2004-12-072014-06-24Adaptix, Inc.Method and system for switching antenna and channel assignments in broadband wireless networks
US8797970B2 (en)2004-12-072014-08-05Adaptix, Inc.Method and system for switching antenna and channel assignments in broadband wireless networks
US7933598B1 (en)2005-03-142011-04-26Kineto Wireless, Inc.Methods and apparatuses for effecting handover in integrated wireless systems
US8761080B2 (en)2005-03-152014-06-24Qualcomm IncorporatedMultiple other sector information combining for power control in a wireless communication system
US7894816B1 (en)2005-03-162011-02-22Sprint Spectrum L.P.Method of selecting carrier frequency for call origination
US20060217119A1 (en)*2005-03-252006-09-28Peter BoschFine grain downlink active set control
US7818001B2 (en)*2005-03-252010-10-19Alcatel-Lucent Usa Inc.Fine grain downlink active set control
US7756546B1 (en)2005-03-302010-07-13Kineto Wireless, Inc.Methods and apparatuses to indicate fixed terminal capabilities
RU2286030C1 (en)*2005-05-272006-10-20Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет"High frequency system and method for exchanging packet data
US20060281463A1 (en)*2005-06-102006-12-14Lg Electronics Inc.Method for triggering handover of mobile terminal and system thereof
US9055552B2 (en)2005-06-162015-06-09Qualcomm IncorporatedQuick paging channel with reduced probability of missed page
US8750908B2 (en)2005-06-162014-06-10Qualcomm IncorporatedQuick paging channel with reduced probability of missed page
US8457092B2 (en)2005-06-162013-06-04Qualcomm IncorporatedQuick paging channel with reduced probability of missed page
US20070037584A1 (en)*2005-08-092007-02-15Lg Electronics Inc.Method for triggering handover of mobile terminal and system thereof
US8045493B2 (en)2005-08-102011-10-25Kineto Wireless, Inc.Mechanisms to extend UMA or GAN to inter-work with UMTS core network
US7843900B2 (en)2005-08-102010-11-30Kineto Wireless, Inc.Mechanisms to extend UMA or GAN to inter-work with UMTS core network
US7515575B1 (en)2005-08-262009-04-07Kineto Wireless, Inc.Intelligent access point scanning with self-learning capability
US7904084B2 (en)2005-08-262011-03-08Kineto Wireless, Inc.Intelligent access point scanning with self-learning capability
US20070054664A1 (en)*2005-09-012007-03-08Pantech & Curitel Communications, Inc.Wireless communication terminal and method for emergency call connection using hand-off
US8509191B2 (en)2005-09-092013-08-13Mcmaster UniversityReducing handoff latency in a wireless local area network through an activation alert that affects a power state of a receiving mesh access point
US8249602B2 (en)2005-09-092012-08-21Mcmaster UniversityReducing handoff latency in a wireless local area network through an activation alert that affects a power state of a receiving mesh access point
US8009635B2 (en)*2005-09-092011-08-30Mcmaster UniversityReducing handoff latency in a wireless local area network through an activation alert that affects a power state of a receiving mesh access point
US20070058588A1 (en)*2005-09-092007-03-15Mcmaster UniversityReducing Handoff Latency in a Wireless Local Area Network
US8982778B2 (en)2005-09-192015-03-17Qualcomm IncorporatedPacket routing in a wireless communications environment
US8982835B2 (en)2005-09-192015-03-17Qualcomm IncorporatedProvision of a move indication to a resource requester
US9066344B2 (en)2005-09-192015-06-23Qualcomm IncorporatedState synchronization of access routers
US8509799B2 (en)2005-09-192013-08-13Qualcomm IncorporatedProvision of QoS treatment based upon multiple requests
US9313784B2 (en)2005-09-192016-04-12Qualcomm IncorporatedState synchronization of access routers
US8971222B2 (en)2005-10-272015-03-03Qualcomm IncorporatedMethod and apparatus for decrementing assignments in wireless communication systems
US8238289B2 (en)2005-10-272012-08-07Qualcomm IncorporatedMethod and apparatus for requesting selected interlace mode in wireless communication systems
WO2007050846A1 (en)*2005-10-272007-05-03Qualcomm IncorporatedA method and apparatus for monitoring other channel interference in wireless communication system
US8248950B2 (en)2005-10-272012-08-21Qualcomm IncorporatedMethod of transmitting and receiving a redirect message in a wireless communication system
US8199661B2 (en)2005-10-272012-06-12Qualcomm IncorporatedMethod and apparatus for processing supplemental and non supplemental assignments
US9125078B2 (en)2005-10-272015-09-01Qualcomm IncorporatedMethod and apparatus for setting reverse link CQI reporting modes in wireless communication system
US8331285B2 (en)2005-10-272012-12-11Qualcomm IncorporatedMethod and apparatus of establishing access channel in wireless communication systems
US8744444B2 (en)2005-10-272014-06-03Qualcomm IncorporatedMethod and apparatus for transmitting a pilot report (PilotReport) message in wireless communication systems
US8923211B2 (en)2005-10-272014-12-30Qualcomm IncorporatedMethod and apparatus of processing an access grant block in wireless communication systems
US8457042B2 (en)2005-10-272013-06-04Qualcomm IncorporatedMethod and apparatus for transmitting and receiving a sectorparameters message in an active state in wireless communication system
US8675549B2 (en)2005-10-272014-03-18Qualcomm IncorporatedMethod of serving sector maintenance in a wireless communication systems
US8265066B2 (en)2005-10-272012-09-11Qualcomm IncorporatedMethod and apparatus for reducing power consumption in wireless communication systems
US8599712B2 (en)2005-10-272013-12-03Qualcomm IncorporatedMethod and apparatus for setting reverse link CQI reporting modes in wireless communication system
CN101347025B (en)*2005-10-272013-02-13高通股份有限公司A method and apparatus for monitoring other channel interference in wireless communication system
US8289908B2 (en)2005-10-272012-10-16Qualcomm IncorporatedMethod and apparatus for processing simultaneous assignment in wireless communication systems
US8218479B2 (en)2005-10-272012-07-10Qualcomm IncorporatedMethod and apparatus for processing a multi-code word assignment in wireless communication systems
US8520628B2 (en)2005-10-272013-08-27Qualcomm IncorporatedMethod and apparatus for monitoring other channel interference in wireless communication system
US8289897B2 (en)2005-10-272012-10-16Qualcomm IncorporatedMethod and apparatus for processing open state in wireless communication system
US8326330B2 (en)2005-10-272012-12-04Qualcomm IncorporatedMethod and apparatus for updating configuration attributes using FastRepage attribute in wireless communication systems
US8477808B2 (en)2005-10-272013-07-02Qualcomm IncorporatedMethod and apparatus of assigning in wireless communication systems
KR101061755B1 (en)2005-10-272011-09-02퀄컴 인코포레이티드 Method and apparatus for monitoring interference of different channels in wireless communication system
US7761099B2 (en)*2005-11-282010-07-20Electronics And Telecommunications Research InstituteMethod for discovering wireless network for inter-system handover, multi-mode terminal unit and inter-working service server using the method
US20070123260A1 (en)*2005-11-282007-05-31Won-Ik KimMethod for discovering wireless network for inter-system handover, multi-mode terminal unit and inter-working service server using the method
CN100421523C (en)*2005-12-052008-09-24华为技术有限公司 A method for establishing a reverse supplementary channel branch
US9955476B2 (en)*2005-12-202018-04-24Qualcomm IncorporatedMethods and systems for providing enhanced position location in wireless communications
US20140269638A1 (en)*2005-12-202014-09-18Qualcomm IncorporatedMethods and systems for providing enhanced position location in wireless communications
US10694517B2 (en)2005-12-202020-06-23Qualcomm IncorporatedMethods and systems for providing enhanced position location in wireless communications
US9736752B2 (en)2005-12-222017-08-15Qualcomm IncorporatedCommunications methods and apparatus using physical attachment point identifiers which support dual communications links
US9078084B2 (en)2005-12-222015-07-07Qualcomm IncorporatedMethod and apparatus for end node assisted neighbor discovery
US8983468B2 (en)2005-12-222015-03-17Qualcomm IncorporatedCommunications methods and apparatus using physical attachment point identifiers
US9083355B2 (en)2006-02-242015-07-14Qualcomm IncorporatedMethod and apparatus for end node assisted neighbor discovery
US20070243899A1 (en)*2006-04-122007-10-18Adc Telecommunications, Inc.Systems and methods for analog transport of rf voice/data communications
US7599711B2 (en)2006-04-122009-10-06Adc Telecommunications, Inc.Systems and methods for analog transport of RF voice/data communications
US8165086B2 (en)2006-04-182012-04-24Kineto Wireless, Inc.Method of providing improved integrated communication system data service
US8417287B2 (en)*2006-05-192013-04-09Agere Systems LlcVirtual gateway node for dual-mode wireless phones
US20120069765A1 (en)*2006-05-192012-03-22Agere Systems Inc.Virtual gateway node for dual-mode wireless phones
CN103889063B (en)*2006-06-192018-10-09高智第二有限责任公司System for eliminating inter-cell interference and scheduler
US8005076B2 (en)2006-07-142011-08-23Kineto Wireless, Inc.Method and apparatus for activating transport channels in a packet switched communication system
US7852817B2 (en)2006-07-142010-12-14Kineto Wireless, Inc.Generic access to the Iu interface
US7912004B2 (en)2006-07-142011-03-22Kineto Wireless, Inc.Generic access to the Iu interface
US20080032735A1 (en)*2006-08-072008-02-07Research In Motion LimitedApparatus, and associated method, for performing cell selection in a packet radio communication system
US8073428B2 (en)2006-09-222011-12-06Kineto Wireless, Inc.Method and apparatus for securing communication between an access point and a network controller
US8150397B2 (en)2006-09-222012-04-03Kineto Wireless, Inc.Method and apparatus for establishing transport channels for a femtocell
US8036664B2 (en)2006-09-222011-10-11Kineto Wireless, Inc.Method and apparatus for determining rove-out
US7995994B2 (en)2006-09-222011-08-09Kineto Wireless, Inc.Method and apparatus for preventing theft of service in a communication system
US8204502B2 (en)2006-09-222012-06-19Kineto Wireless, Inc.Method and apparatus for user equipment registration
US20080076415A1 (en)*2006-09-272008-03-27Samsung Electronics Co., Ltd.Apparatus and method for controlling pilot channel search in a communication system
US9674786B2 (en)2007-01-112017-06-06Qualcomm IncorporatedUsing DTX and DRX in a wireless communication system
US8755313B2 (en)2007-01-112014-06-17Qualcomm IncorporatedUsing DTX and DRX in a wireless communication system
US9432942B2 (en)2007-01-112016-08-30Qualcomm IncorporatedUsing DTX and DRX in a wireless communication system
EP2809011B1 (en)*2007-01-242023-05-31NEC CorporationWireless mobile station, wireless base station control device, wireless system and wireless cell management method
EP4220977A1 (en)*2007-01-242023-08-02NEC CorporationWireless mobile station, wireless base station control device, wireless system and wireless cell management method
US8583100B2 (en)2007-01-252013-11-12Adc Telecommunications, Inc.Distributed remote base station system
US10554242B2 (en)2007-01-252020-02-04Commscope Technologies LlcModular wireless communications platform
US9585193B2 (en)2007-01-252017-02-28Commscope Technologies LlcModular wireless communications platform
US8737454B2 (en)2007-01-252014-05-27Adc Telecommunications, Inc.Modular wireless communications platform
US9941921B2 (en)2007-01-252018-04-10Commscope Technologies LlcModular wireless communications platform
CN101262422B (en)*2007-02-022011-07-27索尼株式会社Wireless communication system, wireless wireless communication device and wireless communication method
US8019331B2 (en)2007-02-262011-09-13Kineto Wireless, Inc.Femtocell integration into the macro network
US20100105381A1 (en)*2007-02-272010-04-29Kyocera CorporationRadio communication terminal and in-cell return processing method
US9155008B2 (en)2007-03-262015-10-06Qualcomm IncorporatedApparatus and method of performing a handoff in a communication network
US8059595B2 (en)2007-04-062011-11-15Qualcomm IncorporatedHandoff of data attachment point
WO2008156895A3 (en)*2007-04-062009-05-14Qualcomm IncHandoff of data attachment point
US20080247360A1 (en)*2007-04-062008-10-09Qualcomm IncorporatedHandoff of Data Attachment Point
CN101653026B (en)*2007-04-062017-05-10高通股份有限公司 Switching to Data Attachment Points
RU2446628C2 (en)*2007-04-062012-03-27Квэлкомм ИнкорпорейтедTransfer of data attachment point servicing
US8830818B2 (en)2007-06-072014-09-09Qualcomm IncorporatedForward handover under radio link failure
US9094173B2 (en)2007-06-252015-07-28Qualcomm IncorporatedRecovery from handoff error due to false detection of handoff completion signal at access terminal
US20090097452A1 (en)*2007-10-122009-04-16Qualcomm IncorporatedFemto cell synchronization and pilot search methodology
WO2009049207A3 (en)*2007-10-122009-05-28Qualcomm IncFemto cell synchronization and pilot search methodology
US20110212727A1 (en)*2007-10-152011-09-01Zte CorporationMethod for processing handoff confirm messages
US20090109948A1 (en)*2007-10-292009-04-30Infineon Technologies AgRadio communication device for generating and transmitting data, radio communication device for receiving and decoding data, method for transmitting data and method for receiving data
US8290468B2 (en)*2007-10-312012-10-16Kyocera CorporationMethod for controlling a handover that switches connection from a source base station apparatus to a destination base station apparatus, and control apparatus and terminal apparatus utilizing the same
US20090154424A1 (en)*2007-10-312009-06-18Kyrocera CorporationMethod for controlling a handover that switches connection from a source base station apparatus to a destination base station apparatus, and control apparatus and terminal apparatus utilizing the same
US8478281B2 (en)2007-12-132013-07-02Agere Systems LlcCell phone extension using wireless piconet
US20090156167A1 (en)*2007-12-132009-06-18Mooney Philip DCell phone extension using wireless piconet
US20090247164A1 (en)*2008-03-282009-10-01Qualcomm IncorporatedHandoff algorithm and architecture for mobile system
US8041335B2 (en)2008-04-182011-10-18Kineto Wireless, Inc.Method and apparatus for routing of emergency services for unauthorized user equipment in a home Node B system
US20100015985A1 (en)*2008-07-212010-01-21Mediatek Inc.Methods for controlling radio links in a cellular communication system
US8583123B2 (en)2008-07-212013-11-12Mediatek Inc.Methods for controlling radio links in a cellular communication system
US20100040023A1 (en)*2008-08-152010-02-18Gallagher Michael DMethod and Apparatus for Inter Home Node B Handover in a Home Node B Group
US20100041403A1 (en)*2008-08-152010-02-18Amit KhetawatMethod and Apparatus for Management of UTRAN Radio Network Temporary Identifiers (U-RNTIs) over the Iuh Interface
US20100041402A1 (en)*2008-08-152010-02-18Gallagher Michael DMethod and Apparatus for Distributing Temporary ID/Permanent ID Relationships in Enterprise Home Node B System
US20100041387A1 (en)*2008-08-152010-02-18Amit KhetawatMethod and Apparatus for Inter Home Node B Cell Update Handling
US20110195743A1 (en)*2008-09-122011-08-11Electronics And Telecommunications Research InstituteMethod and apparatus for power management
US8964692B2 (en)2008-11-102015-02-24Qualcomm IncorporatedSpectrum sensing of bluetooth using a sequence of energy detection measurements
US20100118695A1 (en)*2008-11-102010-05-13Qualcomm IncorporatedSpectrum sensing of bluetooth using a sequence of energy detection measurements
US8755807B2 (en)*2009-01-122014-06-17Qualcomm IncorporatedSemi-static resource allocation to support coordinated multipoint (CoMP) transmission in a wireless communication network
US20100177746A1 (en)*2009-01-122010-07-15Qualcomm IncorporatedSemi-static resource allocation to support coordinated multipoint (comp) transmission in a wireless communication network
US8953520B2 (en)2009-02-132015-02-10Qualcomm IncorporatedMethod and apparatus for inter-sector MIMO
WO2010094001A3 (en)*2009-02-132010-11-18Qualcomm IncorporatedMethod and apparatus for inter-sector interference cancellation
CN102318204B (en)*2009-02-132015-03-11高通股份有限公司Method and apparatus for inter-sector MIMO
US20100265883A1 (en)*2009-02-132010-10-21Qualcomm IncorporatedMethod and apparatus for inter-sector mimo cross-reference to related applications
CN102318204A (en)*2009-02-132012-01-11高通股份有限公司Method and apparatus for inter-sector MIMO
US9001811B2 (en)2009-05-192015-04-07Adc Telecommunications, Inc.Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes
US9042246B2 (en)*2009-06-242015-05-26Verizon Patent And Licensing Inc.Voice over internet protocol diagnostics
US20120051254A1 (en)*2009-06-242012-03-01Verizon Patent And Licensing Inc.Voice over internet protocol diagnostics
DE102010017481B4 (en)*2009-06-262012-10-04Infineon Technologies Delta Gmbh Method for measuring a received signal strength, measuring devices and radio communication device
US8290460B2 (en)2009-06-262012-10-16Intel Mobile Communications GmbHMethods for measuring received signal strength indication, measurement devices, and radio communication device
US20100330943A1 (en)*2009-06-262010-12-30Infineon Technologies AgMethods for measuring received signal strength indication, measurement devices, and radio communication device
US8811200B2 (en)2009-09-222014-08-19Qualcomm IncorporatedPhysical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US20120236745A1 (en)*2009-11-272012-09-20Sanyo Electric Co., LtdTerminal apparatus for transmitting or receiving a signal including predetermined information
US9131410B2 (en)2010-04-092015-09-08Qualcomm IncorporatedMethods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems
US8615241B2 (en)2010-04-092013-12-24Qualcomm IncorporatedMethods and apparatus for facilitating robust forward handover in long term evolution (LTE) communication systems
DE102011050850A1 (en)*2010-06-242011-12-29Intel Mobile Communications Technology GmbH Cell reselection method and mobile terminal
DE112011100149B4 (en)*2010-10-212021-02-25Spreadtrum Communications (Shanghai) Co., Ltd. Method and device for sequencing frequency points
US8874105B2 (en)2010-11-292014-10-28Motorola Mobility LlcMethod and apparatus for obtaining overhead information within a communication system
WO2013020656A1 (en)*2011-08-102013-02-14Alcatel LucentMethod, apparatus and computer program for selecting cells and for a mobile transceiver
EP2557852A1 (en)*2011-08-102013-02-13Alcatel LucentMethod, apparatus and computer program for selecting cells and for a mobile transceiver
US20130083682A1 (en)*2011-10-032013-04-04Samsung Electronics Co., LtdDownlink timing reference for coordinated multipoint communication
US9277467B2 (en)2011-12-082016-03-01Samsung Electronics Co., Ltd.Communication system with adaptive handover controller and method of operation thereof
US10291295B2 (en)2014-02-182019-05-14Commscope Technologies LlcSelectively combining uplink signals in distributed antenna systems
US9577922B2 (en)2014-02-182017-02-21Commscope Technologies LlcSelectively combining uplink signals in distributed antenna systems
US9426707B1 (en)*2014-03-262016-08-23Sprint Spectrum L.P.Handoff based on uplink and downlink reference signals
US10499269B2 (en)2015-11-122019-12-03Commscope Technologies LlcSystems and methods for assigning controlled nodes to channel interfaces of a controller
US20180295657A1 (en)*2017-04-062018-10-11Samsung Electronics Co., Ltd.Device for connecting external device and updating data
US20210246004A1 (en)*2018-04-232021-08-12Kabushiki Kaisha Toyota JidoshokkiIndustrial vehicle remote operation system, industrial vehicle, computer-readable storage medium storing industrial vehicle remote operation program, and industrial vehicle remote operation method
RU2702622C1 (en)*2018-12-182019-10-09Акционерное общество "Научно-производственное предприятие "Полет"Radio communication system with movable objects

Also Published As

Publication numberPublication date
US5640414A (en)1997-06-17

Similar Documents

PublicationPublication DateTitle
US5267261A (en)Mobile station assisted soft handoff in a CDMA cellular communications system
US5101501A (en)Method and system for providing a soft handoff in communications in a cdma cellular telephone system
EP0500761B2 (en)Diversity receiver in a cdma cellular telephone system
US5577022A (en)Pilot signal searching technique for a cellular communications system
US6073021A (en)Robust CDMA soft handoff
RU2197792C2 (en)Method and device for reliable intersystem service transmission in code-division multiple access system
EP0899981B1 (en)A method for performing a soft handoff
JP2001512638A (en) Method and apparatus for combining pilot neighbor list in mobile telephone system
HK1014810B (en)Soft handoff in a cdma cellular telephone system
HK1020138B (en)Diversity receiver in a cdma cellular telephone system
HK1074933B (en)Soft handoff in a cdma cellular telephone system
MXPA97003723A (en)Pilot signal search technology for a cellular communications system

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:QUALCOMM INCORPORATED, A CORP. OF DELAWARE, CALIFO

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BLAKENEY,, ROBERT D., II;KARMI, GADI;TIEDEMANN, EDWARD G., JR.;AND OTHERS;REEL/FRAME:006109/0314

Effective date:19920504

STCFInformation on status: patent grant

Free format text:PATENTED CASE

FPAYFee payment

Year of fee payment:4

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:8

FPAYFee payment

Year of fee payment:12


[8]ページ先頭

©2009-2025 Movatter.jp