Movatterモバイル変換


[0]ホーム

URL:


US5190539A - Micro-heat-pipe catheter - Google Patents

Micro-heat-pipe catheter
Download PDF

Info

Publication number
US5190539A
US5190539AUS07/550,519US55051990AUS5190539AUS 5190539 AUS5190539 AUS 5190539AUS 55051990 AUS55051990 AUS 55051990AUS 5190539 AUS5190539 AUS 5190539A
Authority
US
United States
Prior art keywords
heat
micro
shaft
pipe
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/550,519
Inventor
Leroy S. Fletcher
George P. Peterson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas A&M University System
Texas A&M University
Original Assignee
Texas A&M University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas A&M UniversityfiledCriticalTexas A&M University
Priority to US07/550,519priorityCriticalpatent/US5190539A/en
Assigned to TEXAS A&M UNIVERSITY SYSTEM, THE, A TX. STATE AGENCYreassignmentTEXAS A&M UNIVERSITY SYSTEM, THE, A TX. STATE AGENCYASSIGNMENT OF ASSIGNORS INTEREST.Assignors: FLETCHER, LEROY S., PETERSON, GEORGE P.
Priority to US07/994,551prioritypatent/US5417686A/en
Application grantedgrantedCritical
Publication of US5190539ApublicationCriticalpatent/US5190539A/en
Priority to US08/215,276prioritypatent/US5591162A/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A micro-heat-pipe catheter provides a hyperthermia or hypothermia source for the treatment of cancerous tumors or other diseased tissue. The heat-pipe is about the size of a hypodermic needle and is thermally insulated along a substantial portion of its length. The heat-pipe includes a channel, partially charged with an appropriate working fluid. Active or passive heat control tailors the delivery or removal of thermal energy directly to or from the tumor or diseased tissue site.

Description

SUMMARY OF THE INVENTION
Millions of people are afflicted with some form of cancer every year, and new techniques for cancer treatment are continually being developed. The use of local hyperthermia, or elevating the temperature of a cancerous part of the body to a slightly higher temperature has received increased attention over the past few years. Localized heating of a cancerous tumor (including the edges of the tumor) to therapeutic temperatures of 42.5° C. (108.5° F.) to 43.0° C. (109.4° F.) for periods of 20 to 30 minutes will in most cases destroy the rapidly growing cancer cells and lead to the arrest of tumor growth.
Total body temperatures above 41.8° C. (107.2° F.) are detrimental to the functions of the central nervous system, heart, liver, and kidney, and may even cause histologically obvious damage to tissue cells, whereas tumorcidal effects are generally not observed below 42.5° C. (108.5° F.). At brain temperatures of over 41.8° C. (107.2° F.), the mechanism for regulation of body temperature can be incapacitated and there is danger of `malignant` or `runaway` hyperthermia. Further, temperatures of up to 45° C. (113.0° F.) may cause soft tissue necroses and fistulas as well as skin burns. Therefore, accurate temperature control is critical to successful hyperthermia. As a consequence, there is a significant need for development of a simple hyperthermia device which will generate a precisely controllable heat rate that is confined to the tumor region in order to minimize the risk of damage to the surrounding normal tissue and the overall body functions.
Local hyperthermia must elevate the temperature of a cancerous tumor to a therapeutic level while maintaining the temperature of the surrounding tissue at normal levels. Numerous heating methods for tumor treatment have been proposed over the past few decades, and several methods are currently in practice. These heating techniques may be classified from a clinical point of view as non-invasive and invasive.
Non-invasive hyperthermia techniques involve the use of electromagnetic or ultrasound energy focused on the region to be heated by means of external systems. This energy heats the body tissues to the desired temperatures. While it is possible to focus this energy, the resulting effect is regional heating rather than local heating, and the blood flow carries much of the heat away. This approach often exhibits large fluctuations in heating due to variations in blood flow and tissue thermal conductivity.
Both electromagnetic and ultrasound energy must be carefully focused, and the wavelength of the beam must be small compared to the tumor dimensions. As a consequence, microwave heating is not useful for deep tumors, but may be used on diseased areas only a few centimeters into the body. Thus, microwave energy is restricted to superficial tumors or diseased areas not requiring deep penetration. Ultrasound also exhibits a frequency-dependent penetration depth. Bones are very strong absorbers of ultrasound beams while air cavities are almost perfect reflectors. Further, reflections occur at dissimilar tissue interfaces, causing additional problems. Coupling between the applicator and skin also poses a problem in some cases.
Invasive heating techniques include the perfusion of the extremities with extracorporally heated blood, the irrigation of the urinary bladder with heated saline, and other intracavitary methods or interstitial techniques, such as placing heating elements directly into the tumor. The use of interstitial techniques permits the achievement of therapeutic temperature levels without appreciable heating of normal tissues, regardless of the tumor geometry. The use of a number of heating elements permits the regulation of the heat rate to the appropriate level. Interstitial hyperthermia devices include sets of implanted electrodes connected to a radio frequency generator, combinations of implanted and external electrodes, and implanted microwave antennas. Implanted or injected thermoseeds are also considered an invasive heating technique.
Each of these invasive techniques has drawbacks. The use of implanted electrodes, while simple, involves placing an array of needles into the tumor and connecting them to an RF generator. The temperature field for such electrodes is very difficult to control, and the volume that can be heated effectively is rather small, requiring many implants. Such an arrangement may result in non-uniform heating with excessive temperatures. Further, the use of high frequencies and high voltage may interfere with the electronic thermometers and could be harmful to the patient.
Implanted electrodes require connections to an external power source. A large number of connection wires, or coaxial feed lines, may pose major problems. These problems include the over-heating of feed lines, as well as temperature inhomogeneity.
Implanted thermoseeds absorb energy from an externally-applied magnetic induction field. Each acts as a small heating unit, transferring heat to the tumor by conduction. Implanting microwave antennas is probably the most popular invasive heating technique and has been used in many treatments. Generally, an array of seeds or antennas are implanted in the tumor and left in place for the duration of the treatment.
Thermoseeds are generally small cylinders and require careful placement in the tumor because the orientation with respect to the induced magnetic field dictates the degree of tumor heating. As a consequence, each cylinder must be implanted individually. As with other invasive methods, the use of thermoseeds has limited temperature control. Further, areas with poor blood flow may overheat while regions with high blood flow may not attain therapeutic temperatures.
Small ferromagnetic microspheres may be injected into the tumor or into the blood supply. The appropriate region is then subjected to a high intensity, low frequency magnetic field. The microspheres absorb energy from the magnetic field and heat the cancerous tissue by conduction heating. This technique, however, has not been used on humans.
All non-invasive and invasive techniques require a complete knowledge of the temperature distribution in the diseased region. As a consequence, these techniques require the insertion of a large number of invasive temperature probes or an improvement in the thermal modeling of the region between temperature probes.
An ideal heating technique must account for the three-dimensional character of a tumor and its surroundings. Microwave antennas and implanted needle electrodes lack this ability. However, a technique employing a micro-heat-pipe can account for this characteristic.
Micro-heat-pipe technology is well known to those in the field, and small heat-pipes and miniature heat-pipes have been demonstrated to work successfully in the laboratory. Micro groove heat pipes are in development and other types of micro-heat-pipes are available from a variety of commercial micro-heat-pipe manufacturers, such as the Itoh Research and Development Company in Japan.
It would therefore be advantageous to provide a micro-heat-pipe that develops a tightly controlled temperature range in a region restricted to diseased tissue within a body. Such a micro-heat-pipe must deliver a controllable amount of thermal energy to the diseased tissue while minimizing heat transfer to normal tissue surrounding the diseased region. This device should provide localized temperature monitoring and eliminate the use of hazardous electrodes and electromagnetic radiation.
SUMMARY OF THE INVENTION
The present invention provides a controllable heat rate at a tightly controlled constant temperature for use in a micro-heat-pipe charged with an appropriate working fluid to assure a constant temperature operation within the therapeutic temperature range of 42.5° (108.5° ) to 43.0° C. (109.4° F.) or whatever temperature range is deemed appropriate for the diseased tissue. The present invention also provides for hypothermia; that is, the removal of thermal energy in appropriate circumstances. This micro-heat-pipe is inserted directly into a tumor or other diseased region of a body and heat is applied to destroy the diseased region. The rate of heat delivered or removed is matched to the thermal conductivity of the tissue and the degree to which the tumor is perfused. The number and depth of such devices to be inserted into a cancerous tumor or diseased tissue depends on the volume and location of the diseased region within the body.
A micro-heat-pipe catheter in accordance with the present invention delivers heat to a tumor or diseased region at constant temperature in a precisely controllable manner without using surgical techniques. The micro-heat-pipe catheter is a simple device that requires no complex external equipment, high voltages, or high radio-frequencies. Further, each catheter may be either actively controlled through a self-contained unit or passively controlled using one of several heat pipe control techniques.
Each catheter may be designed to operate at a specific temperature, and fabricated in different lengths and different diameters for specific tumor locations and volumes. For specific applications, the heat-pipe may be curved to work around an obstruction such as bone or to avoid the invasion of a particular organ. The micro-heat-pipe includes an evaporator or heating section that remains external to the body and a condenser section that is inserted into a tumor or other diseased region of the body. The temperature and heat flux of the heating section of the catheter is controlled to suit individual tumor requirements.
The micro-heat-pipe catheter of the present invention eliminates most of the problems associated with both non-invasive and invasive hyperthermia devices. It is simple to use, easily controlled, and does not require complex supporting facilities. This device eliminates the need for additional temperature control systems and thus minimizes the disturbance of surrounding tissue.
Hyperthermia is generally used in addition to surgery, radiation, and chemotherapy rather than alone as the first line of treatment. Hyperthermia, when used in new or previously treated tumors, is found to have strong antitumor effects. Its efficacy is enhanced remarkably if delivered in conjunction with other cancer therapies. Thus, the micro-heat-pipe catheter of the present invention serves to replace some existing hyperthermia treatment techniques for some cancerous tumors and increases the number of individuals who may be treated. Further, it may be used for some deep seated tumors which cannot be treated with other techniques.
For applications requiring the cooling of the tissue, or hypothermia, the external end of the catheter may be cooled so that the micro heat pipe removes heat from the body.
The catheter is an invasive device; it may be inserted directly into the diseased tissue in a manner similar to a hypodermic needle. A detachable handle may be used for accurate placement, particularly for deep-seated tumors or diseased areas. The handle may be removed and a clip-on heater cap attached to supply the heat to the catheter.
Those of skill in the art will recognize these and other advantages of the present invention while reading the following detailed description in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side view of a micro-heat-pipe catheter.
FIG. 2 is a cutaway view of a micro-heat-pipe catheter, illustrating its internal construction, including cross-sections.
FIG. 3 is a schematic view of a passively controlled gas-loaded heat pipe.
FIG. 4 is a schematic view of an actively controlled gas-loaded heat pipe.
FIG. 5 is a schematic view of a vapor-modulated variable conductance heat pipe.
FIG. 6 is a schematic view of a liquid-modulated heat pipe.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
FIG. 1 illustrates a micro-heat-pipe catheter of the present invention. The catheter has ashaft 10, a needle-sharp end 12, and a heat-source end 14. The heat-source end 14 is adapted to fit into a heating element, such as aresistance heater 16, although any highly-controllable heat source or cooling source with temperatures in the appropriate range operate satisfactorily. Such a heat source or cooling source may include a pre-heated or chilled liquid or a cryogenic fluid.
The catheter is to be constructed of stainless steel or other biocompatible material in a manner similar to the construction of hypodermic needles and is to be pointed in a manner similar to hypodermic needles. The heat-source end 14 of the catheter serves as the evaporator end of the heat pipe and the needle-sharp end 12 serves as the condenser end of the heat pipe. In applications requiring the removal of thermal energy, such as hypothermia or the cooling of tissue, the roles of condenser and evaporator are reversed.
The heat-pipe operates on the thermodynamic principal of essentially constant temperature evaporation and condensation. Therefore, the temperature throughout the length of the heat pipe is substantially uniform. The temperature variation between the evaporator and condenser regions in a micro-heat-pipe may be as little as ±0.1° C., depending upon the pressure, temperature, and working fluid used in the heat-pipe.
FIG. 2 illustrates the internal structure of the micro-heat-pipe. As before, theshaft 10 includes a needle-sharp end 12 and a heat-source end 14. The needle-sharp end 12 comprises the tumor-heating section, and this end includes the condenser of the heat pipe. The heat-source end 14 comprises the evaporator.
As shown in FIG. 2, the exterior of thestainless steel shaft 10 of the catheter may be inset by machining and a coating of highly insulatingmaterial 22 may be vapor deposited or anodized on the surface so as to minimize the radial heat loss and minimize damage to the normal tissue through which the catheter passes.
The heat pipe includes achannel 18 which has anon-condensible gas reservoir 20. Thechannel 18 is partially charged with an appropriate working fluid, such as pure water, methanol, ammonia, or nitrogen.
In most two-phase cycles, the presence of non-condensible gases creates a problem due to the partial blockage of the condensing area. Heat pipes are no exception. During normal operation, any non-condensible gases present are carried to the condenser and remain there, reducing the effective condenser surface area. This characteristic, although normally undesirable, can be used to control the direction and amount of heat transfer and/or the condenser temperature (i.e. the temperature at the tumor).
In operation, the working fluid evaporates at the heat-source end 14 and condenses at the tumor-heating section. FIG. 2, in cross-sections C--C, illustrates alternative wicking configurations to carry the condensed working fluid back to the evaporator. Cross section A--A depicts thechannel 18 and cross-section B--B depicts thechannel 18 and theinsulative layer 22.
FIGS. 3 to 6, inclusive, illustrate a number of heat-transfer control techniques. In these figures, the vertical arrows depict the direction of heat transfer.
FIG. 3 illustrates one embodiment of the present invention which may be referred to as a gas-loaded, variable conductance heat pipe. In this type of device, the thermal conductance of the heat pipe varies as a function of the "gas front" position. The term "gas front" refers to the vapor/noncondensible gas interface. As the heat available at the evaporator varies, the vapor temperature varies and the noncondensible gas contained within the reservoir expands or contracts, moving the gas front. This in turn results in a variation in the thermal conductance, i.e. as the heat flux increases, the gas front recedes and the thermal conductance increases due to the larger condenser surface area. In this way, the temperature drop across the evaporator and condenser can be maintained fairly constant even through the evaporator heat flux may fluctuate. This will provide a constant temperature at the tumor site, preventing damage to surrounding tissue.
While in most applications heat pipes operate in a passive manner, adjusting the heat flow rate to compensate for the temperature difference between the evaporator and condenser, several active control schemes have been developed. Most notable among these are: (i) gas-loaded heat pipes with a feedback system, (ii) excess-liquid heat pipes, (iii) vapor flow-modulated heat pipes, and (iv) liquid flow-modulated heat pipes.
FIG. 4 illustrates an example of an actively-controlled, gas-loaded heat pipe in which the gas volume at the reservoir end sensing device T at the evaporator provides a signal to the reservoir heater. This heater, when activated, can heat the gas contained in the reservoir, causing it to expand and thereby reducing the condenser area.
Excess-liquid heat pipes operate in much the same manner as gas-loaded heat pipes but utilize excess working fluid to block portions of the pipe and control the condenser size or prevent reversal of heat transfer. Vapor-flow-modulated heat pipes utilize a throttling valve to control the amount of vapor leaving the evaporator. FIG. 5 illustrates an example of one such control scheme. Increased evaporator temperatures result in an expansion of the bellows chamber containing the control fluid. This in turn closes down the throttling valve and reduces the flow of vapor to the condenser. This type of device is typically applied in situations where the evaporator temperature varies and a constant condenser temperature is desired.
FIG. 6 illustrates the principle used in liquid flow-modulated heat pipes. This type of heat pipe has two separate wicking structures, one to transport liquid from the evaporator to the condenser and the other which serves as a liquid trap. As the temperature gradient is reversed, the liquid moves into the trap and starves the evaporator of fluid, again regulating the temperature of the condenser to prevent damage to the surrounding tissue.
Using one of these control techniques, a selection of catheters may be fabricated of different lengths, different materials, different diameters, different temperature and heat rate capabilities, and different lengths of the tumor heating or cooling section of the catheter. Treatment of a cancerous tumor or diseased area may require a number of these micro heat pipe catheters, depending upon the volume, location, and perfusion of the tumor. Also, some micro-heat-pipes may be curved to avoid invasion of normal body organs or to skirt bone material.
The primary feature of the micro heat pipe catheter resides in the heat delivery at a constant temperature within an acceptable temperature range. Such a device eliminates the need for high voltage or high frequency sources, minimizes the need for excessive and complex equipment, provides localized hyperthermia, and protects the patient from possible high voltage or high radiation accidents.
Although various embodiments of the present invention have been described with a certain degree of particularity, it is to be understood that the present disclosure has been made only by way of example. Modifications and changes in details of construction may be made without departing from the spirit and scope of the invention.

Claims (23)

We claim:
1. A micro-heat-pipe catheter comprising:
a. a shaft having a first end and a second end, said first end having a needle-like shape for penetrating soft tissue.
b. a channel disposed within the shaft, the channel chargeable with a quantity of a working fluid,
c. an insulating layer disposed along the shaft between the first end and the second end, and
d. a thermal transfer element thermally coupled to the second end of the shaft.
2. The micro-heat-pipe catheter of claim 1 further comprising a temperature sensor at the second end of the shaft and a controller coupled to the temperature sensor and the thermal transfer element to control the operation of the thermal transfer element.
3. The micro-heat-pipe catheter of claim 1 wherein the shaft is curved.
4. The micro-heat-pipe catheter of claim 1 wherein the thermal transfer element is a resistance heater element.
5. The micro-heat-pipe catheter of claim 1 further comprising a source of pre-heated liquid coupled to the heater element.
6. The micro-heat-pipe catheter of claim 1 wherein the thermal transfer element is a cryogenic element.
7. A micro-heat-pipe catheter comprising:
a. a shaft having a condenser end and an evaporator end, the condenser end being needle-like in shape,
b. a channel disposed within the shaft, the channel chargeable with a quantity of a working fluid,
c. an insulating layer disposed along the shaft between the condenser end and the evaporator end, and
d. a heater element thermally coupled to the shaft at the evaporator end.
8. The micro-heat-pipe catheter of claim 1 further comprising a temperature sensor at the evaporator end of the shaft and a controller coupled to the temperature sensor and the heater element to control the operation of the heater element.
9. The micro-heat-pipe catheter of claim 1 wherein the shaft is curved.
10. The micro-heat-pipe catheter of claim 1 wherein the heater element is a resistance heater element.
11. The micro-heat-pipe catheter of claim 1 further comprising a source of pre-heated liquid coupled to the heater element.
12. A method of treating a cancerous tumor, comprising the steps of:
a. charging a quantity of a working fluid within a micro-heat-pipe, the micro-heat-pipe having a condenser end and an evaporator end,
b. thermally insulating the micro-heat-pipe between the condenser end and the evaporator end,
c. inserting the condenser end of the micro-heat-pipe into a cancerous tumor, and
d. heating the evaporator end of the micro-heat-pipe for a predetermined length of time.
13. A micro-heat-pipe catheter comprising:
a. a shaft having a condenser end and an evaporator end, the condenser end being needle-like in shape and the shaft having an axis,
b. a channel co-axially disposed within the shaft, the channel chargeable with a quantity of a working fluid, the channel having a condenser end and an evaporator end, the channel further having a non-condensible gas reservoir at the condenser end,
c. an insulating layer disposed along the shaft between the condenser end and the evaporator end, and
d. a heater element thermally coupled to the shaft at the evaporator end.
14. The micro-heat-pipe catheter of claim 13 further comprising a temperature sensor at the evaporator end of the shaft and a heater controller coupled to the temperature sensor and the heater element to control the operation of the heater element.
15. A micro-heat-pipe catheter comprising:
a. a shaft having a condenser end and an evaporator end, the condenser end being needle-like in shape.
b. a channel disposed within the shaft, the channel chargeable with a quantity of working fluid,
c. an insulating layer disposed along the shaft between the condenser end and the evaporator end, and
d. a cooling element thermally coupled to the shaft at the evaporator end.
16. The micro-heat-pipe catheter of claim 15 further comprising a temperature sensor at the evaporator end of the shaft and a controller coupled to the temperature sensor and the cooling element to control the operation of the cooling element.
17. The micro-heat-pipe catheter of claim 15 wherein the shaft is curved.
18. The micro-heat-pipe catheter of claim 15 further comprising a source of chilled liquid coupled to the cooling element.
19. The micro-heat-pipe catheter of claim 9 further comprising a source of cryogenic fluid coupled to the cooling element.
20. A micro-heat-pipe catheter comprising:
a shaft having a first end, a second end, and an intermediate portion extending therebetween, said first end having a needle-like shape for penetrating soft tissue;
a channel being disposed within said shaft, said channel being chargeable with a quantity of fluid, and said channel extending between said first end and said second end of said shaft and terminating in a fluid reservoir at said first end;
a thermal transfer element being coupled to the second end of said shaft; and
a thermally insulative barrier disposed along said intermediate portion of said shaft, said thermally insulative barrier protecting tissue contacting said intermediate portion of said shaft from damaging temperature change.
21. A method of treating a tumor comprising the steps of:
inserting a needle-like end of a micro-heat-pipe catheter into said tumor;
maintaining said needle-like end of said micro-heat-pipe catheter within a prescribed temperature range; and
thermally insulating a portion of said micro-heat-pipe catheter to protect healthy tissue from thermal damage.
22. The method, as set forth in claim 21, wherein temperature within said prescribed range varies by less than one degree Celsius.
23. The method, as set forth in claim 21, wherein said prescribed temperature range extends from approximately 42.5 degrees Celsius to approximately 43.0 degrees Celsius.
US07/550,5191990-07-101990-07-10Micro-heat-pipe catheterExpired - Fee RelatedUS5190539A (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
US07/550,519US5190539A (en)1990-07-101990-07-10Micro-heat-pipe catheter
US07/994,551US5417686A (en)1990-07-101992-12-21Temperature control mechanisms for a micro heat pipe catheter
US08/215,276US5591162A (en)1990-07-101994-03-21Treatment method using a micro heat pipe catheter

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US07/550,519US5190539A (en)1990-07-101990-07-10Micro-heat-pipe catheter

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
US07/994,551Continuation-In-PartUS5417686A (en)1990-07-101992-12-21Temperature control mechanisms for a micro heat pipe catheter

Publications (1)

Publication NumberPublication Date
US5190539Atrue US5190539A (en)1993-03-02

Family

ID=24197502

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US07/550,519Expired - Fee RelatedUS5190539A (en)1990-07-101990-07-10Micro-heat-pipe catheter

Country Status (1)

CountryLink
US (1)US5190539A (en)

Cited By (162)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5366490A (en)1992-08-121994-11-22Vidamed, Inc.Medical probe device and method
US5385544A (en)1992-08-121995-01-31Vidamed, Inc.BPH ablation method and apparatus
US5409453A (en)1992-08-121995-04-25Vidamed, Inc.Steerable medical probe with stylets
US5417686A (en)*1990-07-101995-05-23The Texas A&M University SystemTemperature control mechanisms for a micro heat pipe catheter
US5421819A (en)1992-08-121995-06-06Vidamed, Inc.Medical probe device
US5435805A (en)1992-08-121995-07-25Vidamed, Inc.Medical probe device with optical viewing capability
US5456662A (en)1993-02-021995-10-10Edwards; Stuart D.Method for reducing snoring by RF ablation of the uvula
US5458597A (en)*1993-11-081995-10-17Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US5470308A (en)1992-08-121995-11-28Vidamed, Inc.Medical probe with biopsy stylet
US5472441A (en)*1993-11-081995-12-05Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US5486161A (en)*1993-02-021996-01-23Zomed InternationalMedical probe device and method
US5514131A (en)1992-08-121996-05-07Stuart D. EdwardsMethod for the ablation treatment of the uvula
US5542915A (en)1992-08-121996-08-06Vidamed, Inc.Thermal mapping catheter with ultrasound probe
US5556377A (en)1992-08-121996-09-17Vidamed, Inc.Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US5599295A (en)1992-08-121997-02-04Vidamed, Inc.Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5599346A (en)*1993-11-081997-02-04Zomed International, Inc.RF treatment system
US5630794A (en)1992-08-121997-05-20Vidamed, Inc.Catheter tip and method of manufacturing
ES2102298A1 (en)*1994-04-041997-07-16Puig Ramon VilanaApparatus for the local treatment of tumours
US5672153A (en)1992-08-121997-09-30Vidamed, Inc.Medical probe device and method
US5720719A (en)1992-08-121998-02-24Vidamed, Inc.Ablative catheter with conformable body
WO1999027862A1 (en)1997-12-021999-06-10Odyssey Technologies, Inc.Apparatus and method for cryogenic inhibition of hyperplasia
US5913855A (en)1995-08-151999-06-22Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5925042A (en)1995-08-151999-07-20Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5928229A (en)1993-11-081999-07-27Rita Medical Systems, Inc.Tumor ablation apparatus
US5951547A (en)1995-08-151999-09-14Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5980517A (en)1995-08-151999-11-09Rita Medical Systems, Inc.Cell necrosis apparatus
US6042559A (en)*1998-02-242000-03-28Innercool Therapies, Inc.Insulated catheter for selective organ perfusion
US6059780A (en)1995-08-152000-05-09Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method with cooling element
US6071280A (en)1993-11-082000-06-06Rita Medical Systems, Inc.Multiple electrode ablation apparatus
US6074414A (en)*1998-08-062000-06-13Limex Bio-Tech L.C.System for providing thermal application to external body areas of a patient
US6080150A (en)1995-08-152000-06-27Rita Medical Systems, Inc.Cell necrosis apparatus
US6090105A (en)1995-08-152000-07-18Rita Medical Systems, Inc.Multiple electrode ablation apparatus and method
US6096068A (en)*1998-01-232000-08-01Innercool Therapies, Inc.Selective organ cooling catheter and method of using the same
US6099524A (en)*1994-01-282000-08-08Cardiac Pacemakers, Inc.Electrophysiological mapping and ablation catheter and method
WO2000054684A1 (en)1999-03-152000-09-21Cryovascular Systems, Inc.Cryosurgical fluid supply
US6132425A (en)1995-08-152000-10-17Gough; Edward J.Cell necrosis apparatus
US6142991A (en)*1998-03-312000-11-07Galil Medical, Ltd.High resolution cryosurgical method and apparatus
US6149677A (en)*1998-03-312000-11-21Innercool Therapies, Inc.Circulating fluid hypothermia method
US6167955B1 (en)*1998-08-032001-01-02Hewlett-Packard CompanyMulti-mode heat transfer using a thermal heat pipe valve
US6224624B1 (en)1998-03-242001-05-01Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6235048B1 (en)1998-01-232001-05-22Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6238428B1 (en)1998-01-232001-05-29Innercool Therapies, Inc.Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US6245095B1 (en)1998-03-242001-06-12Innercool Therapies, Inc.Method and apparatus for location and temperature specific drug action such as thrombolysis
US6251129B1 (en)1998-03-242001-06-26Innercool Therapies, Inc.Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6251130B1 (en)1998-03-242001-06-26Innercool Therapies, Inc.Device for applications of selective organ cooling
US6254626B1 (en)1998-03-242001-07-03Innercool Therapies, Inc.Articulation device for selective organ cooling apparatus
US6261312B1 (en)1998-06-232001-07-17Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
WO2001052759A1 (en)*2000-01-202001-07-26Oratec Interventions, Inc.Method and apparatus for stimulating nerve regeneration
US6312452B1 (en)1998-01-232001-11-06Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US6325818B1 (en)1999-10-072001-12-04Innercool Therapies, Inc.Inflatable cooling apparatus for selective organ hypothermia
US6364899B1 (en)1998-01-232002-04-02Innercool Therapies, Inc.Heat pipe nerve cooler
US6379378B1 (en)2000-03-032002-04-30Innercool Therapies, Inc.Lumen design for catheter
US6428534B1 (en)1999-02-242002-08-06Cryovascular Systems, Inc.Cryogenic angioplasty catheter
US6464716B1 (en)1998-01-232002-10-15Innercool Therapies, Inc.Selective organ cooling apparatus and method
US20020151845A1 (en)*2000-12-062002-10-17Randell WernethMultipurpose catheter assembly
US6471717B1 (en)1998-03-242002-10-29Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6488659B1 (en)1999-08-052002-12-03Biocardia, Inc.System and method for delivering thermally sensitive and reverse-thermal gelation materials
US6491039B1 (en)1998-01-232002-12-10Innercool Therapies, Inc.Medical procedure
US6491716B2 (en)1998-03-242002-12-10Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US20030023288A1 (en)*1999-02-092003-01-30Michael MagersMethod and device for patient temperature control employing optimized rewarming
US6514245B1 (en)1999-03-152003-02-04Cryovascular Systems, Inc.Safety cryotherapy catheter
US6530946B1 (en)1998-04-212003-03-11Alsius CorporationIndwelling heat exchange heat pipe catheter and method of using same
US20030060863A1 (en)*1999-02-092003-03-27Dobak John D.Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6551349B2 (en)1998-03-242003-04-22Innercool Therapies, Inc.Selective organ cooling apparatus
US20030078641A1 (en)*1998-01-232003-04-24Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US20030097130A1 (en)*1997-09-042003-05-22Gerhard MullerElectrode arrangement for electrothermal treatment of human or animal bodies
US6576002B2 (en)1998-03-242003-06-10Innercool Therapies, Inc.Isolated selective organ cooling method and apparatus
US6585752B2 (en)1998-06-232003-07-01Innercool Therapies, Inc.Fever regulation method and apparatus
US6595967B2 (en)2001-02-012003-07-22Innercool Therapies, Inc.Collapsible guidewire lumen
US6599312B2 (en)1998-03-242003-07-29Innercool Therapies, Inc.Isolated selective organ cooling apparatus
US6602246B1 (en)2000-08-182003-08-05Cryovascular Systems, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US6602276B2 (en)1998-03-312003-08-05Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6648879B2 (en)1999-02-242003-11-18Cryovascular Systems, Inc.Safety cryotherapy catheter
US6648906B2 (en)2000-04-062003-11-18Innercool Therapies, Inc.Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6660028B2 (en)2000-06-022003-12-09Innercool Therapies, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US20040002749A1 (en)*2000-08-182004-01-01Cryovascular Systems, Inc. A Delaware CorporationCryotherapy method for detecting and treating vulnerable plaque
US6685732B2 (en)1998-03-312004-02-03Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20040044337A1 (en)*2002-08-272004-03-04Gal ShafirsteinConductive interstitial thermal therapy device
US6719779B2 (en)2000-11-072004-04-13Innercool Therapies, Inc.Circulation set for temperature-controlled catheter and method of using the same
US6726708B2 (en)2000-06-142004-04-27Innercool Therapies, Inc.Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US6736837B2 (en)1997-08-122004-05-18James A. FoxMethod for inducing hypothermia for treating neurological disorders
US20040112583A1 (en)*2002-03-262004-06-17Garner Scott D.Multiple temperature sensitive devices using two heat pipes
US6786900B2 (en)2001-08-132004-09-07Cryovascular Systems, Inc.Cryotherapy methods for treating vessel dissections and side branch occlusion
US20040210285A1 (en)*2002-04-042004-10-21Steven YonMethod of manufacturing a heat transfer element for in vivo cooling without undercuts
US20040240660A1 (en)*2003-05-272004-12-02Wong Kent Wah ShunSystem and method for retrieving telephone numbers
US20040267250A1 (en)*1998-03-312004-12-30Yon Steven A.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6843800B1 (en)1998-01-232005-01-18Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US20050038421A1 (en)*2003-06-042005-02-17Cryo Vascular Systems, Inc.Controllable pressure cryogenic balloon treatment system and method
US20050076924A1 (en)*1998-01-232005-04-14Dobak John D.Medical procedure
US6905494B2 (en)1998-03-312005-06-14Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20050158573A1 (en)*2002-05-302005-07-21Elzey Dana M.Active energy absorbing cellular metals and method of manufacturing and using the same
US20050171586A1 (en)*1999-02-092005-08-04Dobak John D.IiiMethod and apparatus for patient temperature control employing administration of anti-shivering agents
US6958062B1 (en)1993-11-082005-10-25Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US6991645B2 (en)1998-01-232006-01-31Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US20060048640A1 (en)*2002-09-032006-03-09Terry Matthew MBlast and ballistic protection systems and method of making the same
US20060084962A1 (en)*2004-06-022006-04-20Cryovascular Systems, Inc.Controllable pressure cryogenic balloon treatment system and method
US20060080835A1 (en)*2003-02-142006-04-20Kooistra Gregory WMethods for manufacture of multilayered multifunctional truss structures and related structures there from
US20060129142A1 (en)*2004-12-152006-06-15Cryovascular Systems, Inc.Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US20060135955A1 (en)*2003-01-182006-06-22Shadduck John HMedical instrument and method of use
US20060136023A1 (en)*2004-08-262006-06-22Dobak John D IiiMethod and apparatus for patient temperature control employing administration of anti-shivering agents
US20060167398A1 (en)*2005-01-252006-07-27Thermopeutix Inc.System and methods for selective thermal treatment
US20060167445A1 (en)*2002-08-272006-07-27Gal ShafirsteinSelective conductive interstitial thermal therapy device
US20060209359A1 (en)*2003-04-042006-09-21Canon Kabushiki KaishaImage reading apparatus, personalizing method, program, and storage medium
US20060224154A1 (en)*2001-12-072006-10-05Shadduck John HMedical instrument and method of use
US20060286342A1 (en)*2003-05-282006-12-21Elzey Dana MRe-entrant cellular multifunctional structure for energy absorption and method of manufacturing and using the same
US20070032785A1 (en)*2005-08-032007-02-08Jennifer DiederichTissue evacuation device
US7291144B2 (en)1998-03-312007-11-06Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US20080125747A1 (en)*2006-11-282008-05-29Smith & Nephew, Inc.-TnPassive thermal spine catheter
US20080154259A1 (en)*1995-08-152008-06-26Angiodynamics, Inc.Ablation apparatus and method
US7401643B2 (en)2000-07-142008-07-22University Of Virginia Patent FoundationHeat exchange foam
US7424967B2 (en)2002-09-032008-09-16University Of Virginia Patent FoundationMethod for manufacture of truss core sandwich structures and related structures thereof
US20090105703A1 (en)*2000-12-092009-04-23Shadduck John HMethod for treating tissue
US20090149846A1 (en)*2003-10-072009-06-11Tsunami Medtech, LlcMedical system and method of use
US20090216220A1 (en)*2008-02-202009-08-27Tsunami Medtech, LlcMedical system and method of use
WO2009089090A3 (en)*2008-01-032009-10-01Vertos Medical, Inc.Thermally regulated hypodermic needles, methods of use, and kits
US20100049184A1 (en)*2008-08-222010-02-25Boston Scientific Scimed, Inc.Regulating Pressure to Lower Temperature in a Cryotherapy Balloon Catheter
US20100114082A1 (en)*2008-10-062010-05-06Sharma Virender KMethod and Apparatus for the Ablation of Endometrial Tissue
US20100160905A1 (en)*2000-12-092010-06-24Shadduck John HMedical instruments and techniques for thermally-mediated therapies
US20100204688A1 (en)*2008-09-092010-08-12Michael HoeyMedical system and method of use
US20100262133A1 (en)*2009-02-032010-10-14Tsunami Medtech, LlcMedical systems and methods for ablating and absorbing tissue
US7857781B2 (en)1998-04-212010-12-28Zoll Circulation, Inc.Indwelling heat exchange catheter and method of using same
US20110118717A1 (en)*2009-11-062011-05-19Tsunami Medtech, LlcTissue ablation systems and methods of use
US20110160648A1 (en)*2009-12-302011-06-30Tsunami Medtech, LlcMedical system and method of use
US8187269B2 (en)1998-03-272012-05-29Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US8360361B2 (en)2006-05-232013-01-29University Of Virginia Patent FoundationMethod and apparatus for jet blast deflection
US8579888B2 (en)2008-06-172013-11-12Tsunami Medtech, LlcMedical probes for the treatment of blood vessels
EP2829259A1 (en)*2007-08-032015-01-28Scion Neurostim LlcVestibular stimulation apparatus and associated methods of use
US8945107B2 (en)2010-10-262015-02-03Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9017317B2 (en)2012-12-062015-04-28Medtronic Ardian Luxembourg S.A.R.L.Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US9060754B2 (en)2010-10-262015-06-23Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9095321B2 (en)2012-11-212015-08-04Medtronic Ardian Luxembourg S.A.R.L.Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US20150230821A1 (en)*2014-02-202015-08-20Gyrus Acmi, Inc. (D.B.A. Olympus Surgical TechnoloHeat pipe cooled burr including surgical instruments embodying same
US9241752B2 (en)2012-04-272016-01-26Medtronic Ardian Luxembourg S.A.R.L.Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US20160067465A1 (en)*2014-09-082016-03-10Lawrence J. GerransClearance of Sinus Ostia Blockage
US9283111B2 (en)2010-12-162016-03-15Scion Neurostim, LlcSystems, methods and apparatus for bilateral caloric vestibular stimulation
US9526653B2 (en)2009-12-182016-12-27Scion Neurostim, Llc.Systems, methods and apparatus for delivering nerve stimulation to a patient with physician oversight
US9561067B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US9561068B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US9561066B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US9861518B2 (en)2007-01-112018-01-09Scion Neurostim, LlcDevices for vestibular or cranial nerve stimulation
US9943353B2 (en)2013-03-152018-04-17Tsunami Medtech, LlcMedical system and method of use
US10004550B2 (en)2010-08-052018-06-26Medtronic Ardian Luxembourg S.A.R.L.Cryoablation apparatuses, systems, and methods for renal neuromodulation
US10064697B2 (en)2008-10-062018-09-04Santa Anna Tech LlcVapor based ablation system for treating various indications
US10179019B2 (en)2014-05-222019-01-15Aegea Medical Inc.Integrity testing method and apparatus for delivering vapor to the uterus
US10213245B2 (en)2015-03-102019-02-26PAVmed Inc.Continuous flow balloon catheter systems and methods of use
US10238446B2 (en)2010-11-092019-03-26Aegea Medical Inc.Positioning method and apparatus for delivering vapor to the uterus
US10299856B2 (en)2014-05-222019-05-28Aegea Medical Inc.Systems and methods for performing endometrial ablation
US10390991B2 (en)2007-01-112019-08-27Scion Neurostim, LlcMedical devices incorporating thermoelectric transducer and controller
US10492842B2 (en)2014-03-072019-12-03Medtronic Ardian Luxembourg S.A.R.L.Monitoring and controlling internally administered cryotherapy
US10537467B2 (en)2010-12-162020-01-21Scion Neurostim, LlcSystems, devices and methods for bilateral caloric vestibular stimulation
US10588682B2 (en)2011-04-252020-03-17Medtronic Ardian Luxembourg S.A.R.L.Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US10695126B2 (en)2008-10-062020-06-30Santa Anna Tech LlcCatheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US10758292B2 (en)2007-08-232020-09-01Aegea Medical Inc.Uterine therapy device and method
US10881442B2 (en)2011-10-072021-01-05Aegea Medical Inc.Integrity testing method and apparatus for delivering vapor to the uterus
US10905490B2 (en)2012-04-272021-02-02Medtronic Ardian Luxembourg S.A.R.L.Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US11331140B2 (en)2016-05-192022-05-17Aqua Heart, Inc.Heated vapor ablation systems and methods for treating cardiac conditions
US11331037B2 (en)2016-02-192022-05-17Aegea Medical Inc.Methods and apparatus for determining the integrity of a bodily cavity
US11432870B2 (en)2016-10-042022-09-06Avent, Inc.Cooled RF probes
US11806066B2 (en)2018-06-012023-11-07Santa Anna Tech LlcMulti-stage vapor-based ablation treatment methods and vapor generation and delivery systems
US12226139B2 (en)2017-01-192025-02-18The General Hospital CorporationSystems and methods for thermal treatment of tissue
US12364537B2 (en)2016-05-022025-07-22Santa Anna Tech LlcCatheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US12383422B2 (en)2017-01-192025-08-12The General Hospital CorporationSystems and methods for thermal treatment of tissue

Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3929136A (en)*1973-12-081975-12-30Dornier System GmbhApparatus for low-temperature surgery
US4140130A (en)*1977-05-311979-02-20Storm Iii Frederick KElectrode structure for radio frequency localized heating of tumor bearing tissue
US4206759A (en)*1970-08-131980-06-10Shaw Robert FSurgical instrument having self-regulated vapor condensation heating of its cutting edge and method of using the same
US4476867A (en)*1977-05-311984-10-16Research Against Cancer, Inc.Apparatus for effecting hyperthermic treatment
US4479798A (en)*1977-05-311984-10-30Research Against Cancer, Inc.Subcutaneous implant useful in effecting hyperthermic treatment
US4662383A (en)*1982-09-271987-05-05Kureha Kagaku Kogyo Kabushiki KaishaEndotract antenna device for hyperthermia
US4667658A (en)*1979-11-271987-05-26Sunset Ltd.Thermotherapy technique
US4676258A (en)*1983-01-241987-06-30Kureha Kagaku Kogyo Kabushiki KaishaDevice for hyperthermia
US4719919A (en)*1983-01-211988-01-19Ramm Associates, A PartnershipImplantable hyperthermia device and system
US4791930A (en)*1982-10-251988-12-20Junkosha Co., Ltd.Cooler for human tissue for use during hyperthermia treatment against cancer
US4819642A (en)*1984-06-271989-04-11The Danish Hyperthermia FoundationElectromagnetic applicator and method for localizing hyperthermia heating in a system
US4825880A (en)*1987-06-191989-05-02The Regents Of The University Of CaliforniaImplantable helical coil microwave antenna
US4869247A (en)*1988-03-111989-09-26The University Of Virginia Alumni Patents FoundationVideo tumor fighting system
US4900303A (en)*1978-03-101990-02-13Lemelson Jerome HDispensing catheter and method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4206759A (en)*1970-08-131980-06-10Shaw Robert FSurgical instrument having self-regulated vapor condensation heating of its cutting edge and method of using the same
US3929136A (en)*1973-12-081975-12-30Dornier System GmbhApparatus for low-temperature surgery
US4140130A (en)*1977-05-311979-02-20Storm Iii Frederick KElectrode structure for radio frequency localized heating of tumor bearing tissue
US4476867A (en)*1977-05-311984-10-16Research Against Cancer, Inc.Apparatus for effecting hyperthermic treatment
US4479798A (en)*1977-05-311984-10-30Research Against Cancer, Inc.Subcutaneous implant useful in effecting hyperthermic treatment
US4900303A (en)*1978-03-101990-02-13Lemelson Jerome HDispensing catheter and method
US4667658A (en)*1979-11-271987-05-26Sunset Ltd.Thermotherapy technique
US4662383A (en)*1982-09-271987-05-05Kureha Kagaku Kogyo Kabushiki KaishaEndotract antenna device for hyperthermia
US4791930A (en)*1982-10-251988-12-20Junkosha Co., Ltd.Cooler for human tissue for use during hyperthermia treatment against cancer
US4719919A (en)*1983-01-211988-01-19Ramm Associates, A PartnershipImplantable hyperthermia device and system
US4676258A (en)*1983-01-241987-06-30Kureha Kagaku Kogyo Kabushiki KaishaDevice for hyperthermia
US4819642A (en)*1984-06-271989-04-11The Danish Hyperthermia FoundationElectromagnetic applicator and method for localizing hyperthermia heating in a system
US4825880A (en)*1987-06-191989-05-02The Regents Of The University Of CaliforniaImplantable helical coil microwave antenna
US4869247A (en)*1988-03-111989-09-26The University Of Virginia Alumni Patents FoundationVideo tumor fighting system

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
"Encyclopedia of Medical Devices and Instrumentation", J. G. Webster (Ed) John Wiley & Sons, N.Y. Bol. 3:1583 et seq. (1988).
Bicher et al., Local Superficial and Deep Hyperthermia Factors Affecting Tumor Response and Patient Survival (Meeting Abstract).*
Bicher et al., Local Superficial and Deep Hyperthermia--Factors Affecting Tumor Response and Patient Survival (Meeting Abstract).
Encyclopedia of Medical Devices and Instrumentation , J. G. Webster (Ed) John Wiley & Sons, N.Y. Bol. 3:1583 et seq. (1988).*
Furse et al., Three Dimensional Electromagnetic Power Deposition in Tumors Using Interstitial Antenna Arrays.*
Lele, Local Tumor Hyperthermia in the 1990 s Reprinted from: Consensus of Hyperthermia for the 1990 s, H. I. Bicker, Ed., Plenum Pub. Corp.*
Lele, Local Tumor Hyperthermia in the 1990's Reprinted from: Consensus of Hyperthermia for the 1990's, H. I. Bicker, Ed., Plenum Pub. Corp.
Lele, Ultrasound Hyperthermia, reprinted from "Encyclopedia of Medical Devices and Instrumentation", J. G. Webster (Ed.), John Wiley & Sons, N.Y. vol. 3:1599-1612 (1988).
Lele, Ultrasound Hyperthermia, reprinted from Encyclopedia of Medical Devices and Instrumentation , J. G. Webster (Ed.), John Wiley & Sons, N.Y. vol. 3:1599 1612 (1988).*
Roizin Towle, A Concept of Thermal Dose is Urgently Needed For the Clinical Application of Hyperthermia (Letter).*
Roizin-Towle, A Concept of Thermal Dose is Urgently Needed For the Clinical Application of Hyperthermia (Letter).
Steger et al., Study of Local Interstitial Hyperthermia Induced by Low Power ND:YAG Laser.*
Surgery Cryoprobe.*
Waterman et al., Mechanisms of Heat Removal During Local Hyperthermia.*

Cited By (382)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5591162A (en)*1990-07-101997-01-07The Texas A&M University SystemTreatment method using a micro heat pipe catheter
US5417686A (en)*1990-07-101995-05-23The Texas A&M University SystemTemperature control mechanisms for a micro heat pipe catheter
US5542915A (en)1992-08-121996-08-06Vidamed, Inc.Thermal mapping catheter with ultrasound probe
US5607389A (en)1992-08-121997-03-04Vidamed, Inc.Medical probe with biopsy stylet
US5421819A (en)1992-08-121995-06-06Vidamed, Inc.Medical probe device
US5435805A (en)1992-08-121995-07-25Vidamed, Inc.Medical probe device with optical viewing capability
US5470308A (en)1992-08-121995-11-28Vidamed, Inc.Medical probe with biopsy stylet
US5470309A (en)1992-08-121995-11-28Vidamed, Inc.Medical ablation apparatus utilizing a heated stylet
US5895370A (en)1992-08-121999-04-20Vidamed, Inc.Medical probe (with stylets) device
US5720719A (en)1992-08-121998-02-24Vidamed, Inc.Ablative catheter with conformable body
US5366490A (en)1992-08-121994-11-22Vidamed, Inc.Medical probe device and method
US5514131A (en)1992-08-121996-05-07Stuart D. EdwardsMethod for the ablation treatment of the uvula
US6206847B1 (en)1992-08-122001-03-27Vidamed, Inc.Medical probe device
US5554110A (en)1992-08-121996-09-10Vidamed, Inc.Medical ablation apparatus
US5409453A (en)1992-08-121995-04-25Vidamed, Inc.Steerable medical probe with stylets
US5370675A (en)1992-08-121994-12-06Vidamed, Inc.Medical probe device and method
US5556377A (en)1992-08-121996-09-17Vidamed, Inc.Medical probe apparatus with laser and/or microwave monolithic integrated circuit probe
US6022334A (en)1992-08-122000-02-08Vidamed, Inc.Medical probe device with optic viewing capability
US5720718A (en)1992-08-121998-02-24Vidamed, Inc.Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US6464661B2 (en)1992-08-122002-10-15Vidamed, Inc.Medical probe with stylets
US5599294A (en)1992-08-121997-02-04Vidamed, Inc.Microwave probe device and method
US5599295A (en)1992-08-121997-02-04Vidamed, Inc.Medical probe apparatus with enhanced RF, resistance heating, and microwave ablation capabilities
US5630794A (en)1992-08-121997-05-20Vidamed, Inc.Catheter tip and method of manufacturing
US5385544A (en)1992-08-121995-01-31Vidamed, Inc.BPH ablation method and apparatus
US5672153A (en)1992-08-121997-09-30Vidamed, Inc.Medical probe device and method
US5456662A (en)1993-02-021995-10-10Edwards; Stuart D.Method for reducing snoring by RF ablation of the uvula
US5486161A (en)*1993-02-021996-01-23Zomed InternationalMedical probe device and method
US5458597A (en)*1993-11-081995-10-17Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US5599345A (en)*1993-11-081997-02-04Zomed International, Inc.RF treatment apparatus
US20050033279A1 (en)*1993-11-082005-02-10Rita Medical Systems, Inc.RF treatment apparatus
US6660002B1 (en)1993-11-082003-12-09Rita Medical Systems, Inc.RF treatment apparatus
US5928229A (en)1993-11-081999-07-27Rita Medical Systems, Inc.Tumor ablation apparatus
US5935123A (en)*1993-11-081999-08-10Rita Medical Systems, Inc.RF treatment apparatus
US5599346A (en)*1993-11-081997-02-04Zomed International, Inc.RF treatment system
US6958062B1 (en)1993-11-082005-10-25Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5472441A (en)*1993-11-081995-12-05Zomed InternationalDevice for treating cancer and non-malignant tumors and methods
US6071280A (en)1993-11-082000-06-06Rita Medical Systems, Inc.Multiple electrode ablation apparatus
US20060247616A1 (en)*1993-11-082006-11-02Rita Medical Systems, Inc.Ablation treatment apparatus
US6099524A (en)*1994-01-282000-08-08Cardiac Pacemakers, Inc.Electrophysiological mapping and ablation catheter and method
ES2102298A1 (en)*1994-04-041997-07-16Puig Ramon VilanaApparatus for the local treatment of tumours
US6132425A (en)1995-08-152000-10-17Gough; Edward J.Cell necrosis apparatus
US6059780A (en)1995-08-152000-05-09Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method with cooling element
US6080150A (en)1995-08-152000-06-27Rita Medical Systems, Inc.Cell necrosis apparatus
US6090105A (en)1995-08-152000-07-18Rita Medical Systems, Inc.Multiple electrode ablation apparatus and method
US20080154259A1 (en)*1995-08-152008-06-26Angiodynamics, Inc.Ablation apparatus and method
US5980517A (en)1995-08-151999-11-09Rita Medical Systems, Inc.Cell necrosis apparatus
US5951547A (en)1995-08-151999-09-14Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US5925042A (en)1995-08-151999-07-20Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US8734439B2 (en)1995-08-152014-05-27Angiodynamics, IncAblation apparatus and method
US5913855A (en)1995-08-151999-06-22Rita Medical Systems, Inc.Multiple antenna ablation apparatus and method
US6736837B2 (en)1997-08-122004-05-18James A. FoxMethod for inducing hypothermia for treating neurological disorders
US20030097130A1 (en)*1997-09-042003-05-22Gerhard MullerElectrode arrangement for electrothermal treatment of human or animal bodies
US6818000B2 (en)*1997-09-042004-11-16Celon Ag Medical InstrumentsElectrode arrangement for electrothermal treatment of human or animal bodies
US6355029B1 (en)1997-12-022002-03-12Cryovascular Systems, Inc.Apparatus and method for cryogenic inhibition of hyperplasia
US6908462B2 (en)1997-12-022005-06-21Cryovascular Systems, Inc.Apparatus and method for cryogenic inhibition of hyperplasia
US5971979A (en)*1997-12-021999-10-26Odyssey Technologies, Inc.Method for cryogenic inhibition of hyperplasia
WO1999027862A1 (en)1997-12-021999-06-10Odyssey Technologies, Inc.Apparatus and method for cryogenic inhibition of hyperplasia
US6676689B2 (en)1998-01-232004-01-13Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6905509B2 (en)1998-01-232005-06-14Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US20040106969A1 (en)*1998-01-232004-06-03Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US20080221651A1 (en)*1998-01-232008-09-11Innercool Therapies, Inc.Medical procedure
US20080200970A1 (en)*1998-01-232008-08-21Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US6755850B2 (en)1998-01-232004-06-29Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6312452B1 (en)1998-01-232001-11-06Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US7371254B2 (en)1998-01-232008-05-13Innercool Therapies, Inc.Medical procedure
US6786218B2 (en)1998-01-232004-09-07Innercool Therapies, Inc.Medical procedure
US6364899B1 (en)1998-01-232002-04-02Innercool Therapies, Inc.Heat pipe nerve cooler
US7766949B2 (en)1998-01-232010-08-03Innercool Therapies, Inc.Fever regulation method and apparatus
US7311725B2 (en)1998-01-232007-12-25Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US20060276865A1 (en)*1998-01-232006-12-07Dobak John D IiiFever regulation method and apparatus
US6702842B2 (en)1998-01-232004-03-09Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6464716B1 (en)1998-01-232002-10-15Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6096068A (en)*1998-01-232000-08-01Innercool Therapies, Inc.Selective organ cooling catheter and method of using the same
US6468296B1 (en)1998-01-232002-10-22Innercool Therapies, Inc.Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US20040230265A1 (en)*1998-01-232004-11-18Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6695873B2 (en)1998-01-232004-02-24Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6692488B2 (en)1998-01-232004-02-17Innercool Therapies, Inc.Apparatus for cell necrosis
US6478811B1 (en)1998-01-232002-11-12Innercool Therapies, IncMethod for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6482226B1 (en)1998-01-232002-11-19Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US7101386B2 (en)1998-01-232006-09-05Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US6491039B1 (en)1998-01-232002-12-10Innercool Therapies, Inc.Medical procedure
US6843800B1 (en)1998-01-232005-01-18Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US20030018375A1 (en)*1998-01-232003-01-23Dobak John D.Selective organ cooling apparatus and method
US7094253B2 (en)1998-01-232006-08-22Innercool Therapies, Inc.Fever regulation method and apparatus
US7951183B2 (en)1998-01-232011-05-31Innercool Therapies, Inc.Medical procedure
US7066948B2 (en)1998-01-232006-06-27Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6533804B2 (en)1998-01-232003-03-18Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US7998182B2 (en)1998-01-232011-08-16Innercool Therapies, Inc.Selective organ cooling apparatus
US6540771B2 (en)1998-01-232003-04-01Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US7651518B2 (en)1998-01-232010-01-26Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US20030078641A1 (en)*1998-01-232003-04-24Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6558412B2 (en)1998-01-232003-05-06Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6238428B1 (en)1998-01-232001-05-29Innercool Therapies, Inc.Selective organ cooling apparatus and method employing turbulence-inducing element with curved terminations
US7063718B2 (en)1998-01-232006-06-20Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US6676688B2 (en)1998-01-232004-01-13Innercool Therapies, Inc.Method of making selective organ cooling catheter
US20050076924A1 (en)*1998-01-232005-04-14Dobak John D.Medical procedure
US20060124141A1 (en)*1998-01-232006-06-15Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US6887262B2 (en)1998-01-232005-05-03Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6235048B1 (en)1998-01-232001-05-22Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US20030144714A1 (en)*1998-01-232003-07-31Innercool Therapies, Inc.Selective organ hypothermia method and apparatus
US8163000B2 (en)1998-01-232012-04-24Innercool Therapies, Inc.Selective organ cooling catheter with guidewire apparatus and temperature-monitoring device
US20050240250A1 (en)*1998-01-232005-10-27Dobak John D IiiSelective organ hypothermia method and apparatus
US6991645B2 (en)1998-01-232006-01-31Innercool Therapies, Inc.Patient temperature regulation method and apparatus
US6648908B2 (en)1998-01-232003-11-18Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US6042559A (en)*1998-02-242000-03-28Innercool Therapies, Inc.Insulated catheter for selective organ perfusion
US6478812B2 (en)1998-03-242002-11-12Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6254626B1 (en)1998-03-242001-07-03Innercool Therapies, Inc.Articulation device for selective organ cooling apparatus
US6251130B1 (en)1998-03-242001-06-26Innercool Therapies, Inc.Device for applications of selective organ cooling
US6582455B1 (en)1998-03-242003-06-24Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6576002B2 (en)1998-03-242003-06-10Innercool Therapies, Inc.Isolated selective organ cooling method and apparatus
US6551349B2 (en)1998-03-242003-04-22Innercool Therapies, Inc.Selective organ cooling apparatus
US6491716B2 (en)1998-03-242002-12-10Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6251129B1 (en)1998-03-242001-06-26Innercool Therapies, Inc.Method for low temperature thrombolysis and low temperature thrombolytic agent with selective organ temperature control
US6740109B2 (en)1998-03-242004-05-25Innercool Therapies, Inc.Isolated selective organ cooling method
US6471717B1 (en)1998-03-242002-10-29Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6475231B2 (en)1998-03-242002-11-05Innercool Therapies, Inc.Method and device for applications of selective organ cooling
US6245095B1 (en)1998-03-242001-06-12Innercool Therapies, Inc.Method and apparatus for location and temperature specific drug action such as thrombolysis
US6224624B1 (en)1998-03-242001-05-01Innercool Therapies, Inc.Selective organ cooling apparatus and method
US6599312B2 (en)1998-03-242003-07-29Innercool Therapies, Inc.Isolated selective organ cooling apparatus
US8858549B2 (en)1998-03-272014-10-14Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US9204889B2 (en)1998-03-272015-12-08Tsunami Medtech, LlcMedical instrument and method of use
US8187269B2 (en)1998-03-272012-05-29Tsunami Medtech, LlcMedical instruments and techniques for treating pulmonary disorders
US8043351B2 (en)1998-03-312011-10-25Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7288089B2 (en)1998-03-312007-10-30Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20080300585A1 (en)*1998-03-312008-12-04Innercool Therapies, Inc.Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US20040087934A1 (en)*1998-03-312004-05-06Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, E.G., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7449018B2 (en)1998-03-312008-11-11Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US20010007951A1 (en)*1998-03-312001-07-12Innercool Therapies, IncCirculating fluid hypothermia method and apparatus
US6142991A (en)*1998-03-312000-11-07Galil Medical, Ltd.High resolution cryosurgical method and apparatus
US20040147914A1 (en)*1998-03-312004-07-29Kramer Hans W.Method and device for performing cooling- or cryo-therapies for, E.G., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6905494B2 (en)1998-03-312005-06-14Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US20050228368A1 (en)*1998-03-312005-10-13Yon Steven AMethod and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US7291144B2 (en)1998-03-312007-11-06Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US8157794B2 (en)1998-03-312012-04-17Innercool Therapies, Inc.Method and device for performing cooling-or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6231595B1 (en)1998-03-312001-05-15Innercool Therapies, Inc.Circulating fluid hypothermia method and apparatus
US8043283B2 (en)1998-03-312011-10-25Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US7001378B2 (en)1998-03-312006-02-21Innercool Therapies, Inc.Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6602276B2 (en)1998-03-312003-08-05Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation
US6149677A (en)*1998-03-312000-11-21Innercool Therapies, Inc.Circulating fluid hypothermia method
US20040267250A1 (en)*1998-03-312004-12-30Yon Steven A.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6818011B2 (en)1998-03-312004-11-16Innercool Therapies, Inc.Circulating fluid hypothermia method and apparatus
US6685732B2 (en)1998-03-312004-02-03Innercool Therapies, Inc.Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing microporous balloon
US6530946B1 (en)1998-04-212003-03-11Alsius CorporationIndwelling heat exchange heat pipe catheter and method of using same
US7857781B2 (en)1998-04-212010-12-28Zoll Circulation, Inc.Indwelling heat exchange catheter and method of using same
US7018399B2 (en)1998-06-232006-03-28Innercool Therapies, Inc.Method of making selective organ cooling catheter
US6261312B1 (en)1998-06-232001-07-17Innercool Therapies, Inc.Inflatable catheter for selective organ heating and cooling and method of using the same
US20040230264A1 (en)*1998-06-232004-11-18Dobak John D.Method of making selective organ cooling catheter
US6585752B2 (en)1998-06-232003-07-01Innercool Therapies, Inc.Fever regulation method and apparatus
US6167955B1 (en)*1998-08-032001-01-02Hewlett-Packard CompanyMulti-mode heat transfer using a thermal heat pipe valve
US6074414A (en)*1998-08-062000-06-13Limex Bio-Tech L.C.System for providing thermal application to external body areas of a patient
US6436129B1 (en)1999-01-202002-08-20Oratec Interventions, Inc.Method and apparatus for stimulating nerve regeneration
US20030060863A1 (en)*1999-02-092003-03-27Dobak John D.Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20030023288A1 (en)*1999-02-092003-01-30Michael MagersMethod and device for patient temperature control employing optimized rewarming
US6869440B2 (en)1999-02-092005-03-22Innercool Therapies, Inc.Method and apparatus for patient temperature control employing administration of anti-shivering agents
US20050171586A1 (en)*1999-02-092005-08-04Dobak John D.IiiMethod and apparatus for patient temperature control employing administration of anti-shivering agents
US20050096715A1 (en)*1999-02-092005-05-05Innercool Therapies, Inc.Method and device for patient temperature control employing optimized rewarming
US7189254B2 (en)1999-02-092007-03-13Innercool Therapies, Inc.Method and device for patient temperature control employing optimized rewarming
US7351254B2 (en)1999-02-092008-04-01Innercool Therapies, Inc.Method and device for patient temperature control employing optimized rewarming
US6830581B2 (en)1999-02-092004-12-14Innercool Therspies, Inc.Method and device for patient temperature control employing optimized rewarming
US7422600B2 (en)1999-02-092008-09-09Innercool Therapies, Inc.Method and apparatus for patient temperature control employing administration of anti-shivering agents
US6648879B2 (en)1999-02-242003-11-18Cryovascular Systems, Inc.Safety cryotherapy catheter
US6428534B1 (en)1999-02-242002-08-06Cryovascular Systems, Inc.Cryogenic angioplasty catheter
EP2292170A2 (en)1999-03-152011-03-09Cryovascular Systems, Inc.Cryosurgical fluid supply
US6514245B1 (en)1999-03-152003-02-04Cryovascular Systems, Inc.Safety cryotherapy catheter
US8333758B2 (en)1999-03-152012-12-18Boston Scientific ScimedCryosurgical fluid supply
WO2000054684A1 (en)1999-03-152000-09-21Cryovascular Systems, Inc.Cryosurgical fluid supply
US9050074B2 (en)1999-03-152015-06-09Boston Scientific Scimed, Inc.Cryosurgical fluid supply
US6972015B2 (en)1999-03-152005-12-06Cryovascular Systems, Inc.Cryosurgical fluid supply
US6786901B2 (en)1999-03-152004-09-07Cryovascular Systems, Inc.Cryosurgical fluid supply
EP2147648A1 (en)1999-03-152010-01-27Cryovascular Systems, Inc.Cryosurgical fluid supply
US20100106148A1 (en)*1999-03-152010-04-29James JoyeCryosurgical Fluid Supply
US20040167505A1 (en)*1999-03-152004-08-26Cryovascular Systems, Inc.Cryosurgical fluid supply
US6811550B2 (en)1999-03-152004-11-02Cryovascular Systems, Inc.Safety cryotherapy catheter
US6726654B2 (en)1999-08-052004-04-27Biocardia, Inc.System and method for delivering thermally sensitive and reverse-thermal gelation materials
US20070142774A1 (en)*1999-08-052007-06-21Biocardia, Inc.System and Method for Delivering Thermally Sensitive and Reverse-Thermal Gelation Materials
US6488659B1 (en)1999-08-052002-12-03Biocardia, Inc.System and method for delivering thermally sensitive and reverse-thermal gelation materials
US20040199115A1 (en)*1999-08-052004-10-07Biocardia, Inc.System and method for delivering thermally sensitive and reverse-thermal gelation materials
US7156824B2 (en)1999-08-052007-01-02Biocardia, Inc.System and method for delivering thermally sensitive and reverse-thermal gelation materials
US7052508B2 (en)1999-10-072006-05-30Innercool Therapies, Inc.Inflatable heat transfer apparatus
US6676690B2 (en)1999-10-072004-01-13Innercool Therapies, Inc.Inflatable heat transfer apparatus
US6325818B1 (en)1999-10-072001-12-04Innercool Therapies, Inc.Inflatable cooling apparatus for selective organ hypothermia
WO2001052759A1 (en)*2000-01-202001-07-26Oratec Interventions, Inc.Method and apparatus for stimulating nerve regeneration
US6576001B2 (en)2000-03-032003-06-10Innercool Therapies, Inc.Lumen design for catheter
US6379378B1 (en)2000-03-032002-04-30Innercool Therapies, Inc.Lumen design for catheter
US6918924B2 (en)2000-04-062005-07-19Innercool Therapies, Inc.Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US6648906B2 (en)2000-04-062003-11-18Innercool Therapies, Inc.Method and apparatus for regulating patient temperature by irrigating the bladder with a fluid
US20040116987A1 (en)*2000-06-022004-06-17Innercool Therapies, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US7211105B2 (en)2000-06-022007-05-01Innercool Therapias, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6660028B2 (en)2000-06-022003-12-09Innercool Therapies, Inc.Method for determining the effective thermal mass of a body or organ using a cooling catheter
US6726708B2 (en)2000-06-142004-04-27Innercool Therapies, Inc.Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US7491223B2 (en)2000-06-142009-02-17Innercool Therapies, Inc.Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US20040199229A1 (en)*2000-06-142004-10-07Innercool Therapies, Inc.Therapeutic heating and cooling via temperature management of a colon-inserted balloon
US7401643B2 (en)2000-07-142008-07-22University Of Virginia Patent FoundationHeat exchange foam
EP1894534A2 (en)2000-07-192008-03-05Cryovascular Systems, Inc.Improved safety cryotherapy catheter
US6602246B1 (en)2000-08-182003-08-05Cryovascular Systems, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US8029449B2 (en)2000-08-182011-10-04Boston Scientific Scimed, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US20100318075A1 (en)*2000-08-182010-12-16Boston Scientific Scimed, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US20060015092A1 (en)*2000-08-182006-01-19Cryovascular Systems, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US20040002749A1 (en)*2000-08-182004-01-01Cryovascular Systems, Inc. A Delaware CorporationCryotherapy method for detecting and treating vulnerable plaque
US6955174B2 (en)2000-08-182005-10-18Uryovascular Systems, Inc.Cryotherapy method for detecting and treating vulnerable plaque
EP2255740A1 (en)2000-08-182010-12-01Cryovascular Systems, Inc.Cryotherapy catheter for detecting and treating vulnerable plaque
US7780608B2 (en)2000-08-182010-08-24Boston Scientific Scimed, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US6719779B2 (en)2000-11-072004-04-13Innercool Therapies, Inc.Circulation set for temperature-controlled catheter and method of using the same
US7004960B2 (en)2000-11-072006-02-28Innercool Therapies, Inc.Circulation set for temperature-controlled catheter and method of using the same
US20040102825A1 (en)*2000-11-072004-05-27Innercool Therapies, Inc.Circulation set for temperature-controlled catheter and method of using the same
US6979345B2 (en)2000-12-062005-12-27Innercool Therapies, Inc.Multipurpose catheter assembly
US20020151845A1 (en)*2000-12-062002-10-17Randell WernethMultipurpose catheter assembly
US6719723B2 (en)2000-12-062004-04-13Innercool Therapies, Inc.Multipurpose catheter assembly
US10524847B2 (en)2000-12-092020-01-07Tsunami Medtech, LlcMedical instruments and techniques for thermally-mediated therapies
US20100160905A1 (en)*2000-12-092010-06-24Shadduck John HMedical instruments and techniques for thermally-mediated therapies
US8758341B2 (en)2000-12-092014-06-24Tsunami Medtech, LlcThermotherapy device
US10675079B2 (en)2000-12-092020-06-09Tsunami Medtech, LlcMethod for treating tissue
US9433457B2 (en)2000-12-092016-09-06Tsunami Medtech, LlcMedical instruments and techniques for thermally-mediated therapies
US20090105703A1 (en)*2000-12-092009-04-23Shadduck John HMethod for treating tissue
US9615875B2 (en)2000-12-092017-04-11Tsunami Med Tech, LLCMedical instruments and techniques for thermally-mediated therapies
US8574226B2 (en)2000-12-092013-11-05Tsunami Medtech, LlcMethod for treating tissue
US6595967B2 (en)2001-02-012003-07-22Innercool Therapies, Inc.Collapsible guidewire lumen
US20040243116A1 (en)*2001-08-132004-12-02Cryovascular Systems, Inc., A Delaware CorporationCryotherapy methods for treating vessel dissections and side branch occlusion
US6786900B2 (en)2001-08-132004-09-07Cryovascular Systems, Inc.Cryotherapy methods for treating vessel dissections and side branch occlusion
US20110125141A1 (en)*2001-08-132011-05-26Boston Scientific Scimed, Inc.Cryotherapy Methods for Treating Vessel Dissections and Side Branch Occlusion
US7862557B2 (en)2001-08-132011-01-04Boston Scientific Scimed, Inc.Cryotherapy methods for treating vessel dissections and side branch occlusion
US20060224154A1 (en)*2001-12-072006-10-05Shadduck John HMedical instrument and method of use
US9468487B2 (en)2001-12-072016-10-18Tsunami Medtech, LlcMedical instrument and method of use
US8444636B2 (en)2001-12-072013-05-21Tsunami Medtech, LlcMedical instrument and method of use
US20080308259A1 (en)*2002-03-262008-12-18Garner Scott DMultiple temperature sensitive devices using two heat pipes
US20040112583A1 (en)*2002-03-262004-06-17Garner Scott D.Multiple temperature sensitive devices using two heat pipes
US20040210285A1 (en)*2002-04-042004-10-21Steven YonMethod of manufacturing a heat transfer element for in vivo cooling without undercuts
US7288109B2 (en)2002-04-042007-10-30Innercool Therapies. Inc.Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US8172889B2 (en)2002-04-042012-05-08Innercoll Therapies, Inc.Method of manufacturing a heat transfer element for in vivo cooling without undercuts
US7288326B2 (en)2002-05-302007-10-30University Of Virginia Patent FoundationActive energy absorbing cellular metals and method of manufacturing and using the same
US20050158573A1 (en)*2002-05-302005-07-21Elzey Dana M.Active energy absorbing cellular metals and method of manufacturing and using the same
US7361173B2 (en)2002-08-272008-04-22Board Of Trustees Of The University Of ArkansasConductive interstitial thermal therapy device
US6872203B2 (en)2002-08-272005-03-29Board Of Trustees Of The University Of ArkansasConductive interstitial thermal therapy device
US20040044336A1 (en)*2002-08-272004-03-04Gal ShafirsteinConductive interstitial thermal therapy device
US20040044337A1 (en)*2002-08-272004-03-04Gal ShafirsteinConductive interstitial thermal therapy device
US8858545B2 (en)2002-08-272014-10-14Board Of Trustees Of The University Of ArkansasSelective conductive interstitial thermal therapy device
US20050119645A1 (en)*2002-08-272005-06-02Gal ShafirsteinConductive interstitial thermal therapy device
US20060167445A1 (en)*2002-08-272006-07-27Gal ShafirsteinSelective conductive interstitial thermal therapy device
US6780177B2 (en)*2002-08-272004-08-24Board Of Trustees Of The University Of ArkansasConductive interstitial thermal therapy device
US7913611B2 (en)2002-09-032011-03-29University Of Virginia Patent FoundationBlast and ballistic protection systems and method of making the same
US20060048640A1 (en)*2002-09-032006-03-09Terry Matthew MBlast and ballistic protection systems and method of making the same
US7424967B2 (en)2002-09-032008-09-16University Of Virginia Patent FoundationMethod for manufacture of truss core sandwich structures and related structures thereof
US8016823B2 (en)2003-01-182011-09-13Tsunami Medtech, LlcMedical instrument and method of use
US20060135955A1 (en)*2003-01-182006-06-22Shadduck John HMedical instrument and method of use
US8313485B2 (en)2003-01-182012-11-20Tsunami Medtech, LlcMethod for performing lung volume reduction
US20090105702A1 (en)*2003-01-182009-04-23Shadduck John HMethod for performing lung volume reduction
US9113944B2 (en)2003-01-182015-08-25Tsunami Medtech, LlcMethod for performing lung volume reduction
US20060080835A1 (en)*2003-02-142006-04-20Kooistra Gregory WMethods for manufacture of multilayered multifunctional truss structures and related structures there from
WO2004080280A2 (en)2003-03-112004-09-23Cryovascular Systems, Inc.Cryotherapy method for detecting and treating vulnerable plaque
US20060209359A1 (en)*2003-04-042006-09-21Canon Kabushiki KaishaImage reading apparatus, personalizing method, program, and storage medium
US20040240660A1 (en)*2003-05-272004-12-02Wong Kent Wah ShunSystem and method for retrieving telephone numbers
US20060286342A1 (en)*2003-05-282006-12-21Elzey Dana MRe-entrant cellular multifunctional structure for energy absorption and method of manufacturing and using the same
US7060062B2 (en)2003-06-042006-06-13Cryo Vascular Systems, Inc.Controllable pressure cryogenic balloon treatment system and method
US20050038421A1 (en)*2003-06-042005-02-17Cryo Vascular Systems, Inc.Controllable pressure cryogenic balloon treatment system and method
US9907599B2 (en)2003-10-072018-03-06Tsunami Medtech, LlcMedical system and method of use
US8579892B2 (en)2003-10-072013-11-12Tsunami Medtech, LlcMedical system and method of use
US20090149846A1 (en)*2003-10-072009-06-11Tsunami Medtech, LlcMedical system and method of use
US20060084962A1 (en)*2004-06-022006-04-20Cryovascular Systems, Inc.Controllable pressure cryogenic balloon treatment system and method
US8177779B2 (en)2004-06-022012-05-15Boston Scientific Scimed, Inc.Controllable pressure cryogenic balloon treatment system and method
US20060136023A1 (en)*2004-08-262006-06-22Dobak John D IiiMethod and apparatus for patient temperature control employing administration of anti-shivering agents
US20060129142A1 (en)*2004-12-152006-06-15Cryovascular Systems, Inc.Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US20100042086A1 (en)*2004-12-152010-02-18Boston Scientific Scimed, Inc.Efficient Controlled Cryogenic Fluid Delivery Into a Balloon Catheter and Other Treatment Devices
US8574225B2 (en)2004-12-152013-11-05Boston Scientific Scimed, Inc.Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US7604631B2 (en)2004-12-152009-10-20Boston Scientific Scimed, Inc.Efficient controlled cryogenic fluid delivery into a balloon catheter and other treatment devices
US7789846B2 (en)2005-01-252010-09-07Thermopeutix, Inc.System and methods for selective thermal treatment
US20060167398A1 (en)*2005-01-252006-07-27Thermopeutix Inc.System and methods for selective thermal treatment
US7704220B2 (en)2005-01-252010-04-27Thermopeutix, Inc.Systems and methods for selective thermal treatment
US20060167399A1 (en)*2005-01-252006-07-27Solar Ronald JSystems and methods for selective thermal treatment
US20100185189A1 (en)*2005-08-032010-07-22Tsunami Medtech, LlcMedical system and method of use
US20070032785A1 (en)*2005-08-032007-02-08Jennifer DiederichTissue evacuation device
US8579893B2 (en)2005-08-032013-11-12Tsunami Medtech, LlcMedical system and method of use
US8360361B2 (en)2006-05-232013-01-29University Of Virginia Patent FoundationMethod and apparatus for jet blast deflection
US20080125747A1 (en)*2006-11-282008-05-29Smith & Nephew, Inc.-TnPassive thermal spine catheter
US10390991B2 (en)2007-01-112019-08-27Scion Neurostim, LlcMedical devices incorporating thermoelectric transducer and controller
US9861518B2 (en)2007-01-112018-01-09Scion Neurostim, LlcDevices for vestibular or cranial nerve stimulation
US11207118B2 (en)2007-07-062021-12-28Tsunami Medtech, LlcMedical system and method of use
EP2829259A1 (en)*2007-08-032015-01-28Scion Neurostim LlcVestibular stimulation apparatus and associated methods of use
US11213338B2 (en)2007-08-232022-01-04Aegea Medical Inc.Uterine therapy device and method
US10758292B2 (en)2007-08-232020-09-01Aegea Medical Inc.Uterine therapy device and method
WO2009089090A3 (en)*2008-01-032009-10-01Vertos Medical, Inc.Thermally regulated hypodermic needles, methods of use, and kits
US10595925B2 (en)2008-02-202020-03-24Tsunami Medtech, LlcMedical system and method of use
US9924992B2 (en)2008-02-202018-03-27Tsunami Medtech, LlcMedical system and method of use
US20090216220A1 (en)*2008-02-202009-08-27Tsunami Medtech, LlcMedical system and method of use
US11129664B2 (en)2008-05-312021-09-28Tsunami Medtech, LlcSystems and methods for delivering energy into a target tissue of a body
US11141210B2 (en)2008-05-312021-10-12Tsunami Medtech, LlcSystems and methods for delivering energy into a target tissue of a body
US11179187B2 (en)2008-05-312021-11-23Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US11284932B2 (en)2008-05-312022-03-29Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US11478291B2 (en)2008-05-312022-10-25Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US8911430B2 (en)2008-06-172014-12-16Tsunami Medtech, LlcMedical probes for the treatment of blood vessels
US8579888B2 (en)2008-06-172013-11-12Tsunami Medtech, LlcMedical probes for the treatment of blood vessels
US8845627B2 (en)2008-08-222014-09-30Boston Scientific Scimed, Inc.Regulating pressure to lower temperature in a cryotherapy balloon catheter
US20100049184A1 (en)*2008-08-222010-02-25Boston Scientific Scimed, Inc.Regulating Pressure to Lower Temperature in a Cryotherapy Balloon Catheter
US9801676B2 (en)2008-08-222017-10-31Boston Scientific Scimed, Inc.Regulating pressure to lower temperature in a cryotherapy balloon catheter
US10828080B2 (en)2008-08-222020-11-10Boston Scientific Scimed Inc.Regulating pressure to lower temperature in a cryotherapy balloon catheter
US10548653B2 (en)2008-09-092020-02-04Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US20100204688A1 (en)*2008-09-092010-08-12Michael HoeyMedical system and method of use
US8721632B2 (en)2008-09-092014-05-13Tsunami Medtech, LlcMethods for delivering energy into a target tissue of a body
US9700365B2 (en)2008-10-062017-07-11Santa Anna Tech LlcMethod and apparatus for the ablation of gastrointestinal tissue
US20100114083A1 (en)*2008-10-062010-05-06Sharma Virender KMethod and Apparatus for the Ablation of Gastrointestinal Tissue
US9561068B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US9561066B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US12310650B2 (en)2008-10-062025-05-27Santa Anna Tech LlcMethods of ablating tissue using time-limited treatment periods
US11813014B2 (en)2008-10-062023-11-14Santa Anna Tech LlcMethods and systems for directed tissue ablation
US10842548B2 (en)2008-10-062020-11-24Santa Anna Tech LlcVapor ablation system with a catheter having more than one positioning element
US11779430B2 (en)2008-10-062023-10-10Santa Anna Tech LlcVapor based ablation system for treating uterine bleeding
US11589920B2 (en)2008-10-062023-02-28Santa Anna Tech LlcCatheter with a double balloon structure to generate and apply an ablative zone to tissue
US20100114082A1 (en)*2008-10-062010-05-06Sharma Virender KMethod and Apparatus for the Ablation of Endometrial Tissue
US9561067B2 (en)2008-10-062017-02-07Virender K. SharmaMethod and apparatus for tissue ablation
US10842557B2 (en)2008-10-062020-11-24Santa Anna Tech LlcVapor ablation system with a catheter having more than one positioning element and configured to treat duodenal tissue
US10842549B2 (en)2008-10-062020-11-24Santa Anna Tech LlcVapor ablation system with a catheter having more than one positioning element and configured to treat pulmonary tissue
US10695126B2 (en)2008-10-062020-06-30Santa Anna Tech LlcCatheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11020175B2 (en)2008-10-062021-06-01Santa Anna Tech LlcMethods of ablating tissue using time-limited treatment periods
US10064697B2 (en)2008-10-062018-09-04Santa Anna Tech LlcVapor based ablation system for treating various indications
US20100262133A1 (en)*2009-02-032010-10-14Tsunami Medtech, LlcMedical systems and methods for ablating and absorbing tissue
US11284931B2 (en)2009-02-032022-03-29Tsunami Medtech, LlcMedical systems and methods for ablating and absorbing tissue
US20110118717A1 (en)*2009-11-062011-05-19Tsunami Medtech, LlcTissue ablation systems and methods of use
US8900223B2 (en)2009-11-062014-12-02Tsunami Medtech, LlcTissue ablation systems and methods of use
US9993366B2 (en)2009-12-182018-06-12Scion Neurosim, LlcDevices and methods for vestibular and/or cranial nerve stimulation
US10980666B2 (en)2009-12-182021-04-20Scion Neurostim, LlcDevices and methods for vestibular and/or cranial nerve stimulation
US9913749B2 (en)2009-12-182018-03-13Scion Neurostim, LlcDevices and methods for vestibular and/or cranial nerve stimulation
US9526653B2 (en)2009-12-182016-12-27Scion Neurostim, Llc.Systems, methods and apparatus for delivering nerve stimulation to a patient with physician oversight
US20110160648A1 (en)*2009-12-302011-06-30Tsunami Medtech, LlcMedical system and method of use
US9161801B2 (en)2009-12-302015-10-20Tsunami Medtech, LlcMedical system and method of use
US10004550B2 (en)2010-08-052018-06-26Medtronic Ardian Luxembourg S.A.R.L.Cryoablation apparatuses, systems, and methods for renal neuromodulation
US11457969B2 (en)2010-08-132022-10-04Tsunami Medtech, LlcMedical system and method of use
US10499973B2 (en)2010-08-132019-12-10Tsunami Medtech, LlcMedical system and method of use
US8945107B2 (en)2010-10-262015-02-03Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US10188445B2 (en)2010-10-262019-01-29Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9066713B2 (en)2010-10-262015-06-30Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US12251150B2 (en)2010-10-262025-03-18Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9060754B2 (en)2010-10-262015-06-23Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US10842547B2 (en)2010-10-262020-11-24Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9439708B2 (en)2010-10-262016-09-13Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US9060755B2 (en)2010-10-262015-06-23Medtronic Ardian Luxembourg S.A.R.L.Neuromodulation cryotherapeutic devices and associated systems and methods
US10238446B2 (en)2010-11-092019-03-26Aegea Medical Inc.Positioning method and apparatus for delivering vapor to the uterus
US12279802B2 (en)2010-11-092025-04-22Coopersurgical, Inc.Positioning method and apparatus for delivering vapor to the uterus
US11160597B2 (en)2010-11-092021-11-02Aegea Medical Inc.Positioning method and apparatus for delivering vapor to the uterus
US9283111B2 (en)2010-12-162016-03-15Scion Neurostim, LlcSystems, methods and apparatus for bilateral caloric vestibular stimulation
US10537467B2 (en)2010-12-162020-01-21Scion Neurostim, LlcSystems, devices and methods for bilateral caloric vestibular stimulation
US10660792B2 (en)2010-12-162020-05-26Scion NeuorStim, LLCSystems, devices and methods for caloric vestibular stimulation having an impedance monitor and/or temperature sensor
US9655772B2 (en)2010-12-172017-05-23Scion Neurostim, LlcSystems, devices and methods for caloric vestibular stimulation having an impedance monitor and/or temperature sensor
US9532900B2 (en)2010-12-172017-01-03Scion Neurostim, LlcSystems, devices and methods for bilateral caloric vestibular stimulation
US10588682B2 (en)2011-04-252020-03-17Medtronic Ardian Luxembourg S.A.R.L.Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls
US10881442B2 (en)2011-10-072021-01-05Aegea Medical Inc.Integrity testing method and apparatus for delivering vapor to the uterus
US11751931B2 (en)2012-04-272023-09-12Medtronic Ardian Luxembourg S.A.R.L.Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US9241752B2 (en)2012-04-272016-01-26Medtronic Ardian Luxembourg S.A.R.L.Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US10905490B2 (en)2012-04-272021-02-02Medtronic Ardian Luxembourg S.A.R.L.Cryotherapeutic devices for renal neuromodulation and associated systems and methods
US9872718B2 (en)2012-04-272018-01-23Medtronic Adrian Luxembourg S.a.r.l.Shafts with pressure relief in cryotherapeutic catheters and associated devices, systems, and methods
US9095321B2 (en)2012-11-212015-08-04Medtronic Ardian Luxembourg S.A.R.L.Cryotherapeutic devices having integral multi-helical balloons and methods of making the same
US9017317B2 (en)2012-12-062015-04-28Medtronic Ardian Luxembourg S.A.R.L.Refrigerant supply system for cryotherapy including refrigerant recompression and associated devices, systems, and methods
US12114909B2 (en)2013-03-152024-10-15Tsunami Medtech, LlcMedical system and method of use
US11413086B2 (en)2013-03-152022-08-16Tsunami Medtech, LlcMedical system and method of use
US9943353B2 (en)2013-03-152018-04-17Tsunami Medtech, LlcMedical system and method of use
US11672584B2 (en)2013-03-152023-06-13Tsunami Medtech, LlcMedical system and method of use
US10675054B2 (en)*2014-02-202020-06-09Gyrus Acmi, Inc.Heat pipe cooled burr including surgical instruments embodying same
US20150230821A1 (en)*2014-02-202015-08-20Gyrus Acmi, Inc. (D.B.A. Olympus Surgical TechnoloHeat pipe cooled burr including surgical instruments embodying same
US11547435B2 (en)2014-02-202023-01-10Gyrus Acmi, Inc.Cooled burr surgical instruments
US9901364B2 (en)*2014-02-202018-02-27Gyrus Acmi, Inc.Heat pipe cooled burr including surgical instruments embodying same
US20180132889A1 (en)*2014-02-202018-05-17Gyrus Acmi, Inc. (D.B.A. Olympus Surgical TechnoloHeat pipe cooled burr including surgical instruments embodying same
US11406437B2 (en)2014-03-072022-08-09Medtronic Ardian Luxembourg S.A.R.L.Monitoring and controlling internally administered cryotherapy
US10492842B2 (en)2014-03-072019-12-03Medtronic Ardian Luxembourg S.A.R.L.Monitoring and controlling internally administered cryotherapy
US12274483B2 (en)2014-03-072025-04-15Medtronic Ardian Luxembourg S.A.R.L.Monitoring and controlling internally administered cryotherapy
US10179019B2 (en)2014-05-222019-01-15Aegea Medical Inc.Integrity testing method and apparatus for delivering vapor to the uterus
US10575898B2 (en)2014-05-222020-03-03Aegea Medical Inc.Systems and methods for performing endometrial ablation
US10299856B2 (en)2014-05-222019-05-28Aegea Medical Inc.Systems and methods for performing endometrial ablation
US11219479B2 (en)2014-05-222022-01-11Aegea Medical Inc.Integrity testing method and apparatus for delivering vapor to the uterus
US10661061B2 (en)*2014-09-082020-05-26Sanovas Intellectual Property, LlcClearance of sinus ostia blockage
US20160067465A1 (en)*2014-09-082016-03-10Lawrence J. GerransClearance of Sinus Ostia Blockage
US20200282194A1 (en)*2014-09-082020-09-10Sanovas Intellectual Property, LlcClearance of Sinus Ostia Blockage
US10687883B2 (en)2015-03-102020-06-23PAVmed Inc.Continuous flow balloon catheter systems and methods of use
US10213245B2 (en)2015-03-102019-02-26PAVmed Inc.Continuous flow balloon catheter systems and methods of use
US12011283B2 (en)2016-02-192024-06-18Aegea Medical Inc.Methods and apparatus for determining the integrity of a bodily cavity
US11331037B2 (en)2016-02-192022-05-17Aegea Medical Inc.Methods and apparatus for determining the integrity of a bodily cavity
US12364537B2 (en)2016-05-022025-07-22Santa Anna Tech LlcCatheter with a double balloon structure to generate and apply a heated ablative zone to tissue
US11331140B2 (en)2016-05-192022-05-17Aqua Heart, Inc.Heated vapor ablation systems and methods for treating cardiac conditions
US12137969B2 (en)2016-05-192024-11-12Aqua Heart, Inc.Heated vapor ablation systems and methods for treating cardiac conditions
US11432870B2 (en)2016-10-042022-09-06Avent, Inc.Cooled RF probes
US12226139B2 (en)2017-01-192025-02-18The General Hospital CorporationSystems and methods for thermal treatment of tissue
US12383422B2 (en)2017-01-192025-08-12The General Hospital CorporationSystems and methods for thermal treatment of tissue
US12279803B2 (en)2018-06-012025-04-22Aqua Medical, Inc.Vapor-based ablation treatment methods with improved treatment volume vapor management
US11864809B2 (en)2018-06-012024-01-09Santa Anna Tech LlcVapor-based ablation treatment methods with improved treatment volume vapor management
US11806066B2 (en)2018-06-012023-11-07Santa Anna Tech LlcMulti-stage vapor-based ablation treatment methods and vapor generation and delivery systems

Similar Documents

PublicationPublication DateTitle
US5190539A (en)Micro-heat-pipe catheter
US5417686A (en)Temperature control mechanisms for a micro heat pipe catheter
US5620479A (en)Method and apparatus for thermal therapy of tumors
Short et al.Physical hyperthermia and cancer therapy
JP3554330B2 (en) Cryo mapping and ablation catheter
US6972014B2 (en)Open system heat exchange catheters and methods of use
Brezovich et al.Local hyperthermia with interstitial techniques
US6017338A (en)Fluid cooled and perfused tip for a catheter
US6235048B1 (en)Selective organ hypothermia method and apparatus
US3238944A (en)Temperature controlling device for living organs
Seegenschmiedt et al.Interstitial thermoradiotherapy: review on technical and clinical aspects
JP2009534156A (en) Cryoneedle and cryotherapy system
Deardorff et al.Ultrasound applicators with internal cooling for interstitial thermal therapy
WO2006006989A2 (en)System and method for varying return pressure to control tip temperature of a cryoablation catheter
US12383422B2 (en)Systems and methods for thermal treatment of tissue
MilliganWhole-body hyperthermia induction techniques
US6064914A (en)Thermotherapy method
WO2020092593A1 (en)Devices and methods for treating the prostate
Moros et al.Pre-focal plane high-temperature regions induced by scanning focused ultrasound beams
US20050021014A1 (en)Closed system warming catheter and method of use
AU2019288384A1 (en)Systems and methods for thermal blockade of nerves
US20200015878A1 (en)Bounded electrosurgical energy systems and methods employing zone-based energy
US12226139B2 (en)Systems and methods for thermal treatment of tissue
Kapp et al.Bladder cooling in patients treated with regional hyperthermia of the pelvis using an annular phased array
Nau et al.Feasibility of using interstitial ultrasound for intradiscal thermal therapy: a study in human cadaver lumbar discs

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:TEXAS A&M UNIVERSITY SYSTEM, THE, A TX. STATE AGE

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FLETCHER, LEROY S.;PETERSON, GEORGE P.;REEL/FRAME:005378/0315

Effective date:19900629

CCCertificate of correction
FPAYFee payment

Year of fee payment:4

REMIMaintenance fee reminder mailed
LAPSLapse for failure to pay maintenance fees
FPLapsed due to failure to pay maintenance fee

Effective date:20010302

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362


[8]ページ先頭

©2009-2025 Movatter.jp