Movatterモバイル変換


[0]ホーム

URL:


US5024789A - Method and apparatus for manufacturing electrostatically spun structure - Google Patents

Method and apparatus for manufacturing electrostatically spun structure
Download PDF

Info

Publication number
US5024789A
US5024789AUS07/368,016US36801689AUS5024789AUS 5024789 AUS5024789 AUS 5024789AUS 36801689 AUS36801689 AUS 36801689AUS 5024789 AUS5024789 AUS 5024789A
Authority
US
United States
Prior art keywords
mandrel
fibers
grid
electrostatically
grid means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/368,016
Inventor
John P. Berry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Liverpool
Ethicon Inc
Original Assignee
University of Liverpool
Ethicon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Liverpool, Ethicon IncfiledCriticalUniversity of Liverpool
Priority to US07/368,016priorityCriticalpatent/US5024789A/en
Assigned to ETHICON, INC., THE UNIVERSITY OF LIVERPOOL, UNIVERSITY OF LIVERPOOL, THEreassignmentETHICON, INC., THE UNIVERSITY OF LIVERPOOLASSIGNMENT OF ASSIGNORS INTEREST.Assignors: BERRY, JOHN P.
Assigned to ETHICON, INC., THE UNIVERSITY OF LIVERPOOL, LIVERPOOL, ENGLAND A CORP. OF OHreassignmentETHICON, INC., THE UNIVERSITY OF LIVERPOOL, LIVERPOOL, ENGLAND A CORP. OF OHASSIGNMENT OF ASSIGNORS INTEREST.Assignors: BERRY, JOHN P.
Application grantedgrantedCritical
Publication of US5024789ApublicationCriticalpatent/US5024789A/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Electrostatic spinning method for producing tubular fibrous structures from fiberizable material wherein the fiberizable material is collected on an electrostatically charged mandrel wherein the fiberizable material takes different paths from the source to the mandrel to produce a structure of smaller diameter fibers randomly oriented, larger diameter fibers and/or bundles of fibers circumferentially oriented and elongated voids circumferentially oriented.

Description

RELATED APPLICATIONS
This is a continuation-in-part patent application of copending U.S. patent application Ser. No. 257,364 filed Oct. 13, 1988 which is a continuation of U.S. application Ser. No. 896,789 filed Aug. 15, 1986, both now abandoned.
BACKGROUND OF THE INVENTION
The invention relates to electrostatically produced structures, for example, tubular vascular grafts, and to methods of manufacturing such structures.
It has been proposed in the past to spin electrostatically fibrous structures of polymeric material such as polyurethane using an electrostatically charged, spinning mandrel as a fiber collector, a solution of the polymer being ejected towards the mandrel from a manifold of capillary needles or other suitable means. The mandrel may be replaced by an alternative electrostatically charged collector if a tubular structure is not required.
It has been found that synthetic fibrous structures built up in this way generally have fibers of a diameter not larger than 1 μm and that the fibers are generally randomly oriented. Some directional bias can be induced by varying the speed of mandrel rotation, as indicated in our published British Patent application nos. 2121286A and 2120946A.
It has been found that the generally random nature of the fibrous structure and the small fiber size of 1 μm or less has produced a tubular structure which can be prone to kinking and can therefore be a problem when used as an arterial graft particularly where limb movement is involved.
In the past, attempts have been made to control the orientation of the fibers as they are deposited on the mandrel. For example, in U.S. Pat. No. 4,689,186 the mandrel is placed between charged electrodes or grids in order to control fiber orientation. As shown and described in U.S.
Pat. No. 4,689,186 droplets of fiberizable solution are forced to form on the tips of the manifold needles and are electrostatically drawn towards the charged mandrel. Each droplet is elongated into a thin stream which dries out to form a solid fiber. The path traced by a fiber on its journey towards the mandrel is helical. The radius of the helix is maximum approximately half way between the needles and the mandrel and is minimum at each end of the path. Each needle produces a single fiber, but because the velocity of the fiber is high (30m/s) and the path is helical, it gives an optical illusion of appearing as a spray or jet, as schematically depicted in FIG. 6(b) of the patent.
While controlling the fiber orientation of a tubular structure can improve many of the physical properties of the structure, it does not eliminate the kinking problem and does not produce a vascular graft that is acceptable for use in all of the desired replacement areas of a natural vessel.
SUMMARY OF THE PRESENT INVENTION
According to one aspect of the invention, there is provided a tubular fibrous structure comprising small diameter fibers and substantially larger diameter fibers, said smaller diameter fibers being randomly oriented in the fibrous structure, said larger diameter fibers being embedded in a matrix of said small diameter fibers and said larger diameter fibers being generally oriented circumferentially with respect to the longitudinal axis of said tubular structure.
The structure may comprise a multiplicity of elongate voids extending generally circumferentially with respect to the longitudinal axis of the structure.
The small diameter fibers may have a diameter in the range 0.5 μm to 2 μm for example 1 μm and the larger diameter fibers may have a diameter in therange 2 μm to 15 μm. The larger the fiber diameter, the more likely the fiber is to be oriented circumferentially. In some instances, the larger diameter fibers may be cable-like, being bundles or agglomerations of the smaller diameter fibers.
The structure may comprise an inner layer of fibers of the small diameter. The layer of fibers of larger diameter mixed with smaller diameter fibers may be an intermediate layer, inside an outer layer of fibers of the small diameter.
The inner layer may be of a polymeric material adapted to be compatible with contact with blood, and may be of a thickness in therange 10 μm to 60 μm preferably 40 μm.
The intermediate layer may be of a thickness in the range 300 μm to 2000 μm.
The outer layer may be of a thickness in the range of 10 μm to 60 μm preferably 40 μm.
According to a further aspect of the invention, there is provided a tubular fibrous structure comprising small diameter fibers and substantially larger diameter fibers, said small diameter fibers being randomly oriented in the tubular structure, at least a portion of said larger diameter fibers being embedded in a matrix of small diameter fibers, and said larger diameter fibers being generally oriented circumferentially to the longitudinal axis of said tubular structure, said tubular structure having open areas or voids between the larger diameter fibers, said open areas or voids extending in the circumferential direction as the tubular structure whereby said structure has a low modulus in both compression and extension in the axial direction of said tubular structure.
According to a further aspect of the invention, there is provided a method of electrostatically spinning a tubular fibrous structure using an electrostatically charged, spinning mandrel and an electrostatically charged grid means in the region of the mandrel to produce an electrostatic field, which method comprises the steps of introducing into said electrostatic field a fiberizable material, collecting on said mandrel a first portion of said liquid in the form of fibers attached directly to the mandrel and a second portion of said liquid in the form of fibers traveling first to one of the grid means and then to the mandrel to follow a longer path to said mandrel than the fibers from said first portion of liquid, whereby a tubular fibrous structure is produced having fibers of different diameters and varying fiber orientations.
In the preferred embodiment of the present invention, there is provided a method of electrostatically spinning a tubular fibrous structure using an electrostatically charged, spinning mandrel and a pair of electrostatically charged grid means in the region of the mandrel and disposed on opposite sides of the mandrel to produce an electrostatic field, and means for introducing fiberizable material into the electrostatic field, which method comprises the steps of arranging the grid means of such that the electrostatically charged surface of one of the grid means is nearer the mandrel than the other grid means, selecting desired electrostatic potentials for the mandrel and the grid means, and introducing said fiberizable material into the electrostatic field, whereby a tubular fibrous structure is produced having fibers of different diameters and varying fiber orientations. The electrostatic spinning process may be started with the mandrel at a first mandrel voltage and the grid means at a first grid voltage and the mandrel and the grid voltages varied to cause a variation in the diameter and orientation of at least a portion of the fibers forming the tubular fibrous structure.
The first mandrel voltage and the first grid voltage may be such as to produce fibers of a first diameter generally randomly orientated, and the mandrel and grid voltages may be varied by increasing the electrostatic charge on the grid means relative to the mandrel to produce fibers of a larger diameter than the first diameter as well as fibers of the first diameter, the fibers of larger diameter tending to be orientated generally circumferentially with respect to the longitudinal axis of the mandrel.
The method may include a further step of returning the mandrel to the first mandrel voltage and the grid means to the first grid voltage for a period at the end of the process.
The grid means may comprise a pair of coplanar grids or plates each on opposite sides of the mandrel and in a plane parallel to each other.
The mandrel may be charged to a voltage in therange 6 to 20 kV, and an example of a preferred voltage for the mandrel, when of 4 mm diameter, and the grid means is 12 kV for the mandrel, 6 kV for the grid means to produce fibers of the first diameter, 7 kV for the mandrel, 9.2 kV for the grid means when fibers of a larger diameter are to be produced. It will be appreciated, however, that these voltages are quoted merely by way of example as mandrel size, grid spacing and grid location have a fundamental effect on the voltage relationship between the mandrel and the grid means to produce different fiber production on the mandrel.
The tubular fibrous structure may have different fibrous structures at different locations along its length, and this feature may be achieved by traversing the fiberizable material introduction means along the length of the mandrel and varying the electrostatic potentials of the mandrel and the grid means as the fiberizable material introduction means moves relative to the mandrel to produce different electrostatic fields for fiber collection and have different fibrous structures at different axial locations on the mandrel. This variation may be conveniently controlled by a microprocessor programmed to repeat a desired sequence of electrostatic charge variation.
According to a further aspect of the invention, there is provided apparatus for electrostatically spinning a tubular fibrous structure, which apparatus comprises a mandrel to act as a collector for electrostatically spun fibers, means for electrostatically charging the mandrel and for varying the electrostatic charge thereon, means for rotating the mandrel, a pair of grid means disposed on opposite sides of the mandrel, means for electrostatically charging the grid means and for varying the electrostatic charge thereon, and means for introducing a fiberizable material into the electrostatic field, the surface of one of the grid means being closer to the mandrel than the surface of the other grid means.
The apparatus may further comprise microprocessor means for controlling variation of the voltages on the mandrel and the grid means in accordance with a desired sequence to produce a tubular fibrous structure having desired characteristics.
BRIEF DESCRIPTION OF THE DRAWINGS
By way of example, one embodiment of a method of electrostatically spinning a tubular fibrous structure, of apparatus for carrying out the method and of a tubular fibrous structure will now be described with reference to the accompanying drawings, in which:
FIG. 1 is a side view of apparatus according to the prior art for spinning a tubular fibrous structure;
FIG. 2 is a side view of apparatus according to the present invention for spinning a tubular fibrous structure of the invention;
FIGS. 3a, b, and c are idealized schematic drawings depicting different paths that the fiberizable material follows as it is being deposited on the mandrel;
FIG. 4 is a scanning electron microscope photograph of the microstructure of the surface of a tubular structure including fibers of different diameters;
FIG. 5 is a scanning electron microscope photograph of a section through the microstructure of a tubular fibrous structure having fibers of different diameters;
FIG. 6 is a graph of the change in diameter of a tubular structure having fibers of different diameters as a function of internal pressure;
FIG. 7 is a table of results of bending experiments on a fibrous structure having fibers of different diameter;
FIG. 8 is a photograph of a fibrous structure having fibers of different diameters undergoing a bend test.
FIG. 9a is a schematic representation of a tubular structure of the present invention depicting the area from which the Scanning Electron Microscope photograph of FIG. 9b was taken.
FIG. 10a is a partial cutaway schematic representation of a tubular structure of the present invention depicting the area from which the Scanning Electron Microscope photograph of FIG. 10b was taken.
FIGS. 1 and 2 illustrate such apparatus diagrammatically. FIG. 1 depicts a general electrostatic spinning process as has been described in several Patent specifications already published, for example earlier published British application Nos. 2121286A and 2120946A.
The apparatus consists of an array ofcapillary needles 10 mounted on a carrier (not shown) with means for moving the carrier in reciprocating fashion parallel to amandrel 11. The means for moving the needle block is conveniently a motor.
Themandrel 11 in the embodiment illustrated is of 4mm diameter although it will be appreciated that other diameters may be used. There are means for rotating the mandrel at a variety of different speeds but typically the speed will be of several thousand revolutions per minute, a typical speed being 5000 r.P.m.
The capillary needles 10 are supplied with polymeric material such as polyurethane or other suitable polymeric material in solution (although it is possible to use a suspension) and material emanating from the needles is attracted towards themandrel 11 by electrostatically charging themandrel 11 to a potential of several kilovolts with respect to theneedles 10. The process results in the production of fibers which collect on themandrel 11 in a manner which has been described in specifications already published.
It has already been proposed to have electrostatically charged grids on either side of themandrel 11 with respect to theneedles 10 with the edges of the grids nearest theneedles 10 significantly nearer the needles than has the mandrel. In the apparatus of FIG. 1 and a pair ofplates 12 and 13 are provided. Theplates 12 and 13 are conveniently of metallic sheeting although barred grids may be used is desired.
In the mode of operation illustrated in FIG. 1, bothplates 12 and 13 are electrostatically charged to a voltage less than the voltage to which themandrel 11 is charged. Typical voltages for the spacing of the plates and the size of the mandrel are 12 kV on the mandrel and 6 kV on the plates. This results in an array of fibers leading from theneedles 10 to themandrel 11 substantially as shown in FIG. 1 with each fiber following a generally uniform helical path as it moves from the needle to the mandrel.
However, by changing the apparatus slightly to that shown in FIG. 2, the fibrous structure formed on themandrel 15 changes substantially. To produce the shape of fiber array emanating from theneedles 16 shown in FIG. 2, the electrostatis field is not symmetrical. Thetop plate 17 is placed closer to the mandrel than is thebottom plate 18. Also, theplates 17 and 18 may be charged to a higher voltage than was the case in FIG. 1 and the mandrel voltage is reduced. This causes fibers to be attracted more readily towards thetop plate 17 and thence to themandrel 11. Some fibers will be attracted directly to themandrel 11. Fine adjustment of the voltages is required as if theplates 17 and 18 are at too high a potential, material from the needles will simply be attracted to the plates and not necessarily reach themandrel 11 whereas if the mandrel voltage is too high relative to the plates, the fibrous structure will not differ significantly from that caused by the mode of operation described with reference to FIG. 1.
Typical voltages for the apparatus depicted in FIG. 2 are 9.2 kV on the plates and 7 kV on the mandrel. It will be appreciated, however, that the voltage relationship between the mandrel and the plates will differ depending on the plate size and spacing, the mandrel diameter and the spacing of the needles from the mandrel and the plates.
It is believed that the path the fiberizable material takes as it moves from the needle to the mandrel varies as the tubular product is produced. As is diagrammatically shown in FIGS. 3a, 3b and 3c, some of thefiberizable material 20 leaves theneedle 21 and moves in an ever increasing helically path until itcontacts plate 22 and is then immediately attracted to themandrel 23 in an almost vertical path as shown in FIG. 3a. Other of the fiberizable material moves directly to the mandrel in a helical path with the diameter of the helix maximum at about the mid point between the needle point and the mandrel as shown in FIG. 3b. Still other of the fiberizable material leaves the needle and moves toward the mandrel in an ever increasing helical path until it contacts fibers passing from the grid to the mandrel where it encircles or agglomerates with such fibers to form a bundle of fibers or a layer diameter fiber which is then attracted to the mandrel as shown in FIG. 3c. The various paths the fiberizable material takes from the needle to the mandrel occurs in a more or less random manner with the fibers taking the shorter paths being of small diameter and generally randomly oriented and the fibers taking the longer paths being of larger diameter or being entangled or forming bundles with adjacent fibers and being generally oriented circumferentially of the resulting structures. As a further result of the various paths the fiberizable material takes and the formation of the larger diameter fibers or bundled and entangled fibers a series of voids are also formed in the resulting tubular structure. Many of these voids are oval or oblong in shape with the larger diameter of the void aligned circumferentially of the resulting structure.
The fibrous structure produced in accordance with the present invention differs significantly from the fibrous structure produced by the mode of operation described with reference to and shown in the prior art in FIG. 1. In the product produced by the apparatus, depicted in FIG. 1, the fibers are generally in the range 0.5 μm to 2 μm, and mostly of approximately 1 μm diameter, and are generally randomly orientated. In the product produced by the apparatus depicted in FIG. 2, however, some fibers have a diameter of approximately 1 μm (in the range of 0.5 μm to 2 μm and their orientation is random, fibers and or bundles of fibers of a larger diameter are also produced. Fibers up to a diameter of 15 μm may be produced and, in general, the larger the fiber diameter, the more likely that fiber is oriented circumferentially with respect to the longitudinal axis of the mandrel.
Fiber 4 illustrates the type of microstructure of the product of the present invention, it being apparent that fibers of a diameter of approximately 1 μm extend randomly in direction over the structure whereas fibers of larger diameter extend generally circumferentially.
It has also been found that the microstructure produced in accordance with the present invention includes elongate voids in the structure which generally extend circumferentially with respect to the longitudinal axis of the mandrel and the tubular fibrous structure formed on it. FIG. 5 illustrates the presence of thevoids 30, FIG. 5 being a scanning electron microscope photograph of a section through the microstructure. The presence of the voids in the microstructure assists in resisting kinking of the structure upon bending.
It will be appreciated that tubular fibrous structures having varying fibrous structures across their cross-section can be produced readily by altering voltages at the mandrel and plates. It is also possible to feed solutions of different polymers to the needles where different material characteristics are required. Thus, a polymer having desirable characteristics for contact with blood and which may also be doped with, for example, a pharmaceutical can be introduced first of all in the FIG. 1 apparatus to build up an inner layer for example of 10 to 60 μm, preferably 40 μm for contact with blood. Thereafter, simply by changing the polymer emanating from the needles and the positioning and voltage of the grids and mandrel, the fibrous structure can be altered. Typically, the layer of the structure formed by this technique would be between 300 and 2000 μm thick. Finally, the apparatus could be converted back to that of the prior art to form an outer layer of perhaps 10 μm to 60 μm, preferably 40 μm of the microstructure including fibers generally of 1 μm diameter randomly orientated.
Furthermore, it will be appreciated that tubular fibrous structures can be made with different characteristics along the length of the tubular structure by altering voltage or other characteristics as the needles traverse along the mandrel. This can readily be controlled by a microprocessor.
A composite structure as described above including at least a layer of fibers including randomly orientated fibers of approximately 1 μm diameter together with larger fibers tending to be orientated circumferentially around the tube has the appearance of a lightly ridged, flexible hose. The structure offers little resistance to bending and will assume a very tight loop without kinking. It has greater axial compliance than a similarly dimensioned tubular fibrous structure made entirely by the apparatus depicted in FIG. 1 but, most importantly, when compressed along its axis, it shortens with a minimal tendency to buckle. Mechanical tests have been carried out to quantify these features of the graft.
COMPARISON OF HOOP-AXIAL MODULI
A simplified tensile test was made on specimens cut from a tubular structure made in accordance with the present invention and from a tubular structure made from the apparatus depicted in FIG. 1. The Young's modulus of the "dogbone" shaped specimens was measured and the results are given below:
______________________________________                                    hoop modulus Prior Art       5.4 × 10.sup.5 Pa                      hoop modulus Present Invention                                                                        20.1 × 10.sup.5 Pa                      axial modulus                                                                          Prior Art       9.7 × 10.sup.5 Pa                      axial modulus                                                                          Present Invention                                                                         2.8 × 10.sup.5 Pa                      ______________________________________
Compared with a prior art structure, the circumferential modulus of the structure of the present invention is increased by a factor of four and the axial modulus is decreased by a similar factor. This shows that the preferential fiber alignment in the structure of the present invention significantly changes the hoop/axial ration of moduli which explains in part the good bending properties.
The static compliance of the tubular structure of the present invention has been measured using a specimen 7 cm in 3.7 mm bore and 0.57 mm wall thickness. The structure was pre-clotted with gelating prior to being tested and was subjected to 15% axial strain. The internal pressure was ramped to 2000 mm Hg and slowly brought back to zero, during which the change in diameter was repeatedly measured. The experiment was repeated at 20% and 25% axial strain.
A graph of the change in diameter as a function of internal pressure at 15% axial strain is shown in FIG. 6. The graph is essentially linear with only a small hysteresis. The compliance was calculated by measuring the external diameter at 120 mm Hg and subtracting it from the diameter at 80 mm Hg. This figure was divided by the diameter at 100 mm Hg. The static compliance for each of the three experiments was:
______________________________________                                    at 15% extension    0.66% compliance                                      at 20% extension    0.73  compliance                                      at 25% extension    0.79% compliance                                      ______________________________________
AXIAL EXTENSION UNDER PRESSURE
Owing to the decrease in the axial (longitudinal) Young's modulus of the structure of the present invention, the specimens will elongate when subjected to internal pressure. This extension was measured for a structure of the present invention and for a prior art structure of similar dimensions, the dimensions being
______________________________________                                                 Present Invention                                                                    Prior Art                                         ______________________________________                                    Int. Diameter  4.62 mm      3.74 mm                                       Ext. Diameter  5.4  mm      4.46 mm                                       Wall thickness 0.39 mm      0.36 mm                                       ______________________________________
At 200 mm Hg pressure, a structure of the present invention increases in length by 15% compared with less than 4% for a wholly microfibrous, standard prior art structure. A 15% increase is thought to be within clinically acceptable limits.
BENDING CHARACTERISTICS OF THE STRUCTURE OF THE PRESENT INVENTION
The bending characteristics of two typical specimens have been determined at zero and 80 mm Hg internal pressure. The measurements are compared with results from prior art structures of similar dimensions. The term "bending diameter" describes the diameter of the smallest circle around which an unsupported structure will bend without kinking.
Results of the bending experiments are set out in the table of FIG. 7. The mean bending diameter of a prior art structure is 8 cm. A structure of similar gross dimensions but modified by the inclusion of circumferentially aligned macrofibers in accordance with the present invention is 1.28 cm. FIG. 8 is a photograph of a similar specimen being tested and illustrates the advantageous bending characteristics.
When the specimens are tested under an imposed internal pressure of 80 mm of mercury, the mean bending diameters were 5.4 cm and 1.0 cm respectively.
Referring to FIGS. 9a and 9b there is depicted a tubular structure of the present invention. FIG. 9a is a schematic representation of atubular structure 40. Therectangle 41 denotes the area of the structure from which a Scanning Electron Microscope photograph deposited in FIG. 9b is taken. The photograph is at a magnification of approximately 2000 times. As may be seen there aresmall diameter fibers 42 randomly oriented. There are alsolarger diameter fibers 43 generally circumferentially oriented and there is one very large bundle offibers 44 also circumferentially oriented.
Referring to FIGS. 10a and 10b there is depicted a portion of a tubular structure of the present invention. FIG. 10a is a partial cut away perspective view of thetubular structure 50 showing theinner surface 51 and theouter surface 52. Thearea 53 denotes the area of the structure from which a cross-sectional Scanning Electron Microscope photograph is taken and shown in FIG. 10b. As shown in FIG. 10b there are a plurality ofvoids 54 in the tubular structure with the voids generally circumferentially aligned.
It will be appreciated that the apparatus described and the types of structure made can be varied significantly depending on the desired characteristics. It will, of course, be understood that the present invention has been described above purely by way of example and modifications of detail can be made within the scope of the invention.

Claims (12)

What is claimed is:
1. A method of electrostatically spinning a tubular fibrous structure using an electrostatically charged, spinning mandrel and an electrostatically charged grid means in the region of the mandrel to produce an electrostatic field, which method comprises the steps of introducing into said electrostatic field a fiberizable material, collecting on said mandrel a first portion of said liquid in the form of fibers attracted directly to the mandrel and a second portion of said liquid in the form of fibers having been deflected towards said grid means to follow a longer path to said mandrel than the fibers from said first portion of liquid, whereby a tubular fibrous structure is produced having fibers of different diameters and varying fiber orientations.
2. A method of electrostatically spinning a tubular fibrous structure as claimed in claim 1 wherein some of the fibers from said second portion of said liquid are collected on said mandrel after they have contacted said grid means.
3. A method of electrostatically spinning a tubular fibrous structure as claimed in claim 2 wherein some of the fibers from said second portion of said liquid are collected on said mandrel after they have contacted fibers of said second portion that have contacted the grid means but before the fibers that have contacted the grid means are collected on the mandrel.
4. A method of electrostatically spinning a tubular fibrous structure using an electrostatically charged, spinning mandrel and an electrostatically charged pair of grid means disposed in the region of the mandrel and on opposite sides to produce an electrostatic field, and means for introducing fiberizable material into the electrostatic field, which method comprises the steps of arranging one of the grid means closer to the electrostatically charged surface of the mandrel than the other grid means, selecting desired electrostatic potentials for the mandrel and the grid means, and introducing said fiberizable material into the electrostatic field, whereby a tubular fibrous structure is produced having fibers of different diameters and varying fiber orientations.
5. A method as claimed in claims 1 or 4 further comprising the steps of starting the electrostatic spinning process with the mandrel at a first mandrel voltage and the grid means at a first grid voltage, and varying the mandrel and grid voltages to cause a variation in the diameter and orientation of at least a portion of the fibers forming the tubular fibrous structure.
6. A method as claimed in claim 4 where the grid means comprise a pair of coplanar grids or plates one of said plates being on a first side of the mandrel and the second of said coplanar grids or plates being on the other side of the mandrel and in a plane parallel to said first plate.
7. A method as claimed in claim 4 wherein the mandrel is charged to a potential in the range 6 kV to 20 kV.
8. A method as claimed in claims 1 or 4 comprising the step of traversing the fiber introduction means along the length of the mandrel.
9. Apparatus for electrostatically spinning a tubular fibrous structure, which apparatus comprises a mandrel to act as a collector for electrostatically spun fibers, means for electrostatically charging the mandrel and for varying the electrostatic charge thereon, means for rotating the mandrel, a pair of grid means in the region of the mandrel with one of said grid means disposed on one side of said mandrel and the other of said grid means disposed on the opposite side of said mandrel, means for electrostatically charging the grid means and for varying the electrostatic charge thereon, and means for introducing a fiberizable material into the electrostatic field, the surface of one of said grid means being closer to said mandrel than the surface of the other of said grid means.
10. Apparatus as claimed in claim 9 wherein the pair of grid means comprises a pair of parallel plates.
11. Apparatus as claimed in claim 9 comprising microprocessor means for controlling variation of the voltages in accordance with a desired sequence to produce a tubular fibrous structure having desired characteristics.
12. Apparatus as claimed in claim 9 comprising means for transversing the means for introducing a fiberizable material along the length of mandrel.
US07/368,0161988-10-131989-06-19Method and apparatus for manufacturing electrostatically spun structureExpired - Fee RelatedUS5024789A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US07/368,016US5024789A (en)1988-10-131989-06-19Method and apparatus for manufacturing electrostatically spun structure

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US25736488A1988-10-131988-10-13
US07/368,016US5024789A (en)1988-10-131989-06-19Method and apparatus for manufacturing electrostatically spun structure

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US25736488AContinuation-In-Part1988-10-131988-10-13

Publications (1)

Publication NumberPublication Date
US5024789Atrue US5024789A (en)1991-06-18

Family

ID=26945916

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US07/368,016Expired - Fee RelatedUS5024789A (en)1988-10-131989-06-19Method and apparatus for manufacturing electrostatically spun structure

Country Status (1)

CountryLink
US (1)US5024789A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5503782A (en)*1993-01-281996-04-02Minnesota Mining And Manufacturing CompanyMethod of making sorbent articles
US6308509B1 (en)*1997-10-102001-10-30Quantum Group, IncFibrous structures containing nanofibrils and other textile fibers
WO2001026702A3 (en)*1999-10-082001-12-13Univ AkronNitric oxide-modified linear poly(ethylenimine) fibers and uses therefor
WO2002034986A2 (en)2000-10-262002-05-02Creavis Gesellschaft Für Technologie Und Innovation MbhOriented mesotubular and nantotubular non-wovens
US20020100725A1 (en)*2001-01-262002-08-01Lee Wha SeopMethod for preparing thin fiber-structured polymer web
EP1275757A2 (en)2001-07-132003-01-15Transmit Gesellschaft für Technologietransfer mbHTubes with inside diameters on the nanometric scale
WO2003004735A1 (en)*2001-07-042003-01-16Hag-Yong KimAn electronic spinning apparatus, and a process of preparing nonwoven fabric using the thereof
US20030098518A1 (en)*2001-04-022003-05-29De Gussa AgMethod formaking shared structure with internally coated cavities
US20040030377A1 (en)*2001-10-192004-02-12Alexander DubsonMedicated polymer-coated stent assembly
US20040054406A1 (en)*2000-12-192004-03-18Alexander DubsonVascular prosthesis and method for production thereof
US20040094873A1 (en)*2001-03-202004-05-20Alexander DubsonPortable electrospinning device
WO2004014304A3 (en)*2002-08-072004-06-24Smithkline Beecham CorpElectrospun amorphous pharmaceutical compositions
US20050025974A1 (en)*2003-07-022005-02-03Physical Sciences, Inc.Carbon and electrospun nanostructures
US20050104258A1 (en)*2003-07-022005-05-19Physical Sciences, Inc.Patterned electrospinning
US20050224999A1 (en)*2004-04-082005-10-13Research Triangle InstituteElectrospinning in a controlled gaseous environment
US20050224998A1 (en)*2004-04-082005-10-13Research Triangle InsituteElectrospray/electrospinning apparatus and method
US20060228435A1 (en)*2004-04-082006-10-12Research Triangle InsituteElectrospinning of fibers using a rotatable spray head
US20060264140A1 (en)*2005-05-172006-11-23Research Triangle InstituteNanofiber Mats and production methods thereof
US20070031607A1 (en)*2000-12-192007-02-08Alexander DubsonMethod and apparatus for coating medical implants
US20070093081A1 (en)*2005-10-252007-04-26Research In Motion LimitedDevice opener and vibration mechanism
US7244272B2 (en)2000-12-192007-07-17Nicast Ltd.Vascular prosthesis and method for production thereof
US20070232996A1 (en)*2004-04-292007-10-04Cube Medical A/SBalloon for Use in Angioplasty with an Outer Layer of Nanofibers
US20080200975A1 (en)*2004-01-062008-08-21Nicast Ltd.Vascular Prosthesis with Anastomotic Member
US20080213590A1 (en)*2004-05-282008-09-04Andreas GreinerInvention Concerning Agricultural Active Substances
US20090061225A1 (en)*1999-03-082009-03-05The Procter & Gamble CompanyStarch fiber
US20090108503A1 (en)*2007-06-012009-04-30Usa As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod and System for Aligning Fibers During Electrospinning
US20090162468A1 (en)*2006-04-072009-06-25Victor BarinovControlled Electrospinning of Fibers
US20100331947A1 (en)*2005-02-172010-12-30Alon ShalevInflatable Medical Device
US20110018174A1 (en)*2009-07-222011-01-27Adra Smith BacaElectrospinning Process and Apparatus for Aligned Fiber Production
CN102191569A (en)*2010-03-162011-09-21北京化工大学Parallel-electric-field electrostatic spinner
WO2012012407A3 (en)*2010-07-192012-04-26Neograft Technologies, Inc.Graft devices and methods of use
WO2013157969A1 (en)2012-04-172013-10-24Politechnika ŁodzkaMedical material for reconstruction of blood vessels, the method of its production and use of the medical material for reconstruction of blood vessels
US9295541B2 (en)2009-12-312016-03-29Neograft Technologies, Inc.Graft devices and methods of fabrication
US10888409B2 (en)2010-06-172021-01-12Washington UniversityBiomedical patches with aligned fibers
US11173234B2 (en)2012-09-212021-11-16Washington UniversityBiomedical patches with spatially arranged fibers
US11224677B2 (en)2016-05-122022-01-18Acera Surgical, Inc.Tissue substitute materials and methods for tissue repair
US12167853B2 (en)2021-09-072024-12-17Acera Surgical, Inc.Non-woven graft materials for nerve repair and regeneration
US12201749B2 (en)2021-07-292025-01-21Acera Surgical, Inc.Combined macro and micro-porous hybrid-scale fiber matrix
US12263269B2 (en)2021-07-292025-04-01Acera Surgical, Inc.Particle-form hybrid-scale fiber matrix

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4127706A (en)*1974-09-261978-11-28Imperial Chemical Industries LimitedPorous fluoropolymeric fibrous sheet and method of manufacture
US4323525A (en)*1978-04-191982-04-06Imperial Chemical Industries LimitedElectrostatic spinning of tubular products
US4345414A (en)*1978-11-201982-08-24Imperial Chemical Industries LimitedShaping process
GB2142870A (en)*1983-07-061985-01-30Ethicon IncManufacturing vascular prosthesis by electrostatic spinning
US4689186A (en)*1978-10-101987-08-25Imperial Chemical Industries PlcProduction of electrostatically spun products

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4127706A (en)*1974-09-261978-11-28Imperial Chemical Industries LimitedPorous fluoropolymeric fibrous sheet and method of manufacture
US4323525A (en)*1978-04-191982-04-06Imperial Chemical Industries LimitedElectrostatic spinning of tubular products
US4689186A (en)*1978-10-101987-08-25Imperial Chemical Industries PlcProduction of electrostatically spun products
US4345414A (en)*1978-11-201982-08-24Imperial Chemical Industries LimitedShaping process
GB2142870A (en)*1983-07-061985-01-30Ethicon IncManufacturing vascular prosthesis by electrostatic spinning

Cited By (95)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5503782A (en)*1993-01-281996-04-02Minnesota Mining And Manufacturing CompanyMethod of making sorbent articles
US6308509B1 (en)*1997-10-102001-10-30Quantum Group, IncFibrous structures containing nanofibrils and other textile fibers
US7666261B2 (en)1999-03-082010-02-23The Procter & Gamble CompanyMelt processable starch compositions
US9458556B2 (en)1999-03-082016-10-04The Procter & Gamble CompanyFiber comprising polyvinylpyrrolidone
US20110177335A1 (en)*1999-03-082011-07-21The Procter & Gamble CompanyFiber comprising starch and a surfactant
US7938908B2 (en)1999-03-082011-05-10The Procter & Gamble CompanyFiber comprising unmodified and/or modified starch and a crosslinking agent
US8764904B2 (en)1999-03-082014-07-01The Procter & Gamble CompanyFiber comprising starch and a high polymer
US7704328B2 (en)1999-03-082010-04-27The Procter & Gamble CompanyStarch fiber
US8168003B2 (en)1999-03-082012-05-01The Procter & Gamble CompanyFiber comprising starch and a surfactant
US20090061225A1 (en)*1999-03-082009-03-05The Procter & Gamble CompanyStarch fiber
US20090124729A1 (en)*1999-03-082009-05-14The Procter & Gamble CompanyMelt processable starch compositions
WO2001026702A3 (en)*1999-10-082001-12-13Univ AkronNitric oxide-modified linear poly(ethylenimine) fibers and uses therefor
US6737447B1 (en)1999-10-082004-05-18The University Of AkronNitric oxide-modified linear poly(ethylenimine) fibers and uses thereof
US6855366B2 (en)1999-10-082005-02-15The University Of AkronNitric oxide-modified linear poly(ethylenimine) fibers and uses therefor
US20040131753A1 (en)*1999-10-082004-07-08The University Of AkronNitric oxide-modified linear poly(ethylenimine) fibers and uses therefor
WO2002034986A2 (en)2000-10-262002-05-02Creavis Gesellschaft Für Technologie Und Innovation MbhOriented mesotubular and nantotubular non-wovens
US20040096533A1 (en)*2000-12-192004-05-20Alexander DubsonMethod and apparatus of improving mechanical characteristics of nonwoven materials
US20070031607A1 (en)*2000-12-192007-02-08Alexander DubsonMethod and apparatus for coating medical implants
US20040096532A1 (en)*2000-12-192004-05-20Alexander DubsonPolymer fiber tubular structure having kinking resistance
US20040054406A1 (en)*2000-12-192004-03-18Alexander DubsonVascular prosthesis and method for production thereof
US20040053553A1 (en)*2000-12-192004-03-18Alexander DubsonMethod and apparatus for manufacturing polymer fiber shells via electrospinning
US7276271B2 (en)2000-12-192007-10-02Nicast Ltd.Polymer fiber tubular structure having kinking resistance
US7244116B2 (en)2000-12-192007-07-17Nicast Ltd.Apparatus for improving mechanical characteristics of nonwoven materials
US7244272B2 (en)2000-12-192007-07-17Nicast Ltd.Vascular prosthesis and method for production thereof
US7112293B2 (en)*2000-12-192006-09-26Nicast Ltd.Method and apparatus for manufacturing polymer fiber shells via electrospinning
US7115220B2 (en)*2000-12-192006-10-03Nicast Ltd.Vascular prosthesis and method for production thereof
US20020100725A1 (en)*2001-01-262002-08-01Lee Wha SeopMethod for preparing thin fiber-structured polymer web
US7794219B2 (en)2001-03-202010-09-14Nicast Ltd.Portable electrospinning device
US20040094873A1 (en)*2001-03-202004-05-20Alexander DubsonPortable electrospinning device
US20030098518A1 (en)*2001-04-022003-05-29De Gussa AgMethod formaking shared structure with internally coated cavities
US7105228B2 (en)2001-04-022006-09-12Transmit Gesellschaft Fuer Technologietransfer MbhMethod for making shaped structures with internally coated cavities
US6991702B2 (en)2001-07-042006-01-31Nag-Yong KimElectronic spinning apparatus
US20030190383A1 (en)*2001-07-042003-10-09Hag-Yong KimElectronic spinning apparatus, and a process of preparing nonwoven fabric using the thereof
WO2003004735A1 (en)*2001-07-042003-01-16Hag-Yong KimAn electronic spinning apparatus, and a process of preparing nonwoven fabric using the thereof
US20060048355A1 (en)*2001-07-042006-03-09Hag-Yong KimElectronic spinning apparatus, and a process of preparing nonwoven fabric using the same
US7332050B2 (en)2001-07-042008-02-19Hag-Yong KimElectronic spinning apparatus, and a process of preparing nonwoven fabric using the same
EP1275757A2 (en)2001-07-132003-01-15Transmit Gesellschaft für Technologietransfer mbHTubes with inside diameters on the nanometric scale
US20040030377A1 (en)*2001-10-192004-02-12Alexander DubsonMedicated polymer-coated stent assembly
US20060013869A1 (en)*2002-08-072006-01-19Francis IgnatiousElectrospun amorphous pharmaceutical compositions
AU2003258120B2 (en)*2002-08-072009-02-26Smithkline Beecham CorporationElectrospun amorphous pharmaceutical compositions
WO2004014304A3 (en)*2002-08-072004-06-24Smithkline Beecham CorpElectrospun amorphous pharmaceutical compositions
US7790135B2 (en)2003-07-022010-09-07Physical Sciences, Inc.Carbon and electrospun nanostructures
US20050104258A1 (en)*2003-07-022005-05-19Physical Sciences, Inc.Patterned electrospinning
US20050025974A1 (en)*2003-07-022005-02-03Physical Sciences, Inc.Carbon and electrospun nanostructures
US20080200975A1 (en)*2004-01-062008-08-21Nicast Ltd.Vascular Prosthesis with Anastomotic Member
US20050224999A1 (en)*2004-04-082005-10-13Research Triangle InstituteElectrospinning in a controlled gaseous environment
US8052407B2 (en)2004-04-082011-11-08Research Triangle InstituteElectrospinning in a controlled gaseous environment
US20050224998A1 (en)*2004-04-082005-10-13Research Triangle InsituteElectrospray/electrospinning apparatus and method
US8088324B2 (en)2004-04-082012-01-03Research Triangle InstituteElectrospray/electrospinning apparatus and method
US8632721B2 (en)2004-04-082014-01-21Research Triangle InstituteElectrospinning in a controlled gaseous environment
US20080063741A1 (en)*2004-04-082008-03-13Research Triangle InsituteElectrospinning in a controlled gaseous environment
US7762801B2 (en)2004-04-082010-07-27Research Triangle InstituteElectrospray/electrospinning apparatus and method
US7297305B2 (en)2004-04-082007-11-20Research Triangle InstituteElectrospinning in a controlled gaseous environment
US20060228435A1 (en)*2004-04-082006-10-12Research Triangle InsituteElectrospinning of fibers using a rotatable spray head
US7134857B2 (en)2004-04-082006-11-14Research Triangle InstituteElectrospinning of fibers using a rotatable spray head
US20110031638A1 (en)*2004-04-082011-02-10Research Triangle InstituteElectrospray/electrospinning apparatus and method
US20070232996A1 (en)*2004-04-292007-10-04Cube Medical A/SBalloon for Use in Angioplasty with an Outer Layer of Nanofibers
US8017061B2 (en)2004-05-282011-09-13Philipps-Universitat MarburgInvention concerning agricultural active substances
US8431064B2 (en)2004-05-282013-04-30Phillips-Universitat MarburgMethod of using nanoscaled polymer fibers as carriers for agricultural substances
US20080213590A1 (en)*2004-05-282008-09-04Andreas GreinerInvention Concerning Agricultural Active Substances
US20100331947A1 (en)*2005-02-172010-12-30Alon ShalevInflatable Medical Device
US20060264140A1 (en)*2005-05-172006-11-23Research Triangle InstituteNanofiber Mats and production methods thereof
US7592277B2 (en)2005-05-172009-09-22Research Triangle InstituteNanofiber mats and production methods thereof
US20070093081A1 (en)*2005-10-252007-04-26Research In Motion LimitedDevice opener and vibration mechanism
US20090162468A1 (en)*2006-04-072009-06-25Victor BarinovControlled Electrospinning of Fibers
US8342831B2 (en)2006-04-072013-01-01Victor BarinovControlled electrospinning of fibers
US20090108503A1 (en)*2007-06-012009-04-30Usa As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod and System for Aligning Fibers During Electrospinning
US7993567B2 (en)2007-06-012011-08-09The United States Of America As Represented By The Administrator Of The National Aeronautics And Space AdministrationMethod and system for aligning fibers during electrospinning
US8211352B2 (en)*2009-07-222012-07-03Corning IncorporatedElectrospinning process for aligned fiber production
US20110018174A1 (en)*2009-07-222011-01-27Adra Smith BacaElectrospinning Process and Apparatus for Aligned Fiber Production
US10149750B2 (en)2009-12-312018-12-11Neograft Technologies, Inc.Graft devices and methods of fabrication
US9295541B2 (en)2009-12-312016-03-29Neograft Technologies, Inc.Graft devices and methods of fabrication
CN102191569A (en)*2010-03-162011-09-21北京化工大学Parallel-electric-field electrostatic spinner
CN102191569B (en)*2010-03-162013-06-05北京化工大学Parallel-electric-field electrostatic spinner
US11000358B2 (en)2010-06-172021-05-11Washington UniversityBiomedical patches with aligned fibers
US11311366B2 (en)2010-06-172022-04-26Washington UniversityBiomedical patches with aligned fibers
US12144716B2 (en)2010-06-172024-11-19Washington UniversityBiomedical patches with aligned fibers
US11471260B2 (en)2010-06-172022-10-18Washington UniversityBiomedical patches with aligned fibers
US10888409B2 (en)2010-06-172021-01-12Washington UniversityBiomedical patches with aligned fibers
US11096772B1 (en)2010-06-172021-08-24Washington UniversityBiomedical patches with aligned fibers
US11071617B2 (en)2010-06-172021-07-27Washington UniversityBiomedical patches with aligned fibers
US9445874B2 (en)2010-07-192016-09-20Neograft Technologies, Inc.Graft devices and methods of use
US10239071B2 (en)2010-07-192019-03-26Neograft Technologies, Inc.Graft devices and methods of use
WO2012012407A3 (en)*2010-07-192012-04-26Neograft Technologies, Inc.Graft devices and methods of use
WO2013157969A1 (en)2012-04-172013-10-24Politechnika ŁodzkaMedical material for reconstruction of blood vessels, the method of its production and use of the medical material for reconstruction of blood vessels
US11253635B2 (en)2012-09-212022-02-22Washington UniversityThree dimensional electrospun biomedical patch for facilitating tissue repair
US11596717B2 (en)2012-09-212023-03-07Washington UniversityThree dimensional electrospun biomedical patch for facilitating tissue repair
US12109334B2 (en)2012-09-212024-10-08Washington UniversityThree dimensional electrospun biomedical patch for facilitating tissue repair
US11173234B2 (en)2012-09-212021-11-16Washington UniversityBiomedical patches with spatially arranged fibers
US12246114B2 (en)2012-09-212025-03-11Washington UniversityBiomedical patches with spatially arranged fibers
US11224677B2 (en)2016-05-122022-01-18Acera Surgical, Inc.Tissue substitute materials and methods for tissue repair
US11826487B2 (en)2016-05-122023-11-28Acera Surgical, Inc.Tissue substitute materials and methods for tissue repair
US12201749B2 (en)2021-07-292025-01-21Acera Surgical, Inc.Combined macro and micro-porous hybrid-scale fiber matrix
US12263269B2 (en)2021-07-292025-04-01Acera Surgical, Inc.Particle-form hybrid-scale fiber matrix
US12167853B2 (en)2021-09-072024-12-17Acera Surgical, Inc.Non-woven graft materials for nerve repair and regeneration

Similar Documents

PublicationPublication DateTitle
US5024789A (en)Method and apparatus for manufacturing electrostatically spun structure
US4965110A (en)Electrostatically produced structures and methods of manufacturing
EP0223374B1 (en)Improvements in electrostatically produced structures and methods of manufacturing thereof
US4552707A (en)Synthetic vascular grafts, and methods of manufacturing such grafts
EP0266035A1 (en)Improvements in synthetic vascular grafts
US5296061A (en)Process for producing a tubular nonwoven fabric and tubular nonwoven fabric produced by the same
US20090091065A1 (en)Electrospinning Apparatus For Producing Nanofibers and Process Thereof
US5312500A (en)Non-woven fabric and method and apparatus for making the same
US6106913A (en)Fibrous structures containing nanofibrils and other textile fibers
KR850005520A (en) Manufacturing method of cylindrical fibrous structure
US8758668B2 (en)Method of making coiled and buckled electrospun fiber structures
DE3586136T3 (en) Heat-resistant, high-tensile, non-woven fabric.
US4442062A (en)Process for producing melt-blown thermoplastic articles
US20110111201A1 (en)Method of making coiled and buckled electrospun fiber structures and uses for same
GB2142870A (en)Manufacturing vascular prosthesis by electrostatic spinning
JPS6055624B2 (en) Manufacturing method of nonwoven fabric
KR100734181B1 (en) Spinning syringe for dual fiber
EP0070726B1 (en)Spunlike yarns
CA2028853C (en)Non-woven fabric and method and apparatus for making the same
JPH0660456B2 (en) Non-woven sheet manufacturing equipment
US3923587A (en)Apparatus for the manufacture of continuous filament nonwoven web
US3230584A (en)Methods and apparatus for making strands, rovings, yarns and the like
AU752419B2 (en)Process and apparatus for collecting continuous blow spun fibers
CA1248720A (en)Fibrous structures
JP3228343B2 (en) Method of manufacturing electret filter

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:ETHICON, INC., THE UNIVERSITY OF LIVERPOOL, ENGLAN

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BERRY, JOHN P.;REEL/FRAME:005095/0148

Effective date:19890512

Owner name:UNIVERSITY OF LIVERPOOL, THE, ENGLAND

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BERRY, JOHN P.;REEL/FRAME:005095/0148

Effective date:19890512

ASAssignment

Owner name:ETHICON, INC., THE UNIVERSITY OF LIVERPOOL, LIVERP

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:BERRY, JOHN P.;REEL/FRAME:005145/0837

Effective date:19890817

REMIMaintenance fee reminder mailed
LAPSLapse for failure to pay maintenance fees
FPLapsed due to failure to pay maintenance fee

Effective date:19950621

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362


[8]ページ先頭

©2009-2025 Movatter.jp