RELATED APPLICATION DATAThis is a continuation-in-part of U.S. patent application Ser. No. 178,019 filed Apr. 6, 1988 entitled "Method and Apparatus For Controlling An Artificial Respirator", now abandoned.
FIELD OF THE INVENTIONThe present invention relates to a method and apparatus for controlling an artificial respirator. More particularly, the present invention relates to a method and apparatus for controlling a respirator based on the measured levels of carbon dioxide and oxygen of a patient on the respirator, as well as other physical conditions of the patient.
BACKGROUND OF THE INVENTIONPatients who have undergone surgery or who have certain respiratory diseases or paralysis often have problems breathing properly and therefore must be provided with artificial respiration. The respirator used must be capable of being adjusted to provide the required amount of oxygen at an optimum frequency. The volume and frequency required not only varies with different patients, but can also vary within a single patient as the condition of the patient varies. In prior art respirators, changes must be made manually. This requires almost constant attention to the patient by a doctor or nurse, and the amount of change, when required, is effected by trial and error.
Attempts to provide automatic control of a respirator based on the condition of the patient have been described. One prior art system that has been described uses the concentration of carbon dioxide in the exhaust of the patient to control the operation of the respirator by switching the respirator on or off. See U.S. Pat. No. 4,537,190 to L. Caillot et al., issued Aug. 27, 1985, entitled "Process and Device for Controlling Artificial Respiration". See also, Y. Mitamura et al., "A dual control system for assisting respiration", MEDICAL & BIOLOGICAL ENGINEERING, Vol. 13, No. 6, pages 846-854. Other systems which have been described use both the concentration of carbon dioxide and oxygen in the exhaust, but these are used to control outputs of gas mixers, not outputs of an artificial respirator. See, e.g., M. H. Giard et al., "An Algorithm for Automatic Control of O2 and CO2 in Artificial Ventilation", IEEE TRANSACTION ON BIOMEDICAL ENGINEERING, Vol. BME-32, No. 9, September 1985, pages 658-667, and C. Yu et al., "Improvement in Arterial Oxygen Control Using Multiple-Model Adaptive Control Procedures", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING Vol. BME-34, No. 8, August 1987, pages 567-574. However, all of these systems have problems in that they either do not take into consideration all of the relevant physical conditions of the patient or the techniques employed are directed toward controlling the output of the breathing gas supply rather than the artificial respirator.
SUMMARY OF THE INVENTIONA method and apparatus for automatically controlling a respirator includes first means receiving digital input data (from A/D converters coupled to CO2 and O2 sensors) representing the concentration of carbon dioxide and oxygen, respectively, in the exhaust of a patient using the respirator. The first means, which preferably comprises a programmable microcomputer, is controlled by a software algorithm to operate upon the input data and provide digital output data representing the amount and optimum frequency of ventilation required for the next breath. The microcomputer also operates upon additional data including metabolic rate ratio, lung elastance factor, air viscosity factor and barometric pressure to determine the magnitude of the digital output data. The value of the metabolic rate ratio is set to one and does not need to be monitored if the respirator is to be used on a patient who is under rest conditions. Only if the device is used on a patient in exercise should this factor, metabolic rate ratio, be monitored continuously and supplied by an additional monitor to the system via an input channel. The other additional data may be measured and entered manually (i.e., stored in the software or supplied through the input channels from fixed adjustable voltage sources) or additional sensors and monitors may be provided to supply this data to the system automatically. A second means converts the digital output data to analog data and a third means receives the analog data and regulates the ventilation frequency and volume and controls the opening and closing of valves coupled to the output of the respirator.
BRIEF DESCRIPTION OF THE DRAWINGSFor the purpose of illustrating the invention, there is shown in the drawings a form which is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalites shown.
FIG. 1 is a block diagram of an artificial respirator and control apparatus according to the preferred practice of the present invention;
FIG. 2 is a block diagram of a programmable controller used in the preferred practice of the present invention;
FIGS. 3A-3C are a flow chart illustrating the preferred sequence of steps executed by the programmable controller for carrying out the method of the present invention;
FIG. 4 is a detailed block diagram of a preferred circuit for controlling respirator and control valves; and
FIGS. 5A-5B are a preferred detailed schematic diagram of a signal generator and timing control circuit, including D/A converters and an alarm circuit, for use in the practice of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTReferring to the drawings, wherein like numerals represent like elements, there is illustrated in FIG. 1 a respirator control according to the present invention, designated generally 10.Respirator control 10 includes aprogrammable controller 12 coupled to receive the outputs of eight bit A/D converters 18 and 20, as shown at 14 and 16. The A/D converters 18, 20 are preferably two channels of a Micromint brand eight bit eight channel A/D converter and thecontroller 12 is preferably a Micromint brand BCC52 BASIC controller. Theinputs 22 and 24 of the two A/D converters 18, 20 are coupled to theoutputs 26 and 28 of anoxygen sensor 32 and acarbon dioxide sensor 30, respectively. The additional channels of the A/D converter are reserved for additional data which can also be monitored continuously, including the patient's metabolic rate ratio, lung elastance, air viscosity factor in the lungs and barometric pressure. Lung elastance, air viscosity factor in the lungs and barometric pressure may be measured prior to operation of the device and supplied to thecontroller 12 through the reserved A/D channels or be stored in the software. If their values are supplied via the A/D converters, they can also be monitored continuously, if desired, using additional sensors and monitors (not shown). The value of the metabolic rate ratio does not need to be monitored when the patient is at rest. In this case, the value for metabolic rate ratio is set equal to one and stored in the software or an equivalent may be supplied through one of the reserved A/D channels to thecontroller 12. Only if the device is used in exercise should the metabolic rate ratio be monitored continuously using an additional analyser and supplied to thecontroller 12 through an A/D converter channel. Techniques and devices have been described for determining the rate of metabolism by measuring the oxygen uptake of the body. U.S. Pat. Nos. 4,572,208 and 4,368,740 are representative. But most of the described methods cannot be used to provide reliable data on a breath-by-breath basis. In the present invention, the oxygen uptake of the patient for every breath can be calculated by thecontroller 12 based on the values of alveolar ventilation and the concentrations of oxygen and carbon dioxide in the inspired and expired gas. But the rates of oxygen consumption and oxygen intake of the body are equal to each other only under steady state conditions. During transition periods in exercise, the oxygen uptake of the body does not reflect the rate of metabolism accurately and a metabolic rate monitor which uses other physical conditions (i.e., cardiovascular characteristics) of the patient should preferably be used to monitor the metabolic rate ratio and supply it to thecontroller 12. Referring again to the drawing, the A/D's 18, 20 constantly sample the O2 and CO2 sensor outputs (the output voltages from thesensors 30 and 32 vary between zero and five volts) and convert them to digital data.
As shown in FIG. 2, thecontroller 12 includes in the preferred embodiment: an Intel 8052AH-BASIC 8bit microcomputer chip 34 which contains 8K bytes ROM as a basic interpreter; 48K bytes of RAM/EPROM; a 2764/27128EPROM programmer 36, three parallel I/O ports 38, 40 and 42; a serialline printer port 44; and aserial terminal port 46. The 8052AH-BASIC microcomputer has a 16 bit address bus and an 8 bit data bus. The least eight significant address bits and the data bus are multiplexed together. In the method of the present invention, a control program is saved on a 2764 EPROM and is executed after resetting the controller at the beginning of the operation. Theoutput port 42 of thecontroller 12 is connected to analarm circuit 48. Theoutput ports 38 and 40 are connected to D/A converters 50 and 52 respectively. Thecontroller 12 receives the input data from the A/D converters 18 and 20 (and from the additional sensors and associated A/D's, if provided) and calculates the required ventilation and the optimum frequency for the next breath. It produces two signals, representing the total ventilation and the frequency of breathing which are converted to analog signals using the D/A converters 50 and 52.
The D/A converters 50 and 52 are preferably AM1408N8 eight bit D/A converters. The output voltage of theseconverters 50 and 52 varies from 0 to -5.8 volts for a load of 1Kohm. The outputs of the D/A converters 50 and 52 are fed to theinput ports 54 and 56 of a signal generator andtiming control circuit 58, which will be described in detail later. The signal generator andtiming control circuit 58 produces five control signals. One of the signals (V1) is a pulse whose amplitude is variable and corresponds to the desired level of ventilation; the pulse duration is only a fraction of the total breathing cycle and is switched to ground for the rest of the period. This signal (V1) is used to control anartificial respirator 60. Another output (V2) of the signal generator andtiming control circuit 58 is a pulse having a fixed amplitude (i.e., the supply voltage), which remains high for a major portion of the breathing cycle. The complement of this pulse (V2) is provided to acontrol valve 62 coupled in theline 64 between the patient and thesensors 30 and 32. Thecontrol valve 62 controls the flow of the patient's exhaled gas to thesensors 30 and 32. The duration of the pulse V2 is chosen to be a major portion of the breathing cycle to stop the flow of the exhaled gas which contains air trapped in the patient's anatomic dead space from passing through thesensors 30 and 32 during early stages of expiration. Pulse V2 is provided to anothercontrol valve 66 which controls the flow of gas during inhalation and expiration. Theinspiration line 63 and theexhaust line 65 have incorporated therein non-return valves (not shown), which are adapted to permit gas to flow solely in one direction (i.e., to the patient throughline 63 and away from the patient through line 65). The signal generator andtiming control circuit 58 produces two additional output signals (in the form of pulses) V1E and V1F which are provided to therespirator 60. The magnitude of signals V1E and V1F correspond to total ventilation and breathing frequency, respectively. Pulses V1E and V1F are the same as the signals VE and VF supplied to the signal generating andtiming control circuit 58 from the D/A converters 50 and 5 if the controller is turned on. The signals V1E and V1F are generated by an adjustable voltage supply if the automatic controller is turned off.
Thealarm circuit 48 comprises a NAND buffer (SN7400N) and four LEDs with series resistors, connected at the outputs of the buffer. See FIG. 5. The inputs to the buffer are provided from theoutput port 42 of thecontroller 12. Some of the LEDs are turned on if an alarm signal is transmitted to theoutput port 42.
Referring to FIG. 4, the signal generator and timing andcontrol circuit 58 is illustrated in greater detail. The output signals VE and VF (onlines 56 and 54), representing the total ventilation and the breathing frequency, respectively, are provided tocircuit 58. Anadjustable voltage supply 68 is connected to theoutput lines 54 and 56 throughswitches 70 and 72. Theswitches 70 and 72 switch thecircuit 58 to thevoltage supply 68 when the automatic controller is turned off. The load resistance for the D/A converters 50 and 52 should be 1Kohm. A buffer circuit 74 is coupled to anintegrator circuit 76. The output of theintegrator circuit 76 is a periodic ramp function which triggers aSchmitt trigger circuit 78 when its amplitude reaches its maximum value. The output of theSchmitt trigger circuit 78 is either 1.8 volts or 12 volts. In order to decrease the amplitude of this voltage, abuffer circuit 80 is used. The output of thebuffer circuit 80 activates (closes) aswitch 82 when it goes high. The closure ofswitch 82 forces the output of theintegrator circuit 76 to its low value just after its maximum value is reached. At this point the output of theSchmitt trigger circuit 78 and thebuffer circuit 80 go low and theswitch 82 opens. Since the magnitude of the output of the buffer circuit 74 (VF') corresponds to the breathing frequency, the period of the ramp function generated at the output of theintegrator circuit 76 is the same as the period of the breathing cycle.
The output of the buffer circuit 74 is also connected to switchingcircuits 84 and 86 which in turn are connected tointegrator circuits 88 and 90 respectively. Theintegrator circuits 88 and 90 are connected toSchmitt trigger circuits 92 and 94 respectively, and theSchmitt trigger circuits 92 and 94 are connected to buffercircuits 96 and 98 respectively.Switches 100 and 102 are connected between thebuffer circuits 96 and 98 respectively and theintegrator circuits 88 and 90 respectively.
The level of the output of the switchingcircuit 84 is the voltage output of the buffer circuit 74 (VF') when its input is high and is at ground level otherwise. The input of the switchingcircuit 84 is the output (Q) of aJ-K flip flop 104. The J input of theflip flop 104 is coupled to the output of thebuffer circuit 80. The K input of theflip flop 104 is coupled to the output of thebuffer circuit 96. The signals provided to the J and K inputs offlip flop 104 are also provided as inputs to anOR gate 106 having an output delayed by atime delay 108. The output of thetime delay 108 provides the clock pulse for theflip flop 104. Depending upon the propagation delay of theOR gate 106, thetime delay 108 may be needed to provide the set up time for the J and K inputs before the arrival of the clock pulse. At the beginning of every breathing cycle, there is a pulse at the output of thebuffer circuit 80 which also appears at the J input of theflip flop 104 forcing the Q output of the flip flop to go high. As a result, the output of the switchingcircuit 84 will be switched to VF' and theintegrator circuit 88 begins generating a voltage ramp. When the voltage of the ramp reaches the threshold voltage of theSchmitt trigger circuit 92, the output of theSchmitt trigger circuit 92 and thebuffer circuit 96 go high, theswitch 100 is activated, and the output of theintegrator circuit 88 is forced to its low level. At the same time, since the K input to theflip flop 104 is pulsed high while the J input is low, the Q output of theflip flop circuit 104 is forced to logic "0". A logic "0" at Q produces zero voltage at the output of the switchingcircuit 84 and at the input of theintegrator circuit 88. Therefore, the output of theintegrator circuit 88 remains at its low level until another pulse is generated at the output of thebuffer circuit 80 at the beginning of the next breathing cycle, and output Q of theflip flop 104 goes high.
The outputs of the twobuffer circuits 80 and 96 are the inputs to anOR gate 110. The output ofbuffer circuit 96 is the input to aD flip flop 112. The output of theOR gate 110 is the clock pulse forflip flop 112. The Q output of theflip flop 112 is the input to aswitching circuit 114. The output V1 of theswitching circuit 114 is at -V1E when its input is low and is at ground level otherwise. Abuffer circuit 116 is provided to keep the load resistance of the D/A converter at 1Kohm. As mentioned, V1E is the output of a D/A converter if the automatic controller is on. The output of theintegrator circuit 88 is a ramp function during a fraction of the breathing cycle. This fraction is controlled by choosing the appropriate components in theintegrator circuit 88. During the rest of the cycle, the output of theintegrator circuit 88 is at its low level because its input is switched to ground. When the threshold level for theSchmitt trigger 92 is reached, a pulse is generated at the output of thebuffer circuit 96. Therefore the output Q of theflip flop 112 is forced to logic "1" and the output V1 is switched to ground. At the beginning of the next breathing cycle, a pulse is generated at the output of thebuffer 80. At this point theflip flop 112 is clocked while its D input is low. Therefore, the Q output offlip flop 112 goes to logic "0" and V1 is switched to -V1E. This cycle is repeated for every breath. Output V1 is a variable amplitude periodic pulse signal whose amplitude at -V1E is directly proportional to total ventilation; its period is the same as the period of the breath. The pulse width is a fraction of the breathing period (i.e., 40%). This adjustable fraction represents the inspiratory time (%) and is controlled by theintegrator circuit 88. V1 is a control signal for the artificial respirator.
Theintegrator circuit 90 generates another timing control signal (V2). The output of thebuffer 98 is provided to the D input of aD flip flop 118. The outputs ofbuffers 80 and 98 are provided to the inputs of anOR gate 120 which generates the clock pulse for theflip flop circuit 118. The output Q of theflip flop circuit 118 is provided to the input of aswitching circuit 122. The output of the switching circuit 122 (V2) is at the supply voltage level when its input is low and is at ground level otherwise. The input to theintegrator circuit 90 is provided from the output of the switchingcircuit 86. The output of the switchingcircuit 86 is at VF' if its input is high and is at ground level otherwise. The input to the switchingcircuit 86 is provided from the output Q of aJ-K flip flop 124. The J and K inputs of theflip flop 124 are coupled to the outputs of thebuffers 80 and 98 respectively. These two signals are also coupled to the inputs of anOR gate 126 whose output provides the clock pulse for theflip flop 124 after being delayed by atime delay circuit 128 if necessary. The delay may be needed to provide the set up time for the J and K inputs of theflip flop 124.
At the beginning of every breath, a pulse is generated at the output of thebuffer circuit 80. Therefore, a pulse arrives at the J input offlip flop 124 which forces the Q output of theflip flop 124 to logic "1". A logic "1" at the input of switchingcircuit 86 produces the voltage VF' at the input of theintegrator circuit 90. When the output ofintegrator circuit 90, which is a ramp function, reaches the threshold level of theSchmitt trigger circuit 94, a pulse is generated at the output of theSchmitt trigger circuit 94 and at the output of thebuffer circuit 98. At thispoint switch 102 is activated (closed) and the output of theintegrator circuit 90 goes low. At the same time, a pulse is provided to the K input offlip flop 124 and to the D input offlip flop 118. The Q output offlip flop 124 is forced to logic "0". A logic "0" at the input of the switchingcircuit 86 produces zero volts at the input of theintegrator circuit 90. Consequently, the output of theintegrator circuit 90 remains low for the rest of the breathing cycle. Also, a pulse at the D input of theflip flop 118 forces the Q output of theflip flop 118 to logic "1". A logic "1" at the input of theswitching circuit 122 produces zero volts at the output of theswitching circuit 122. Therefore, the output voltage V2 at theswitching circuit 122 remains low until another pulse is generated at the output ofbuffer 80 at the beginning of the next breathing cycle. At this point, since a pulse has appeared at the J input offlip flop 124, output Q of theflip flop 124 goes high, the output of switchingcircuit 86 is switched to VF' and the output of theintegrator circuit 90 begins ramping. Also, at the same time, a pulse is generated at the output of theOR gate 120 and theflip flop 118 is clocked while its D input is low. Therefore, the output Q offlip flop 118 is forced to logic "0" and signal V2 is switched to the supply voltage. This cycle is repeated for every breath. Output V2 is a periodic pulse signal which is at the voltage supply level at the beginning of every breathing cycle and remains at this level during only a fraction of the cycle; the fractional amount is adjustable and is controlled by theintegrator circuit 90. V2 and its complement (from inverter 130) are used to control thevalves 66 and 62; thecontrol valves 62 and 66 control the flow of the patient's exhaust gas to thesensors 30 and 32. The duration of the pulse V2 is chosen to be a major portion of the breathing cycle (i.e., 65%) to prevent the flow of exhaust gas from the patient's dead space volume through thesensors 30 and 32 at the beginning of expiration.Circuits 132 and 134 are two manual control circuits for the flip flops.Manual control circuit 132 controlsJ-K flip flops 104 and 124, andmanual control circuit 134 controls the Dflip flop circuits 112 and 118. At the beginning of operation, the preset inputs offlip flops 104 and 124 and the clear inputs offlip flops 112 and 118 are activated. Theflip flop circuits 104, 112, 118 and 124 are positive edge triggered type flip flops.
FIG. 5 illustrates in detail the preferred circuit diagram of the D/A circuits 50 and 52, the signal generator andtiming control circuit 58 and thealarm circuit 48. The preferred component types and values are set forth in the chart below.
______________________________________ ICI AM14088N C5 1.3 mf IC2 741CN R1 2.2 Kohm IC3 SN7404N R2 5.6 Kohm IC4 MC14071 R3 330 ohm IC5 SN74LS109AN R4 1 KohmIC6 SN7400N R5 12 KohmIC7 SN7432N R6 10 KohmIC8 DM7474J R7 22 Kohm T1 2N222 R8 680 ohm T2 2N4403 R9 5-50 Kohm C1 11 pf R10 10-50 Kohm C2 180pf R11 56Kohm C3 2 mf Relay HA1-Aromat C4 0.8 mf ______________________________________
Referring to FIGS. 3A-3C, there is illustrated a flow chart of the sequence of steps to be performed by thecontroller 12 in the preferred practice of the method of the present invention. Those skilled in the art will appreciate that the illustrated sequence of steps may be easily reduced to source code instructions for input to and execution by themicrocomputer 34. As can be seen at the start of the flow chart, after having set up the input and the output ports at 200, initial values for ventilation and the breathing frequency are provided to theoutput ports 38, 40 ofcontroller 12, as shown at 202. The alarm (coupled toport 42 of controller 12) is reset as shown at 204. Values representing lung elastance factor, air viscosity factor in the lung and barometric pressure are read from the input ports or from the memory (if stored in the software) as shown at 206. (Alternatively, if monitors for continuous measurement of these data are provided, then the controller reads these data from those monitors via the input ports preferably during execution of the loop illustrated at A). Atstep 208, the program routine is delayed for the interval of the first breath (specified at 20 by the initial value of the breathing frequency). A program loop and control time for executing the loop are entered as shown at 210. Once the loop is entered, the volume concentrations of carbon dioxide and oxygen in the exhaled gas are read from the input ports as shown at 212.
The next step, shown at 214, is to calculate the pressures of oxygen and carbon dioxide in the patient's arterial blood. This is calculated according to the following equations:
P.sub.ACO.sbsb.2 =C.sub.co.sbsb.2 ×(P.sub.B -47), P.sub.aco.sbsb.2 =P.sub.ACO.sbsb.2 -K.sub.1
P.sub.AO.sbsb.2 =C.sub.o.sbsb.2 ×(P.sub.B -47), P.sub.ao.sbsb.2 =P.sub.AO.sbsb.2 -K.sub.2
where PACO.sbsb.2 and PAO.sbsb.2 are the partial pressures of CO2 and O2 in the alveolar space,
Cco.sbsb.2 and Co.sbsb.2 are the volume concentrations of CO2 and O2 in the exhaled gas,
PB is the barometric pressure (mmHg), and
47 is the partial pressure in mmHg of water vapor in the alveolar space.
Paco.sbsb.2 and Pao.sbsb.2 are the pressures of CO2 and O2 in the arterial blood,
K1 and K2 are two constants representing the average differences between the alveolar and arterial pressures of CO2 and O2 in mmHg respectively.
As shown at 216, the initial alarm signal is set to zero (deactivated), and the calculated Paco.sbsb.2 and Pao.sbsb.2 values are compared to upper and lower alarm limits (i.e., 46 mmHg and 25 mmHg for Paco.sbsb.2 and 140 mmHg and 60 mmHg for Pao.sbsb.2) as shown at 218. If either of the pressures is outside the specified range, an appropriate alarm signal is generated and provided to the alarm viaport 42 as shown at 220, and the step illustrated at 222 is performed. If both pressures are within their specified ranges, then no alarm is generated and the step illustrated at 222 is next performed. Atstep 222, the net effect of CO2 concentration on ventilation requirements is calculated according to following equation:
V.sub.c =0.405×P.sub.aco.sbsb.2 -14.878
where Vc is the ratio of alveolar ventilation as the net effect of CO2 to the resting value of ventilation.
Next, as illustrated at 224, the arterial pressure of oxygen, Pao.sbsb.2, is compared to a threshold value of 104 mmHg. If the value of Pao.sbsb.2 is greater than or equal to the threshold value, the effect of oxygen on ventilation is zero (step 226), and program control passes to step 230. If, on the other hand, the value of Pao.sbsb.2 is less than the threshold value, then step 228 is performed and the net effect of Pao.sbsb.2 on ventilation requirements is calculated according to the following equation:
V.sub.o =(4.72×10.sup.-9)×(104-P.sub.ao.sbsb.2).sup.4.9
where Vo is the ratio of alveolar ventilation as the net effect of oxygen to the resting value of ventilation.
Atstep 230, the rate of metabolism or the metabolic rate ratio (rate of metabolism/basal rate of metabolism) is read by the controller. This value is either read from the memory or from an input port. The metabolic rate ratio is set equal to one and stored in the software or supplied through an input channel if the respirator is to be used under rest conditions. This value does not need to be monitored when the patient is at rest. When the patient is in exercise, the metabolic rate ratio (or the rate of metabolism) should be monitored continuously and supplied via an input channel.
The next step, illustrated at 232, is to calculate the effect of increasing the metabolic rate ratio on ventilation. This facilitates the use of artificial respirators in exercise, if necessary, and is particularly useful if the metabolic rate ratio is monitored continuously. The following equation, derived from experimentation in exercise, is used to calculate the net effect of metabolic rate ratio on ventilation:
V.sub.M =0.988(MRR-1)
where VM is the ratio of alveolar ventilation as the net effect of increase in the rate of metabolism to the resting value of ventilation, and
MRR represents the metabolic rate ratio (rate of metabolism/basal rate of metabolism).
In the next step, illustrated at 234, total alveolar ventilation for the next breath is calculated according to the following equation:
V.sub.A =V.sub.A (at rest)×(V.sub.c +V.sub.o +V.sub.M)
where VA is the alveolar ventilation in liters/minute.
Next, as shown at 236, the calculated value for VA is compared with a minimum threshold of 1.35 liters/minute. If VA is less than or equal to this threshold value, total ventilation and breathing frequency are set to minimum (2.3 liters/min. and 6 breaths/min., respectively) and an alarm is generated, as shown at 238, 240. Thereafter, program control turns to step 256 of the loop in FIG. 3C where the values of minute ventilation and breathing frequency are transmitted tooutput ports 38 and 40. If, however, atstep 236, the value of VA is determined to be greater than the minimum threshold value, then step 242 is performed. Atstep 242, the patient's dead space volume is determined.
The dead space volume increases with alveolar ventilation. The following equation has been derived from experimental data and from published relationships between expired volume, alveolar ventilation and dead space volume: ##EQU1## where VD is the dead space volume in liters.
As illustrated at 244, the next step is to calculate the optimum frequency for the next breath; this is determined on the basis of minimum work criterion. The work performed during respiratory action can be described by the following equation: ##EQU2## In the above equation, W is the work of breathing, P is the total pressure necessary to overcome the resistive forces existing in the respiratory system, v, is the difference between the lung volume and the functional residual capacity, K, is lung elastance, K" is the air viscosity factor in the lungs, and t is time. This equation can be differentiated with respect to time and rewritten as follows:
dw=K'v'(dv'/dt)dt+K"(dv'/dt).sup.2 dt
Assuming that the air flow rate has a sinusoidal waveform (dv'/dt =a sin Ωt) and ignoring the expiratory work, the total work of the respiratory action can be found:
W=0.5K'V.sub.T.sup.2 +0.25 K"fV.sub.T.sup.2 ×π.sup.2
where VT is the tidal volume. Mean rate of work W. (W. =Wf) can then be expressed as a function of the tidal volume:
W.=Wf=0.5K'fV.sub.T.sup.2 +0.25K"f.sup.2 V.sub.T.sup.2 ×π.sup.2
where VT =(VA /60f)+VD
Therefore:
W.=0.5K'f(V.sub.AR /f+V.sub.D).sup.2 +0.25K"f.sup.2 π.sup.2 (V.sub.AR /f+V.sub.D).sup.2
where VAR is the alveolar ventilation in liters/second (VAR =VA /60).
By differentiating the above equation for W. with respect to frequency and setting the resulting equation equal to zero, the optimum frequency of breathing for minimum work can be found. The resultant equation is as follows: ##EQU3## This equation has been used to calculate the optimum frequency of breathing for every breath in the controller 12 (f is in cycles/second).
Next, as shown at 246, frequency (f) is compared with a minimum threshold value of 6 breaths/minute. If the value of f is less than or equal to this threshold value, ventilation and frequency are set to minimum and an alarm signal is generated, as shown at 248 and 250. Program control thereafter turns to step 256 of the program. If, however, the value of f is greater than the minimum threshold value, the next step, 252, is performed. At 252, total ventilation is calculated according to the following equation:
V.sub.E =V.sub.A +60fV.sub.D
where VE represents total ventilation in liters/minute.
Atstep 254, total ventilation and frequency are compared with their upper limit values. If they happen to be too high, their values are limited and an alarm is generated.
Atstep 256, two digital signals representing VE (total ventilation), and f (frequency) for the next breath are transmitted to theoutput ports 38, 40. Atstep 258, a delay interval is adjusted to be equal to the period of the next breath and, atstep 260, the program routine is delayed for this interval. After the delay interval expires, running time is compared with the control time, as shown at 262. If the running time is less than the total control time, program control returns to A in FIG. 3A. The total control time is an arbitrary value which is specified at the beginning of the program. If the running time is greater than or equal to the control time, the procedure is stopped. During the running period, the automatic controller can be turned off and respirator control can be switched to manual control at any time, if needed. In the manual control mode, the minute ventilation and the frequency of every breath or alternatively the positive end expiratory pressure "peep" is specified for the respirator by an operator. The end expiratory pressure may also be continuously monitored by additional sensors through the reserved channels of the A/D converter. A system reset is required to restart the controller.
There has been described an apparatus and method for automatically measuring the concentration of carbon dioxide and oxygen in the exhaust of a patient and using this and other physiologic data to automatically control the breathing frequency and volume of gas delivered by the respirator. The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and accordingly, reference should be made to the appended claims rather than to the foregoing specification, as indicating the scope of the invention.