Movatterモバイル変換


[0]ホーム

URL:


US4888693A - Method to obtain object boundary information in limited-angle computerized tomography - Google Patents

Method to obtain object boundary information in limited-angle computerized tomography
Download PDF

Info

Publication number
US4888693A
US4888693AUS07/032,804US3280487AUS4888693AUS 4888693 AUS4888693 AUS 4888693AUS 3280487 AUS3280487 AUS 3280487AUS 4888693 AUS4888693 AUS 4888693A
Authority
US
United States
Prior art keywords
region
angle
ray
limited
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/032,804
Inventor
Kwok C. Tam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CofiledCriticalGeneral Electric Co
Assigned to GENERAL ELECTRIC COMPANYreassignmentGENERAL ELECTRIC COMPANYASSIGNMENT OF ASSIGNORS INTEREST.Assignors: TAM, KWOK C.
Priority to US07/032,804priorityCriticalpatent/US4888693A/en
Priority to JP63042416Aprioritypatent/JPS63256843A/en
Priority to DE3806110Aprioritypatent/DE3806110A1/en
Priority to GB8804719Aprioritypatent/GB2203620B/en
Priority to IT8819647Aprioritypatent/IT1215988B/en
Priority to TR88/0198Aprioritypatent/TR25873A/en
Priority to FR888804323Aprioritypatent/FR2613487B1/en
Publication of US4888693ApublicationCriticalpatent/US4888693A/en
Application grantedgrantedCritical
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A method is developed to construct the convex hull of an object in limited-angle x-ray computerized tomography. The convex hull is the smallest convex region containing the object, and therefore it can serve as a prior information on the object exterior boundary in reconstructing the object by an iterative limited-angle reconstruction procedure. The convex hull is the same as the exterior boundary of many convex objects and is a good approximation if the shape is not too concave. Greater accuracy is achieved by doing curve fitting near the edges of the x-ray projection data to determine the end points, and performing a low energy x-ray exposure at every scan angle in addition to the usual CT energy one. Over-attenuated x-ray data has utility in constructing the convex hull.

Description

BACKGROUND OF THE INVENTION
This invention relates to limited-angle image reconstruction and more particularly to a method to estimate the exterior boundary of an object and its use in limited-angle computerized tomography.
In some x-ray CT situations the x-ray data of the object is available only in a limited angular range. Limited-angle imaging occurs, for example, when scanning in some angular range is obstructed by other physical objects, or when the x-ray is attenuated too much in some angular range to serve any useful purpose. Under such circumstances limited-angle reconstruction techniques could be employed to reconstruct the object from x-ray data and other information about the object, such as: (1) exterior boundary of the object; (2) upper bound of the object density; and (3) lower bound of the object density. It has been shown that by using this information in addition to the limited-angle x-ray data, the object may be reconstructed uniquely; refer to Tam, K.C. and Perez-Mendez, V., J. Opt. Soc. Am., 71 (1981) 582-592. One limited-angle reconstruction algorithm developed in this reference is shown in FIG. 1; the image is transformed back and forth between the object space by filtered back-projection, and the projection space by projection, being corrected by the a priori information in the object space, and the limited-angle known projections in the projection space.
The upper and lower bounds of the object density are usually available. For example, they can be estimated from the a priori knowledge about the composition of the object; in fact the lower bound is usually taken to be zero. Currently there is no systematic method to obtain the object boundary. In the literature it is simply assumed the object boundary can be estimated one way or another. Some of the methods mentioned include probing, modeling, etc., which all involve additional equipment and which may not yield the boundary of the object actually imaged.
The inventor's copending application Ser. No. 877,083, filed June 23, 1986, "Method for Reconstructing Objects from Limited-Angle Scannings in Computerized Tomography", now abandoned, and continuation application Ser. No. 205,398, filed June 10, 1988, relates to an object to be imaged which contains a medium that occupies most of the cross-sectional area and the density of the medium is usually known, for instance a metal medium with embedded flaws. Under these circumstances image reconstruction of the flaw is improved by constructing a flaw-enclosing region; since knowledge of the region of occurrence of the flaw is more precise, using the flaw-enclosing region as a priori information yields better results than if the much larger object boundary were used. This method assumes the boundary of the object is known exactly.
SUMMARY OF THE INVENTION
An object of this invention is to prescribe, in limited-angle CT, a procedure to estimate the exterior boundary of the object using x-ray data without any additional equipment.
Another object is to develop a method to construct the convex hull of an object and use it in limited-angle reconstruction algorithms as an approximation to the actual object boundary. The convex hull of an object is the smallest convex region containing the object and therefore can serve as boundary information in reconstructing the object.
Yet another object is to define techniques to reduce the effect of noise and improve the definition of non-zero regions in the x-ray data from which the convex hull is produced.
One aspect of the present invention is a method to reconstruct an object in limited-angle CT comprising: exposing the object to x-rays at scanning angles within an allowed angular range and generating detected x-ray data and a measured projection at every angle; backprojecting the last-mentioned to yield a backprojection strip which contains the support of the object, i.e the region where object density is non-zero; intersecting or superimposing all the backprojection strips to construct a polygon-shaped region which completely contains the object and is an approximation of the convex hull of the object; and reconstructing the object by means of a limited-angle reconstruction procedure involving repeated transformations between object space and projection space, correcting the reconstructed image in object space by a priori information comprised of the constructed polygon-shaped region and the upper and lower bounds of object density, and in projection space by the measured projections.
Many industrial (and medical) objects are convex in shape, and in this case the constructed polygonal-region approximates the object exterior boundary. Even if the object is not convex, the constructed region is still a good approximation to the exterior boundary if the boundary is not too concave.
Another feature of the invention is that where the limited-angle restriction is caused by serious attenuation of x-rays in some angular range, even the over-attenuated x-ray data can be used to construct the convex hull of the object. The transition region between where the measured projection is zero and 10 where it is non-zero is more distinct in over-attenuated x-ray data and thus is well suited for the purpose of constructing the object convex hull. However, the limited-angle reconstruction procedure utilizes the measured projections at only those scan angles where there is no serious attenuation of x-rays.
Another feature is that the convex hull and object exterior boundary are estimated with greater accuracy by fitting curves to the edges of the projection data to determine the two end points between attenuated and unattenuated x-rays. This reduces instabilities caused by noise. The data between the two end points is backprojected.
Yet another aspect of the invention is to use low energy x-ray data to estimate the object boundary, because the object is more opaque to such rays and the edges are sharper in the low energy exposure. At each scanning angle a low energy x-ray exposure is performed in addition to the one at the usual CT energy. The low energy projection data is processed by curve fitting at the edges, and the data between the more precisely determined end points is backprojected to yield a backprojection strip which contains the support of the object. All of the backprojection strips at angles within the allowed angular range are overlapped to construct the polygon-shaped region which approximates the convex hull. The object is reconstructed and displayed by means of a limited-angle image reconstruction technique using (1) the constructed region as object exterior boundry information; (2) the usual CT energy x-ray data and scanning angles, and (3) other a priori information on object density.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a flowchart of a limited-angle reconstruction procedure using an iterative transform algorithm.
FIG. 2 illustrates the convex hull of a 2-dimensional object.
FIG. 3 shows the support of an object, i.e. the region where the object density is non-zero, and the x-ray projection data of the object at a given angle.
FIG. 4 shows the backprojection of the projection data.
FIG. 5 illustrates constructing a region which contains the object and approaches the convex hull of the object.
FIG. 6 shows a long narrow object which causes serious attenuation of the x-ray beam in an angular range.
FIG. 7 illustrates the over-attenuated projection data of such an object.
FIG. 8 illustrates curve fitting to more accurately determine end points of the x-ray projection data.
FIG. 9 is a diagram of an x-ray computerized tomography system for industrial nondestructive evaluation embodying this invention.
DETAILED DESCRIPTION OF THE INVENTION
As illustrated in FIG. 2, the convex hull of a two-dimensional object is the smallest convex region containing the object. The approach taken in this invention is to construct the convex hull of the object using the x-ray data, and use the convex hull as an approximation to the actual object boundary. In medical applications, the cross-section of the human body or the cross-section of the skull is mostly convex. Most of the industrial objects are convex in shape, such as cylinders, spheroids, parallelepipeds, etc. In this case the convex hull is the same as the object boundary. Even if the object is not completely convex, the convex hull is still a good approximation of the object exterior boundary if the shape is not too concave. Hence the use of the object convex hull as an approximation to the object boundary is justified. Convex hull is defined in the McGraw-Hill Dictionary of Scientific and Technical Terms, 1978, as "the smallest convex set containing a given collection of points in a real linear space". The mathematical definition of support is: "The support of a real-valued function f on a topological space is the closure of the set of points where f is not zero".
The technique of estimating the exterior boundary of the object from the x-ray data without using any additional equipment is illustrated in FIGS. 3-5. S represents the support of theobject 10, i.e. the region where the object density is non-zero, and pi represents x-ray projection data of the object at angle θi. The non-zero portion Di of the backprojection of the projection data pi is shown in FIG. 4. It follows that the support S of the object is completely contained within the backprojection strip Di.
FIG. 5 shows five projections p1 to p5 taken at five different viewing angles and the backprojection strips D1 to D5 obtained by backprojecting the non-zero portion of the projection data. If one constructs a region D by intersecting all of the backprojection strips, it follows that the support of the object is contained entirely within region D. Thus we have succeeded in constructing a region D which completely contains the object. It is obvious from the above construction procedure that: (1) region D is a polygon containing the object; and (2) as the number of projection angles increases, region D approaches the boundary of the object if the boundary is convex. If the boundary is not convex, region D approaches the convex hull of the boundary.
The object is reconstructed and displayed by means of the limited-angle reconstruction procedure diagrammed in FIG. 1; the cited Tam and Perez-Mendez published paper is incorporated by reference herein. The constructed polygon-shaped region D is utilized as a priori information on the extent and location of the object, and in particular as information on the external boundary of the object. Other known a priori information on the object are the upper and lower bounds of the object density. This is an iterative algorithm: the reconstructed image is transformed back and forth between the object space by filtered backprojection, and the projection space by projection, being repeatedly corrected by the a priori information about the object in the object space and by the known or measured projections in the projection space. The measured projections p1 to p5 of the object in the limited angular range are provided, and the other missing projections to make up a complete 180° angular range are set to zero initially as shown in block 11. A first iteration simply uses the known projection data which is derived from the detected x-ray data by taking the negative of the logarithm. These are provided fromblock 12 to block 13 wherein a filtered backprojection operation is performed to determine a first estimate of object density. This first iterate is corrected to take into account the a priori information on the object shown inblock 15.
The first iterate of object density is corrected by resetting to zero those pixels outside the known extent of the object, the constructed polygon-shaped region which approximates the exterior boundary of the object; resetting to the upper bound those pixels with density exceeding the upper bound; and resetting to zero those pixels with density below the lower bound. From this second estimate of object density the projections in the supplementary, missing angles are calculated and the reconstructed image is transformed back to projection space by a projection operation atblock 16. The calculated projections of the supplementary angles are combined with the known, measured projection data at other angles to yield a new estimate of object density, and the process is repeated. The cycling between the projection space and object space continues in the loop illustrated byblocks 12, 13, 14 and 16 until the object reconstruction is sufficiently precise; usually ten to twenty iterations are performed but a check for convergence may be made and used to stop the cycling if, for example, the object density changes less than a given percentage from one iteration to the next iteration.
Where the limited-angle restriction is caused by the serious attenuation of the x-ray beam in some angular range, then even the over-attenuated detected x-ray data can be used in the above procedure to construct the polygonal region D and convex hull of the object. For instance, referring to FIG. 6, in industrial x-ray CT the object may be elongated such that there is too much attenuation for x-ray beams at large oblique incidence angles. The reason is that in constructing the backprojection strips Di in FIG. 4, all that is needed is the knowledge of the non-zero region in the measured projection data pi, their numerical value being irrelevant. Such information is present even in the over-attenuated x-ray data pi, as illustrated in FIG. 7. In fact, the transition region between the region where the projection is zero and the region where the projection is non-zero is more distinct in the over-attenuated x-ray data, and thus such data are better suited for the purpose of constructing the object convex hull.
A limited-angle imaging method to more accurately reconstruct an object that seriously attenuates x-rays in some angular range is as follows. The object is scanned with x-rays at angles over a full 180° range, or at angles within the allowed range, and detected x-ray data and projection data are generated at every scan angle. All of the measured projections are backprojected to yield backprojection strips each of which contains the support of the object. All of the backprojection strips are overlapped, either intersected or superimposed, to construct the polygon-shaped region D which is the convex hull of the object. To reconstruct the object by means of the limited-angle image reconstruction procedure already described, only those measured projections at scan angles where there is no serious attenuation of x-rays are used, since the others contain no information on object density. A higher quality image results because the object exterior boundary is determined more precisely.
In the absence of noise, constructing the convex hull of an object by intersecting the backprojections of the non-zero projection data is a simple and fast procedure; at the end of the intersection process the convex hull is already formed. However, it may be unstable with respect to noise. The reason is that since the constructed region D is formed by intersection, the errors in the projection data combine multiplicitively. In other words, the pixel has to be contained within the backprojection strip Di of every projection pi in order to be included in the convex hull; it would be lost from the convex hull if it is not included in just one backprojection strip due to error in the corresponding projection pi. This procedure can only underestimate the actual convex hull and therefore possibly the actual support and object boundary. For a priori information input to limited-angle image reconstruction, underestimating the object boundary is more serious than overestimating it.
An alternate method to construct the polygon-shaped region D is by superimposing the backprojection strips Di instead of intersecting them. Any pixel in the region D belongs to every backprojection strip Di, and every pixel outside D is excluded from at least one strip Di. Therefore one way to characterize the region D is to count the number of backprojection strips the pixel belongs to, and the pixel is assigned to D if the total number equals the number of backprojection strips. The advantage of this alternate procedure for constructing the region D is that the errors in the projections pi will combine additively instead of multiplicatively as in the intersection procedure. In the presence of noise, a pixel in D might be missed by some of the projections, and the criterion just discussed is relaxed so that the number of backprojection strips Di the pixel is found to belong to is less than the number of backprojection strips.
To further reduce the effect of noise and to improve the definition of the non-zero region in each measured projection pi and the accuracy of the estimated object exterior boundary, the following procedures can be adopted.
(1) Use low energy x-rays. At each scanning angle a low energy x-ray exposure is performed in addition to the one at usual CT energy. Since the object is much more opaque to low energy x-rays, the edges are therefore sharper in the low energy exposure.
(2) To reduce instability caused by noise, curve fittings are made near the edges of the x-ray projection data pi to determine the end points between attenuated and unattenuated x-rays, as shown in FIG. 8.
Even though parallel beam scanning is illustrated, the invention is equally applicable to fan beam scanning without any modification. Complete data in a fan beam scan is obtained by scanning over a 360° angular range. The reason that a 360° rather than a 180° angular range is needed in a fan beam scan is that there is no mirror symmetry in the fan beam data (such symmetry exists in the parallel beam data).
In FIG. 9 is shown one practical realization and embodiment of the invention, an industrial x-ray CT system. Anx-ray source 16 has anenergy switch 17 for selecting the beam energy and at each scanning angle the object is exposed to low energy x-rays and also to the usual CT energy x-rays. The x-ray beam is collimated at 18 into parallel rays and passes through theobject 10 and is detected by anx-ray detector 19. The source, collimator and detector are mounted on ayoke 20 and moved linearly to scan the object, then rotated to change the scan angle to make a second linear scan, and so on. The object is scanned at many angles within the restricted angular range. The detected signals consist of the x-ray projection data pi.sup.(1) and pi.sup.(2) of the object at all the physically accessible angles θi, i=1, 2, 3 etc., at the low energy and CT energy respectively. These are fed intoprocessing computer 21 together with the values of the scanning angles θi, and a priori information (block 22) on the upper and lower bounds u and b of the object density. The low energy projection data pi.sup.(1) and the scanning angles θi are passed from the computer input (block 23) to convex hull construction logic (block 24) where the polygon-shaped region D, which is a convex hull approximation, is constructed using the following procedure:
(1) polynomial fit the edges of the low energy x-ray data pi.sup.(1) at angle θi to determine the two end points between attenuated and unattenuated x-rays as shown in FIG. 8. This is done at all the available scan angles.
(2) Backproject the region within the edges and between the end points to form the backprojection strip Di.
(3) Repeat steps (1) and (2) and form the polygon-shaped region D by intersecting all the backprojection strips Di. Alternatively D is constructed by superimposing strips Di. It is emphasized that the constructed region which serves as information on the exterior boundary of the object is computed from the low energy projection data only.
The object is reconstructed by the limited-angle image reconstruction logic (block 25) using
the constructed region D, the usual CT energy x-ray data pi.sup.(2) and scan angles θi, and the a priori information on the upper and lower bounds of the object density. That the projection data obtained from the CT energy x-ray data is actually used in the algorithm is already explained with regard to FIG. 1. The image of the reconstructed object is displayed on a TV monitor or other suitable display device (block 26).
The application of x-ray CT to industrial nondestructive evaluation is growing in recent years. Limited-angle x-ray imaging occurs frequently in industrial inspection. The invention can be employed to obtain the boundary information of an object from the x-ray data without requiring additional equipment; this information is needed in reconstructing the object.
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made without departing from the spirit and scope of the invention.

Claims (5)

The invention claimed is:
1. A method of obtaining object boundary information in limited-angle x-ray computerized tomography comprising:
exposing said object to x-rays at multiple scanning angles within a limited angular range and generating x-ray projection data;
processing, said projection data by doing curve fitting near the edges to more precisely determine end points between attenuated and unattenuated x-rays;
backprojecting the projection data between said end points at every scanning angle to yield a backprojection strip which contains the support of said object, defined as the region where object density is non-zero;
overlapping all of said backprojection strips to construct a region which is a polygon and the convex hull of said object, the smallest convex region containing said object; and
using said constructed region as a priori information on the extent and location of said object and other a priori information, reconstruct and display said object by means of a limited-angle reconstruction technique.
2. The method of claim 1 wherein said object has a convex exterior boundary which is given by said constructed region.
3. The method of claim 1 wherein said object has an exterior boundary that is not convex and said constructed region approximates the exterior boundary of said object.
4. A method of reconstructing high quality images in a limited-angle x-ray computerized tomography (CT) system comprising:
exposing an object to low energy x-rays and to usual CT energy x-rays at many scanning angles over a limited angular range and generating x-ray projection data at both exposures;
processing said low energy projection data by fitting curves to the edges to more accurately determine the end points between attenuated and unattenuated x-rays;
backprojecting the low energy projection data between said end points to form, at every scanning angle, a backprojection strip which contains the support of said object, the region where object density is non-zero;
intersecting or superimposing all of said backprojection strips to construct a polygon-shaped region which is the convex hull of said object and the smallest convex region containing said object; and
reconstructing and displaying said object by means of a limited-angle reconstruction procedure using (1) said constructed region as a priori information on the exterior boundary of said object, (2) the usual CT energy x-ray data and scanning angles, and (3) other a priori information.
5. The method of claim 4 wherein said other a priori information is the upper and lower bounds of object density.
US07/032,8041987-04-011987-04-01Method to obtain object boundary information in limited-angle computerized tomographyExpired - Fee RelatedUS4888693A (en)

Priority Applications (7)

Application NumberPriority DateFiling DateTitle
US07/032,804US4888693A (en)1987-04-011987-04-01Method to obtain object boundary information in limited-angle computerized tomography
JP63042416AJPS63256843A (en)1987-04-011988-02-26Method of regenerating body through angle-limit computer type tomography
DE3806110ADE3806110A1 (en)1987-04-011988-02-26 METHOD FOR OBTAINING INFORMATION ABOUT THE LIMIT OF AN OBJECT IN COMPUTERIZED TOMOGRAPHY WITH A LIMITED ANGLE
GB8804719AGB2203620B (en)1987-04-011988-02-29Method to obtain object boundary information in limited-angle computerized tomography
IT8819647AIT1215988B (en)1987-04-011988-03-04 ON THE CONTOUR OF AN OBJECT METHOD FOR OBTAINING LIMITED-ANGLE TOMOGRAPHY INFORMATION.
TR88/0198ATR25873A (en)1987-04-011988-03-16 THE METHOD OF OBTAINING RI INFORMATION IN BORDER COMPUTERIZED TOMOGRAPHY
FR888804323AFR2613487B1 (en)1987-04-011988-03-31 METHOD FOR OBTAINING INFORMATION ON THE LIMITS OF AN OBJECT IN COMPUTERIZED TOMOGRAPHY AT A BOUNDARY ANGLE

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US07/032,804US4888693A (en)1987-04-011987-04-01Method to obtain object boundary information in limited-angle computerized tomography

Publications (1)

Publication NumberPublication Date
US4888693Atrue US4888693A (en)1989-12-19

Family

ID=21866892

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US07/032,804Expired - Fee RelatedUS4888693A (en)1987-04-011987-04-01Method to obtain object boundary information in limited-angle computerized tomography

Country Status (7)

CountryLink
US (1)US4888693A (en)
JP (1)JPS63256843A (en)
DE (1)DE3806110A1 (en)
FR (1)FR2613487B1 (en)
GB (1)GB2203620B (en)
IT (1)IT1215988B (en)
TR (1)TR25873A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5032990A (en)*1989-05-301991-07-16General Electric CompanyTranslate rotate scanning method for x-ray imaging
US5053958A (en)*1988-06-061991-10-01General Electric CompanyMethod to reduce image reconstruction time in limited-angle ct systems including using initial reconstruction valves for measured projection data during each iteration
US5233518A (en)*1989-11-131993-08-03General Electric CompanyExtrapolative reconstruction method for helical scanning
US5270926A (en)*1990-12-211993-12-14General Electric CompanyMethod and apparatus for reconstructing a three-dimensional computerized tomography (CT) image of an object from incomplete cone beam projection data
US5313513A (en)*1993-05-111994-05-17The United States Of America As Represented By The Secretary Of The NavyAnnular computed tomography
US5319693A (en)*1992-12-301994-06-07General Electric CompanyThree dimensional computerized tomography scanning configuration for imaging large objects with smaller area detectors
US5357429A (en)*1992-04-021994-10-18Levy Richard AThree-dimensional model generation using multiple angle tomographic scan planes
US5396528A (en)*1991-06-281995-03-07General Electric CompanyTomographic image reconstruction using cross-plane rays
US5469486A (en)*1992-08-071995-11-21General Electric CompanyProjection domain reconstruction method for helical scanning computed tomography apparatus with multi-column detector array employing overlapping beams
US5611026A (en)*1992-12-211997-03-11General Electric CompanyCombining a priori data with partial scan data to project three dimensional imaging of arbitrary objects with computerized tomography
US6026142A (en)*1998-04-022000-02-15International Business Machines CorporationSystem and method for boundary detection in tomographic images by geometry-constrained edge detection of projected data
US6201888B1 (en)*1998-02-182001-03-13International Business Machines CorporationSystem and method for restoring, describing and graphically displaying noise-corrupted boundaries in tomography images
US20050259780A1 (en)*2004-05-202005-11-24Eastman Kodak CompanyMethod for reconstructing tomographic images
US20060262894A1 (en)*2005-05-172006-11-23Siemens AktiengesellschaftMethod for minimizing image artifacts and medical imaging system
US20060291611A1 (en)*2005-06-282006-12-28University Of Utah Research FoundationCone-beam reconstruction using backprojection of locally filtered projections and X-ray CT apparatus
WO2008017076A3 (en)*2006-08-032008-07-03Univ CaliforniaIterative methods for dose reduction and image enhancement in tomography
US20080247502A1 (en)*2007-04-052008-10-09Liao Hstau YSystem and methods for tomography image reconstruction
WO2008130325A1 (en)*2007-04-182008-10-30Agency For Science, Technology & ResearchMethod and apparatus for reorientated reconstruction of computed tomography images of planar objects
US20100172470A1 (en)*2006-04-132010-07-08Shimadzu CorporationThree-dimensional contents determination method using transmitted x-ray
US20100284596A1 (en)*2009-04-302010-11-11The Regents Of The University Of CaliforniaSystem and methods for fast implementation of equally-sloped tomography
US20110007980A1 (en)*2008-01-302011-01-13The Regents Of The University Of CaliforniaDose reduction and image enhancement in tomography through the utilization of the objects surroundings as dynamic constraints
US20110164799A1 (en)*2006-08-032011-07-07The Regents Of The University Of CaliforniaIncorporation of mathematical constraints in methods for dose reduction and image enhancement in tomography
CN102346924A (en)*2010-07-222012-02-08通用电气公司System and method for reconstruction of x-ray images
WO2012114199A3 (en)*2011-02-252013-01-03Smiths Heimann GmbhImage reconstruction based on parametric models
US8923587B2 (en)*2006-02-132014-12-30The University Of ChicagoImage reconstruction from limited or incomplete data
US20210404802A1 (en)*2020-06-302021-12-30Mitutoyo CorporationMethod and computer program product for filtering a measurement data set usable for specifying and/or verifying an internal feature of a workpiece
US11408836B2 (en)2019-04-012022-08-09General Electric CompanyMethod for inspecting components using computed tomography

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4920491A (en)*1988-05-161990-04-24General Electric CompanyEnhancement of image quality by utilization of a priori information
US4969110A (en)*1988-08-011990-11-06General Electric CompanyMethod of using a priori information in computerized tomography
IL93215A0 (en)*1990-01-301990-11-05Elscint LtdBiopsy needle positioning device
RU2012872C1 (en)*1991-05-141994-05-15Виктор Натанович ИнгалMethod for obtaining image of object internal structure
WO1995005725A1 (en)*1993-08-161995-02-23Commonwealth Scientific And Industrial Research OrganisationImproved x-ray optics, especially for phase contrast imaging
US6870896B2 (en)2000-12-282005-03-22Osmic, Inc.Dark-field phase contrast imaging
US6804324B2 (en)2001-03-012004-10-12Osmo, Inc.X-ray phase contrast imaging using a fabry-perot interferometer concept
US7203267B2 (en)*2004-06-302007-04-10General Electric CompanySystem and method for boundary estimation using CT metrology
CN101071111B (en)*2006-05-082011-05-11清华大学Multi-vision aviation container safety inspection system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4506327A (en)*1981-11-231985-03-19General Electric CompanyLimited-angle imaging using multiple energy scanning
US4672651A (en)*1985-03-281987-06-09Hitachi Medical CorporationMethod of and apparatus for reconstructing shape of interested part of object through irradiation with X-rays

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3716988A1 (en)*1986-06-231988-01-14Gen Electric METHOD FOR RECONSTRUCTING OBJECTS FROM SCANS WITH A LIMITED ANGLE IN COMPUTER TOMOGRAPHY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4506327A (en)*1981-11-231985-03-19General Electric CompanyLimited-angle imaging using multiple energy scanning
US4672651A (en)*1985-03-281987-06-09Hitachi Medical CorporationMethod of and apparatus for reconstructing shape of interested part of object through irradiation with X-rays

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tam, K. C. and Perez Mendez, V., Tomographical Imaging with Limited Angle Input , J. Opt. Soc. Am., 71 (May 1981) 582 592.*
Tam, K. C. and Perez-Mendez, V., "Tomographical Imaging with Limited-Angle Input", J. Opt. Soc. Am., 71 (May 1981) 582-592.

Cited By (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5053958A (en)*1988-06-061991-10-01General Electric CompanyMethod to reduce image reconstruction time in limited-angle ct systems including using initial reconstruction valves for measured projection data during each iteration
US5032990A (en)*1989-05-301991-07-16General Electric CompanyTranslate rotate scanning method for x-ray imaging
US5233518A (en)*1989-11-131993-08-03General Electric CompanyExtrapolative reconstruction method for helical scanning
US5270926A (en)*1990-12-211993-12-14General Electric CompanyMethod and apparatus for reconstructing a three-dimensional computerized tomography (CT) image of an object from incomplete cone beam projection data
US5396528A (en)*1991-06-281995-03-07General Electric CompanyTomographic image reconstruction using cross-plane rays
US5357429A (en)*1992-04-021994-10-18Levy Richard AThree-dimensional model generation using multiple angle tomographic scan planes
US5469486A (en)*1992-08-071995-11-21General Electric CompanyProjection domain reconstruction method for helical scanning computed tomography apparatus with multi-column detector array employing overlapping beams
US5611026A (en)*1992-12-211997-03-11General Electric CompanyCombining a priori data with partial scan data to project three dimensional imaging of arbitrary objects with computerized tomography
US5319693A (en)*1992-12-301994-06-07General Electric CompanyThree dimensional computerized tomography scanning configuration for imaging large objects with smaller area detectors
US5313513A (en)*1993-05-111994-05-17The United States Of America As Represented By The Secretary Of The NavyAnnular computed tomography
US6292578B1 (en)1998-02-182001-09-18International Business Machines CorporationSystem and method for restoring, describing and graphically displaying noise-corrupted boundaries in tomography images
US6201888B1 (en)*1998-02-182001-03-13International Business Machines CorporationSystem and method for restoring, describing and graphically displaying noise-corrupted boundaries in tomography images
US6026142A (en)*1998-04-022000-02-15International Business Machines CorporationSystem and method for boundary detection in tomographic images by geometry-constrained edge detection of projected data
US20050259780A1 (en)*2004-05-202005-11-24Eastman Kodak CompanyMethod for reconstructing tomographic images
US7042974B2 (en)2004-05-202006-05-09Eastman Kodak CompanyMethod for reconstructing tomographic images
US7372935B2 (en)*2005-05-172008-05-13Siemens AktiengesellschaftMethod for minimizing image artifacts and medical imaging system
US20060262894A1 (en)*2005-05-172006-11-23Siemens AktiengesellschaftMethod for minimizing image artifacts and medical imaging system
US20060291611A1 (en)*2005-06-282006-12-28University Of Utah Research FoundationCone-beam reconstruction using backprojection of locally filtered projections and X-ray CT apparatus
US7477720B2 (en)*2005-06-282009-01-13University Of Utah Research FoundationCone-beam reconstruction using backprojection of locally filtered projections and X-ray CT apparatus
US9613442B2 (en)2006-02-132017-04-04The University Of ChicagoImage reconstruction from limited or incomplete data
US9189871B2 (en)2006-02-132015-11-17The University Of ChicagoImage reconstruction from limited or incomplete data
US8923587B2 (en)*2006-02-132014-12-30The University Of ChicagoImage reconstruction from limited or incomplete data
US7813470B2 (en)*2006-04-132010-10-12Shimadzu CorporationThree-dimensional contents determination method using transmitted x-ray
US20100172470A1 (en)*2006-04-132010-07-08Shimadzu CorporationThree-dimensional contents determination method using transmitted x-ray
US20090232377A1 (en)*2006-08-032009-09-17The Regents Of The University Of CaliforniaIterative methods for dose reduction and image enhancement in tomography
US8442353B2 (en)2006-08-032013-05-14The Regents Of The University Of CaliforniaIncorporation of mathematical constraints in methods for dose reduction and image enhancement in tomography
WO2008017076A3 (en)*2006-08-032008-07-03Univ CaliforniaIterative methods for dose reduction and image enhancement in tomography
US20110164799A1 (en)*2006-08-032011-07-07The Regents Of The University Of CaliforniaIncorporation of mathematical constraints in methods for dose reduction and image enhancement in tomography
US8270760B2 (en)2006-08-032012-09-18The Regents Of The University Of CaliforniaIterative methods for dose reduction and image enhancement in tomography
US7840053B2 (en)2007-04-052010-11-23Liao Hstau YSystem and methods for tomography image reconstruction
US20080247502A1 (en)*2007-04-052008-10-09Liao Hstau YSystem and methods for tomography image reconstruction
US8126108B2 (en)2007-04-182012-02-28Agency For Science, Technology And ResearchMethod and apparatus for reorientated resconstruction of computed tomography images of planar objects
WO2008130325A1 (en)*2007-04-182008-10-30Agency For Science, Technology & ResearchMethod and apparatus for reorientated reconstruction of computed tomography images of planar objects
US8532350B2 (en)2008-01-302013-09-10The Regents Of The University Of CaliforniaDose reduction and image enhancement in tomography through the utilization of the object's surroundings as dynamic constraints
US20110007980A1 (en)*2008-01-302011-01-13The Regents Of The University Of CaliforniaDose reduction and image enhancement in tomography through the utilization of the objects surroundings as dynamic constraints
US20100284596A1 (en)*2009-04-302010-11-11The Regents Of The University Of CaliforniaSystem and methods for fast implementation of equally-sloped tomography
US8611626B2 (en)2009-04-302013-12-17The Regents Of The University Of CaliforniaSystem and methods for fast implementation of equally-sloped tomography
US8189735B2 (en)*2010-07-222012-05-29General Electric CompanySystem and method for reconstruction of X-ray images
CN102346924A (en)*2010-07-222012-02-08通用电气公司System and method for reconstruction of x-ray images
CN102346924B (en)*2010-07-222016-12-07通用电气公司System and method for the reconstruction of x-ray image
WO2012114199A3 (en)*2011-02-252013-01-03Smiths Heimann GmbhImage reconstruction based on parametric models
US20140222385A1 (en)*2011-02-252014-08-07Smith Heimann GmbhImage reconstruction based on parametric models
US10216866B2 (en)*2011-02-252019-02-26Smiths Heimann GmbhImage reconstruction based on parametric models
US11408836B2 (en)2019-04-012022-08-09General Electric CompanyMethod for inspecting components using computed tomography
US20210404802A1 (en)*2020-06-302021-12-30Mitutoyo CorporationMethod and computer program product for filtering a measurement data set usable for specifying and/or verifying an internal feature of a workpiece
US11506490B2 (en)*2020-06-302022-11-22Mitutoyo CorporationMethod and computer program product for filtering a measurement data set usable for specifying and/or verifying an internal feature of a workpiece

Also Published As

Publication numberPublication date
DE3806110A1 (en)1988-10-13
FR2613487B1 (en)1990-06-01
TR25873A (en)1993-08-23
JPS63256843A (en)1988-10-24
IT1215988B (en)1990-02-22
IT8819647A0 (en)1988-03-04
FR2613487A1 (en)1988-10-07
GB2203620B (en)1991-06-12
GB2203620A (en)1988-10-19
GB8804719D0 (en)1988-03-30

Similar Documents

PublicationPublication DateTitle
US4888693A (en)Method to obtain object boundary information in limited-angle computerized tomography
US5053958A (en)Method to reduce image reconstruction time in limited-angle ct systems including using initial reconstruction valves for measured projection data during each iteration
JP3373720B2 (en) X-ray tomography equipment
US5909476A (en)Iterative process for reconstructing cone-beam tomographic images
US5270926A (en)Method and apparatus for reconstructing a three-dimensional computerized tomography (CT) image of an object from incomplete cone beam projection data
US4506327A (en)Limited-angle imaging using multiple energy scanning
EP0502187B1 (en)Parallel processing method and apparatus based on the algebra reconstruction technique for reconstructing a three-dimensional computerized tomography
US4709333A (en)Method and apparatus for imaging in the presence of multiple high density objects
US20040179643A1 (en)Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system
GB2448266A (en)An x-ct scan system
AndersenA ray tracing approach to restoration and resolution enhancement in experimental ultrasound tomography
IL100311A (en)Parallel processing method and apparatus for reconstructing a three-dimensional computerized tomography (ct) image of an object from cone beam projection data or from planar integrals
US5341460A (en)Method and apparatus for producing a three-dimensional computerized tomography image of an object with improved conversion of cone beam data to radon data
US7756307B2 (en)Method of, and software for, conducting motion correction for a tomographic scanner
US7602879B2 (en)Method for increasing the resolution of a CT image during image reconstruction
CN105118039A (en)Method and system for reconstructing cone beam CT image
PatchConsistency conditions upon 3D CT data and the wave equation
EP0521689A2 (en)Method and apparatus for acquiring complete radon data for exactly reconstructing a three dimensional computerized tomography image of a portion of an object irradiated by a cone beam source
Zeng et al.A new iterative reconstruction algorithm for 2D exterior fan-beam CT
Lee et al.Artifacts associated with implementation of the Grangeat formula
Saint-Félix et al.3D reconstruction of high contrast objects using a multi-scale detection/estimation scheme
CN104361615B (en)A kind of method that use circular orbit fladellum X-ray CT Scanner quickly rebuilds faultage image
Hass et al.Regions of backprojection and comet tail artifacts for π-line reconstruction formulas in tomography
TamReducing the fan-beam scanning angular range
Azevedo et al.Region-of-interest cone-beam computed tomography

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:GENERAL ELECTRIC COMPANY, A NEW YORK CORP.

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TAM, KWOK C.;REEL/FRAME:004687/0792

Effective date:19870327

Owner name:GENERAL ELECTRIC COMPANY,NEW YORK

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TAM, KWOK C.;REEL/FRAME:004687/0792

Effective date:19870327

FEPPFee payment procedure

Free format text:PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAYFee payment

Year of fee payment:4

REMIMaintenance fee reminder mailed
LAPSLapse for failure to pay maintenance fees
FPLapsed due to failure to pay maintenance fee

Effective date:19971224

STCHInformation on status: patent discontinuation

Free format text:PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362


[8]ページ先頭

©2009-2025 Movatter.jp