United States Patent Yarur et a1. Oct. 21, 1975 DEVICE HAVING TILTABLE AND 3,724,437 4/1973 Halstead 124/1 ROTATABLE COACTING WHEELS FOR fi at 245' R o oway et a PROJECTING TENNIS BALLS 3,785,358 1/1974 D'Angelo et a1 H 124/1 [76] Inventors: Alfredo S. Yarur, 2101 Yorkgate Dnve; Alfie-d0 4513 Primary ExaminerRichard C, Pinkham Edwards Road; Assistant ExaminerWi1liam R. Browne m" 2101 Yorkgate Dnveof Attorney, Agent, or FirmB, B, Olive Ralelgh, NC.
[22] Filed: July 1, 1974 [57 ABSTRACT 1 1 PP NOJ 484,605 A tennis ball projecting machine for ejecting tennis balls in regular sequence and at a controlled velocity [52] C| H 124. [24/30 124/50. to simulate tennis service or return from an opponent {24]5 during learning or practice sessions. The apparatus is [51] Int. H F413 3/04 directed to variation of the vertical and horizontal an- Field ofSearch 5 A R g16S Of 133.11 EjfiCllOll thereby providing game-like situa- 12482 273/26 i i g tions. The apparatus has two motor driven wheels 1 mounted on the lower end of a vertical post member. [56] References Cited To the upper end of the post member is attached members to rotate the motor mount and to elevate the UNITED STATES PATENTS wheels to vary the vertical trajectory of an object SHYCHC i v 4 4 R X being projected 3,399,660 9/1968 Swartoot 124/50X 5 Claims, 15 Drawing Figures US. Patent Oct. 21, 1975 shw 2 of3 3,913,552
III! I. IV, @0
U.S. Patent 0a. 21, 1975 Sheet 3 ()f3 3,913,552
FIG. 7
DEVICE HAVING TILTABLE AND ROTA'IABLE COACTING WHEELS FOR PROJECTING TENNIS BALLS BACKGROUND OF THE INVENTION 1. Field of the Invention The invention relates generally to pitching machines used for projecting balls of various types during practice or learning sessions. More specifically, the invention relates to machines adapted to project tennis balls in simulated ball service or return.
2. Description of the Prior Art The general history of the prior art illustrates that the sport of tennis has gained in popularity throughout the past decade as an individual as well as a team sport. Where tennis is being taught, whether in schools, athletic clubs, or other institutions, there is frequently a need for a type of ball throwing machine which can be used during learning or practice sessions to simulate game-like situations for the benefit of the individual, whether novice or professional. Most machines which have been devised to date for throwing tennis balls have largely been adaptations of baseball pitching machines. Though these machines have been effective in propelling tennis balls, they have imparted considerable objectionable spin to the ball, caused a significant amount of wear on the covers of the balls, and have led to frequent jamming. In addition, most machines have required an attendant to manually operate the controls and refill the ball magazine. Horizontal and vertical positioning apparatus has usually been limited to a few fixed positions and has not been available for incremental positioning over a wide range of positions and swings, vertically and horizontally. U.S. Pat. No. 3,399,660 teaches the concept of utilizing high speed rotating cones or discs, obliquely situated, to propel tennis balls. The user is faced with the same practice shot repeated time after time unless he makes frequent trips to the machine to alter the adjustments and even then he cannot substantially alter the type of throw he will receive. Vertical and horizontal control of the pitch remains a problem.
In addition to the foregoing, reference should be made to U.S. Pat. No. 3,604,409; 3,089,476; l,989,452; 3,640,263; 2,716,973; 3,538,900; 3,308,802, 3,459,!68; 2,112,6l l and 3,568,653 which are directed to other pitching or projecting machines which might be of general interest.
lssued U.S. Pat. No. 3,777,732 has contributed tremendously to this field. U.S. Pat. No. 3,777,732 teaches a tennis ball ejecting machine comprised of a frame and housing which mounts a ball discharge mechanism, a ball feed mechanism, remote and machine located control means, and appropriate handles and wheel for portability. A plurality of balls can be placed into a feed hopper and are individually selected by a rotating gate and fed into a flexible tube. Upon reaching the end of the tube, each ball enters a propelling mechanism which consists of two narrowly spaced cylindrical drums which are synchronously rotated about parallel axes by electric motors. The moving tennis ball, after entering the propelling mechanism is engaged between the two drums by friction, momentarily compressed, and discharged outwardly at a velocity approximating the circumferential speed of the rotating drums. A pivotal portion of a frame member supports the dischargemechanism and enables the vertical angle of ball discharge to be varied. The horizontal angle of discharge is controlled either by a movable deflecting baffle situated outward of the rotating drums or by oscillating a subframe which supports the discharge mechanism.
SUMMARY OF THE INVENTION The apparatus of the present invention as disclosed herein comprises a support frame and housing. The support frame mounts a tennis ball receiving hopper, a tennis ball frame mechanism, a tennis ball ejecting mechanism, control means on the machine, and appropriate handles and wheels to render the machine portable. A plurality of tennis balls are placed into a ball receiving hopper and are individually selected by a rotating aperture disc and fed into a flexible feed tube. Upon reaching the end of the tube, each ball individually enters an ejecting mechanism which consists of two narrowly spaced cylindrical wheels which are individually but synchronously rotated about parallel axes by individual electric motors. A moving tennis ball, having entered the ejecting mechanism, is engaged between the two wheels by friction, momentarily compressed, and ejected outwardly at a velocity approximating the circumferential speed of the synchronized rotating wheels. The invention apparatus is directed to use of an improved pivotal linkage which is connected to the ejecting mechanism and enables the vertical angle of ball ejection to be varied by vertically tilting the motor mounts with respect to a vertical post. The tilting may be accomplished incrementally, thus providing a wide range of tilted positions. The horizontal angle of ball ejection is controlled by a screw type linkage and a cam and follower mechanism which rotates the same post around its vertical axis for horizontal control. This also may be done incrementally and with a wide range of horizontal swings. The use of such a single post structure for both vertical and horizontal control thus eliminates the use of a tiltable frame and further eliminates the need for a baffle deflector.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a front view of a machine built in accordance with the invention, showing an aperture in the housing to permit the ejection of tennis balls.
FIG. 2 is a rear view of the complete machine.
FIG. 3 is a side view of the machine showing the controls, vertical and horizontal angle controls and the handle and wheel structure.
FIG. 4 is a top view of the machine revealing the tennis ball receiving hopper, rotating apertured disc and an anti-jamming spring guide.
FIG. 5 is a view of the underside of the machine showing the flexible feed tube, ball ejecting wheels and the cam and follower mechanism.
FIG. 6 is an enlarged view showing only the mechanism portion of the machine with the handle and wheel structure removed.
FIG. 7 is a reduced scale plan view of the mechanism of FIG. 6.
FIG. 8 is a partial side view illustrating the vertical adjustment feature of the machine.
FIG. 9 is a partial side view similar to FIG. 8 but showing the vertical adjusting mechanism in a different position.
FIG. I is a view similar to FIGS. 8 and 9 but showing a vertical adjustment which will eject the tennis ball al most directly at the player.
FIG. I] is a partial plan view of the ejecting wheels and horizontal angle adjustment mechanism and in dashed lines another position obtainable.
FIG. 12 shows in a somewhat schematic view a tennis ball being engaged between the rotating ejecting wheels.
FIG. 13 is a fragmentary elevation section view of a portion of the ball ejecting mechanism.
FIG. 14 is a perspective view of a cup member which can be placed in the aperture disc to prevent passage of a ball.
FIG. 15 is a perspective view illustrating some of the linkage involved in regulating the horizontal swing.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FIGS. 1 through 5, in a preferred em bodiment the projecting machine of the invention, generally identified by 10, comprises aframe 15 composed of tubular aluminum segments joined by welding, or the like, into a rectangular base supporting vertical and horizontal structural members. TwoU-shaped leg members 16, 17 are adapted to provide upright support and are secured to said frame member and fitted with respectivehand grip portions 19, 20,axle 25, andwheels 26, 27. Aremovable housing member 30 formed of sheet aluminum includes four sidewalls, and in the front wall a ball ejecting aperture 31 which permits the exit of ejecting tennis balls. Acontrol access aperture 32 is located on the sidewall which permits access to the manual controls. The complete housing assembly is open at the bottom. The housing is assembled to frame 15 at appropriate screw attachment points 18.Housing 30, immediately below its open upper end, is fitted with ametal ball hopper 33 formed with a depressed area at the top of the housing adapted to hold a plurality of tennis balls. A bottom aperture 34 permits the entry of balls into machine fromhopper 33.Ball hopper 33 is provided with an anti-jamming spring 35. It is contemplated that the entire housing assembly may be of unitary construction and fabricated of formed aluminum sheeting.
A tennisball feed mechanism 40 is suitably secured to frame and is situated immediately beneath bottom aperture 34 to receive tennis balls one by one. Arotatable aperture disc 42 is adapted to rotate withshaft 43 which is fitted with agear 44 and adrive chain 45 for being driven by a variable speed, drivemotor 46 throughgear 47, as best shown in FIG. 6. Control ofdisc 42 is, of course, obtained by control ofmotor 46 with respect to being on or off and speed.Aperture disc 42 has sixapertures 48, 49, 50, 51, 52, 53, each of which is adapted to temporarily contain no more than one tennis ball and through which each ball passes fromdisc 42 toflexible tube 54. Aplate 95 belowdisc 42 provides a temporary ball support surface for the balls.Vertical cylinder 60 is offset from the center ofdisc 42 with which it turns and acts to stir the balls.Flexible feed tube 54 is secured to plate 95 by any suitable clamping or fastening means, not shown, and mates with anaperture 96 inplate 95. Thus, asdisc 42 rotates at a selected speed and as the apertures indisc 42 each containing a tennis ball pass overaperture 96 ofplate 95 each respective ball will be permitted to exithopper 33 and fall freely through itsrespective aperture 48, 49, 50, S l, 52 or 53, throughaperture 96 and intoflexible feed tube 54.
The opposite end offeed tube 54 is connected by suitable clamping means to an adjacent ball ejecting mechanism 100 (see FIG. 13). Final guidance is provided bymetal guide 55 having a discharge end positioned to guide the balls to ejectingwheels 80, 81 as shown in FIGS. 5 and 6.
As will be more fully appreciated from later disclosure, flexible andextensible tube 54 provides a unique advantage to the overall invention. In particular, the flexibility allows the discharge end oftube 54 which mountsmetal guide 55 to be moved to different angles for variation in loft of the ball as later described. However, irrespective of any such angular position, the ball is given a positive, low friction path of guidance throughtube 54. Various helically-reinforced, flexible tubes, such as used in vacuum systems and clothes dryers, are of course readily available for such purposes.
Theball discharge mechanism 100 includes two variable speedelectric ejecting motors 72, 73 havingdrive shafts 75, 76.Motors 72, 73 are respectively secured toplates 65, 66 and are oriented such thatshafts 75, 76 ofmotors 72, 73 rotate about parallel axes.Motor mounting plates 65, 66 are secured to and supported by ashaft 67 which extends through avertical post 68 and enablesplates 65, 66 and thusmotors 72, 73 to pivot around the axis ofshaft 67 for vertical ball control as later explained. Twocylindrical wheels 80, 81 are rotatably secured to driveshafts 75, 76 and reside in the same plane in opposed positions. These wheels, best shown in FIG. 6, may be of hollow aluminum or magnesium casting or solid construction and have their circumferential edges fitted with a soft compressible material, i.e., rubber, vinyl, or the like, so as to be adapted to conform said edges to the outside diameter, texture, and hardness of a given ball. As shown diagrammatically in FIG. 12,wheels 80, 81 are adapted to be synchronously rotated in opposite directions outwardly, represented by the solid arrow, such that a ball upon reaching the end offlexible tube 54 will be introduced into, temporarily engaged between, and instantaneously discharged fromwheels 80, 81 at a velocity approximating their circumferential speed.
The description thus far has dealt primarily with the prior art construction over which the present invention offers an improvement. There is next described the vertical and horizontal ball direction control mechanism with which the invention is primarily concerned.
Aheight adjustment mechanism 87, best shown in FIGS. 6, 8, 9, l0, and 11, is mounted onframe 15 and enables the vertical angle of ball ejection to be manually varied.Mechanism 87 comprises an L-shaped or bell crankarm 88 which is pivotally secured at one end to threaded andmovable block member 89 which rides on a threadedshaft 90 and at anopposite end arm 88 is pivotally secured to avertical rod 91. Ahandle 92 is mounted on the outer end ofshaft 90. Turning ofhandle 92 in one direction or the other is thus adapted to effect the rotation of theshaft 90 to cause threadedblock 89 to move in or out and to correspondingly cause L-shapedarm 88 to pivot in an up and down manner. The lower end ofrod 91 is secured by means of auniversal connection 93 to ahorizontal shaft 94.Shaft 94 is integrally secured to motor support plates .65, 66.Plates 65, 66, as previously mentioned, are secured tohorizontal shaft 67 which passes through and rotates invertical post 68. Thus, asshaft 90 is turned byhandle 92,rod 91 moves up or down, depending on the direction of rotation ofshaft 90, and thereby causesmotors 72, 73 to pivot vertically for purposes of vertical control of ball direction. A connectingplate 97 extends between and is secured to supportplates 65, 66 and provides a mounting surface formetal guide 55 and flexible tube 54 (see FIG. 13).Guide 55 is integrally secured in a predetermined position to plate 97 so that the tennis balls are always in perfect alignment when fed into ejectingwheels 80, 81.
The previously mentionedshaft member 67 extends betweensupport plates 65, 66 and is made integral thereto. Thevertical post member 68 pivotally mounts and supportsshaft 67 and extends upward therefrom.Post member 68 has secured at its upper end avertical shaft member 69 which supports the lower portion ofpost 68.Shaft 69 extends throughframe cross member 21 offrame 15, through and rotates in a fixedsleeve 109 and is secured to anarm 110. Anut 111 is secured to the end ofshaft 69. As later explained, pivoting ofarm 110 acts to pivotpost 68 around its vertical axis which provides horizontal direction control for the ball.
Frame cross member 21 is preferably of hollow aluminum construction. A threadedshaft 101 is mounted at one end in a frameupright member 22 and passes throughupright member 22 into the hollow portion ofcross member 21. Ahandle 102 is secured to the outer end ofshaft 101.Frame cross member 21 has a slot 103 (FIGS. 6 and 11) extending lengthwise in the top portion thereof.Shaft 101 has threadably mounted thereon ablock 104.Block 104 is designed to travel back and forth onshaft 101 whenshaft 101 is rotated by turninghandle 102.Block 104 has avertical stud 105 integrally secured in the top thereof.Stud 105 passes through and extends aboveslot 103 and mounts acylindrical block 106 into which stud S partially extends and about which block 106 may rotate.Block 106 has a slot 107 in which arod 108 is slidably received.
The previously mentionedsleeve 109 is rigidly secured to the top offrame cross member 21 and receives the mentionedvertical shaft member 69 for rotation.Shaft 69, at its uppermost end, is secured to arectangular arm 110.Nut 111 mounts on the exposed threaded end ofshaft 69 and retainsarm 110 secured. The outer end ofarm 110 receives arotatable stud 113 which extends througharm 110 and is rotatably secured to one end ofrod 108. Ashandle 102 is rotated, threadedblock 104 moves either inward or outward on threadedshaft 101 which in turn moves block 106 onrod 108.Block 106 thus provides an adjustable pivot point forrod 108 as later explained and as generally illustrated in FIG. 15.
Rod 108 has arotatable cam follower 112. The previously referred to variablespeed drive motor 46 has ashaft 56 which drivesgear 47 mounted thereon.Shaft 56 extends upward throughgear 47 and has atrack cam 57 mounted on the end thereof.Cam 57 has a groovedtrack 58 formed in its bottom side which receivescam follower 112.
As best seen in FIGS. 6 through 13 and FIG. 15, horizontal displacement of the ejected tennis balls is controlled bycam 57 andfollower 112. In turn, the angle of ball displacement can be varied to suit the desired spread for ball ejection. As threadedblock 104 is moved inward or outward, the amount that the ejection mechanism rotates horizontally is controlled by the distance that the center of vertical stud integral withblock 104 is located from vertical stud 1 13. The center ofstud 105 might be called the fulcrum point of the horizontal ball displacement mechanism. This fulcrum point can be changed by turninghandle 102 which in turn causesshaft 101 to rotate and makes block 104 move. See in particular FIGS. 6 and 15. When block 104 is moved back so that the center ofstud 105 coincides vertically with the axis ofstud 113 as in FIGS. 6 and 7, the machine ejects balls straight out or to the center position only, since arm will remain still sincestud 105 or fulcrum point and the axis ofstud 113 coincide. However, whenever block 104 is moved out so that the centers ofstud 105 andstud 113 do not coincide as in FIGS. 11 and 15, block 106 turns onstud 105 and provides a pivot forrod 108 which causes the motor to oscillate back and forth according to the shape ofcam track 58 and the ball is thus projected from side to side.
Turning now to a description of the machine in operation, according to the inventions preferred embodiment, operation of themachine 10 proceeds in the following manner. A plurality of tennis balls are placed intohopper 33 andmachine 10 is wheeled to a playing surface and positioned to eject tennis balls across a net in the direction of the player. Prior to assuming the playing position, a player connects the machine to a suitable source of power, energizes the controls, and manually pre-sets the desired speed of ball discharge, height of ball trajectory by adjustinghandle 92, the desired rate of ball feed, and whether or not the horizontal angle mechanism is to be utilized by adjustinghandle 102. At this time, ejectingmotors 72, 73 are rotating; however, ball feedmotor 46 has not yet been energized. Next the player energizes theball feed motor 46 and assumes his position at the other side of the court ready for play. Individual balls are not being selected from theball hopper 33 by rotatingaperture disc 42 and are being permitted to fall one at a time throughapertures 48 to 53 down throughaperture 96 inplate 95 and then intotube 54 whereupon a ball travels to the opposite end oftube 54 overguide 55, FIGS. 8 and 13, and becomes introduced intoball discharge mechanism 100. The ball is then drawn into and momentarily engaged between the two outwardlyrotating wheels 80, 8l and is propelled outwardly at a fast rate of speed which can be varied from a low to a very high speed. If the horizontal angle mechanism has been energized, there is provided a series of simulated tennis returns" falling at different locations on the playing surface. Alternately, if the horizontal angle mechanism has not been energized, the machine will provide a series of precisely controlled simulated tennis serves." Play may be terminated or resumed at will by the manual controls. While not shown, it is recognized that remote controls may be employed as more fully described in US Pat. No. 3,777,732, previously mentioned.
To summarize the control features, it can be seen that the frequency of ball ejection, the vertical angle of ejection, the horizontal angle of ejection, and the speed of ejecting are all subject to control and variation to present a great variety of play experiences. Frequency of ball ejection is controlled by varying the speed ofvariable speed motor 46which'rotates aperture disc 42 whose speed thus determines how often a ball is ejected toward the player. The vertical angle of ejection is controlled manually byhandle 92. The horizontal angle of ejection in a swinging movement is controlled byhandle 102 which in turn controls the mechanism which controlscam 57 andfollower 112. The speed of ejecting or velocity imparted to the ball is controlled by simultaneously varying the speed of the variablespeed ejecting motors 72, 73 which in turn control the speed of the ejectingwheels 80, 81. Another feature of the present machine is that cups 59 (see FIG. 14) can be placed in selected ones ofapertures 48 through 53 to block the passage for the tennis balls. By placing cups S9 in the proper apertures, the machine can be set up to eject balls at the two side positions and miss the center ejecting position. Utilizing this feature, two players could receive practice by a single machine.
Of particular significance is that the vertical postarrangement utilizing post 68 eliminates the need to rotate any frame or sub-frame as such and eliminates the need to employ deflecting baffles as with the prior apparatus. Furthermore, the positive cam tracking and pivotingarrangement utilizing cam 57 andpivotal rod 108 provides positive horizontal pitch directions suited to the inexperienced as well as experienced players.
What is claimed is:
1. A ball projecting machine for ejecting tennis balls, and the like, of a selected substantially uniform compressible type comprising, in combination:
a. a machine supporting frame;
b. a vertical post means having an upper end rotatably supported by said frame for rotative swinging about a fixed vertical axis;
c. a pair of motor mounts mounted on said post means at the lower end thereof and on opposite sides thereof, said post means providing means to enable said mounts to swing together about the ver tical axis of the post means and to pivot on said post means about a horizontal axis passing through the lower end thereof;
d. a pair of electrical drive motors each being mounted on a respective said motor mount and having driven shafts extending therefrom and rotating in opposite directions at a predetermined speed with the respective axes thereof positioned parallel, laterally spaced, without lateral tilt and with a predetermined rearward tilt, said motors having in association therewith control means for controlling the energization and speed thereof;
e. a pair of cylindrical-shaped rotatable ball ejecting wheels mounted on respective shafts of said motors and being swingable and pivotable with the motor mounts therefor about said respective vertical and horizontal axes, said wheels having ball engaging peripheral surfaces with a common central plane perpendicular to the axes of the wheels and of sufficient rigidity such that the outer surface of a ball may be at least slightly compressed when passing between said ball engaging surfaces;
f, a ball feed structure including a ball receiving hopper supported on said frame above said wheels and having a ball entry aperture in the bottom thereof, an electrically driven apertured disc mounted on said frame below said ball entry aperture and having a predetermined number of apertures to sequentially receive and pass successive balls one at a time and at a predetermined rate, and having in association therewith control means for controlling the energization and speed of said apertured disc, a plate member fixed below and parallel to said disc and containing a ball aperture therein, a flexible elongated hollow feed tube mounted with a ball receiving end fixedly positioned below said apertured disc and aligned with said plate ball aperture to receive each said ball passed by said apertured disc and plate aperture in succession and with the opposite discharge end of said tube being directed between said wheels whereby to guide said balls through said tube to said wheels in the peripheral direction of said ball engaging surfaces whereby each ball when received, is at least slightly compressed between and is ejected from and free of said ball engaging surfaces at some predeter mined speed, said feed tube being flexible so as to permit changes in the angle of rearward tilt of said wheel axes and with the discharge end thereof being secured to said motor mounts in a manner enabling said tube discharge end to swing and pivot therewith; and
g. operator means mounted on said frame and opera tively connected to swing and tilt said motor mounts about the respective said vertical and horizontal axes, said operator means including a first operator means connected to said motor mounts and adapted to pivot said motor mounts on said post means about said horizontal axis to adjust rearward tilting of said motor shaft and wheel axes and the vertical angle ofejecting a ball received between said wheels while causing said tube member to be appropriately flexed and its discharge end to be repositioned according to the amount of such adjustment and including a second operator means mounted on said frame arranged to swing said motor mounts about said post means vertical axis to adjust the horizontal positioning of said motor shaft and wheel axes and the horizontal trajectory of successive such balls, said second operator means includes a tracking type cam rotatably driven in coordination with said apertured disc, a lever having one end connected to follow the track of said cam. having an opposite end pivotally connected to a crank arm secured to said post means to swing said post means about its vertical axis and having a pivotal support block slidably and pivotally mounting said lever between said lever ends, said pivotal support block being positionable on said frame between said lever ends to control the amount said lever opposite end swings said crank arm and post means about said vertical axis as said lever one end tracks said cam.
2. A machine as claimed in claim 1 wherein said ball apertured disc comprises a circular, horizontally positioned plate member having a plurality of peripherally spaced holes to pass balls received thereon and includes a vertical cylindrical-shaped post member fixed on top of said plate in a position axially offset from the center of the disc and operative to engage and stir balls in said hopper to effect free circulation of such balls through said apertured disc.
3. A machine as claimed in claim 1 wherein said second operator means further includes manually rotatable operator means arranged to support and position said pivotal support block.
4. A machine as claimed in claim 1 in which for a minimum swinging effect position said movable sup- 9 10 port block is arranged to move to a position proximate tween a position providing a maximum swinging effect the end of said crank arm to which said lever opposite of Said post means and a position providing a minimum end is connected to provide no swinging effect.
5. A machine as claimed in claim 1, further comprising an adjustable pivotal support which is movable be- 5 swinging effect of said post means.
i i I" UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No- 3 913 552 Dated October 21 1975 lnventor(s) Alfredo S. Yarur; Alfredo F. Yarur; Nicolas J. Yarur It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Col. line ll, "frame" should be -feed.
Col.
Col. 4, line 63, "and" should be or-.
6,line 19, "motor" should be -motors.
Col. line 39, "not" should be --now--.
Signed and Scaled this twenty-third Day of March 1976 [SEAL] Arrest.
RUTH C. MASON C. MARSHALL DANN A resting Officer (umnu'ssiuncr of Parents and Trademarks