United States Patent [1 1 Brayshaw 1 Sept. 9, 1975 I METHOD AND APPARATUS FOR GENERATING PLASMA Forrest G. Brayshaw, Salt Lake City. Utah [75] Inventor:
Hogle-Kearns International, Salt Lake City Utah [22] Filed: Oct. [2 1970 [2]] Appl. No.: 79,840
Related US. Application Data [63] Continuation-impart of Ser. No 704500 Jan. [2, I968, abandoned which is a continuationJn-part of Scr. Not 65 l 224 July 5. I967 abandoned [73] Assignee:
[52] US. Cl. i. 128130114; 3l3/23L3; 3l5/l l 1.2 [5]] Int. CIQ A6IB 17/32; A6IN 3/00 [58] Field of Search i. Q8/3031 30312-30317,
[56] References Cited UNITED STATES PATENTS 3.434476 3/]969 Shaw ct al, Dbl/303.1 3.483,]07 Il/l969 Schwartz. H 3l5/l ll 3.566J84 2/l97l Maskcll. 3l5/lll FOREIGN PATENTS OR APPLICATIONS 1.05195) 3/]959 Germany V r v i v v 3l5/l ll R. F GENERATOR Primary Examiner-William E. Kamm Attorney, Agenl, 0r Firm-David V. Trask [57] ABSTRACT Apparatus for producing an electric-field plasma is constructed with a hollow, electrically-conductive conduit connected in series with a radio frequency resonant circuit The spatial relationship of the hollow conduit and the inductance of the resonant circuit is selected to avoid transformer action. The components of the generator (including the plasma) interact to ef feet a high Q under unloaded conditions and a low Q under loaded conditions. Flowable material usually including a carrier gas, is displaced through the con duit while RF energy is applied to the resonant circuit, By proper adjustment of the process parameters the gas may be excited to and maintained at preselected energization levels. Plasmas may be initiated by the application of RF energy alone without auxiliary initiation techniques, Plasmas generated at ambient pressures may optionally be either at close to thermal equilibrium or at substantial thermal noncquilibrium. Plasmas at thermal nonequilibrium may comprise noble gases (or other substances susceptible to excitation to a mestastable state) in a metastable state 15 Claims, 5 Drawing Figures PATENTEUSEP 91ers 3.903.891
sum 1 or 4 INVENTOR. FORREST G. BRAYSHAW BY wffi ATTORNEY PATENTEB SEP 91975 INVENTOR. FORREST G. BRAYSHAW E mm E r f om l mm 00 T w m 3 1 on T 6m in a a. a c
A 7 w MW MWMMT JHI M 2 09 NF O m ATTORNEY HT 3 [IF 4 PATENTED 3E? 91975 q 9' LL.
INVENTOR. FORREST e. BRA HAW BY Z V ATTORNEY PATENTED SEP 91975 SHKET '4 [1F 4 INVENTOR. Forresf G. Brayshaw His Afforney k LLLL METHOD AND APPARATUS FOR GENERATING PLASMA RELATED APPLICATIONS This application is a continuation-in-part of commonly assigned, copending application Ser. No. 704,500, filed Jan. 12, 1968, now abandoned, which is a continuation-in-part of commonly assigned application Ser. No. 651,224, filed July 5, 1967 (now abandoncd).
BACKGROUND OF THE INVENTION Field This invention relates to electric-field plasmas and provides methods and apparatus for producing such plasmas. It is particularly directed to the production of cold plasmas," (which may include gases in the metastable" state) without the necessity for maintaining low pressure conditions, and to the self-initiation of plasmas.
State of the Art Various methods for plasma generation are known. Of most interest, from the standpoint of this invention, are those which involve the release of electrical energy into a carrier gas, notably argon, helium, nitrogen (ineluding air), and hydrogen. Such plasmas may be termed electric-field plasmas and are commonly classified as are," glow discharge, or corona discharge, depending upon the physical condition of the plasma and its appearance. When the electrical energy released into the carrier gas is alternating current (ac), any of the aforementioned classes of electric-field plasmas may exist with or without electrodes in contact with the carrier gas.
Glow discharge phenomena are well known. The most familiar applications of such phenomena are in lighting, e.g., in fluorescent, neon, sodium, and mercury lamps. Glow discharge plasmas are often described as cold plasmas because the energy density and wall-heating effect of such plasmas are very low. Such plasmas may also be regarded as being at thermal nonequilibrium because their gas temperatures are characteristically much lower than their electron temperatures. The term electron temperature denotes a temperature (usually several thousand degrees) corresponding to the energy possessed by the electrons in a plasma. It is commonly understood that the operating conditions productive of cold plasmas are high voltage (l-lkV) and low pressure (usually below torr). The term cold plasma, as used in the following specification and claims, is intended to include plasmas at thermal nonequilibrium which evidence a low wallheating effect, whether or not such plasmas exhibit the appearance and other physical characteristics normally associated with the specific cold plasma and glow discharge phenomena heretofore recognized in the art. According to this invention, cold plasmas may be produced which possess a very high energy density, for example.
As used in this specification and in the appended claims, the term plasma is used in its broadest context and refers to an at least partially ionized gas, which may include molecules. atoms, ions, electrons, and free radicals, each moving with a velocity dependent upon its mass and its temperature. (A plasma is regarded as at thermal equilibrium only when the distribution of its particle velocities is such that the average energy of each species is approximately the same.) The average energy ofa particle (e.g., an electron) can be expressed as a temperature (e.g., electron temperature) according to the relationship /vnV"=(3/2)kT, where m is the mass of the particle, V is the root-mean-square velocity of the particle, k is Boltzmann's constant, and T is the absolute temperature of the particle. The term plasma includes gases ionized to a very limited extent, e.g., 0.1 percent of its molecules, although it is often preferred to refer to such gases as being in an energized" state. The term energized gas refers to any gas, whether ionized or not, which is storing energy, as a result of the application of electrical energy, in a form capable of subsequent release as heat and/or light. This term thus includes a gas which is ionized, disassociated, or in an excited state, including the metastable state. A gas is considered to be in an excited state when an electron of an inner orbital shell of a species (molecules, atoms, and/or ions) has absorbed a quantum of energy so that it is at a higher than its ground state energy level with respect to the nucleus; it is considered to be in the metastable state when an inner electron is excited to a level from which the return to ground state via electromagnetic emission is of extremely low probability. A species in the metastable state generally loses its excess energy either by imparting kinetic energy to its sur roundings or by exciting other molecules, atoms or ions.
U.S. Pat. No. 3,424,533 discloses and claims an apparatus for spectrographic analysis which relies upon a radio frequency (RF) discharge to vaporize the sample. The apparatus disclosed includes an RF oscillator with a hollow induction coil of its output resonant circuit surrounding and electrically connected to a hollow conductor. The device is constructed such that there is transformer action between the induction coil and the hollow conductor. An atomized sample is introduced with a carrier gas through the induction coil to the central conductor, and the discharge originates at the opposite end of the conductor. The sample is vaporized" by the plasma so it is apparent that the plasma produced is very hot.
A similar apparatus is disclosed in an article by Roddy, et al., The Radio-Frequency Plasma Torch," Electronics World, February, 196], Vol. 65, pp 29-31 and 117. The apparatus of this article also includes a central conductor (which terminates as a torch tip) within the inductor of the output resonant circuit of a conventional tuned-plate, untuned-grid, RF oscillator. The plate circuit tap point on the inductor and the degree of feedback of the grid circuit are adjusted to obtain matched operation with an ignited flame. According to the article, operation of the torch takes place at relatively low pressures and low gas velocities, and it is necessary to provide a source of free electrons to initiate the plasma. An auxiliary electrode is used for this purpose. The torch tip is constructed of molybdenum and both the induction coil and the torch are of necessity water-cooled.
General Description of the Invention The apparatus of this invention may be embodied in various forms and sizes, but in any event, comprises a radio frequency resonant circuit preferably of the parallel-resonant type) with capacitive and inductive legs selected to effect a high Q at the resonant frequency of the circuit. The inductive leg may include a coil disposed about a gas inlet tube, but in such embodiments the tube is ordinarily constructed of dielectric material to avoid inductive coupling of RF energy to gas flowing through the tube. In any event, transformer action between the inductance of the resonant circuit and the gas inlet tube is avoided, either by proper shielding or by the spatial relationship of these components. The inductive leg is connected at one end to a source of high RF voltage, and at the other end to a reference po tential of much lower magnitude, typically the chassis ground of the RF source.
The electrical parameters of the inductive and capacitive legs of the resonant circuit are selected such that under no loa conditions (e.g., prior to the initiation of a plasma its effective Q is very high, but under load conditions (when current is being drawn from the resonant circuit, eg, when the plasma is coupled to ground, a workpiece, or the atmosphere) its effective Q drops very substantially. Accordingly, the inductance to capacitance ratio should be high, usually at least above in a parallel-resonant circuit. In general, the effective Q of the resonant circuit under no-load conditions should exceed about 20. Usually, the noload Q will exceed 50, the presently preferred values being between about 100 and about 300. Under loaded conditions the effective Q should drop sufficiently to broaden the operational band width of the resonant circuit. Suitable loaded Q values are below about 20, usually below about 15. When the plasma is well grounded, the load effective Q value of the resonant circuit is often reduced to substantially below 10, in some instances, below 2.
The high potential end of the inductive leg of the par allel-resonant circuit is directly connected to a hollow, conductive conduit. The conduit is provided with an inlet for the introduction of displaceable, usually pneumatically-flowable (conveyable), materials and terminates in an outlet for the discharge of the displaceable material. The outlet is generally formed as a burner or torch tip designed and constructed for a specific application, such as cutting, heating or spraying. The term pneumatically-flowable material includes any carrier gas (with or without additional particulate, atomized or gaseous constituents) capable of being displaced through a hollow conduit. Although virtually any gas as well as liquids and solids may theoretically be energized by the methods and apparatus of this invention. the gases found most useful in the prior art for electric-field plasma applications are generally most useful in connection with similar applications of this in vention for the same reasons. The conductive conduit is either shielded or isolated from the inductive components of the resonant circuit to avoid transformer interaction. Otherwisc, it is not feasible to maintain the high Q values required for the apparatus of this invention.
In operation, when RF energy is first applied to the resonant circuit, the high effective Q of this circuit provides a substantial voltage buildup so that a potential is applied to the hollow conduit sufficiently above the reference potential to initiate a plasma in a carrier gas flowing through the conduit. Plasmas may readily be self-initiated in gases such as argon, helium, hydrogen and nitrogen (even in impure form such as air), in this fashion. By self-initiated" is meant initiation solely by the application of electrical energy to the hollow, gas carrying conduit; i.e., without the external aids conventionally employed to initiate a plasma.
Upon initiation of a plasma, the effective Q of the resonant circuit normally drops very substantially. An exception to this effect is sometimes observed when a plasma is initiated in a noble gas, such as argon. A metastable argon plasma. for example, can be maintained while drawing such small amounts of current from the resonant circuit that any decrease in potential at the conductive conduit (compared to the no-load potential) is undetectable on a conventional RF volt meter. The current flow from the resonant circuit (resulting in a substantial drop in the Q of the circuit) is increased by coupling such metastable plasmas to ground or a conductor, or by tuning the RF energy source to match more closely the resonant frequency of the resonant circuit.
The drop in effective Q which results from loading of the plasma (any condition resulting in current flow from the resonant circuit) is a very useful phenomenon from the standpoint of this invention. The lower Q permits greater energy flow into a plasma at a given power setting of the RF source, but even more important, the operational band width of the plasma generator is increased as the Q is decreased. Thus, the characteristics of the plasma may be altered appreciably by tuning the input frequency to the resonant circuit without extin guishing the plasma. In this fashion, the characteristics of a plasma may be selected with a broad spectrum of greater or lesser degrees of thermal nonequilibrium.
A notable characteristic of this invention is the capability of producing a plasma possessing many of the desirable properties of the art-recognized cold plasmas at ambient pressure conditions. Although the precise physical mechanism of this invention is not completely understood, and while applicant does not intend to be bound hereby, it appears that the more useful plasmas produced in accordance with this invention are at substantial thermal nonequilibrium. Moreover, this invention energizes noble gases, notably argon, to a metastable state at ambient pressures in a useful plasma column. Other gases, such as helium or vaporizied elements, such as mercury vapor may also be excited to a metastable state, but with more difficulty.
Although the wall heating effect of plasmas produced in accordance with this invention may be maintained at very low levels, their energy densities appear to be substantially higher than has been typical of cold plasmas. In any event, many plasmas of this invention appear to be exceptionally efficient in transferring energy (in the form of heat) to a workpiece. The plasmas produced in accordance with this invention have ideal properties for many applications, such as mineral processing, chemical production, surfical cutting and metal spraying; they may be sustained under widely varying de grees of attenuation, gas velocities, pressure conditions, and power levels, and the apparatus may be scaled to produce and sustain plasmas of widely varying volumes and energy levels. It is possible to energize many gases, notably nitrogen, to a highly ionized state with no substantial population of particles in a metasta ble state using the apparatus and procedures of this invention.
For surgical applications, plasma of metastable noble gas is preferred. in general, the plasma should be attenuated to a cross section which permits a narrow region of contact between the plasma and the tissue to be cut. A metastable argon plasma with a diameter between about 0.005 and about 0.015 inch is preferred. RF energy applied at between about 30 and about 200 (ideally between about 80 and about I) magahcrtz. be tween about 50 and about 300 volts, and between about 30 and about 300 watts to a scalpel relying upon a parallel-resonant circuit having a Q above about 20 (preferably above about I00) produces a good meta stable argon plasmas. RF energy applied to the resonant circuit at frequencies up to about percent above its resonant frequency produces metastable argon plasmas ideal for surgical applications. In some instances, notably the treatment of brain lesions, it is desirable to supply RF energy to the resonant circuit of the scalpel at slightly (1 or 2 percent) below its resonant frequencyv Acceptable flow rates for the gas are generally below about 5, preferably below about 2, but rarely below about one-tenth cubic feet per hour BRIEF DESCRIPTION OF THE DRAWINGS In the drawings, which illustrate what are presently regarded as the best modes for carrying out the invention:
FIG. I is a perspective view of a plasma torch constructed according to this invention;
FIG. 2, an enlarged, exploded perspective view of the plasma torch of FIG. I;
FIG. 3, a cross sectional view taken along the longitudinal centerline axis 3-3 of the plasma torch of FIG.
FIG. 4, a longitudinal cross sectional view of an alternative plasma torch cmbodiment of this invention; and
FIG. 5, a longitudinal cross sectional view of the apparatus ofthis invention embodied a surgical scalpel.
DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS The plasma torch I0 illustrated by FIGS. 1 through 3 comprises a generally cylindrical conductive shield or casing, e.g., of aluminum, including a rear cylinder sleeve I4, a tapered transitional section I8 and a forward cylindrical sleeve of reduced diameter. Theshield 12 is provided with arear opening 20, afront opening 22 and a recess or groove 24 above the inside surface near its leadingend 23.
Theshield 12 contains aradio frequency coil 30, of copper or other conductive material. which surrounds a dielectric (plastic)gas inlet tube 32. Gas may be displaced through theinlet tube 32 generally unidirectionally by pressure in the direction indicated by arrow 34 (FIG. 3). Theinduction coil 30 has substantially no ionization effect upon the gas flowing through theinlet tube 32 and there is no transformer action between thecoil 30 and thetube 32. Thegas inlet tube 32 could optionally be placed external thecoil 30, but it is located as shown as a matter of convenience. Thetube 32 is desirably constructed of thcrmallyresistant material, such as teflon or nylon.
Thegas inlet tube 32 enters theshield 12 through anaperture 38 centrally disposed in adielectric plug 40. The peripheral edge of theplug 40 contains agroove 42 adapted to recci\ c a high-tcmpcraturc resistant ring 44 to seal the plug against the shield so that the interior of theshield 12 is fluid-tight but also so that a suitable manually exerted force will pull the shield off from around the remainder of the torch II), as shown in FIG. 2.
Radio frequency energy is directly conductively ap plied from an RF generator through a coaxial cable 50 (FIGS. I and 2) to the torch head assembly. Theground lead 52 of thecoaxial cable 50 is connected to the low potential or trailingend 56 of thecoil 30 through ametal sleeve 58, which passes throughaperture 59 inplug 40. Thesleeve 58 also accommodates discharge of coolant from within the shield into acoolant outlet tube 60, shown as being fabricated plastic material. The coolant effluent flows generally in the direction ofarrow 62 to a suitable heat exchanger (not shown). A shortelectrical lead 64 connects themetal sleeve 58 to the low potential (as illustrated, the grounded)end 56 of the coil.
A resilient wire orspring 66 electrically connects theground end 56 of thecoil 30, at thesleeve 58, to the shield 12 (68, FIG. 3).
The centralcoaxial cable lead 54 of thecoaxial cable 50 is connected directly to the coil 30 a few turns forward of itsground end 56 at atap 70 through a coolant influentmetallic tube 72 and ashort lead 74. Thecoil 30 constitutes the inductive leg of a parallel-resonant circuit, as explained more fully hereinafter.
The exact turn of the coil at which thetap 70 is located is determined either experimentally or by mathematical calculations so as to match as closely as possible the impedance of the coaxil cable and to obtain a low standing wave ratio, preferably on the order of I to 1.5, on the cable. The output impedance of the RF gen erator should also be adjusted to approximately match the impedance of the coaxial cable. When it is impractical to approximately match the input impedance of the resonant circuit with a coaxial cable, other expedients, such as conventional Pi circuits between the cable and the resonant circuit, may be used to improve the impedance match.
The hot end of thecoil 30 is directly connected, at 84, to ahollow metal conduit 82. Theconduit 82 is of suitable diameter to accommodate easy coupling, as at 86, to thegas inlet tube 32 and is provided with a hollowcentral bore 88 through which the gas to be excited, or any other pneumatically flowable meterial, is displaced.
The leadingend 94 of theconduit 82 terminates at a tip ornozzle 90 of high temperature, ceramic mate rial, such as boron nitride or aluminum oxide, having good thermal conductivity and good dielectric qualities. The gas-carryingconduit 82 should be made of conductive material, such copper, having both good heat conducting and good electrical conducting char acteristics.
The tip ornozzle 90, in the illustrated embodiment, is machined or otherwise prepared to effect a fluid seal with a high-temperatureresistant Oring 96 when the interior part of the plasma torch is manually press-fit into assembled condition (FIG. 3). The inside dimension and shape of theopening 92 of thetip 90 and the length and shape of thetip 90 itself are determined by the application to which the plasma discharge I08 is to be put and the desired power of the plasma to be generated. The illustrated tip )0 may be eliminated or re placed by other types of flowrestricting or attenuating nozzles or tips. The tip can be press-lit over theforward end 94 of theconduit 82 or otherwise suitably secured in position, as by use of a suitable bonding agent.
A cooling fluid may be delivered from a heat exchanger (not shown) in the direction indicated by arrow 7] through acoolant intake tube 73 and the coolant influcntconductive tube 72.Tube 72 passes through an aperture 77 inplug 40. Acoupling sleeve 100 and aninfluent delivery tube 102 may be provided as shown for the delivery of influent coolant at opening 104 to directly impinge on thetip 90, as indicated by arrow 106. Thesleeve 100 andtube 102 are dispensed with in other embodiments.
As shown, the influent coolant first contacts the nozzle ortip 90. Thereafter, the coolant flows front to rear generally in contact with the internal surface of the shield, the external surfaces of theelectrode 82,tubes 102 and 100, and thegas inlet tube 32, totally immersing theunductance coil 30 in the coolant. Cooling liquid then returns to the heat exchanger (not shown) through the serially disposedsleeve 58 andoutlet tube 60. Accordingly, the electrode tube, the ceramic tip or nozzle, the radio frequency coil, the gas inlet tube, the coolant influent and effluent tubes, including the radio frequency power connectors, and the cylindrical shield are all contacted by the coolant.
Thisshield 12, which is shown at ground potential due to lead 66. acts as one condenser plate and theconduit 82 andcoil 30 act as a multiplicity of higher to err tial condenser plates. Capacitance is developw; r tween theshield 12 and theconduit 82 and the l2 and each region of thecoil 30 across the di 1. contained within the shield (in the illustrated insv a. n the ca lant). The physical dimensions of the shield, coil, and the conduit, the relative spacings thereof, and the properties of the dielectric help determine the capacitance in parallel with theinductive coil 30.
Any coolant used must of course be selected on the basis of both its cooling properties and its electrical properties. An important aspect of this invention is that when cold plasmas are initiated and maintained, no special cooling is required so that the dielectric may be noncirculating air enclosed by theshield 12.
During operation, the cooling solution is first caused to flow serially through the coolinginlet tubes 73, 72, 100 and 102, and circulate across theceramic tip 90, back along themetal electrode 82, around the immersedradio frequency coil 30 and out theoutlet tubes 58 and 60. Gas, under pressure, is caused to flow into thegas inlet tube 32 as indicated byarrow 34. through the hollow central bore 88 of theconduit 82 and out to the atmosphere through the orifice opening 92 in theceramic tip 90.
Theplasma torch 120 illustrated by FIG. 4 comprises a generally cylindrical conductive shield or casing 121 integrally consisting of a rearcylindrical sleeve 122, a taperedtransitional section 124 and a forwardcylindrical sleeve 126 of reduced diameter. Theshield 121 is provided with a rear, internally threaded, opening 128 and afront opening 130 adjacent theleading end 132.
The shield 12] envelopes in spaced relation a radio frequencyhollow coil 134 terminating in ahollow conductor 154 and formed of tubular metal, such as brass. The hollow interior passage of thecoil 134 and theconductor 154 are in fluid communication with the interior of agas inlet tube 138, comprising part of acoaxial cable 140. lnfluent gas flowing in the direction ofarrow 142 enters thecoil 134 at theinfluent end 136 which is in fluid-tight relation with thetube 138.
Thecoaxial cable 140 passes interior of theshield 121 through anaperture 144 centrally disposed in a pc ripherally threadedplug 146. adapted to threadedly engage the rear opening of the shield 12] at 128. The in side or forward face 147 of theplug 146 eompressively engages anannular washer 148 of elastomeric or other suitable material.
The forward face I49 of theannular washer 148 eompressively contacts the trailingedge 152 of a body ofceramic material 150, east to closely fit within theshield 121 and held in stationary position within the shield 12] by the force exerted by thecompressed washer 148. Thecoil 134 and the integral,forwardlyprojecting electrode 154 are permanently embedded in theceramic body 150. When desired, thecoil 134, theelectrode 154 and the ceramic body can be removed from theshield 121 through the rear opening at 128. One preferable dielectric ceramic material is boron nitride, although equivalent ceramic with a good high frequency electrical strength could be used.
Ceramic dielectrics are not always suitable, and in some cases elimination thereof results in improved operation. Ceramic materials tend to absorb power at high frequencies and are not, therefore. suitable dielectrics at such operating frequencies. Utilization of a dead air space in place of ceramic between the interior surface of theshield 121 and the spacedelectrode 154 and the spacedcoil 134 is effective, particularly when the operating frequency of the generator is on the order of 30 megaeycles or more. The use of cooling fluids is generally required for applications in which the plasma exhibits a high wall-heating effect. In those instances, the plasma behaves more nearly as though it were in thermal equilibrium. Such plasmas are usually, but not necessarily, produced by the application of high power; e.g., on the order of 200 watts or more.
Radio frequency energy is coupled from an RF generator through the coaxial cable ground lead I58 and thehot cable lead 160. Theground lead 158 is in turn conductively joined at 159 to theshield 121 and at 162 to the ground end of thecoil 134. The hot coaxial cable lead is satisfactorily coupled at 163 to anintermediate turn 164, illustrated as approximately one turn from ground potential. The exact placement of the connection of thelead 160 to thecoil 134 is determined by the impedance of the coaxial cable. Of course, the coaxial cable may be replaced by any other suitable bundle of conductors, e.g. an open line cable.
Theleading end 157 of theelectrode 154 is in communication with a narrow passage of thenozzle 156, which is manually pressflt into thefront opening 130 of theshield 121. In this way, thetip 156 can be manually removed and replaced with a differently con figurated nozzle for producing plasma of varying types and characteristics. The forward end portion of theelectrode 154 fits within a close tolerance bore 172 opening toward the rear of thenozzle 156. A high temperature-resistant O-ring 174. situated in anannular groove 176 in thenozzle 156, holds the nozzle tightly in place during use but permits the mentioned manual removal.
During operation, gas is caused to flow throughinlet 136 into the hollow of thecoil 134 andelectrode 154, as indicated byarrow 142. The flow is preferably substantially laminar. The plasma gas at introduction into the coil is at ground potential, and with proper control, is excited to plasma only at the highvoltage leading end 157 of theconduit 154.
Theplasma generator 200 illustrated by FIG. 5 is of presently preferred construction for use as a surgical scalpel. It is generally similar to the embodiment of FIG. 4 but is of more convenient shape for a surgical handpiece. Thus, theouter casing 202, which may be of aluminum, among other conductive materials, is of generally tapered shape and is sealed at its opposite open ends by a press-fit tip 204 and a press-fit plug 206, respectively. Thetip 204 is of ceramic material and is configurated at its forward end as anozzle 208. Theplug 206 has a central bore for accommodating aflexible supply cord 210.
As in the case of the previously described embodiment (FIG. 4), a continuoushollow metal conduit 212 is formed as an RF inductor coil 214, terminating at its lowpotential end 215 asgas feed conduit 216 and at its high potential end 217 as ahollow conductor 218. Theconduit 218 functions as an electrode for the initiation of a plasma, as a supply passage for an excitable gas, and a high potential capacitor plate. The coil 214 is tapered to conform generally with the internal configuration of the outer casing orhousing 202, and it is supported as shown by itsfeed end 216 and by theleading end 219 of theelectrode 218. Theleading end 219 of the electrode is inserted in acentral bore 222 of thetip 204 in a press-fit relationship, and the lowpotential end 215 of the coil 214 is soldered 224 to a metal connector 225 mounted in theplug 206 to effect a fluidtight seal.
Thesupply cord 210 comprises a coaxial cable with a groundedmetal shield 226,internal conductor 228, and abundle 230 of flexible gas supply tubes. Themetal shield 226 is soldered 232 to ametal connector 234 so that theentire plug 206,housing 202 and lowpotential end 215 of the coil 214 are at ground potential (or other convenient reference potential of the shield). O-rings 236, 238 may be used as previously described to effect fluid-tight seals within theplug 206 so that gas introduced through thesupply tubes 230 can only enter thefeed end 216 of the coil 214. Thecentral conductor 228 is connected at theappropriate tap point 240 on the coil, being brought through aninsulated spacer 242 as shown. Thespacer 242 is scaled, e.g., by asolder plug 244 to prevent gas leakage. Thus, according to this embodiment, the dielectric between the coil 214 andelectrode 218, respectively, and thehousing 202 is either air or some other entrapped gas.
Thetip 204 is machined withbores 246 and 248 of decreasing diameter following theterminus 219 of theelectrode 218 to attenuate the gas stream before it exits thenozzle 208. Of course, nozzles of varying shapes and sizes may be substituted, depending upon the characteristics desired for the plasma.
The invention will be better understood by reference to the drawings in connection with the following specific examples:
EXAMPLE I A plasma generator was constructed as illustrated by FIG. 5. When assembled, the resonant frequency of the parallel-resonant circuit comprised of the inductance coil and the capacitive elements in circuit therewith was 90 megahertz. The inductance of the circuit was determined by a Marconi, Model TFl3l3A, bridge to be about 0.6 microhcnrics, and the capacitance of the circuit was thus determined to be about 5 picofarads. Under loaded conditions, the Q of the plasma generator was determined to be above 140. The hollow elec trode was fitted with a nozzle having an orifice diameter of about 0.007 inches. One hundred tcn watts of RF power was delivered to the tap of the coil at approximately 100 volts. The RF source was capable of being tuned to output frequencies ranging from about to about 100 megahertz. Argon gas was displaced through the coil to exit the nozzle at a rate of about 1 cubic foot per hour.
a. With the RF source tuned to megahertz, a plasma was initiated spontaneously within a fraction of a second after the power was turned on. The plasma was visible for about 1 inch beyond the terminus of the nozzle and had the blue-white color and general appearance typical of an argon plasma. The Q of the plasma generator under these conditions was determined to be below about 15. Paper was readily ignited by the plasma, and copper wire about 0.030 in diameter was quickly melted upon contact by the plasma. An ozone odor was detectable in the vicinity of the plasma.
b. After the plasma was initiated, the RF source was tuned to 92 magahertz. The length of the plasma descreased by about half, and the plasma remained bluewhite in color but emitted much less light. Pater could not be ignited by the plasma. Dielectric materials, such as plasitcs, rubber, cloth and paper, were apparently unaffected by being contacted with the plasma. Electrically conductive materials, such as metals and electro lytic solutions (e.g., isotonic solutions), were contacted by the plasma and received energy therefrom, as evidenced by heating or destruction of the contacted regions of the material.
The plasma was brought into contact with animal (both mouse and human) tissues by sweeping the plasma across an incision path. The tissue vaporized in a thin line to produce a substantially hemorrhage-free incision characterized by a complete absence of charred tissue. For surgical applications, nozzle orifices between 0.0050 and 0.0130 inches in diameter have been successfully used with this plasma generator.
c. Attempts were made to initiate a plasma with the RF source tuned at frequencies ranging from several megahertz above to several megahertz below resonant frequency (90 Mhz). Spontaneous initiation of a plasma occurred at frequencies as high as 94 megahertz but would not occur at frequencies significantly below 88 megahertz.
(1. After a plasma was initiated, the RF source was tuned from 90 megahertz to progressively higher frequencies and the nature of the plasma was observed. A cold plasma of the type described in (b) above was established at a frequency of about 92 Mb and was maintained up to a frequency of about 95 Mh, at which time the plasma extinguished. At all times until the plasma extinguised, it could be coupled to conductive material, such as tissue or metal; i.e., energy would be transferred into such material when it was contacted by the plasma.
e. After a plasma was initiated, the RF source was tuned from 90 megahertz to progressively lower frequencies. and the nature of the plasma was observed. A cold plasma capable of coupling to conductive materials was produced at frequencies only slightly below 90 megahertz, but at frequencies below about 88 Mh, the plasma lost its ability to couple to even good conductors, such as copper. The plasma grew progressively weaker in appearance as the source frequency was decreased until it extinguished at about 86 Mh.
EXAMPLE ll The plasma generator of Example II was operated in the same fashion as described in Example I except that the RF source was tuned to provide power at the resonant frequency of the generator (90 Mhg). The power supplied to the generator was varied and the nature of the plasma was observed.
a. At a power setting of 500 watts, the plasma was visible to about 4 inches beyond the terminus of the nozzle. The plasma was blue-white for about 1 inch beyond the nozzle but the remainder of the plasma was dull orange. The Q of the plasma generator under these conditions was determined to be about 6. The orange portion of the plasma was very hot (above 4S00K) but could not be made to are to ground. The diameter of the plasma flared out from the nozzle to more than times the diameter of the orifice. When the plasma was applied to tissue, the tissue was charred and burned without producing a useful incision. The plasma behaved generally as a blowtorch.
b. The power setting was increased to 1500 watts. The plasma was visible for a length of about 6 inches and was entirely dull orange. Within 5 seconds, the hollow electrode melted in the vicinity of the nozzle.
c. At a power setting of 50 watts, the plasma was blue-white and was visible for approximately onefourth inch beyond the nozzle. Paper could not be ignited by this plasma. When applied to tissue, the plasma produced an unacceptably wide, U-shaped inci sion at a rate too slow for practical surgery.
EXAMPLE ill The plasma generator of Example I was used success fully for microwelding and microcutting by tuning the RF source to about 94 Mb at about 500 watts, and by increasing the rate of argon gas flow to between about 5 and about cth, The plasma diameter tended to be smaller than the orifice of the nozzle and was bluewhite in color. The plasma was visible for about /2 to about 1 inch in length. When the plasma was sub stained in air, the Q of the generator was about 12. When the plasma was brought into contact with a workpiece, the Q dropped to about 6. When helium was substituted for argon, an orange plasma of much higher temperature was produced. The helium plasma, being hotter, is faster and even more effective for many cutting and heating applications.
EXAMPLE [V A plasma generator (torch) was constructed generally as illustrated by FIGS. 1 through 3. As assembled, the resonant frequency of the torch was about 74 Mh. The inductance of the parallel-resonant circuit of the torch was determined to be about 0.8 microhenries and the capacitance of this circuit was determined to be about 6 picofarads. A nozzle was selected with an orifice diameter of 0.030 inches. Argon was displaced through the generator at a rate ofabout 6 cubic feet per hour. Fifteen hundred watts of RF power was applied to the tap of the coil at approximately 500 volts. The unloaded Q ofthe apparatus was about 200, but the Q dropped to about 13 upon initiation of a plasma.
a. With power supplied at resonant frequency. the visible length of the plasma was about 4 inches. The plasma was blue-white in appearance for about onehalf inch beyond the tip of the nozzle, changing to orange-white in the core of the plasma beyond that point. The plasma color became a duller orange away from the core and toward the plasma boundary. The blue-white portion of the plasma could be made to are to ground (evidencing the presence of RF energy) but the orange portion of the plasma could not be made to are to ground and was apparently electrically neutral but at very high temperature.
b. With power supplied at about MH, the visible plasma was entirely blue-white and was reduced to about 1 inch in length beyond the tip of the nozzle. As the frequency of the RF power was increased further, the length of the visible plasma was correspondingly reduced until the plasma ultimately extinguished at about 78 Mh. When the plasma was coupled into either con ducting or semi-conducting material, the temperature of the plasma carrier gas was observed to increase appreciably.
c. With power supplied at about 73 Mb, the visible plasma decreased to about 1 inch and could not be made to couple into semi-conducting material. The plasma extinguished when the frequency of the power source was reduced further.
EXAMPLE V The plasma generator of Example IV was operated at various frequencies of applied power, using a nozzle with a tip diameter of 0.020 inches and substituting first nitrogen and then helium for argon as the displaced gas. In each instance, the gas was displaced at a rate of 15 cfh (cubic feet per hour).
When nitrogen was used, the plasma was blue-white in color and appeared to contain some RF energy (evidenced by a propensity to are to ground). At resonance (power supplied at about '74 Mh), the plasma was visible for about 2 inches beyond the tip of the nozzle. The visible length decreased to about one-half inch when power was supplied at 78 Mh and to about one-tenth inch when power was suppled at 70 Mb.
When helium was used, the plasma was orange in color and evidenced little or no RF energy. The visible plasma length at resonance was about 12 inches, decreasing to about 2 inches at 78 Mh and about one-half inch at 70 Mb supplied power, respectively.
Plasmas can also be sustained in other gases, such as ammonia, methane and propane, with the generator of this example by proper adjustment of flow rates and power levels.
EXAMPLE VI A plasma generator similar to that of Examples IV and V was constructed, using circuit parameters which resulted in a resonant frequency of I00 Mb. The paral lei-resonant circuit had an inductance of about 0.5 microhenries and capacitance of about 5 picofarads. Argon was displaced through the generator at about 15 cfh through a nozzle with a tip diameter of about 0.020 inches. Power was supplied at 1500 watts and 500 volts. A bluewhite plasma was produced with a visible length of about 8 inches when power was supplied at Mh. The visible length of the plasma decreased to about 2 inches when the frequency of the power was increased to Mb and to one-half inch when power was supplied at 95 Mh.
I claim:
I. A method for performing surgery which comprises:
establishing and maintaining a cold plasma of a sufficiently small cross section to permit a narrow rca, mamma gion of contact between the plasma and tissue; and applying said plasma to tissue to produce an incision.
2. A method according to claim 1, wherein the plasma is produced by applying RF energy to a noble gas.
3. A method according to claim 2, wherein the noble gas is Argon and sufficient RF energy is applied to said gas to excite it to a metastable state.
4. A method according to claim 2, wherein the noble gas is displaced through a hollow electrode terminating in an effluent nozzle and RF energy is applied conductivcly to said electrode through a parallel-resonant circuit.
5. A method according toclaim 4, wherein RF energy is applied to said parallel-resonant circuit at a frequency close to. but different from, the resonant frequency of said circuit.
6. A method according to claim 5, wherein RF energy is applied to said parallel-resonant circuit at a frequency up to about percent higher than the resonant frequency of said circuit.
7. A method according to claim 6, wherein the noble gas is Argon. the diameter of the plasma is between about 0.005 and about 0.015 inches. and the resonant frequency of the parallel-resonant circuit is between about 30 and about 200 megahertz.
8. A method according to claim 7. wherein the resonant frequency of the parallel-resonant circuit is between about and about megahertz, and the flow rate of the Argon gas is below about 5 cubic feet per hour.
9. A method according to claim 8, wherein the flow rate of the Argon gas is between about 1/10 and about 2 cubic feet per hour. the unloaded Q of the parallelresonant circuit is above about 100, and RF energy is applied to said circuit at between about 30 and about 300 watts and between about 50 and about 300 volts.
10. A method according to claim 1, wherein the plasma is produced by applying electrical energy to a noble gas.
11. A method according toclaim 10, wherein the diameter 0f the plasma is adjusted to between about 0.005 and about 0.015 inches.
12. A method according toclaim 10, wherein the noble gas is Argon and said gas is excited to a metasta ble state by the application of electrical energy.
13. A method according toclaim 12, wherein the diameter of the plasma is adjusted to between about 0.005 and about 0.015 inches.
14. A method according to claim 13, wherein the Argon is displaced through an effluent nozzle at a flow rate below about 5 cubic feet per hour.
15. A method according toclaim 14, wherein the flow rate of the Argon is held between about 1/10 and about 2 cubic feet per hour.