United States Patent [191 Hass [ ANODE PRESS WITH VIBRATION AND COMPACTION RATE SENSING MEANS [75] Inventor: Wynn M. I-Iass, Owensboro. Ky.
[22] Filed: Nov. 28, 1973 [2]] Appl. No.: 419,862
Related U.S. Application Data [63] Continuation-impart of Ser. No. 163.766. July 19,
1971 abandoned.
[52] U.S. Cl. 425/135; 425/149; 425/167; 425/419; 425/421 [51] Int. Cl B30b ll/02 [58] Field of Search 425/415, 421, 423, 425, 425/432, 443, 456. 149, 167, 419; 164/4, 154
{56] References Cited UNITED STATES PATENTS 1,620,388 3/1927 Palmer 425/423 2,057,466 10/1936 Willetts 425/415 2.909.826 l0/l959 McElroy 425/456 3,397,424 8/1968 Rovde et a1 H 425/419 3.537.157 11/1970 Locke 425/432 3.550.204 12/1970 Fink 425/149 3,555,599 1/1971 Weinh01d.... 425/432 3,616,495 11/1971 Lemelsonm. 425/167 3.756.762 9/1973 Maugweiler 425/421 3,758,245 9/1973 Hermes 425/415 3,764,242 10/1973 Fischer 425/456 FOREIGN PATENTS OR APPLICATIONS 1.928.634 12/1970 Germany 425/149 [4 1 May 13, 1975 1,923,813 l/l970 Germany 425/149 Primary Examiner-Robert D. Baldwin Assistant Examiner-John McQuade Attorney, Agent, or Firm-Van C. Wilks; Herbert M. Hanegan; Stanley L. Tate [57] ABSTRACT This disclosure relates to apparatus for forming a car bon anode block comprising a movable mold, a feedbox extendable to a position where it is directly above the movable mold, a stationary bolster encompassed by the movable mold, a vibration means attached to the stationary bolster, and a movable press ram mounted for motion in the vertical plane above the stationary bolster and having protrusions extending from the face thereof. Aggregate used in forming carbon anodes is discharged into the feedbox and the feedbox and mold then move upwardly leaving the aggregate contained within the mold. The feedbox is then removed and the vibration means activated to compact the aggregate by expelling the air therefrom. During the compaction of the aggregate. the press ram is brought downward in proximity to the upper surface of the aggregate with the protrusions in the face thereof extending into the aggregate, and control means then continue to move the press ram downward in response to means which sense the compaction rate of the aggregate whereby the aggregate will form about the protrusions during compaction with substantially little or no pressure being applied by the press ram.
13 Claims, 5 Drawing Figures w-v gm'naams 1.883.278
I run! SHEET 10$ 5 ELECTRI CONTROLLER PATENTED MAY 1 339. 5
SHEET 1 0? 5 HYDR. (ZNIROLflECTRICAL CONTROLLER 1 ANODE PRESS WITH VIBRATION AND COMPACTION RATE SENSING MEANS CROSS-REFERENCE TO RELATED APPLICATIONS This application is a Continuation-in-Part of a copending application Ser. No. 163,766, filed July l9, l97l, now abandoned.
This invention relates to an apparatus for forming a carbon anode comprising a jarring or vibrating device which is adapted to compact the anode into a dense block more completely and efficiently than prior art apparatus of this type.
In the process of aluminum reduction, carbon anode blocks are used in the reduction cells. In prior art systems of producing carbon anode blocks, calcined petroleum coke aggregate and coal tar pitch binder are discharg d into a stationary stand mold and pressed into a block anode by an overhead press. The density of this anode is not as desirable for use in a reduction cell as is an anode obtained by utilization of the vibrat ing or jarring apparatus of this invention.
In the aforementioned copending application of which this application is a Continuation-in-Part, it is explained that the press ram which is used to press the carbon aggregate into a block anode includes protrusions in the lower face thereof, such as cones, truncated cones, cylinders, dimples, cubes, and other various shapes which are used to form indentations in the upper face of the anode block. These indentations are used primarily as a means by which the anode control shaft can be affixed and secured to the anode block. Owing to this arrangement, the anode may thereby be raised and lowered in the reduction cell. The anode shaft usually includes a yoke portion at the distal end thereof which is inserted into the indentations formed in the upper face of the anode block and secured therein by solidifying molten metal or the like.
Because of the relatively small surface area at such protrusions, the pressure applied by the press ram against the anode block at such areas is extremely high. Consequently, the prior art methods and apparatus for accomplishing this operation resulted in anode blocks having localized stress areas from which fissures in the block could originate and propagate, and also in regions of higher density relative to the remainder of the block which adversely affect its electrical properties.
In the aforementioned copending application there is described an apparatus for forming carbon anode blocks comprising a vertically movable mold having a lower vibrating table disposed therein. During compaction (vibration) of the aggregate, the mold walls move downward by means of hydraulic cylinders at a rate selected to maintain the relative motion between the aggregate and the mold walls at or near zero. Also during compaction, a press ram is lowered in proximity to the upper surface of the aggregate at a rate corresponding approximately to the compaction rate of the material, applying little or no pressure thereagainst, and allowing the material to freely form around any protrusion extending from the lower face of the press ram. The vibrating orjarring motion of the mold allows virtually all air trapped between the particles of carbon aggregate to be expelled, thereby compacting the aggregate without the application of a large amount of force by the press ram, and permitting the formations of indentations in the upper surface of the aggregate conforming to the shape of the protrusions in the press ram with the application of substantially little or no pressure being applied by the press ram, Upon completion of material compaction, the vibrating mechanism is deactivated and the press ram is then further lowered to apply sufficient pressure to further compact the material and to finish form the top surface of the material to conform to the shape of the protrusions in the lower face of the press ram.
While it is known from the prior art to form blocks from particulate material by compressing the material in a movable mold after vibration to expel air therefrom, the prior art does not disclose means for controlling the movement of such press rams at a rate corresponding substantially to the compaction rate of the particulate material (i.e., owing to the vibration thereof) whereby the aggregate will form about such protrusions during compaction thereof with substantially no pressure being applied by the ram. For example, in US. Pat. No. 2,057,466 issued to P. G. Willetts, there is disclosed a molding apparatus which includes a vertically movable mold which is adapted to contain a granular material supported on a bottom plate and vibrated to expel air therefrom by means ofa vibrating table. The apparatus further includes a top plate which is adapted to rest on the upper surface of the aggregate and to move downwardly relative to the movable mold in conjunction with a heavy anvil which rests on the top of the plate and which is adapted to provide a compact ing force thereagainst. A pneumatic hammer is positioned above the anvil and is adapted to apply impact blows against the anvil to compact and compress the aggregate contained within the mold. As the anvil and top plate move downwardly under the influence of their own weight as well as the impact blows provided by the hammer, the hammer must be continuously repositioned downwardly so that it will be in position to strike the downwardly moving anvil. This is accomplished by hand by means of a rack, pinion, and hand wheel.
It should be understood that the Willetts apparatus does not include means for controlling the movement of the press ram at a rate corresponding substantially to the compaction rate of the aggregate. On the contrary, the Willetts press ram is intended to compact and compress the material during vibration thereof without regard to the degree of pressure being applied Similarly, the U.S. Pat. Nos. to Locke 3,537,157, Hirt et al 3,7 l2,785, Weinhold 3,555,599 and McElroy 2,909,826 also fail to disclose any means for controlling the movement of the press ram at a rate corresponding substantially to the compaction rate of the aggregate whereby the aggregate will form about protrusions in the lower face of the ram during compaction with substantially little or no pressure being applied by the ram. While each of these patents discloses a press ram and a vibrating mold, none discloses the cooperation between the vibrating means and the mold to effect the result of the instant invention. In the Locke patent, for example, a packing head is brought down against the aggregate after vibration thereof to eompact the material. There is no disclosure of any control means by which the downward movement of the packing head could be controlled in accordance with the compaction rate of the aggregate.
It is, therefore, a primary object of this invention to provide an improved apparatus whereby a carbon anode block may be formed into a more compact and dense product than that provided by prior art apparatus, and which provides a more suitable anode for use in an aluminum reduction cell.
Another object of this invention is to greatly increase the capacity of existing anode presses, or to allow the use ofa much smaller press than would normally be re quired to produce a carbon anode of desirable density.
A further object of this invention is to provide apparatus for forming carbon anode blocks having indentations formed in the upper surface thereof, while avoiding the formation of deleterious over-stressed areas in the surface thereof.
More particularly, it is an object of this invention to provide apparatus as above described having a vibrating mold and a vertically movable press ram, and means for controlling the movement of the press ram at a rate corresponding substantially to the compaction rate of the aggregate from which the anode block is formed, whereby the aggregate will form about the protrusions during compaction thereof with substantially little or no pressure being applied by the press ram.
Briefly described, the apparatus of this invention in' cludes a mold having vertically movable walls which, in their lowermost position, encompass a bolster having a vibrating plate affixed to the upper portion thereof. A feedbox, which is formed by a hollow receptable having upper and lower openings for receiving and discharging calcined petroleum coke aggregate and coal tar pitch binder, is movable to a position over the mold whereupon the aggregate may be discharged therein to be supported on the vibrating plate. The feedbox is then removed and a press ram, having protrusions extending from the lower face thereof, is lowered until the protrusions enter the aggregate. The vibrating mechanism, which may be either pneumatically or electrically activated, is then started and the aggregate compacted due to the air being expelled therefrom.
During the aggregate compaction (vibration), the mold walls are moved downwardly by hydraulic means at a rate selected to maintain the relative motion between the material and mold walls at or near zero. Also. during compaction the press ram is lowered at a rate corresponding approximately to the compaction rate of the aggregate. applying little or no pressure there against, and allowing the aggregate to form around the protrusions in the lower face thereof. This is accomplished by monitoring the compaction rate of the aggregate (i.e., the rate at which the upper surface of the aggregate descends), and generating a control signal in response thereto by which the hydraulic system of the press ram can be controlled to move the press ram downwardly at the appropriate rate.
In one embodiment of the invention, the monitoring means takes the form of a pressure sensor or cell disposed in the lower face of the ram (preferably in one of the protrusions). and an electrical control circuit having limiting means by which the descent of the press ram may be retarded or stopped upon the occurrence of a predetermined pressure sensed at the face of the ram.
In another embodiment of the invention, the moni toring means includes means for generating an electrical current through the aggregate, such current flowing only when the face of the ram makes sufficient contact with the aggregate. which condition would be such as to signal the hydraulic control system of the press ram to retard or stop its descent.
In a preferred embodiment of the abovedescribed electrical monitoring means, a logic circuit is provided which generates FAST ADVANCE, STOP and SLOW ADVANCE signals to the hydraulic control system of the press ram whereby the descent of the ram may be more closely controlled.
With the above and other objects in view that may become hereinafter apparent, the nature of the invention may be more clearly understood by reference to the several views illustrated in the attached drawings, the following detailed description thereof, and the appended claimed subject matter:
IN THE DRAWINGS FIG. 1 is a front elevation view of the anode forming apparatus of this invention, and illustrates the hydraulically actuated press ram (partially broken to conserve space), movable mold, bolster, and electrical and hydraulic control systems for the press ram shown schematically; and depicts in phantom the press ram with protrusions therefrom extending into the aggregate in the mold;
FIG. 2 is a front elevation view of the anode forming apparatus, the mold walls shown in their uppermost position, and is partially broken away to illustrate a pneumatically operated vibrator which is shown in section;
FIG. 3 is a front elevation view of the anode forming apparatus, the mold walls shown in their lowermost position encompassing the bolster and vibrating means, and is partially broken away to illustrate an electrically operated vibrator shown in cross-section;
FIG. 4 is a front elevation view of the anode forming apparatus similar to FIG. 1, and further illustrates sche matically another embodiment of the electrical and hydraulic control system for the press ram;
FIG. 5 is a schematic diagram of a preferred embodiment of the electrical control circuit which may be used with the apparatus of FIG. 4, portions of the apparatus being shown diagrammatically.
Referring now to the drawings in detail, there is illustrated in FIG. 1 an anode vibrator and press apparatus designated generally by the numeral 10. The apparatus includes a movable mold 11 and a press I2. The mold 11 includes a bolsterportion 13 having a vibrating plate I4 disposed at the upper end thereof and vertically movable side walls 15 (shown in their uppermost position), which, in their lower most position, encompass the bolster 13 as seen more clearly in FIG. 3.
Afeedbox 16 is movable horizontally on rails 17 carried bysupport member 18. Thesupport member 18 is vertically movable by ahydraulic lift 19 for a purpose to be hereinafter described.
The press I2 includes ahousing portion 20 which containshydraulic cylinders 21 from whichrods 22 extend to support apress ram 23. Thepress ram 23 includes truncatedconical protrusions 24 extending from the lower face thereof. Conventional hydraulic control means 25 havingconduits 26 extending into thehydraulic cylinders 21 are provided to raise and lower thepress ram 23 between themold walls 15 of the movable mold II.
The operation of the apparatus 10 is as follows: With thefeedbox 16 containing a charge of carbon aggregate, thesupport member 18, which carries themovable mold walls 15 as well as thefeedbox 16, is lowered by means of thehydraulic lift 19 to a position as shown in FIG. 3 where the mold walls [5 encompass the bolster 13. Ahydraulic ram 25 is then actuated to slide thefeedbox 16, through the medium of a connecting pushingmember 26, horizontally along the rails 17 to a position over the vibratingplate 14. Thehydraulic lift 19 is then raised, thereby raising the feedbox l6 and leaving the carbon aggregate C retained in the mold ll between the mold walls l5 which have been correspondingly raised by thehydraulic lift 19 and thesupport member 18. Thefeedbox 16 is then withdrawn to the right by thehydraulic ram 25 to the position shown in FIG. 1. Thehydraulic control mechanism 25 is then activated to bring thepress ram 23 down into proximity to the upper surface of the aggregate C and the vibra tion mechanism (FIGS. 2 and 3) activated to vibrate the table 14 and thereby initiating the compaction of the material. Thepress ram 23 then continues downward with theprotrusions 24 entering into the aggregate C and permitting the aggregate to form thereabout. As the upper surface of the aggregate descends owing to the compaction thereof, thepress ram 23 continues to move downwardly keeping theprotrusions 24 imbedded in the aggregate while means (to be described hereinafter) control the downward movement of thepress ram 23 such that it applies little or no pressure against the aggregate C. Also, as the aggregate is being compacted, themold walls 15 are being moved downwardly by means of thehydraulic lift 19 andsupport member 18 such that the relative motion between the aggregate C andmold walls 15 is approximately zero. Upon completion of material compaction, the vibrating mechanism is deactivated and thepress ram 23 continues to lower and applies sufficient pressure to further compact the aggregate C and to finish form the upper surface thereof to conform to the shape of theprotrusions 24. Withsupport member 18,hydraulic lift 19, andmold walls 15 in their lowermost positions, thehydraulic ram 25 moves thefeedbox 16 to the left to push the formed anode block B off of the vibratingplate 14 onto receiving table 27 which constitutes the upper surface of the left-most portion of thesupport member 18. The anode block B is subsequently removed from the table 27 and baked into a finished product.
Referring now to FIG. 2, it can be seen that the bolster 13 includes a vibratingdevice 30 which is mounted below the vibrating plate or table 14. The bolster l3, vibratingdevice 30, and vibrating plate or table 14 are designed so that when deactivated will withstand the full working load of thepress ram 23. The vibratingdevice 30 is operated by air entering air cylinder 31 through air intake 32 by way of conduit 33. This forces ashaft 34, extending from air cylinder 31, upward into contact with a striking pin which is mounted on a connecting member 36. The connecting member 36 is fixedly attached to the vibratingdevice 30. The motion of theshaft 34 is transmitted through thestriking pin 35 and connecting member 36 to the vibratingdevice 30. Vibratingdevice 30, in turn. shakes the vibrating plate or table 14 and thus the aggregate contained within themold walls 15. Exhaust air flows through anair passageway 37 and exits atexhaust openings 38 and 39. The vibrator operates until virtually all air trapped between the aggregate particles is expelled, thereby compacting the aggregate into the desired anode form.
An electrical vibrator is illustrated in FIG. 3 which may be substituted for the pneumatic vibrator discussed above in connection with FIG. 2. Current enters the electric vibrator through conductors within conduit 40 and is transmitted to coil 4] which is mounted on ashaft 42. A balancing or stabilizing spring assembly 43 surrounds theshaft 42. When current flows through thecoil 41, a force field is created which attracts acontact plate 44. Thecontact plate 44 is mounted through and beneath aflexible diaphragm 45. When thecoil 41 andcontact plate 44 make contact, anoverload switch 46 interrupts the current flow to thecoil 41. Thediaphragm 45 and spring assembly 43 then return to their original positions, thus creating vibration. The frequency of this connection and disconnection is predetermined by the design parameters and specifications of thediaphragm 45. coil 4|, spring assembly 43, and overloadswitch 46. The movement ofdiaphragm 45 transmits vibtration through avibrator superstructure 47 which is connected to the vibratingdevice 30 which, in turn, is connected to the vibratingplate 14.
In accordance with this invention, means are provided for controlling the movement of thepress ram 23 at a rate corresponding to the compaction rate of the aggregate C. Such means may include any means which is capable of sensing or monitoring the compaction rate of the aggregate and generating a signal in response thereto by means of which thehydraulic control system 25 of thepress 12 can be controlled. Referring once again toFIGv 1, it can be seen that thepress ram 23 includes apressure transducer 50 disposed in the lower face of theram 23 between theprotrusions 24. Thepressure transducer 50 is electrically connected by means ofcontrol line 51 to anelectrical controller 52, such as a solenoid, servo-motor or the like, which is, in turn, connected throughappropriate means 53 to thehydraulic control system 25. Thepressure transducer 50 is so designed that upon the appearance of a predetermined pressure thereagainst, owing to its engagement against the carbon aggregate C, an electrical signal will be generated which is transmitted through theline 51 to theelectrical controller 52. Theelectric controller 52, through the connectingmeans 53, then controls thehydraulic control system 25 to either slow or stop the descent of thepress ram 23. Consequently, thepress ram 23 will descend at a predetermined rate until such time as thepressure transducer 50 bears against the aggregate C with sufficient pressure to activate thecontroller 52. It should be apparent, therefore, that if the threshold pressure is sufficiently low, thepress ram 23 will follow the descent of the upper surface of the aggregate C at a rate corresponding to the compaction rate of the aggregate.
Referring now to H6. 4, there is illustrated therein an alternate embodiment of the control apparatus of this invention. ADC voltage source 60, having its negative pole grounded. has its positive pole connected to thevibrator plate 14. Anelectrical contact 61 is recessed into one of theprotrusions 24 on the face of thepress ram 23 and is electrically insulated therefrom byinsulator 62. Theelectrical contact 61 is connected to theelectrical controller 52 through line 5!, and thecontroller 52 is, in turn, connected to thehydraulic control system 25 through connectingmeans 53 as in the embodiment of FIG. 1.
The operation of the control system of FIG. 4 should be apparent. Provided that themold walls 15 are insulated or otherwise non-conductive. no current will flow from thevoltage source 60 until thepress ram 23 is brought down into contact with the aggregate C and contact is made at theelectrical contact 61. At this point. current will flow through theline 51 to theelectrical controller 52 which thereby commands thehydraulic control system 25 to retard or stop the downward advance of thepress ram 23. However, as soon as contact is broken between the aggregate C and theelectrical contact 61, which occurs. of course, when the upper surface of the aggregate C descends owing to the compaction thereof as it is being vibrated. the control circuit is broken and thehydraulic control system 25 will cause thepress ram 23 to advance. lt should be understood. therefore, that thepress ram 23 will follow the upper surface of the aggregate C downwardly at a rate corresponding to the compaction rate of the aggre gate.
A preferred embodiment of the electrical control circuit of HO. 4 is illustrated schematically in FIG. 5. As seen in FIG. 5, aDC voltage source 107, having its negative pole grounded. has its positive pole connected to thevibrator plate 14. The lower face of thepress ram 23 is provided with three recessedelectrical contacts 108, 109 and 110; these contacts are insulated from theram 23 by respective insulators 111 112 and 113. Two additional recessedelectrical contacts 114 and 115 are provided respectively in the lowermost surface of theprotrusions 24, respectively. Thecontacts 114 and 115 are respectively insulated from theram 23 byinsulators 116 and 117.
The threeelectrical contacts 108, 109 and 110 are respectively connected to individual input terminals of an ANDcircuit 118. Each of the three input connections of the ANDcircuit 118 is also connected to ground via arespective resistor 119. 119a and 11912.
The twoelectrical contacts 114 and 115 are respectively connected to individual input terminals of an ANDcircuit 121. Each of the two input terminals of the ANDcircuit 121 is also connected to ground via arespective resistor 122 and 123.
The output terminals of the ANDcircuits 118 and 121 are connected to respective input terminals of a turther ANDcircuit 124, and to respective input terminals ofaNAND circuit 125. The output terminal of the ANDcircuit 121 is also connected to an input terminal of an additional ANDcircuit 126. The output terminal of the ANDcircuit 118 is connected to an input terminal of the ANDcircuit 126 via aninverter 127. The output terminal of theinverter 127 is connected to ground via aresistor 128. The output terminals of the ANDcircuits 118 and 121 are also connected respec tively to ground viaresistors 129 and 130, respectively.
The output terminals of theNAND circuit 125, the ANDcircuit 124 and the ANDcircuit 126 are each connected to theelectrical controller 52 so as to supply command signals thereto. TheNAND circuit 125 provides a ONE signal as fast advance command signal. the ANDcircuit 126 provides a ONE signal as a slow ad vance command signal. and the ANDcircuit 124 provides a ONE signal as a stop command signal.
The operation of the control circuit of FIG. is to be described briefly below. starting with the assumption that thepress ram 23 is in the position shown; that is. spaced from the top surface of the carbon aggregate C. In this position no current flows from theDC source 107 through the mass of carbon granules, in this condition, all input signals to the ANDcircuits 118 and 121 are ZERO, and their respective output signals are ZERO. T heNAND circuit 125 produces a ONE signal. in response to the two ZERO signals it receives, which ONE signal is fed to thecontroller 52 as a fast advance command signal. Theelectrical controller 52 energizes the hydraulic control system 25 (F105. 1 and 4) to cause theram 23 to move downwardly at a relatively fast rate until both of thecontacts 114 and contact the upper surface of the carbon aggregate C When contact is made between each of thecontacts 114 and 115 and the carbon aggregate, current flows through theresistors 122 and 123 placing ONE signals on the input terminals of the ANDgate 121. A ONE signal appears consequently on one input terminal of theNAND gate 125, causing its output signal to be come ZERO. thus terminating the fast advance command signal tocontroller 52. The output signal from the AND circuit remains ZERO, the output signal appears as a ONE signal on one input terminal of the ANDcircuit 126 because of theinverter 127. The other input terminal of the ANDcircuit 126 receives the ONE signal from the ANDcircuit 121 and, consequently, produces a ONE signal on its output. This ONE signal is fed to thecontroller 52 as a slow advance command signal. Thecontroller 52 effects relatively slow. downward movement of theram 23 until each of the threecontacts 108, 109 and 110 contact the upper surface of the carbon aggregate.
Upon contact between eachofthe contacts 108, 109. l 10 and the carbon aggregate, current flows in each of theresistors 119, and 121 thereby placing a ONE signal on each input terminal of the ANDcircuit 118, causing its output terminal to exhibit a ONE signal which, because of the action of theinverter 127, appears as a ZERO signal at one input terminal of the ANDcircuit 126. Consequently, the output signal of the ANDcircuit 126 becomes ZERO thereby terminating the slow advance command signal to thecontroller 52.
The two input terminals of the AND gate receive the two ONE signals from the ANDcircuits 118 and 121 causing its output terminal to exhibit a ONE signal, which signal is supplied tocontroller 52 as a stop command signal. in response to the stop command signal. thecontroller 52 energizes thehydraulic control system 25 to halt the advance of theram 23. This condition will prevail until the upper surface of the carbon aggregate falls away from any of thecontacts 108, 109, I10, 114, and 115. In the event the surface of the carbon aggregate, due to action of thevibrator plate 14. falls away from any of thecontacts 108, 109 and 110, a slow advance command signal is again produced. in the event the surface of the carbon aggregate falls away from either thecontacts 114 or thecontact 115. a fast advance command signal is again produced.
It is to be appreciated that the control circuit of FIG. 5 functions quickly and. in effect. advances theram 23 at substantially the same rate as the surface of the mass of carbon granules moves downwardly Moreover. the control circuit operates to assure that theprotrusions 24 remain in the mass of carbon aggregate because of the fast advance command signal.
It should be understood that other control circuits could be used within the scope of this imcntion. and particularly other logic circuits in connection with the embodiment of FIG. 5. For example. while electrical and pressure sensing control means have been specifically illustrated and described herein, it is contemplated that wave energy sensing means could be utilized such as proximity switches and other sonic sensors which can be used to maintain thepress ram 23 in a predetermined spaced relation from the mass of carbon aggregate.
The press of the present invention need exert only approximately one-tenth the pressure required by prior art presses to form anodes of comparable size and density. Prior art presses require a minimum of approximately 4,000 psi to form an anode of advantageous size and density. whereas the press of the present invention requires only approximately 400 psi pressure. Thus, the present invention allows use of a much smaller press, saving equipment costs and operating expense.
Although only preferred embodiments of the invention have been specifically described and illustrated herein, it is to be understood that minor variations may be made without departing from the spirit of the invention.
I claim:
1. Apparatus for forming a carbon anode block from carbon aggregate comprising a mold movable between an upper and lower position, a feedbox, means for extending said feedbox to a position directly above said movable mold, a normally stationary bolster, said bolster being encompassed by said movable mold in the lower position thereof, vibration means attached to said bolster for vibrating carbon aggregate contained within said mold to expel air therefrom thereby compacting the aggregate at a measurable rate, a movable press ram having protrusions formed in its lower face mounted for vertical movement above said bolster and adapted to apply pressure against the aggregate in said mold, a hydraulic control system for moving said press ram, means in operative communication with the aggregate for continuously sensing the compaction rate thereof, means for generating a signal in response to said sensing means. and means responsive to said signal and operatively connected to said hydraulic control system for operating said system to continuously control the movement of said press ram at a rate corresponding substantially to the compaction rate of the aggregate whereby the aggregate will form about said protrusions during compaction thereof with substantially no pressure being applied by said ram.
2. Apparatus as defined in claim I, wherein said sensing means includes a pressure transducer.
3. Apparatus as defined in claim I, wherein said sensing means includes means for transmitting an electrical current through the aggregate in said mold.
4. Apparatus as defined inclaim 1, wherein said signal generating means includes logic circuit means for applying command signals to said operating means.
5. Apparatus as defined in claim 4, wherein said logic circuit means includes means for applying FAST AD- VANCE, SLOW ADVANCE and STOP command signals.
6. Apparatus as defined inclaim 1, wherein said vibration means is a pneumatically actuated vibrator.
7. Apparatus as defined inclaim 1, wherein said vibration means is an electrically actuated vibrator.
8. Apparatus as defined inclaim 1, wherein said press ram is adapted to move downwardly in engagement with the aggregate during compaction thereof.
9. Apparatus as defined inclaim 1, wherein said sensing means is positioned in said movable press ram and is adapted to operatively engage the aggregate during compaction thereof.
10. Apparatus for forming a compacted block from particulate material comprising a mold, a press ram disposed above said mold and mounted for vertical movement therein, means for vibrating particulate material contained within said mold to expel air therefrom thereby compacting the material and causing the surface thereof to descend at a given rate, means in operative communication with the particulate material for continuously sensing the rate at which the surface of the material descends, and means responsive to said sensing means for continuously controlling the movement of said press ram at a rate corresponding substantially to the rate at which the surface of the material descends whereby said press ram will apply substantially no pressure against the material during compaction thereof.
11. Apparatus as defined inclaim 1, wherein said press ram is adapted to move downwardly in engagement with the particulate material during compaction thereof.
12. Apparatus as defined inclaim 1, wherein said sensing means is positioned in said press ram and is adapted to operatively engage the surface of the particulate material as it descends during compaction.
13. Apparatus for forming a compacted block from particulate material comprising a mold. a press ram disposed above said mold and mounted for vertical movement therein, means for vibrating particulate material contained within said mold to expel air therefrom thereby compacting the material at a rate which varies inversely as a function of the density thereof, means for moving said press ram downwardly in engagement with the particulate material, means in operative communication with the particulate material for continuously monitoring the compaction rate thereof, and means responsive to said monitoring means for continuously correlating the movement of said press ram with the compaction rate of the particulate material whereby said press ram will apply substantially no pressure against the particulate material during compaction thereof.