Movatterモバイル変換


[0]ホーム

URL:


US3882941A - In situ production of bitumen from oil shale - Google Patents

In situ production of bitumen from oil shale
Download PDF

Info

Publication number
US3882941A
US3882941AUS425449AUS42544973AUS3882941AUS 3882941 AUS3882941 AUS 3882941AUS 425449 AUS425449 AUS 425449AUS 42544973 AUS42544973 AUS 42544973AUS 3882941 AUS3882941 AUS 3882941A
Authority
US
United States
Prior art keywords
deposit
wells
bitumen
shale
kerogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US425449A
Inventor
Arnold H Pelofsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cities Service Research and Development Co
Original Assignee
Cities Service Research and Development Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cities Service Research and Development CofiledCriticalCities Service Research and Development Co
Priority to US425449ApriorityCriticalpatent/US3882941A/en
Application grantedgrantedCritical
Publication of US3882941ApublicationCriticalpatent/US3882941A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Hydrocarbons are recovered from oil shale deposits by introducing hot fluids into the deposits through wells and then shutting in the wells to allow kerogen in the deposits to be converted to bitumen which is then recovered through the wells after an extended period of soaking.

Description

United States Patent [191 Pelofsky [451 May 13, 1975 1 IN SlTU PRODUCTION OF BITUMEN FROM OIL SHALE [75] Inventor: Arnold H. Pelofsky, East Brunswick,
[73] Assignee: Cities Service Research &
Development Co., Cranbury, NJ.
[22] Filed: Dec. 17, 1973 [21] Appl. No.: 425,449
[52] US. Cl 166/303; 166/263 [51] Int. Cl E211) 43/24 [58] Field of Search 166/302, 303, 272, 263
[56] References Cited UNlTED STATES PATENTS 11/1966 Thomas 166/303 X 5/1967 Strubhar 166/303 X 3,358,762 12/1967 Closmann 166/303 3,382,922 5/1968 Needham..... 166/303 X 3,480,082 11/1969 Gilliland 166/303 X 3,515,213 6/1970 Prats 166/303 X 3,550,685 12/1970 Parker 166/303 3,618,663 11/1971 Needham 166/303 X Primary ExaminerStephen J. Novosad Attorney, Agent, or Firm-Joshua J. Ward; George L. Rushton [57] ABSTRACT Hydrocarbons are recovered from oil shale deposits by introducing hot fluids into the deposits through wells and then shutting in the wells to allow kerogen in the deposits to be converted to bitumen which is then recovered through the wells after an extended period of soaking.
6 Claims, 2 Drawing Figures IN SITU PRODUCTION OF BITUMEN FROM OIL SHALE BACKGROUND OF THE INVENTION This invention relates to the recovery of bitumen from oil shale and more particularly to an in situ process for conversion of kerogen to bitumen and recovery of the resulting bitumen.
Oil shale deposits are found in many locations throughout the world and are a potential source of extremely large quantities of hydrocarbon products. Oil shale is generally a laminated, nonporous, impermeable, fine-grained dolomitic marlstone containing variable but relatively large amounts of organic matter known as kerogen. Kerogen is a high molecular weight substance largely insoluble in benzene and which is dispersed throughout an inorganic matric composed-principally of carbonates along with other minor constituents. The kerogen in oil shale is relatively rich in hydrogen and will yield a benzene soluble material (bitumen) on heating.
Many proposals have been made for recovering usuable hydrocarbons from oil shales, most of which involve the use of heat in one form or another to soften or liquefy the kerogen for conversion to bitumen or for further conversion to produce both liquid and gaseous products. The heat may be applied in situ or the shale may be mined by conventional mining methods with subsequent heating or retorting of the mined shale. In conventional in situ retorting, a heating agent is injected into one or more wells extending into the shale deposit and product is produced through the same or separate wells. It is also known to inject air into the formation to ignite the kerogen and form a combustion front which is then moved through the formation in a conventional manner to liquefy and partially gasify the kerogen and carry the liquid and gaseous product through the formation to wells from which it may be recovered. In situ processes frequently involve fracturing the shale deposit to facilitate contact between heating agents and kerogen.
In all of the previously known in situ processes for recovery of bitumen from shale deposits, thermal efficiency has been extremely low because, once formed from the kerogen, bitumen has been recovered at relatively high temperatures. Also a significant amount of the bitumen that has been formed migrates through the formation and is not recovered. It is therefore an object of the present invention to recover bitumen from shale deposits by means of a novel in situ recovery process which involves recovery of substantial quantities of bitumen with a high degree of thermal efficiency and to reduce the migration of the bitumen out of the formation.
SUMMARY OF THE INVENTION Hydrocarbon product is recovered from a subterranean deposit of oil-shale by introducing heat energy into the deposit through one or more wells extending into the deposit. Heat energy is introduced in quantities sufficient to heat the deposit in the vicinity of the wells to more than 50F (Fahrenheit Degrees) above its transition temperature (the temperature at which exfoliation of the shale structure commences).The wells are then shut in until the temperature in the vicinity of the wells drops to less than 50 above transition temperature, at which time the wells are again opened and bitumen is produced therefrom.
BRIEF DESCRIPTION OF THE DRAWING FIG. 1 is a vertical cross-sectional view illustrating use of the present invention in recovery of hydrocarbons from an oil shale deposit.
FIG. 2 is a horizontal cross-sectional view further illustrating use of the invention in recovering hydrocarbons from oil shale deposits.
DETAILED DESCRIPTION OF THE INVENTION those at which bitumen is normally recovered from such deposits while achieving at the same time recovcry of substantial quantities of the total possible recoverable hydrocarbons. As mentioned above, this is accomplished by introducing heat energy into the deposit through one or more wells extending into the deposit with the heat energy being introduced in quantities sufficient to heat the deposit in the vicinity of the wells to more than 50F above its transition temperature. The transition temperature is considered to be that temperature at which exfoliation (swelling) of the shale structure begins to take place. The wells are then shut in until the temperature of the deposit in the vicinity of the wells drops to less than 50F above the transition temperature of the deposit at which point the wells may be opened and bitumen produced therefromor additional heat energy may be introduced for conversion of additional kerogen to bitumen. If the bitumen is not removed, it will act as a solvent and tend to solubilize more of the kerogen.
The exfoliation temperature for a particular shale deposit varies depending on the amount of kerogen contained in the shale between about 600 and about 700F. with the lower transition temperatures occuring in connection with relatively richer shale deposits. When an oil shale deposit is heated to above its transition temperature in the absence of oxygen, exfoliation is accompanied by a marked increase in permeability. If the shale is allowed to remain above the transition temperature for a few hours, the permeability decreases again to the original value, usually essentially zero. If,'however, the shale deposit is maintained above its transition temperature for a substantial length of time, such as weeks or months, significant portions of the kerogen are converted to bitumen which has substantially lower viscosity than the kerogen and can flow freely through the inorganic matrix of the shale deposit. In accordance with this invention, the shale deposit is heated to more than 5OF and preferably at least about F above its transition temperature and then allowed to cool to less than 50F, preferably to about 25F or less above its transition temperature before recovery of any bitumen therefrom. This allows ample time for substantial quantities of kerogen to convert to bitumen and allows heat to be transferred to further portions of the formation to avoid loss of thermal efficiency in recovery of bitumen from the deposit. It also allows the bitumen to act as a solubilizing agent on the undissolved or unconverted kerogen.
Introduction of heat energy to a shale deposit in accordance with the invention can be by any suitable means with use of hot fluids at temperatures between about 700 and about 2,000F. being preferred. Preferred fluids include steam and hot water although other fluids not containing free oxygen, such as liquid or vaporous hydrocarbons, flue gas, etc. may be used.
Because of the extremely low permeability of oil shale deposits, it is usually not possible to inject hot fluids at normal injection rates without increasing pressure in the injection well to an undesirable degree before the desired rise in temperature has taken place in significant portions of the surrounding shale deposit. It is therefore preferred that the initial step of heating the deposit in the vicinity of the wellbores to more than 5OF- above its transition temperature be done in stages. In this preferred embodiment of the invention, hot fluid is injected through the wells until the pressure is raised to between about 200 and about 1,000 psi above normal formation pressure of the deposit. The wells are then shut in for a period of time necessary to allow the pressure to drop to less than about 50 psi above the formation pressure of the deposit. This frequently takes between about 2 weeks and about six months. Additional hot fluid is then injected until the pressure again rises more than 200 psi above formation pressure. Similar cycles of injection and shut in are continued until the temperature in the vicinity of the injection wells reaches the desired range of more than 50F above the transition temperature of the deposit. The injection wells'are then shut in until the temperature in the vicinityof the wells drops to less than 5OF above the transition temperature of the deposit at which time bitumen may be produced from the wells or, preferably, injection of hot fluids as described above is again resumed. By so resuming injection of hot fluids, the affected area of the shale deposit may be extended beyond that possible by merely raising the temperature in the immediate vicinity of the wells. This is possible because of the increased permeability of the formation in the vicinity of the wells due to conversion of kerogen to lower viscosity bitumen during the injection and shut in cycles mentioned above and also because the bitumen tends to so]- ubilize additional kerogen.
Once the deposit in the immediate vicinity of the injection wells has been heated to more than 50F above its transition temperature, it is preferred that the wells be shut in for between about 6 months and about 1 year to allow the temperature to drop to less than 50F and more preferably to less than 25F above transition temperature. Bitumen may then be produced from the wells or more preferably injection of hot fluids may be resumed to extend the affected area of the deposit before production of any bitumen therefrom. Such expansion of the effected area of the deposit preferably is carried out in the same manner as the original heating of the deposit described above, i.e., hot fluids are injected into the deposit until the well pressures rise to between about 200 and about 1,000 psi above normal formation pressures, the wells are shut in for between about 2 weeks and about 6 months to allow pressure to return to less than 50 psi above formation pressure and injection of hot fluids is then resumed on the same basis until temperatures in the previously unaffected portions of the shale deposit surrounding the wells have been raised to more than 50F. above their transition temperatures. The increase in temperature of previously unaffected shale deposit may in part. or in whole be achieved by indirect transfer of the heat from the injected hot fluids through previously formed bitumen.
It is preferred that the introduction of heat energy into the shale deposit as described above be'continued until the deposit has been heated to more thanv 5OF above its transition temperature throughout a sphere having a radius of at least about 50 feet from the injection point of each well through whichhot fluid has been injected. Each portion of the deposit so heated should then be allowed to soak with the wells shut in until the temperature again drops to less than 50F above the transition temperature (usually for a period of at least about 6 months) to allow time for conversion of kerogen to bitumen. For maximum efficiency of recovery, it is preferred that no bitumen be produced from the deposit until all of the above heating and soaking cycles have been completed at least once for each portion of the deposit contained within the spheres mentioned above.
ln practicing the invention, it is important to avoid fracturing the shale deposit since any fractures .formed beyond the area of the deposit in which kerogen is transformed to bitumen will result in excessive loss of bitumen into other portions of the deposit-or surrounding formations. For the same reason, it is not desirable to allow the portions of the deposit in which kerogen is converted to bitumen to extend to the boundaries of the shale deposit if the surrounding or underlying formations or overburden are permeable. For this reason, it is preferred that theinvention be practiced in shale deposits having a thickness of at least about 200 feet and that the periphery of each of the spheres of affected area in which kerogen is converted to bitumen remain a minimum of at least about 50 feet fromthe boundary of the deposit. Overlapping of affected spheres is, of course, permissible and frequently desirable to ensure maximum recovery of hydrocarbons but it is preferred that overlapping be kept to the minimum necessary to obtain desired recovery of hydrocarbons. Otherwise, excessive temperatures may build up in portions of the deposit thereby resulting in thermal inefficiency of undesirably long periods of time being required for heat to be transferred to other portions of the deposit. For this reason, it is preferred that the average temperature of affected portions of the shale deposits not rise above about 900F. and that, to the extent practical, temperatures above about 1200F. be avoided completely.
In practicing the invention, the temperature of the shale deposit may be determined by temperature sensing means introduced into the deposit such as through the wells used to inject hot fluids or by means such as infrared aerial photography which allows reasonably accurate determination of temperatures throughout the deposit. Most accurate temperature information is usually obtained by a combination of these or other temperature measuring means. g
If the invention is carried out using the preferred embodiments described above, it is normally feasible to convert at least about percent and; frequently at least about percent of the kerogen inthe af ected areas of the deposit intobitumen-and to recover at least about 65 percent of such bitumen from the deposit. Recovery initially is by merely opening the injection wells as described above but it should be understood that in addition, other conventional primary, secondary and even tertiary recovery processes may be used as desired to recover bitumen.
Referring to the drawings, FIG. 1 shows a well 12 extending from the surface of theearth 14 throughoverburden formation 16 into ashale oil deposit 18. Anunderlying formation 20 is also indicated. The well 12 may be suitably lined and equipped with tubing, etc. in a conventional manner. Aconduit 22 communicates at one end thereof to the top of the well l2. The other end ofconduit 22 may be connected to a source of hot injection fluids (not shown) or may be connected to means for recovering bitumen produced from theshale deposit 18. Means (not shown) are also provided for closing off theconduit 22 completely to shut in the well 12.
As an example of recovery of hydrocarbons from oil shale in accordance with a preferred embodiment of the invention, superheated steam at a temperature of about 1,000F. may be introduced through theconduit 22 and well 12 into theshale deposit 18. Theshale deposit 18 for this example begins about 2,000 feet below the surface and has a thickness of 200 feet from top to bottom and a normal formation pressure of about 1,000 psi. Injection of steam at the rate of 4,000 pounds per hour through the well 12 for up to 8 hours will increase the well pressure to 2000 psi at which time the well is shut in for 4 weeks to allow the pressure to return to less than 50 psi above the formation pressure. Three subsequent similar cycles of injection and shutting in are required to raise the temperature of the shale deposit in the vicinity of the well (within a sphere 24 as represented in FIG. 1) to a temperature 100F. above the formation transition temperature of 562F. The well 12 is then shut in for 6 months during which time the temperature within the sphere 24 diminishes to 587F. (25 above formation transitions temperature). At this time at least about 20 percent of the kerogen contained within the sphere 24 has been converted to bitumen. A series of injections and shut ins similar to that described immediately above is then used to extend the affected area of the shale deposit to encompass all the material within a sphere 26 (FIG. 1). Also during this period of time more of the kerogen is converted to bitumen by the action of not only the heat energy but also the solubilizing effect of the bitumen itself until about 90% of the kerogen is converted. Another complete series of injections and shut ins as described above is used to extend the effected area of the shale deposit in which kerogen is converted to bitumen to encompass material within the sphere 28 as shown in FIG. 1. At this time (a total of years after the start of the injections) bitumen is produced from theshale deposit through the well 12. A total of 65 percent of the bitumen contained within the deposit is produced by primary recovery and an additional 25 percent is available for production by conventional secondary and tertiary methods.
To recover the maximum amount of hydrocarbons from a shale formation it is generally desirable to use more than one well as is depicted in FIG. 2 which shows anoil shale deposit 32 with a number of wells such as 34 and 40 completed within the shale deposit. By injecvert kerogen to bitumen throughout the maximum possible volume of the deposit and that none of the spheres reaches the boundary of the deposit. By keeping the spheres from reaching the boundary of the shale deposit and avoiding fracturing of the shale, it is possible to take advantage of the extremely low permeability of the natural shale deposit to prevent loss of bitumen be fore it can be produced from the deposit.
While the invention has been described above with respect to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit or scope of the invention.
What is claimed is:
l. A process for recovering hydrocarbon product from a subterranean deposit of oil shale which comprises the steps of:
a. introducing heat energy in the form of hot fluids not containing oxygen into said deposit through one or more wells extending into the deposit, said heat energy being introduced in quantities sufficient to heat the deposit in the vicinity of the wells to more than about 50F above its transition temperature and until the pressure at the bottom of the wells is from at least 200 to about 1,000 psi about the formation pressure of the deposit;
b. then shutting in said wells until the temperature in the vicinity of the wells drops to less than about 50F above the transition temperature of the deposit until the pressure at the bottom thereof drops to less than about 50 psi above formation pressure, with the shutting in period lasting from about two weeks to about 6 months;
c. repeating steps (a) and (b) for a period of from about I to about 10 years; and
d. producing bitumen through said wells.
2. The process of claim 1 in which steps (a) and (b) are repeated until the deposit has been heated to more than 50F above its transition temperature and then allowed to drop to less than 5OF above its transition temperature throughout a sphere having a radius of at least about 50 feet from the bottom of each of said wells.
3. The process of claim 2 in which at least about percent of the kerogen in the spheres is converted to bitumen before bitumen is produced through the wells.
4. The process of claim 2 in which the deposit of oil shale is at least about 200 feet thick, the radius of each of the spheres is between about 50 and about 500 feet and the periphery of each sphere is at least 50 feet from the boundary of the deposit.
5. The process of claim 1 in which heat energy is injected in the form of hot fluids at a temperature of bet-ween about 500and about 2,000F.
6. The process of claim 1 in which step (b) takes at least about 6 months.

Claims (6)

US425449A1973-12-171973-12-17In situ production of bitumen from oil shaleExpired - LifetimeUS3882941A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US425449AUS3882941A (en)1973-12-171973-12-17In situ production of bitumen from oil shale

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US425449AUS3882941A (en)1973-12-171973-12-17In situ production of bitumen from oil shale

Publications (1)

Publication NumberPublication Date
US3882941Atrue US3882941A (en)1975-05-13

Family

ID=23686622

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US425449AExpired - LifetimeUS3882941A (en)1973-12-171973-12-17In situ production of bitumen from oil shale

Country Status (1)

CountryLink
US (1)US3882941A (en)

Cited By (96)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4091869A (en)*1976-09-071978-05-30Exxon Production Research CompanyIn situ process for recovery of carbonaceous materials from subterranean deposits
US4105072A (en)*1976-11-291978-08-08Occidental Oil ShaleProcess for recovering carbonaceous values from post in situ oil shale retorting
US4160481A (en)*1977-02-071979-07-10The Hop CorporationMethod for recovering subsurface earth substances
US4257650A (en)*1978-09-071981-03-24Barber Heavy Oil Process, Inc.Method for recovering subsurface earth substances
US4263970A (en)*1977-01-271981-04-28Occidental Oil Shale, Inc.Method for assuring uniform combustion in an in situ oil shale retort
US4667739A (en)*1986-03-101987-05-26Shell Oil CompanyThermal drainage process for recovering hot water-swollen oil from a thick tar sand
US4753293A (en)*1982-01-181988-06-28Trw Inc.Process for recovering petroleum from formations containing viscous crude or tar
US5025863A (en)*1990-06-111991-06-25Marathon Oil CompanyEnhanced liquid hydrocarbon recovery process
US5036917A (en)*1989-12-061991-08-06Mobil Oil CorporationMethod for providing solids-free production from heavy oil reservoirs
US5036918A (en)*1989-12-061991-08-06Mobil Oil CorporationMethod for improving sustained solids-free production from heavy oil reservoirs
RU2132457C1 (en)*1997-04-021999-06-27Напалков Владислав НиколаевичMethod for development of bitumen deposits
WO2001081239A3 (en)*2000-04-242002-05-23Shell Oil CoIn situ recovery from a hydrocarbon containing formation
US20030066642A1 (en)*2000-04-242003-04-10Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6588504B2 (en)2000-04-242003-07-08Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
WO2003062619A1 (en)*2002-01-252003-07-31Precision Drilling Technology Services Group Inc.Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
GB2391890A (en)*2000-04-242004-02-18Shell Int ResearchIn-situ pyrolytic recovery from a hydrocarbon formation
US6698515B2 (en)2000-04-242004-03-02Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6877555B2 (en)2001-04-242005-04-12Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6932155B2 (en)2001-10-242005-08-23Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562B2 (en)2001-04-242005-09-27Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6969123B2 (en)2001-10-242005-11-29Shell Oil CompanyUpgrading and mining of coal
US7011154B2 (en)2000-04-242006-03-14Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7040400B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7066254B2 (en)2001-04-242006-06-27Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7073578B2 (en)2002-10-242006-07-11Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US7077199B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7090013B2 (en)2001-10-242006-08-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en)2001-10-242006-09-12Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en)2003-04-242006-10-17Shell Oil CompanyThermal processes for subsurface formations
US7165615B2 (en)2001-10-242007-01-23Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070023186A1 (en)*2003-11-032007-02-01Kaminsky Robert DHydrocarbon recovery from impermeable oil shales
US20070039729A1 (en)*2005-07-182007-02-22Oil Sands Underground Mining CorporationMethod of increasing reservoir permeability
US20070044957A1 (en)*2005-05-272007-03-01Oil Sands Underground Mining, Inc.Method for underground recovery of hydrocarbons
US20070137857A1 (en)*2005-04-222007-06-21Vinegar Harold JLow temperature monitoring system for subsurface barriers
US7320364B2 (en)2004-04-232008-01-22Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US20080017416A1 (en)*2006-04-212008-01-24Oil Sands Underground Mining, Inc.Method of drilling from a shaft for underground recovery of hydrocarbons
US20080073079A1 (en)*2006-09-262008-03-27Hw Advanced Technologies, Inc.Stimulation and recovery of heavy hydrocarbon fluids
US20080078552A1 (en)*2006-09-292008-04-03Osum Oil Sands Corp.Method of heating hydrocarbons
US20080087422A1 (en)*2006-10-162008-04-17Osum Oil Sands Corp.Method of collecting hydrocarbons using a barrier tunnel
US20090084707A1 (en)*2007-09-282009-04-02Osum Oil Sands Corp.Method of upgrading bitumen and heavy oil
US20090100754A1 (en)*2007-10-222009-04-23Osum Oil Sands Corp.Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US7533719B2 (en)2006-04-212009-05-19Shell Oil CompanyWellhead with non-ferromagnetic materials
US7540324B2 (en)2006-10-202009-06-02Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US20090139716A1 (en)*2007-12-032009-06-04Osum Oil Sands Corp.Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
US7549470B2 (en)2005-10-242009-06-23Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US20090194280A1 (en)*2008-02-062009-08-06Osum Oil Sands Corp.Method of controlling a recovery and upgrading operation in a reservoir
US20090308608A1 (en)*2008-05-232009-12-17Kaminsky Robert DField Managment For Substantially Constant Composition Gas Generation
US20100147521A1 (en)*2008-10-132010-06-17Xueying XiePerforated electrical conductors for treating subsurface formations
US7798220B2 (en)2007-04-202010-09-21Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7866386B2 (en)2007-10-192011-01-11Shell Oil CompanyIn situ oxidation of subsurface formations
US8082995B2 (en)2007-12-102011-12-27Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US8087460B2 (en)2007-03-222012-01-03Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US8104537B2 (en)2006-10-132012-01-31Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8122955B2 (en)2007-05-152012-02-28Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en)2007-05-252012-04-03Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US8151884B2 (en)2006-10-132012-04-10Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US8151877B2 (en)2007-05-152012-04-10Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8151907B2 (en)2008-04-182012-04-10Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8209192B2 (en)2008-05-202012-06-26Osum Oil Sands Corp.Method of managing carbon reduction for hydrocarbon producers
US8313152B2 (en)2006-11-222012-11-20Osum Oil Sands Corp.Recovery of bitumen by hydraulic excavation
US8327932B2 (en)2009-04-102012-12-11Shell Oil CompanyRecovering energy from a subsurface formation
US8540020B2 (en)2009-05-052013-09-24Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8596355B2 (en)2003-06-242013-12-03Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US8616280B2 (en)2010-08-302013-12-31Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US8616279B2 (en)2009-02-232013-12-31Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8622127B2 (en)2010-08-302014-01-07Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8622133B2 (en)2007-03-222014-01-07Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8631866B2 (en)2010-04-092014-01-21Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8641150B2 (en)2006-04-212014-02-04Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US8701769B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8701788B2 (en)2011-12-222014-04-22Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US8770284B2 (en)2012-05-042014-07-08Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8820406B2 (en)2010-04-092014-09-02Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8839860B2 (en)2010-12-222014-09-23Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
US8851177B2 (en)2011-12-222014-10-07Chevron U.S.A. Inc.In-situ kerogen conversion and oxidant regeneration
US8863839B2 (en)2009-12-172014-10-21Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8875789B2 (en)2007-05-252014-11-04Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8992771B2 (en)2012-05-252015-03-31Chevron U.S.A. Inc.Isolating lubricating oils from subsurface shale formations
US9016370B2 (en)2011-04-082015-04-28Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en)2010-04-092015-05-19Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US9033033B2 (en)2010-12-212015-05-19Chevron U.S.A. Inc.Electrokinetic enhanced hydrocarbon recovery from oil shale
US9080441B2 (en)2011-11-042015-07-14Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US9181467B2 (en)2011-12-222015-11-10Uchicago Argonne, LlcPreparation and use of nano-catalysts for in-situ reaction with kerogen
US9309755B2 (en)2011-10-072016-04-12Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9394772B2 (en)2013-11-072016-07-19Exxonmobil Upstream Research CompanySystems and methods for in situ resistive heating of organic matter in a subterranean formation
US9512699B2 (en)2013-10-222016-12-06Exxonmobil Upstream Research CompanySystems and methods for regulating an in situ pyrolysis process
US9644466B2 (en)2014-11-212017-05-09Exxonmobil Upstream Research CompanyMethod of recovering hydrocarbons within a subsurface formation using electric current
US10047594B2 (en)2012-01-232018-08-14Genie Ip B.V.Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10060239B2 (en)*2015-12-182018-08-28Husky Oil Operations LimitedHot water injection stimulation method for chops wells
US10487636B2 (en)2017-07-272019-11-26Exxonmobil Upstream Research CompanyEnhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en)2017-08-312021-05-11Exxonmobil Upstream Research CompanyThermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11142681B2 (en)2017-06-292021-10-12Exxonmobil Upstream Research CompanyChasing solvent for enhanced recovery processes
US11261725B2 (en)2017-10-242022-03-01Exxonmobil Upstream Research CompanySystems and methods for estimating and controlling liquid level using periodic shut-ins

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3284281A (en)*1964-08-311966-11-08Phillips Petroleum CoProduction of oil from oil shale through fractures
US3322194A (en)*1965-03-251967-05-30Mobil Oil CorpIn-place retorting of oil shale
US3358762A (en)*1965-12-061967-12-19Shell Oil CoThermoaugmentation of oil-producing reservoirs
US3382922A (en)*1966-08-311968-05-14Phillips Petroleum CoProduction of oil shale by in situ pyrolysis
US3480082A (en)*1967-09-251969-11-25Continental Oil CoIn situ retorting of oil shale using co2 as heat carrier
US3515213A (en)*1967-04-191970-06-02Shell Oil CoShale oil recovery process using heated oil-miscible fluids
US3550685A (en)*1967-12-201970-12-29Phillips Petroleum CoShale oil production
US3618663A (en)*1969-05-011971-11-09Phillips Petroleum CoShale oil production

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3284281A (en)*1964-08-311966-11-08Phillips Petroleum CoProduction of oil from oil shale through fractures
US3322194A (en)*1965-03-251967-05-30Mobil Oil CorpIn-place retorting of oil shale
US3358762A (en)*1965-12-061967-12-19Shell Oil CoThermoaugmentation of oil-producing reservoirs
US3382922A (en)*1966-08-311968-05-14Phillips Petroleum CoProduction of oil shale by in situ pyrolysis
US3515213A (en)*1967-04-191970-06-02Shell Oil CoShale oil recovery process using heated oil-miscible fluids
US3480082A (en)*1967-09-251969-11-25Continental Oil CoIn situ retorting of oil shale using co2 as heat carrier
US3550685A (en)*1967-12-201970-12-29Phillips Petroleum CoShale oil production
US3618663A (en)*1969-05-011971-11-09Phillips Petroleum CoShale oil production

Cited By (361)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4091869A (en)*1976-09-071978-05-30Exxon Production Research CompanyIn situ process for recovery of carbonaceous materials from subterranean deposits
US4105072A (en)*1976-11-291978-08-08Occidental Oil ShaleProcess for recovering carbonaceous values from post in situ oil shale retorting
US4263970A (en)*1977-01-271981-04-28Occidental Oil Shale, Inc.Method for assuring uniform combustion in an in situ oil shale retort
US4160481A (en)*1977-02-071979-07-10The Hop CorporationMethod for recovering subsurface earth substances
US4257650A (en)*1978-09-071981-03-24Barber Heavy Oil Process, Inc.Method for recovering subsurface earth substances
US4753293A (en)*1982-01-181988-06-28Trw Inc.Process for recovering petroleum from formations containing viscous crude or tar
US4667739A (en)*1986-03-101987-05-26Shell Oil CompanyThermal drainage process for recovering hot water-swollen oil from a thick tar sand
US5036917A (en)*1989-12-061991-08-06Mobil Oil CorporationMethod for providing solids-free production from heavy oil reservoirs
US5036918A (en)*1989-12-061991-08-06Mobil Oil CorporationMethod for improving sustained solids-free production from heavy oil reservoirs
US5025863A (en)*1990-06-111991-06-25Marathon Oil CompanyEnhanced liquid hydrocarbon recovery process
RU2132457C1 (en)*1997-04-021999-06-27Напалков Владислав НиколаевичMethod for development of bitumen deposits
US6739393B2 (en)2000-04-242004-05-25Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6725928B2 (en)2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US20030066642A1 (en)*2000-04-242003-04-10Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6581684B2 (en)2000-04-242003-06-24Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en)2000-04-242003-07-08Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6588503B2 (en)2000-04-242003-07-08Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6591907B2 (en)2000-04-242003-07-15Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en)2000-04-242003-07-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US7798221B2 (en)2000-04-242010-09-21Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6607033B2 (en)2000-04-242003-08-19Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570B2 (en)2000-04-242003-08-26Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387B1 (en)2000-04-242004-02-10Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
GB2391890A (en)*2000-04-242004-02-18Shell Int ResearchIn-situ pyrolytic recovery from a hydrocarbon formation
US6698515B2 (en)2000-04-242004-03-02Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016B2 (en)*2000-04-242004-03-09Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en)2000-04-242004-03-23Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712136B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712135B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712137B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715547B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US6715549B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
US6715546B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6719047B2 (en)2000-04-242004-04-13Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722429B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6745831B2 (en)2000-04-242004-06-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6722431B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6722430B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725921B2 (en)2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6745832B2 (en)2000-04-242004-06-08Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6725920B2 (en)*2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6729397B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729395B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729401B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729396B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732796B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732795B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732794B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6736215B2 (en)2000-04-242004-05-18Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6991031B2 (en)2000-04-242006-01-31Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US6739394B2 (en)2000-04-242004-05-25Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742589B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742587B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
GB2379469A (en)*2000-04-242003-03-12Shell Int ResearchIn situ recovery from a hydrocarbon containing formation
US6742593B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
WO2001081239A3 (en)*2000-04-242002-05-23Shell Oil CoIn situ recovery from a hydrocarbon containing formation
US6745837B2 (en)2000-04-242004-06-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021B2 (en)2000-04-242004-06-15Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en)2000-04-242004-06-22Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en)2000-04-242004-07-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en)2000-04-242004-07-13Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en)2000-04-242004-07-20Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US6769483B2 (en)2000-04-242004-08-03Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6769485B2 (en)2000-04-242004-08-03Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6789625B2 (en)2000-04-242004-09-14Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
GB2391890B (en)*2000-04-242004-09-29Shell Int ResearchIn situ recovery from a hydrocarbon containing formulation
GB2379469B (en)*2000-04-242004-09-29Shell Int ResearchIn situ recovery from a hydrocarbon containing formation
US6805195B2 (en)2000-04-242004-10-19Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688B2 (en)2000-04-242004-11-23Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097B2 (en)2000-04-242005-03-15Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707B2 (en)2000-04-242005-03-29Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US8225866B2 (en)2000-04-242012-07-24Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6877554B2 (en)2000-04-242005-04-12Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US8485252B2 (en)2000-04-242013-07-16Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6880635B2 (en)2000-04-242005-04-19Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US6889769B2 (en)2000-04-242005-05-10Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US6896053B2 (en)2000-04-242005-05-24Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902004B2 (en)2000-04-242005-06-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6902003B2 (en)2000-04-242005-06-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US6910536B2 (en)2000-04-242005-06-28Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078B2 (en)2000-04-242005-07-05Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US8789586B2 (en)2000-04-242014-07-29Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7096941B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US7096953B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7086468B2 (en)2000-04-242006-08-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US6923258B2 (en)2000-04-242005-08-02Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US7036583B2 (en)2000-04-242006-05-02Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US7017661B2 (en)2000-04-242006-03-28Shell Oil CompanyProduction of synthesis gas from a coal formation
US7011154B2 (en)2000-04-242006-03-14Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US6948563B2 (en)2000-04-242005-09-27Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US6997255B2 (en)2000-04-242006-02-14Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6953087B2 (en)2000-04-242005-10-11Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761B2 (en)2000-04-242005-11-01Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6994160B2 (en)2000-04-242006-02-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994168B2 (en)2000-04-242006-02-07Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6966372B2 (en)2000-04-242005-11-22Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6994161B2 (en)2000-04-242006-02-07Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6973967B2 (en)2000-04-242005-12-13Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6929067B2 (en)2001-04-242005-08-16Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US6923257B2 (en)2001-04-242005-08-02Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US6991036B2 (en)2001-04-242006-01-31Shell Oil CompanyThermal processing of a relatively permeable formation
US6991033B2 (en)2001-04-242006-01-31Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US7735935B2 (en)2001-04-242010-06-15Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US6981548B2 (en)2001-04-242006-01-03Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US6877555B2 (en)2001-04-242005-04-12Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6994169B2 (en)2001-04-242006-02-07Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6966374B2 (en)2001-04-242005-11-22Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6964300B2 (en)2001-04-242005-11-15Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6997518B2 (en)2001-04-242006-02-14Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US6951247B2 (en)2001-04-242005-10-04Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US7004251B2 (en)2001-04-242006-02-28Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7004247B2 (en)2001-04-242006-02-28Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US6948562B2 (en)2001-04-242005-09-27Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US7013972B2 (en)2001-04-242006-03-21Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US6880633B2 (en)2001-04-242005-04-19Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US7032660B2 (en)2001-04-242006-04-25Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US8608249B2 (en)2001-04-242013-12-17Shell Oil CompanyIn situ thermal processing of an oil shale formation
US7040398B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7040400B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7051811B2 (en)2001-04-242006-05-30Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US7051807B2 (en)2001-04-242006-05-30Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7225866B2 (en)2001-04-242007-06-05Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7055600B2 (en)2001-04-242006-06-06Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US6915850B2 (en)2001-04-242005-07-12Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6991032B2 (en)2001-04-242006-01-31Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7066254B2 (en)2001-04-242006-06-27Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7096942B1 (en)2001-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US6918443B2 (en)2001-04-242005-07-19Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US6918442B2 (en)2001-04-242005-07-19Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US7104319B2 (en)2001-10-242006-09-12Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US6932155B2 (en)2001-10-242005-08-23Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7090013B2 (en)2001-10-242006-08-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7077198B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7077199B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US6991045B2 (en)2001-10-242006-01-31Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US7100994B2 (en)2001-10-242006-09-05Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7066257B2 (en)2001-10-242006-06-27Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US7114566B2 (en)2001-10-242006-10-03Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6969123B2 (en)2001-10-242005-11-29Shell Oil CompanyUpgrading and mining of coal
US7461691B2 (en)2001-10-242008-12-09Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7128153B2 (en)2001-10-242006-10-31Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176B2 (en)2001-10-242007-01-02Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615B2 (en)2001-10-242007-01-23Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7086465B2 (en)2001-10-242006-08-08Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7063145B2 (en)2001-10-242006-06-20Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US8627887B2 (en)2001-10-242014-01-14Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7051808B1 (en)2001-10-242006-05-30Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US6722436B2 (en)2002-01-252004-04-20Precision Drilling Technology Services Group Inc.Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
WO2003062619A1 (en)*2002-01-252003-07-31Precision Drilling Technology Services Group Inc.Apparatus and method for operating an internal combustion engine to reduce free oxygen contained within engine exhaust gas
US8224164B2 (en)2002-10-242012-07-17Shell Oil CompanyInsulated conductor temperature limited heaters
US7121341B2 (en)2002-10-242006-10-17Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7073578B2 (en)2002-10-242006-07-11Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8238730B2 (en)2002-10-242012-08-07Shell Oil CompanyHigh voltage temperature limited heaters
US8224163B2 (en)2002-10-242012-07-17Shell Oil CompanyVariable frequency temperature limited heaters
US7219734B2 (en)2002-10-242007-05-22Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US8579031B2 (en)2003-04-242013-11-12Shell Oil CompanyThermal processes for subsurface formations
US7360588B2 (en)2003-04-242008-04-22Shell Oil CompanyThermal processes for subsurface formations
US7942203B2 (en)2003-04-242011-05-17Shell Oil CompanyThermal processes for subsurface formations
US7121342B2 (en)2003-04-242006-10-17Shell Oil CompanyThermal processes for subsurface formations
US7640980B2 (en)2003-04-242010-01-05Shell Oil CompanyThermal processes for subsurface formations
US8596355B2 (en)2003-06-242013-12-03Exxonmobil Upstream Research CompanyOptimized well spacing for in situ shale oil development
US7857056B2 (en)2003-11-032010-12-28Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales using sets of fluid-heated fractures
US20070023186A1 (en)*2003-11-032007-02-01Kaminsky Robert DHydrocarbon recovery from impermeable oil shales
US20090038795A1 (en)*2003-11-032009-02-12Kaminsky Robert DHydrocarbon Recovery From Impermeable Oil Shales Using Sets of Fluid-Heated Fractures
US7441603B2 (en)2003-11-032008-10-28Exxonmobil Upstream Research CompanyHydrocarbon recovery from impermeable oil shales
US7357180B2 (en)2004-04-232008-04-15Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7490665B2 (en)2004-04-232009-02-17Shell Oil CompanyVariable frequency temperature limited heaters
US7481274B2 (en)2004-04-232009-01-27Shell Oil CompanyTemperature limited heaters with relatively constant current
US7510000B2 (en)2004-04-232009-03-31Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7431076B2 (en)2004-04-232008-10-07Shell Oil CompanyTemperature limited heaters using modulated DC power
US7424915B2 (en)2004-04-232008-09-16Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7383877B2 (en)2004-04-232008-06-10Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7370704B2 (en)2004-04-232008-05-13Shell Oil CompanyTriaxial temperature limited heater
US8355623B2 (en)2004-04-232013-01-15Shell Oil CompanyTemperature limited heaters with high power factors
US7353872B2 (en)2004-04-232008-04-08Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US7320364B2 (en)2004-04-232008-01-22Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US8224165B2 (en)2005-04-222012-07-17Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US7500528B2 (en)2005-04-222009-03-10Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7831134B2 (en)2005-04-222010-11-09Shell Oil CompanyGrouped exposed metal heaters
US7860377B2 (en)2005-04-222010-12-28Shell Oil CompanySubsurface connection methods for subsurface heaters
US7942197B2 (en)2005-04-222011-05-17Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7986869B2 (en)*2005-04-222011-07-26Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US8027571B2 (en)2005-04-222011-09-27Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US7435037B2 (en)2005-04-222008-10-14Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US7575053B2 (en)2005-04-222009-08-18Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7575052B2 (en)2005-04-222009-08-18Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US8070840B2 (en)2005-04-222011-12-06Shell Oil CompanyTreatment of gas from an in situ conversion process
US20070137857A1 (en)*2005-04-222007-06-21Vinegar Harold JLow temperature monitoring system for subsurface barriers
US7527094B2 (en)2005-04-222009-05-05Shell Oil CompanyDouble barrier system for an in situ conversion process
US8233782B2 (en)2005-04-222012-07-31Shell Oil CompanyGrouped exposed metal heaters
US8230927B2 (en)2005-04-222012-07-31Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7546873B2 (en)2005-04-222009-06-16Shell Oil CompanyLow temperature barriers for use with in situ processes
US20070044957A1 (en)*2005-05-272007-03-01Oil Sands Underground Mining, Inc.Method for underground recovery of hydrocarbons
US8287050B2 (en)2005-07-182012-10-16Osum Oil Sands Corp.Method of increasing reservoir permeability
US20070039729A1 (en)*2005-07-182007-02-22Oil Sands Underground Mining CorporationMethod of increasing reservoir permeability
US8606091B2 (en)2005-10-242013-12-10Shell Oil CompanySubsurface heaters with low sulfidation rates
US7584789B2 (en)2005-10-242009-09-08Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7549470B2 (en)2005-10-242009-06-23Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556096B2 (en)2005-10-242009-07-07Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US7635025B2 (en)2005-10-242009-12-22Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US8151880B2 (en)2005-10-242012-04-10Shell Oil CompanyMethods of making transportation fuel
US7581589B2 (en)2005-10-242009-09-01Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7591310B2 (en)2005-10-242009-09-22Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7562706B2 (en)2005-10-242009-07-21Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7559368B2 (en)2005-10-242009-07-14Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US7559367B2 (en)2005-10-242009-07-14Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7556095B2 (en)2005-10-242009-07-07Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US8641150B2 (en)2006-04-212014-02-04Exxonmobil Upstream Research CompanyIn situ co-development of oil shale with mineral recovery
US7673786B2 (en)2006-04-212010-03-09Shell Oil CompanyWelding shield for coupling heaters
US8192682B2 (en)2006-04-212012-06-05Shell Oil CompanyHigh strength alloys
US8127865B2 (en)2006-04-212012-03-06Osum Oil Sands Corp.Method of drilling from a shaft for underground recovery of hydrocarbons
US7635023B2 (en)2006-04-212009-12-22Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US8083813B2 (en)2006-04-212011-12-27Shell Oil CompanyMethods of producing transportation fuel
US7631689B2 (en)2006-04-212009-12-15Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US20080017416A1 (en)*2006-04-212008-01-24Oil Sands Underground Mining, Inc.Method of drilling from a shaft for underground recovery of hydrocarbons
US7785427B2 (en)2006-04-212010-08-31Shell Oil CompanyHigh strength alloys
US7533719B2 (en)2006-04-212009-05-19Shell Oil CompanyWellhead with non-ferromagnetic materials
US7793722B2 (en)2006-04-212010-09-14Shell Oil CompanyNon-ferromagnetic overburden casing
US8857506B2 (en)2006-04-212014-10-14Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US7610962B2 (en)2006-04-212009-11-03Shell Oil CompanySour gas injection for use with in situ heat treatment
US7912358B2 (en)2006-04-212011-03-22Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7866385B2 (en)2006-04-212011-01-11Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US7597147B2 (en)2006-04-212009-10-06Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7683296B2 (en)2006-04-212010-03-23Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US20080073079A1 (en)*2006-09-262008-03-27Hw Advanced Technologies, Inc.Stimulation and recovery of heavy hydrocarbon fluids
US7677673B2 (en)2006-09-262010-03-16Hw Advanced Technologies, Inc.Stimulation and recovery of heavy hydrocarbon fluids
US20100163227A1 (en)*2006-09-262010-07-01Hw Advanced Technologies, Inc.Stimulation and recovery of heavy hydrocarbon fluids
US20080078552A1 (en)*2006-09-292008-04-03Osum Oil Sands Corp.Method of heating hydrocarbons
US20100224370A1 (en)*2006-09-292010-09-09Osum Oil Sands CorpMethod of heating hydrocarbons
US8104537B2 (en)2006-10-132012-01-31Exxonmobil Upstream Research CompanyMethod of developing subsurface freeze zone
US8151884B2 (en)2006-10-132012-04-10Exxonmobil Upstream Research CompanyCombined development of oil shale by in situ heating with a deeper hydrocarbon resource
US20080087422A1 (en)*2006-10-162008-04-17Osum Oil Sands Corp.Method of collecting hydrocarbons using a barrier tunnel
US7644769B2 (en)2006-10-162010-01-12Osum Oil Sands Corp.Method of collecting hydrocarbons using a barrier tunnel
US7703513B2 (en)2006-10-202010-04-27Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7730946B2 (en)2006-10-202010-06-08Shell Oil CompanyTreating tar sands formations with dolomite
US7677310B2 (en)2006-10-202010-03-16Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7631690B2 (en)2006-10-202009-12-15Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7677314B2 (en)2006-10-202010-03-16Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7673681B2 (en)2006-10-202010-03-09Shell Oil CompanyTreating tar sands formations with karsted zones
US7845411B2 (en)2006-10-202010-12-07Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7644765B2 (en)2006-10-202010-01-12Shell Oil CompanyHeating tar sands formations while controlling pressure
US7681647B2 (en)2006-10-202010-03-23Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US7841401B2 (en)2006-10-202010-11-30Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7717171B2 (en)2006-10-202010-05-18Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7562707B2 (en)2006-10-202009-07-21Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US8555971B2 (en)2006-10-202013-10-15Shell Oil CompanyTreating tar sands formations with dolomite
US7730947B2 (en)2006-10-202010-06-08Shell Oil CompanyCreating fluid injectivity in tar sands formations
US8191630B2 (en)2006-10-202012-06-05Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7730945B2 (en)2006-10-202010-06-08Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US7540324B2 (en)2006-10-202009-06-02Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7635024B2 (en)2006-10-202009-12-22Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US8313152B2 (en)2006-11-222012-11-20Osum Oil Sands Corp.Recovery of bitumen by hydraulic excavation
US8622133B2 (en)2007-03-222014-01-07Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US8087460B2 (en)2007-03-222012-01-03Exxonmobil Upstream Research CompanyGranular electrical connections for in situ formation heating
US9347302B2 (en)2007-03-222016-05-24Exxonmobil Upstream Research CompanyResistive heater for in situ formation heating
US9181780B2 (en)2007-04-202015-11-10Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US7950453B2 (en)2007-04-202011-05-31Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US8662175B2 (en)2007-04-202014-03-04Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US8327681B2 (en)2007-04-202012-12-11Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US7798220B2 (en)2007-04-202010-09-21Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7832484B2 (en)2007-04-202010-11-16Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US8381815B2 (en)2007-04-202013-02-26Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8459359B2 (en)2007-04-202013-06-11Shell Oil CompanyTreating nahcolite containing formations and saline zones
US7841408B2 (en)2007-04-202010-11-30Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US7841425B2 (en)2007-04-202010-11-30Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US7849922B2 (en)2007-04-202010-12-14Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US8791396B2 (en)2007-04-202014-07-29Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US8042610B2 (en)2007-04-202011-10-25Shell Oil CompanyParallel heater system for subsurface formations
US7931086B2 (en)2007-04-202011-04-26Shell Oil CompanyHeating systems for heating subsurface formations
US8122955B2 (en)2007-05-152012-02-28Exxonmobil Upstream Research CompanyDownhole burners for in situ conversion of organic-rich rock formations
US8151877B2 (en)2007-05-152012-04-10Exxonmobil Upstream Research CompanyDownhole burner wells for in situ conversion of organic-rich rock formations
US8875789B2 (en)2007-05-252014-11-04Exxonmobil Upstream Research CompanyProcess for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant
US8146664B2 (en)2007-05-252012-04-03Exxonmobil Upstream Research CompanyUtilization of low BTU gas generated during in situ heating of organic-rich rock
US20090084707A1 (en)*2007-09-282009-04-02Osum Oil Sands Corp.Method of upgrading bitumen and heavy oil
US8113272B2 (en)2007-10-192012-02-14Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8240774B2 (en)2007-10-192012-08-14Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8196658B2 (en)2007-10-192012-06-12Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8536497B2 (en)2007-10-192013-09-17Shell Oil CompanyMethods for forming long subsurface heaters
US8162059B2 (en)2007-10-192012-04-24Shell Oil CompanyInduction heaters used to heat subsurface formations
US8146661B2 (en)2007-10-192012-04-03Shell Oil CompanyCryogenic treatment of gas
US8272455B2 (en)2007-10-192012-09-25Shell Oil CompanyMethods for forming wellbores in heated formations
US8276661B2 (en)2007-10-192012-10-02Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US7866386B2 (en)2007-10-192011-01-11Shell Oil CompanyIn situ oxidation of subsurface formations
US8146669B2 (en)2007-10-192012-04-03Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US7866388B2 (en)2007-10-192011-01-11Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US8011451B2 (en)2007-10-192011-09-06Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US20090100754A1 (en)*2007-10-222009-04-23Osum Oil Sands Corp.Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US8167960B2 (en)2007-10-222012-05-01Osum Oil Sands Corp.Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
US20090139716A1 (en)*2007-12-032009-06-04Osum Oil Sands Corp.Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
US8082995B2 (en)2007-12-102011-12-27Exxonmobil Upstream Research CompanyOptimization of untreated oil shale geometry to control subsidence
US20090194280A1 (en)*2008-02-062009-08-06Osum Oil Sands Corp.Method of controlling a recovery and upgrading operation in a reservoir
US8176982B2 (en)2008-02-062012-05-15Osum Oil Sands Corp.Method of controlling a recovery and upgrading operation in a reservoir
US8636323B2 (en)2008-04-182014-01-28Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8177305B2 (en)2008-04-182012-05-15Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US8162405B2 (en)2008-04-182012-04-24Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8151907B2 (en)2008-04-182012-04-10Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8752904B2 (en)2008-04-182014-06-17Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8562078B2 (en)2008-04-182013-10-22Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8172335B2 (en)2008-04-182012-05-08Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US9528322B2 (en)2008-04-182016-12-27Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8209192B2 (en)2008-05-202012-06-26Osum Oil Sands Corp.Method of managing carbon reduction for hydrocarbon producers
US8230929B2 (en)2008-05-232012-07-31Exxonmobil Upstream Research CompanyMethods of producing hydrocarbons for substantially constant composition gas generation
US20090308608A1 (en)*2008-05-232009-12-17Kaminsky Robert DField Managment For Substantially Constant Composition Gas Generation
US8256512B2 (en)2008-10-132012-09-04Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8267185B2 (en)2008-10-132012-09-18Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8353347B2 (en)2008-10-132013-01-15Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8267170B2 (en)2008-10-132012-09-18Shell Oil CompanyOffset barrier wells in subsurface formations
US20100147521A1 (en)*2008-10-132010-06-17Xueying XiePerforated electrical conductors for treating subsurface formations
US8220539B2 (en)2008-10-132012-07-17Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8281861B2 (en)2008-10-132012-10-09Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8261832B2 (en)2008-10-132012-09-11Shell Oil CompanyHeating subsurface formations with fluids
US9129728B2 (en)2008-10-132015-09-08Shell Oil CompanySystems and methods of forming subsurface wellbores
US9051829B2 (en)2008-10-132015-06-09Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US9022118B2 (en)2008-10-132015-05-05Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US8881806B2 (en)2008-10-132014-11-11Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US8616279B2 (en)2009-02-232013-12-31Exxonmobil Upstream Research CompanyWater treatment following shale oil production by in situ heating
US8851170B2 (en)2009-04-102014-10-07Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8448707B2 (en)2009-04-102013-05-28Shell Oil CompanyNon-conducting heater casings
US8434555B2 (en)2009-04-102013-05-07Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US8327932B2 (en)2009-04-102012-12-11Shell Oil CompanyRecovering energy from a subsurface formation
US8540020B2 (en)2009-05-052013-09-24Exxonmobil Upstream Research CompanyConverting organic matter from a subterranean formation into producible hydrocarbons by controlling production operations based on availability of one or more production resources
US8863839B2 (en)2009-12-172014-10-21Exxonmobil Upstream Research CompanyEnhanced convection for in situ pyrolysis of organic-rich rock formations
US8833453B2 (en)2010-04-092014-09-16Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US9399905B2 (en)2010-04-092016-07-26Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8631866B2 (en)2010-04-092014-01-21Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8820406B2 (en)2010-04-092014-09-02Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9127523B2 (en)2010-04-092015-09-08Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US8739874B2 (en)2010-04-092014-06-03Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US9127538B2 (en)2010-04-092015-09-08Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8701769B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US9033042B2 (en)2010-04-092015-05-19Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US8701768B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations
US9022109B2 (en)2010-04-092015-05-05Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8622127B2 (en)2010-08-302014-01-07Exxonmobil Upstream Research CompanyOlefin reduction for in situ pyrolysis oil generation
US8616280B2 (en)2010-08-302013-12-31Exxonmobil Upstream Research CompanyWellbore mechanical integrity for in situ pyrolysis
US9033033B2 (en)2010-12-212015-05-19Chevron U.S.A. Inc.Electrokinetic enhanced hydrocarbon recovery from oil shale
US8936089B2 (en)2010-12-222015-01-20Chevron U.S.A. Inc.In-situ kerogen conversion and recovery
US8839860B2 (en)2010-12-222014-09-23Chevron U.S.A. Inc.In-situ Kerogen conversion and product isolation
US8997869B2 (en)2010-12-222015-04-07Chevron U.S.A. Inc.In-situ kerogen conversion and product upgrading
US9133398B2 (en)2010-12-222015-09-15Chevron U.S.A. Inc.In-situ kerogen conversion and recycling
US9016370B2 (en)2011-04-082015-04-28Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en)2011-10-072016-04-12Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en)2011-11-042015-07-14Exxonmobil Upstream Research CompanyMultiple electrical connections to optimize heating for in situ pyrolysis
US8851177B2 (en)2011-12-222014-10-07Chevron U.S.A. Inc.In-situ kerogen conversion and oxidant regeneration
US8701788B2 (en)2011-12-222014-04-22Chevron U.S.A. Inc.Preconditioning a subsurface shale formation by removing extractible organics
US9181467B2 (en)2011-12-222015-11-10Uchicago Argonne, LlcPreparation and use of nano-catalysts for in-situ reaction with kerogen
US10047594B2 (en)2012-01-232018-08-14Genie Ip B.V.Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US8770284B2 (en)2012-05-042014-07-08Exxonmobil Upstream Research CompanySystems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en)2012-05-252015-03-31Chevron U.S.A. Inc.Isolating lubricating oils from subsurface shale formations
US9512699B2 (en)2013-10-222016-12-06Exxonmobil Upstream Research CompanySystems and methods for regulating an in situ pyrolysis process
US9394772B2 (en)2013-11-072016-07-19Exxonmobil Upstream Research CompanySystems and methods for in situ resistive heating of organic matter in a subterranean formation
US9644466B2 (en)2014-11-212017-05-09Exxonmobil Upstream Research CompanyMethod of recovering hydrocarbons within a subsurface formation using electric current
US9739122B2 (en)2014-11-212017-08-22Exxonmobil Upstream Research CompanyMitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US10060239B2 (en)*2015-12-182018-08-28Husky Oil Operations LimitedHot water injection stimulation method for chops wells
US11142681B2 (en)2017-06-292021-10-12Exxonmobil Upstream Research CompanyChasing solvent for enhanced recovery processes
US10487636B2 (en)2017-07-272019-11-26Exxonmobil Upstream Research CompanyEnhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en)2017-08-312021-05-11Exxonmobil Upstream Research CompanyThermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11261725B2 (en)2017-10-242022-03-01Exxonmobil Upstream Research CompanySystems and methods for estimating and controlling liquid level using periodic shut-ins

Similar Documents

PublicationPublication DateTitle
US3882941A (en)In situ production of bitumen from oil shale
US2813583A (en)Process for recovery of petroleum from sands and shale
US4265310A (en)Fracture preheat oil recovery process
US3358756A (en)Method for in situ recovery of solid or semi-solid petroleum deposits
US3513914A (en)Method for producing shale oil from an oil shale formation
US3521709A (en)Producing oil from oil shale by heating with hot gases
US3948323A (en)Thermal injection process for recovery of heavy viscous petroleum
US3294167A (en)Thermal oil recovery
CA1040529A (en)In situ combustion process for multi-stratum reservoirs
US3739852A (en)Thermal process for recovering oil
CA2046107C (en)Laterally and vertically staggered horizontal well hydrocarbon recovery method
US4429745A (en)Oil recovery method
CA1240263A (en)Combined replacement drive process for oil recovery
US3208519A (en)Combined in situ combustion-water injection oil recovery process
US4522260A (en)Method for creating a zone of increased permeability in hydrocarbon-containing subterranean formation penetrated by a plurality of wellbores
US3847219A (en)Producing oil from tar sand
US4597443A (en)Viscous oil recovery method
Gates et al.Combustion as a primary recovery process-Midway Sunset field
US3180413A (en)Cross flow thermal oil recovery process
US4130163A (en)Method for recovering viscous hydrocarbons utilizing heated fluids
US20150107834A1 (en)Method for producing heavy oil
US3375870A (en)Recovery of petroleum by thermal methods
US4120357A (en)Method and apparatus for recovering viscous petroleum from thick tar sand
US4450911A (en)Viscous oil recovery method
PratsA current appraisal of thermal recovery

[8]ページ先頭

©2009-2025 Movatter.jp