Unite 1i Huggins States Patent [191 [73] Assignee: Med-Pak Corporation, Charlestown,
1 W. Va.
[22] Filed: Dec. 6, 1972 [21] AppL'No; 312,670
[52] 1 U.S. Q1. 261/121 R, 128/188, 261/DIG. 65
[51] Int. C1. ..l Bfilf 3/04, A61m' 15/00 [58] Field of Search 128/185, 186, 188, 194; 261/1316. 65, 77, 78 A, 122,- 123', ZZZ/400.7,
[56] References Cited UNiTED STATES PATENTS 2,342,602 2/1944 Rcitz,.1r 128/188 2,709,577 5/1955 Pohndorf et a1. 26l/D1G. 65 3,103,471 9/1963 Asami 261/121 R X 3,269,664 8/1966 Larnb ct a1 261/121 R X 3,572,661) 3/197-1 Mahon et alm. 261/78 A 5,610,478- 10/1971 Johnston... ZZZ/400.7 3,682,168 8/1972 Dcaton 261/122 X 3,724,454 4/1973 Brown 128/194 [4 1 Dec.3,1974
1 Primary ExaminerTim R. Miles Assistant Examiner--Richard L. Chiesa Attorney, Agent, or FirmOlson,, Trexler, Wolters, Bushnell & Fosse, Ltd.
[57] ABSTRACT Apparatus for administering humidified gas (e.g., oxygen) to a patient includes a one-piece plastic connector having a tubular portion for connection to an oxygen supply, a tubular spike portion, and a smaller diameter oxygen supply tube within the spike portion and extending beyond the end of the spike portion for first piercing the stopper in an intravenous solution bottle. The spike portion enlarges the hole pierced by the oxygen supply tube. The oxygen from the supply tube is delivered to the bottom of the bottle and bubbles upwardly through the liquid therein. The humidified oxygen enters a chamber formed by that part of the bore of the spike portion that is not occupied by the gas tube. The humidified gas then leaves the chamber and enters a conduit on the connector that is connected to a nasal cannula.
3 Claims, 6 Drawing Figures PATENTEL DEBSHEE MW 2 Illllllllllllllllllllllllllllllli BACKGROUND OF THE INVENTION This invention relates to improvements in apparatus for gas humidification systems, particularly systems for humidifying oxygen prior to delivery to a patient. It is well known that the oxygen in conventional supply tanks used by hospitals has a relatively low humidity, and for this reason the oxygen cannot, in many instances, be directly administered to the patient. As a result, the oxygen is frequently passed through humidifiers prior to being delivered through a nasal cannula to the patient. The oxygen or oxygen-containing gas is usually humidified by bubbling the gas through a reservoir of water, saline solution, or other medicated solution.
In order to maintain sterility, I have previously proposed utilizing a standard intravenous solution bottle as the reservoir through which the gas is bubbled. The in travenous solution bottle has the advantage that it contains its own sterilizedsupply of water or other solution. Also the bottle is disposed of afteruse. Thus, as-
suming proper handling procedures, sterility is preserved.
One problem with my aforesaid prior proposal is the fact that a special type of stopper has been required. This adds considerable to the cost to the hospital (and hence to the patients) because these bottles with special stoppers must be separately inventoried. Since the stoppers are of special construction the intravenous solution bottles are often not adaptable to medical procedures'in which intravenous solution bottles of the conventional type and with conventional stoppers are used.
OBJECTS AND SUMMARY OF THE INVENTION An object of this invention is to provide a gas humidi-' fication system that utilizes conventional intravenous solution bottles having conventional stoppers therein, whereby the hospital does not need to inventory bottles with specially constructed'stoppers for use with oxygen humidification procedures that utilize such bottles as the solution reservoir.
A further object of this invention is to provide a novel connector which forms part of the system and which serves as the principal component that facilitates the use of conventionally stoppered intravenous solution bottles in the system.
It is a further and more specific object of the present invention to provide a connector of the type and for the purpose stated that is adapted to puncture a conventional intravenous solution bottle stopper, and wherein the connector prevents accidental removal thereof from the bottle stopper while also permitting the bottle to be suspended from the connector.
In accordance with the foregoing objects the connector of the present invention comprises a body with a first tubular means for connection to a gas supply, such as the outlet of a metering valve. The gas is typically oxygen, butit may be ordinary air, or air modified by additional oxygen. Thebody also includes a second tububeyond the puncturing end of the spike portion a sufficient distance so that when the connector is in proper position on the stopper, the lower end of the gas tube will be near the bottom of the solution bottle. The free end of the gas tube is constructed to perforate initially the bottle stopper following which the spike portion enlarges the hole made by the gas tube and seats on the top of the stopper. Barbs on the spike portion retain the latter in place and also permits the stoppered bottle to be suspended from the spike portion. Gas bubbling up from the gas supply tube leaves the surface of the liquid in a humidified condition and then flows to a chamber that is formed by the part of the spike portion bore that is not occupied by the gas tube. This chamber at which the humidified gas is collected is in communication with a conduit member that is also part of the connector body and which is adapted to be connected to a nasal cannula for transmitting the humidified gas to the patient.
BRIEFDESCRIPTION OF THE FIGURES FIG. l is a fragmentary side elevational view of gas humidifying apparatus constructed in accordance with FIGS. 4 and 5 are fragmentary sectional views taken alonglines 44 and 5-5 respectively of FIG. 3; and
FIG. 6 is a sectional view showing a step in the assembly of the connector of the present invention with a conventional intravenous solution bottle.
DETAILED DESCRIPTION Referring now in more detail to the drawing, which illustrates a preferred embodiment of the present invention, there is shown anapparatus 2 that includes a connector 4- that is in the form of a molded plastic body of high density of polyethylene or other suitable material. Theconnector 4 includes a first tubular portion orstem 6 for connection to a source of gas as willhereinafter be more fully described. The:stem 6 extends upwardly from an annular cavity 8 in the body, thestem 6 being externally tapered asbest seen in FIGS. 2 and 6. Thebore 10 of thestem 6 is generally cylindrical and has ashoulder 12 intermediate its ends. Downwardly from theshoulder 12 thebore 10 is of slightly enlarged diameter.
Theconnector 4 also integrally includes a second tubular portion in the form of depending spike M having abore 16 that is of a diameter substantially larger than that of thebore 10. Thus, theupper portion 18 of thebore 16 tapers upwardly to merge with the lower end lar means which is a spike portion for piercing the stop-' per or like closure for the container. A third tubular means is comprised of. a gas supply tube of smaller diameter than that of the tubular spike portion and telescoped therein. The gas supply tube extends outwardly of the bore it). It will also be noted that the central axis of thebore 10 is eccentric to the central axis of thebore 16. The lower end of thespike 14 has abevel 20 whereby thetip 22 of thespike 14 provides-a piercing or penetrating end. Upwardly from thetip 22 the spike M is externally provided withbarbs 24 which are circumferentially spaced about the spike, as best seen in FIG. 5. The distance between thebarbs 24 and the lowerexternal surface 26 of the connector is a predetermined amount to facilitate sealing and gripping with a bottle stopper for reasons presently more fully apparent.
Rigidly mounted within the lower portion of the bore is a third tubular member orgas supply tube 28 which is preferably formed of the same material as that of theconnector body 4. The external diameter of thegas supply tube 28 is such as to fit snugly within the lower portion of thebore 10 so that the end of thegas supply tube 28 seats against theshoulder 12. Thegas supply tube 28 andconnector 4 may be maintained in assembled relationship by the friction fit therebetween, or suitable adhesive may be used for this purpose. Thegas supply tube 28 extends downwardly beyond thetip 22 of the spike l4 and terminates in abeveled end 30 that provides a sharp penetrating point ortip 32. It will also be seen that thetube 28 is substantially coaxial with thebore 10 but is eccentric to the axis of thebore 16, the eccentricity being such that thetube 28 abuts the wall surface of thebore 18 along a line oftangency 34 that extends to thetip 22. It will thus beseen that since thegas tube 28 has an external diameter that is substantially smaller than the diameter of thebore 16, thebore 16 and thetube 28 cooperate to define achamber 36. Viewed another way, thechamber 36 is comprised of the part of thebore 16 that is unoccupied by thetube 28. i I 8 Also integrally formed on theconnector body 4 is a' lateral orhorizontal conduit 38 having a taperedexterior surface 40 for receiving a conventionalnasal cannula 42. Theconduit 38 is substantially at right angles to thespike 14 but with'the central axis of thebore 44 of theconduit 38 being offset from the central axis of thebore 16 of thespike 14. Nevertheless, thebore 44 is in direct communication with the upper end of thechamber 36 to provide a passageway for gas from thechamber 36 to flow into thenasal cannula 42 for delivery to the patient.
Theintravenous solution bottle 46 is typically a glass container that constitutes a reservoir for liquid 48 which may be sterile water, saline solution or other medicated solution. At its upper end, thebottle 46 is of a standard construction. Thus, there is anopening 50 of standard 'size and at which is a closure, such as a rubber or rubber-likeresilient stopper 52. Thestopper 52 is clamped in place by ametal clamping ring 54 that underlies the top bead56 of the bottle and overlies theperipheral flange 58 of the stopper. Thestopper 52 also conventionally includes a centralcylindrical hole 60 which opens at the bottom of the stopper but is closed off at its top to provide a membrane 62 (FIG. 6) that is adapted to be pierced when access to the solution within thebottle 46 is desired. In some instances the exposed part of the stopper may be covered with a disc to preserve sterility, If this is not done the top of themembrane 62 may be wiped with an alcohol swab just prior to piercing the same. In any event the external diameter of the gas tube'28 is substantially less than the diameter of thehole 60 whereas the external diameter of thespike 14 between thebarbs 24 andsurface 26 is preferably slightly greater than the diameter of thehole 60. Furthermore, the distance between thebarbs 24 and thesurface 26 is preferablyslightly less than the overall thickness-of thestopper 52, that is between its top and its bottom surfaces 64, 66.
As pointed out previously, thestem 6 is intended for connection to a source of gas supply whereby gas can be delivered through thebore 10 and to thegas supply tube 28. Various means may be provided for coupling theconnector 4 to the gas supply. By way of example but not of limitation. the connector has anexternal thread 68 surrounding the base portion of thestem 6 for threaded connection with the internal thread of aplastic coupling 70. The plastic 70 is symmetrical, as seen in FIG. 2, in that it has two opposed internally threadedsections 70a, 70b, of like construction. Within thecoupling 70 are opposed conically tapered surfaces 72a, 72b, one of which is adapted to seat against the external, conically tapered surface of thestem 6. This forms a seal with thestem 6. The symmetry of thecoupling 70 permits it to be threaded onto theconnector 4 at either end, namely utilizing the section 70a or thesection 70b. The section of thecoupling 70 that is not threaded onto thethread 68 is threaded onto a thread 74 (which may be a pipe thread) that forms part of the discharge end of anoxygen supply valve 76. This valve is used to control or meter the flow of gas into the humidification system. Theflow control valve 76 may, as shown in FIG. 1, take the form of a right angle or elbow whereby the inlet end of thevalve 76 is connected to a threadednipple 78 that projects outwardly from a wall orother support 80. Thethread 74 and the thread on thenipple 78 may be pipe threads so that seals are formed with the mating'threads. Also, as seen in FIG. 2, the threaded stem of thevalve 76 has an internal bore with atapered entrance end 82 against which the free end of thestem 6 firmly engages.
It will also be apparent that aplastic coupling 70 of the type previously referred to need not be used, depending upon the construction of the outlet device for supplying the oxygen. For example, the tapered shape of thestem 6 readily facilitates connection to a flexible tube or other coupling from which gas may be supplied.
In use theconnector 4 with itsattachedgas tube 28 is mounted on theintravenous solution bottle 46. This is done by first causing the tapered end of thetube 28 to pierce themembrane 62, as shown in HO. 6, following which the spike l4 enlarges the hole made by thetube 28 so that only one opening is formed in the stopper, and this opening is approximately the size of themembrane 62. As thespike 14 is firmly pressed so that itssurface 26 engages thetop surface 64 of the stopper,
thebarbs 24 will underlie thebottom surface 66 of the stopper. A seal will be formed between the external surface of thespike 14 and thestopper 52.
it should be noted that thepreassembled connector 4 andgas tube 28 can be packaged in a sterile wrapper. The end of the wrapper adjacent to the piercingend 30 of the gas tube can be peeled back to permit insertion of thebeveled end 30 into themembrane 62 while gripping theconnector body 4 through the sterile wrapping. This, of course, enhances the sterile condition of theconnector 4 since thegas tube 28 and thespike 14 do not have to be grasped or otherwise touched by the human hand. When the connector and gas tube are assembled with the stopper as shown, for example, in FIGS. 2 and 3, thelower end 30 of thegas tube 28 will be near the bottom of the bottle, the length of thegas tube 28 being designed in accordance with the standard height of thebottle 46.
Thecoupling 70 may then be threaded onto thethreads 74 and 68 preparatory for turning on the oxygen by means of thevalve 76. When thecoupling 70 is used in the arrangement here described, the solution bottle is is suspended from thespike 14. Thebarbs 24 permit this suspension of the bottle through thestopper 52. Even where the solution bottle is not suspended the barbs otherwise prevent accidental withdrawal of theconnector 4 from thestopper 52.
When the gas supply is turned on, the gas flows through the bore andtube 28 and is bubbled upwardly through the liquid 48, as best shown in FIG. 2. The humidified gas then enters thechamber 36 and from there is conveyed to thebore 44 of theconduit 38 and then to thenasal cannula 42.
The invention is claimed as follows:
1. A connector assembly for use in a gas humidification systemthat includes a container with liquid and an opening with a closure therein, said connector com prising a body having first tubular means for receiving gas from a gas supply, a threaded coupling cooperable with said body for connecting said first tubular means to the gas supply, second tubular means, third tubular means telescoped within said second tubular means and being in communication with said first tubular means, said third tubular means having a sharp pointed end for piercing a hole in the closure, an end portion of said second tubular means being cross-sectionally larger than said third tubular means and shaped to enlarge the hole pierced by said pointed end, said end portion of said second tubular means being barbed to prevent accidental withdrawal of said connector assembly from the closure and to permit the container to be suspended from said connector assembly, said third tu bular means and said second tubular means defining a chamber that is part of the bore of said second tubular means, a part of said third tubular means that includes said pointed end extending beyond end portion of said second tubular means for immersion in the liquid of the container such that gas will flow from said first tubular means through said third tubular means into the liquid to humidify the gas and the humidified gas will then flow from the surface of the liquid into said chamber, and means forming a conduit for conveying said humidified gas from said chamber, said conduit projecting laterally from said second tubular means and having a decreasing external diameter in a direction away from said second tubular means for telescopically receiving a nasal cannula. v
2. A connector according to claim 1 in which said body is a one-piece plastic member that includes said second tubular means and said conduit means.
3. Apparatus for administering humidified gas such as humidified oxygen to a patient comprising a container with liquid and having an opening with a stopper thereacross, a connector, threaded coupling means for connecting an inlet of said connector to a gas supply, sald connector including tubular means projecting through said stopper and having barb means underlying said stopper for preventing withdrawal of said connector from said stopper and for suspending said bottle from said connector, a gas supply tube in said tubular means and being in communication with said inlet, said gas supply tube lying below the liquid level and having a pointed end for piercing a hole in said stopper, said tubular means being of a cross-sectional size adjacent to said barb means that is larger than that of said gas supply tube so that the tubular means enlarges the hole pierced by said pointed end upon mounting of the connector onto the stopper, and means for conveying humidified gas through said connector to a nasal cannula, said conveying means including a conduit extending laterally of said tubular means and having a decreasing diameter in a direction away from said tubular member for telescopically receiving the