United States Patent [1 1 Cullen et al.
[ 1 Mar. 12, 1974 Primary ExaminerBenjamin A. Borchelt Assistant ExaminerS. C. Buczinski Attorney, Agent, or Firm-LeBlanc & Shur [57] ABSTRACT A nondestructive dimension measuring and comparing system wherein a coherent light beam is impinged on a workpiece surface to produce at least one and preferably two spots of light. Backscattered light from the spots is directed onto a vidicon screen to provide at least two light spot image points which are spaced in proportion to a dimension of the workpiece. The vidicon is scanned to provide output pulses which are time spaced in proportion to the image spot spacing. A scaling oscillator provides scaling pulses which are gated to an up-down counter by the electronically processed, time-spaced pulses. Logic circuitry counts and displays the gated scaling pulses to indicate the dimension, or alternatively, compares the count to a reference and displays the deviation.
5 Claims, 2] Drawing Figures LASER DIMENSION COMPARATOR [75] Inventors: Donald L. Cullen; Teddy L. Moore,
both of Columbus, Ohio [73] Assignee: Autech Corporation, Columbus,
Ohio
[22] Filed: June 1,1971
[2]] Appl. No.: 148,466
[52] U.S. Cl 356/4, 356/1, 178/68 [51] Int. Cl G0lc 3/08 [58] Field of Search 356/1, 108; 331/945 A; 178/68 [56] References Cited UNITED STATES PATENTS 3,244.8]0 4/1966 Williams 178/68 3,180,205 4/1965 Heppe et al. 356/l 2,376,836 5/1945 Tunniclifl'e .i 356/] SAW/J85 6/1965 Milncs 356/] PNEN'T'EB HA8 I 21974 FIG. 4
FIG/5 Pmmmumzwn 3;79s;492
sum n: or 1o .00 o6 I00 K'Hz SYNC +|oo HORIZONTAL CLOCK DMDER +|0| HZ SWEEP o OSCILLATOR +|OOK U U I02 l2 J I I40 gg crf PULSE PULSE l OSCILLATOR STRETCH J SHAPING- 38mm 50A goes [vmsoj/ l-O r KY AMP 1 SCALING A84 402 ANALOG GATE CIRCUIT .llllllll.
4 l2 ma 32:3; M m? +|ooo +|oo CIRCUIT I99 JIS? I94 I92 T0 FIG.7 FIG 6 PAIENIEBIAR I 2 mm 37963192 sum nunr10 FROM FIG.6 200 240 242 '99 IL 244 LATCH d LOGIC L CLEAR SYNC /250 249LOAD 230 252 ZERO C -3w ZERO ET 260 254- SYNC SWITCH OP-DEV 2l4 COUNTER' DIRECTION CIRCUIT r\ r\ SIGN 279STORAGE 270 UP COUNTER a UP-DOWN f GATE DOWN coumm \IOPERATING POINT STORAGE DISPLAY E 8 D CVODER STORAGE FIG? PAIENTEDIAR 12 I974sum 07 or 10 ISG FIG. 'IOA FIGHA FIGIIB FIGI IC FI'GJ ID FIG! IEPAIENIEDIAR 12 I974 sum asHF 10 mzmenm 1 2 mm 31796492 sum '090F10rDISPLAY BLANKING 260 OPERATING POINT FIG. l2
PAIENTEBIAR 12 1914 saw '100F10 l l l l J LASER DIMENSION COMPARATOR BACKGROUND OF THE INVENTION In manufacturing operations, dimension control is necessary for the proper operation of machines and the cooperation of their parts. Also, attractive improvement in profits can be achieved by better dimension control through the consumption of less material to meet specified dimensions or in a reduction of the quantity of rejects due to dimensions outside of tolerances.
In many industrial operations, a gauging system for use together with a dimension control system must be both noncontacting and continuous. For example, in the rolling of sheet materials, the gauging is continuous to not interrupt the movement of the sheet and noncontacting to avoid interference of the gauging head with the manufacturing operation.
Many types of electro-optical gauging systems have been designed for dimension analysis which in turn are used for dimension control purposes.
One type of optical measuring system utilizes the principle of Michelsons interferrometer. In such a system, a light beam from a laser hits a beam splitter which divides the beam into two parts. One part of the beam is reflected to a reference mirror and then back to the point where the beam is split. The other part of the beam passes directly through the beam splitter to a movable measuring reflector and also is reflected to the same point on the beam splitter. If the light returning from the measuring reflector is out of phase with the light returning from the reference reflector, destructive interference occurs and no light passes to a detector. However, if constructive interference occurs, a signal appears at a detector. If the measuring reflector is displaced by a quarter length, the light at the point of interference goes from constructive to destructive interference and the output of the detector goes from a maximum to a minimum. By sensing the number of times the light alternates on and off at the detector, a measurement of the displacement of the measuring mirror from one point to another can be obtained. R. S. Krogstad et al. in U. S. Pat. No. 3,398,287 disclosed a modified form of this system.
A second type of potical system is the null detector system such as disclosed by L. A. whetter in U. S. Pat. No. 3,548,212. In the null system a laser beam strikes a target surface at a specified angle and the backseattered light is focused on a split photo-cell. In the null position, the photo-cells are equally illuminated. However, the target moves, an unbalance in the illumination of the photo-cells is detected and fed to a servo amplifier and driver system which repositions the placement of the laser and detector to a null position. The amount of movement of the laser head assembly is detected and displayed.
D. R. Matthews in U. S. Pat. No. 3,557,380 discloses a modified null system. This patent discloses a transmitter which emits a beam of radiant energy which is directed to irradiate a small area on a surface of a workpiece. A receiver has two detectors with converging respective fields in view disposed on opposite sides of the transmitter. The detectors are directed in such a way that each detector sees the same part of the irradiated area on the workpiece when the workpiece is in the reference position. Thus, in the reference position, the detector signals are equal even though the reflectance on the surface of the workpiece is non-uniform in space distribution. Displacement of the workpiece causes the detector signals to change relative to each other according to a predetermined function and the signals are combined to develop a signal corresponding to displacement.
R. A. Flower in U. S. Pat. No. 3,536,405 discloses an optical thickness gauge utilizing a servo system. This patent discloses a light source which projects a light beam through a rotating prism onto a reflecting mirror. From mirror, the mirror,the light is reflected onto a surface of the specimen and from thence to an optical system, diaphragm slit and to a photo detector. The photo detector produces an output pulse each time the beam is scanned across the diaphragm slit. A beam splitter fixed relative to the light source projects a portion of the light beam onto a second mirror mounted on a movable member. The second mirror reflects the light beam onto the opposite surface of the specimen from which it is reflected through an optical system and diaphragm slit onto a photo detector. The second detector produces a second output each time the second beam is scanned across the second diaphragm slit. The times of occurrence of the output pulses are converted to height modulated pulses, the amplitudes of which are proportional to the times of occurrence of the output pulses. Through a servo system, the relative amplitudes are used to position the movable member relative to the fixed member. The displacement of the movable member is indicative of the thickness of the specimen.
R. H. Studebaker discloses, in U. S. Pat. No. 3,437,825, a distance measuring system utilizing laser beam projecting apparatus which projects two laser beams on converging paths from vertically spaced points at a reference location. Vertically spaced and relatively vertically adjustable beam receivers are provided at a second location spaced from the laser beam projector. When the vertical spacing and height of both beam receivers are adjusted so that both beam receivers respectively receive the beams, the elevation of the second location and its distance from the reference location may be precisely determined.
In U. S. Pat. No. 3,541,337, K. Brandenburg discloses a width measuring system which optically. scans the width of a sheet by means of a photo-diode and an oscillating prism. A voltage jump is produced at the photo-cell when the light intensity varies onthe scan path, for example, at the edges of the sheet. The angular position of the prism at which this voltage jump occurs is detemined with the aid of a toothed disk and inductive pickups. Counting the pulses produced by the toothed disk and the co-operating pickups between voltage jumps gives an indication of sheet width.
The optical systems described above, which detect light amplitude or which detect relative light amplitudes, such as the null system, are susceptible to error caused by variations in ambient light conditions, reflec tance, and in atmospheric conditions. Systems which depend upon mechanical servo systems are susceptible to error because of the hysteresis which can be expected in a mechanical drive assembly.
There is a need, therefore, for a dimension measuring system in which all measurements are objective and do not depend on operator judgments, ambient light conditions, surface reflectance variations, and mechanical limitations.
SUMMARY OF THE INVENTION The invention is a distance measuring apparatus for providing an output correlatable to a distance dimension of a workpiece. The apparatus comprises a coherent light source means for directing coherent light onto said workpiece for inducing backscattered reflections therefrom. A light directing means is positioned for directing said backscattered light from the workpiece. The backscattered light includes at least a pair of relatively large light intensity gradients which are spaced a distance proportional to the distance to be measured. Photoresponsive means is positioned to receive the directed backscattered light for detecting the intensity gradients by providing an instantaneous output proportional to the intensity of the light instantaneously being detected. Scanning means is provided for presenting the reflected light to the photoresponsive means for detection in a time scanning sequence. Signal processing means is connected to receive the output of the photoresponsive means and is responsive to the time period between the scanned detection of the intensity gradients. The signal processing means converts the output from the photoresponsive means to a signal which is correlatable to the distance dimension being measured.
Accordingly, it is an object of the invention to provide an improved laser dimension comparator for measuring the size, shape, and deformation of objects.
Another object of the invention is to provide a laser dimension comparator for continuously measuring the size, shape and deformation of materials such as rubber, plastic, food, glass, paper, textile and metal products.
Another object of the invention is to provide a laser comparator which can be operated accurately by unskilled operators.
Another object of the invention is to provide a laser dimension comparator which reduces the time needed for measuring a dimension.
Another object of the invention is to provide a dimension comparator with a digital display readout which can easily be controlled to read in any system of units desired.
Another object of the invention is to provide a laser dimension comparator having improved construction, maintenance and operation costs.
Further objects and features of the invention will be apparent from the following specification and claims when considered in connection with the accompanying drawings illustrating the preferred embodiment of the invention.
DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates diagrammatically a gauging head constructed according to the invention.
FIG. 2 is a plan view of the workpiece illustrated beneath the gauging head in FIG. 1.
FIG. 2A is a graphical representation of a pair of high intensity light spots on the workpiece illustrated in FIG. 2.
FIG. 3 is a view in front elevation of the control panel of the data processing console constructed according to the invention.
FIG. 4 is a diagrammatic view of an alternative embodiment of the invention.
FIG. 5 is a diagrammatic view of another alternative embodiment of the invention.
FIG. 6 is a block diagram illustrating a portion of the signal processing circuitry constructed according to the invention.
FIG. 7 is a block diagram of the remaining portion of the signal processing circuitry constructed according to the invention.
FIG. 8 is a schematic diagram of the clock oscillator illustrated in FIG. 6.
FIG. 9 is a schematic diagram of the scaling oscillator illustrated in FIG. 6.
FIG. I0 is a schematic diagram of a portion of the pulse shaping circuit illustrated in FIG. 6.
FIG. 10A is a graphical representation of the signal output from the vidicon illustrated in FIG. ll.
FIG. III is a schematic diagram illustrating a portion of the pulse shaping circuitry illustrated in FIG. 6.
FIGS. 11A through ll IF are graphical representations of the signals occurring at various positions in the circuitry illustrated in FIG. 6 and FIG. 7.
FIG. 12 is a schematic diagram illustrating the zero set sync switch illustrated in block form in FIG. 7.
FIG. 13 is a schematic diagram of the analog circuit illustrated in block form in FIG. 6.
DETAILED DESCRIPTION The preferred embodiment of the laser dimension comparator described generally has a gauging head and a data processing console. The gauging head is positioned near the object being measured and provides an output signal containing the dimension information. The gauging head utilizes laser optics and image converter electronics. The console, positioned wherever desired, receives and processes the gauging head output signal and generates the ultimate display signal.
FIGS. 1 and 2 illustrate the arrangement and operation of the apparatus comprising the preferred embodiment of the gauging head of the present invention. FIG. I diagrammatically illustrates a gauging head It) and schematically its optical interreaction with aworkpiece 12. More specifically, the gauging head has a pair of spacedlasers 13 and I4 such as the helium-neon type and cooperating mirrors I6 and 18. The lasers and mirrors function as a coherent light source operative to direct a pair ofcoherent light beams 2i and 22 ono the target workpiece I12. The coherent light beams 20 and 22 produce a pair of illuminatedspots 24! and 26 on the face of theworkpiece 12 as illustrated in the plan view of FIG. 2. Although the entire workpiece surface may be partially illuminated, the twolight beams 20 and 22 provide points of greatly increased light intensity, such as shown graphically in FIG. 2A. As will be described hereinafter, the distance between these high intensity spots 24 and 26 is directly proportional to the distance from a point on the gauginghead 10 to theworkpiece 12.
Incident light from thebeams 20 and 22 is reflected, not only at an angle equal to the angle incidence, but in addition, a portion of the incident light is backscattered in all other directions. Some of this backscattered light, illustrated diagrammatically in FIG. 1 as image rays 28 and 30, is backscattered toward alight directing lens 32 mounted in the gauginghead 10. Avidicon 34 is positioned in the gauginghead 10 rlative to thelens 32 to have focused thereon an image of the twohigh intensity spots 2 and 26. Typically, thelens 32 may have a 50 mm focal length. The distance between the image spots on the vidicon is representative of the actual distance between thespots 24 and 26 on the workpiece I2, and hence directly proportional to the distance from the gauging head to theworkpiece 12. Apower supply 40 is provided to suitably power thevidicon 34 and thelaser power supply 42 which in turn powers thelasers 13 and 14.
In a conventional manner, a voltage having a sawtooth shape generated by ahorizontal sweep circuit 36 causes the electron beam of thevidicon 34 to horizontally sweep the vidicon screen. In the preferred embodiment, no vertical sweep is applied to thevidicon 34. Consequently, the vidicon output, after being amplitied by avideo amplifier 38, comprises a pair of pulses for each horizontal sweep. These pulses, illustrated in FIG. 10A, correspond to the intensity spots 24 and 26 on theworkpiece 12 of FIG. 2 and 2A. The time separation AT between these two video output pulses is directly proportional to the actual spacing between the intensity spots 24 and 26. Therefore, the time spacing AT is directly proportional to the distance from the gauginghead 10 to theworkpiece 12.
The correlation between the spacing of theintensity dots 24 and 26 and the thickness AD of theworkpiece 12 is seen with reference to the geometry of FIG. 1. Examination of FIG. 1 reveals that where D represents the distance from the gaugigg to zero, then AD=S1 [tan (/21. For a fixed i nstallation, with thelasers 13 and 14 and themirrors 16 and 18 rigidly positioned, the term tan /2 is constant. AD will additionally be multiplied by a constant multiplier to account for the shrinkage of the image. Thus, the thickness of the workpiece AD is equal the distance-between the spots, S1, multiplied by K, a
fixed constant multiplier.
The operation of a vidicon thus requires that the time between the video output pulses, AT, which is directly p pp n smalto thasmt at ns ty spacing Ski he fore directly proportional to the workpiece thickness AD. Thus, the apparatus illustrated in FIG. 1 produces at its output a pair of time separated pulses in which the time separation is directly proportional to the workpiece dimension.
FIGS. 4 and 5 illustrate a pair of equivalent, alternative gauging heads to those of FIG. 1, which may be used toprovide a pair of spots on an image tube face with a distance therebetween directly porportional to a workpiece dimension.
In the embodiment of FIG. 4, asingle laser 50 provides a light beam which impinges upon abeam splitting prism 52 to direct a pair of beams to themirrors 54 and 56. Themirrors 54 and 56 in turn direct the pair of light beams onto aworkpiece 57. A pair of high intensity spots are generated on theworkpiece 57 in the same manner as generated by the two lasers illustrated in FIG. 1. Avidicon 58 is provided for detecting this pair of spots in the same manner as illustrated in FIG. I. The beam splitting prism may be of conventional construction.
In FIG. 5, asingle laser 60 directs asingle beam 62 onto a workpiece to provide a singlehigh intensity spot 63. However, a pair of spacedmirrors 64 and 66 are so positioned to direct backscattered light'from thesingle spot 63 onto aprism 69. Theprism 69 is positioned relative to themirrors 64 and 66 and thevidicon 68 to focus the two-mirrored images of the single spot onto avidicon 68. Thus, in the embodiment of FIG. 5, a pair of high light intensity spot images are generated on the vidicon screen with a spacing directly porportional to a dimension of theworkpiece 70; in this instance, the distance from theworkpiece 70 to the gauginghead 10.
The apparatus illustrated in FIGS. 6 through 13 is the signal processing means 35 connected to the output of thevidicon 34 of FIG. 1. The signal processing means 35 is responsive to the time interval between the scanned intensity spots to convert the output from the vidicon to a signal correlatable to a distance dimension of the workpiece. It produces various outputs which are indicative of the measured dimension. These include numerical display, binary coded decimal connections and analog connections.
FIGS. 6 and 7 illustrate, in block schematic diagram, the digital processing network operative to convert the time separation of the vidicon output pulses to a digital readout and visual display of the workpiece position or thickness. The operation of the processing circuitry of FIGS. 6 and 7 is controlled from a control panel illustrated in FIG. 3. Thecontrol panel 25 has a digital display for visually reading the desired dimension. In addition, terminals (not shown) are provided for the analog output and BCD output for utilization.
The laser comparator is capable of two modes of operation each controlled from the control panel in FIG. 3. When the gauging head is initially installed for a particular industrial process control, a reference surat 29i! 2.P (.F G-, i sitignedafixe tance from the gauginghead 10. The laser comparator is adjusted (by means explained below) to give a zero readout when the spots are formed on the reference surface at position o. In its first mode of operation, the laser comparator will read the actual thickness AD of aworkpiece 12 positioned on the reference surface at "0. This mode is termed the operating point mode and is herein abbreviated the OP. mode. In an alternative mode, a standard workpiece of known or standard dimension may be positioned on the reference surface in lieu of theworkpiece 12. A representative signal of its measured thickness is stored in the comparator circuit. The output signal from the comparator is a signal deviating from the stored thickness signal and in accordance with the dimension of the workpiece. For example, a workpiece may be positioned on the reference surface and thebutton 82 actuated to put the device in the deviation mode. The zerobutton 84 is depressedto store the standard dimension of the reference workpiece in the comparator. Thedigital display 80 will then accurately read the deviation of a workpiece from the standard thickness with a suitable or sign preceding it.
The laser comparator has an operating linear range outside of which the comparator becomes nonlinean Thus, a workpiece target surface on which the intensity spots are formed must be within a certain distance from the reference surface. Anoperating range meter 86, with its indicatingneedle 88, provides an analog readout of the position of the workpiece surface in or out of the operating range. In addition, circuitry is provided to illuminate asignal light 90 on the control panel of FIG. 3 to indicate that the device is operating outside of its operating limits. The operating range is limited by the size of the screen of thevidicon 34 and the image reduction. As the workpiece is moved closer to the gauging head, the spots become further apart until eventually they will be imaged on the edge of the vidicon screen and eventually off the vidicon screen, thus providing no meaningful reading.
In order to compansate for light and electronic noise and variations, the laser comparator has the capability of averaging the scanned distance between the spots over a time interval of one-tenth of a second, or in the alternative of one second. The averaging time interval is manually selected by thecontrol button 85.
Referring now to FIG. 6, the circuit of FIG. 6 is directed to shaping the pulses from thevideo amplifier 38 and to converting them into a series of high frequency pulses which can then be counted by the counting and logic circuit of FIG. 7. The circuit is provided with two different oscillators. Aclock oscillator 100 is provided to control the logic functions of the circuitry of FIG. '7 and to control the vidicon sweep. Theclock oscillator 100 is illustrated in detail in FIG. 8. It is crystal controlled and preferably oscillates at 100 KHZ. In other respects, it may be an oscillator of standard design.
The other oscillator is a scalingoscillator 102 which is illustrated in detail in FIG. 9. The scalingoscillator 102 provides high frequency pulses which are to be gated and counted to determine the measured dimension. Thepreferred scaling oscillator 102 is illustrated in detail in FIG. 9. It too is crystal controlled and operates preferably at a frequency of 4.2 MHz. By alternatively substituting a crystal to provide oscillation at 10.6 MHz, the circuit may give a direct readout in the metric system of units. Thus, the output scale of thedigital display 80, shown in FIG. 3, can be selected by appropriately selecting the crystal frequency of thecrystal 103 illustrated in FIG. 9.
Returning to FIG. 6, the output from theclock oscillator 100 is applied to a sync divider I01 which is a frequency divider circuit having three outputs. The first output 104 has the clock oscillator frequency divided by 100 and therefore has a l KHz output frequency. These KHz outpulses are referred to as dump pulses. The second output 106 has the clock oscillator frequency divided by thousand and therefore has an output frequency of 10 Hz. Thethird output 108 has the clock oscillator frequency divided by one hundred throusand and therefore has an output frequency of 1 Hz. The divider output terminal 104 is connected to the horizontal sweep circuit 110 to trigger the vidicon sweep at a l KI-Iz rate. The vidicon therefore sweeps one thousand times per second and provides one thousand pairs of output pulses each second which are time separated in proportion to the spacing of the light intensity spots on the workpiece. The divider outputs I06 and 108 are applied to the logic circuitry of FIG 7 for logic control clock purposes to be described in connection with the description of FIG. 7.
Thevideo amplifier 38 illustrated in FIG. I and illustrated in phantom in FIG. 6 receives, at its input, the
time separated pulses illustrated in FIG. 10A. The details ofvideo amplifier 38 are illustrated in FIG. 10. Thevideo amplifier 38 includes a gain adjusting potentiometer 1120, an amplifier I26, and preliminary pulse shaping circuits in the form of a filter and amplifier stage 1128 and aclipping stage 130.
The output from thevideo amplifier 38 is applied to a video pulse shaping circuitry 114 0 shown diagrammatically in FIG. 6. The purpose of the pulse shaping circuitry 1410 is to provide a single pulse, the width of which is directly and accurately proportional to the distance between the light intensity spots focused on the vidicon screen. The output from thevideo amplifier 38, which is the input to the videopulse shaping circuitry 130, is illustrated in FIG. MA. The filter and amplifier stage 1128 has removed the sharp noise variations from the signal.
FIG. 11 shows in detail the structure of the first portion of the video pulse shaping circuitry I40. Referring to FIG. 11, the first stage of the pulse shaping circuitry comprises a differentiator 141. The purpose of the differentiator is to differentiate the waveform of FIG. 11A to provide a rapid rate of change for each spot to be used as references for measuring the distance between the light intensity spots. This differentiated output, illustrated in FIG. 11B, is applied to a one shot M3 in FIG. 11. The function of the oneshot 143 is to produce a square pulse for each light intensity pulse. The one shot is triggered by the rapid rate of change exhibited at and in FIG. 1113. Thus, the one shot input is a pair of successive square pulses for each vidicon sweep wherein the leading edges of each pulse are separated by a time separation which is directly proportional to the distance between the light intensity spots on the workpiece.
The one shot output, illustrated in FIG. 111C, is then applied to a set/reset flip-flop not shown. The set/reset flip-flop produces a single, square, output pulse, the width of which is directly proportional to the distance between the light intensity spots on the workpiece and is illustrated in FIG. 111D. Thus, the first one shotoutput pulse 176, illustrated in FIG. 1! 1C, causes the set/re set flip-fiop to go to its set condition 178 illustrated in FIG. MD. The second one shotoutput pulse 180 causes the set/reset flipflop to go to its reset state.
Returning now to FIG. 6, the output from the set/reset flip-flop, which is shown in FIG. 6 as the output of the videopulse shaping circuit 140, is in an alternative embodiment of the invention, applied to apulse stretcher circuit 182 shown in phantom in FIG. 6. However, in the preferred embodiment, the output of the videopulse shaping circuit 140 is applied directly to ascaling gate 184. For purposes of present discussion, the preferred alternative will be considered and the pulse stretching circuit will be discussed below.
The output of the scalingoscillator 102 is also applied to thescaling gate 184. The scalinggate 184 is a gate which is controlled by the square pulses, illustrated in FIG. MD, from the videopulse shaping circuit 140. These pulses gate the high frequency scaling oscillator pulses which are applied by the scaling oscillator E02. Thus, the leading edge 1136 of the output of thepulse shaping circuit 140, illustrated in FIG. 11D, opens the gate to permit passage of the scalingoscillator 102 pulses to the output of thegate 184. The trailingedge 188 of this pulse then closes the gate to prevent passage of further scalingoscillator 102 pulses. In
this manner, the pulse width is converted to a series of pulses capable of being counted. The number of scaling oscillator pulses present at the output of thegate 184 during each burst of such pulses is directly proportional to the spacing between the light intensity spots on the workpiece. It should be noted that a similar burst of such pulses is present at the gate output for each vidicon sweep. In the preferred embodiment, the output of thegate 184 is therefore a series of such pulse bursts occurring at the sweep rate of one throusand bursts per second.
The output of the scalinggate 184 is applied to anaveraging divider 190. The averagingdivider 190 has a pair of alternatively selectable outputs. Thefirst output 192 divides the scaling oscillator pulses present in each burst by one hundred. Thesecond output 194 divides the scaling oscillator pulses in each burst by one thousand. Thus, if two thousand pulses are present in a burst at the output of thegate 184, then they will produce pulses at theoutput terminal 192 of thedivider 190 and two pulses at theoutput terminal 194 of thedivider 190.
The input to the averagingdivider 190 is illustrated diagrammatically in FIG. 1 1E, and its divided output is illustrated in FIG. 11F. These output pulses, together with the sync divider outputs fromterminals 106 and 108 in FIG. 6, are then applied to the logic circuitry illustrated in FIG. 7.
The purpose of the logic circuitry in FIG. 7 is to convert the pulse bursts from the output of the averagingdivider 190 to a digital display of the distance AD of FIG. 1. The number of pulses at the output of the averagingdivider 190 is directly porportional, as stated above, to the distance between the light intensity spots and therefore is directly proportional to the distance AD.
A selected one of the two alternatively selectable clock pulses at theoutputs 106 and 108 from the sync divider 191 is applied to a.logic sync circuit 200 illustrated in block form in FIG. 7. The function of thelogic sync circuitry 200 is to provide a sequence of three output pulses for each pulse input from thesync divider 101. Thus if the 10 Hz clock pulse at terminal 106 is applied to thesync circuitry 200, then 10 three-pulse sequences of control pulses will appear at the output of thesync circuitry 200 each second. If the one Hzclock pulse output 108 is applied to thesync circuitry 200, then one three-pulse sequence occurs at the output of thesync circuitry 200 each second. The sequence of three control pulses occurs immediately after the clock pulse from thesync divider 101. The three pulses are of short duration, for example of 10 microseconds each, in the preferred embodiment. All three occur before any substantial sweep of the vidicon has occurred, and therefore all three occur before any pulse bursts appear at the output of the averagingdivider 190 of FIG. 6. The function of these three control pulses will be discussed below.
The output bursts from the averagingdivider 190 of FIG. 6 are applied to a double pole,double throw switch 206. The divider 290 output which is selected by theswitch 206 is applied to acounter gate 210. The counter gate output is in turn applied to an up-down counter 212.
The up-down counter 212 is a binary counter which is capable of counting either up or'down. Thus, it can add each incoming pulse to the accumulated total numher of pulses or it can subtract each pulse from the previous numerical state. Thecounter gate 210 steers the input pulse bursts to the up-down counter to control whether the counter will count up or count down. Acounter direction circuit 214 controls thecounter gate 210. Adisplay storage 216 is provided which is a binary register that stores the accumulated algebraic sum in the up-down counter 212 when commanded to do so by thelogic sync circuit 200.
As stated above, the laser dimension comparator operates in two modes. In the first mode, called the operating point mode or 0.1. mode, the digital display will directly read the thickness dimension AD. When operating in the OP. mode, the zero setsync switch 230 and theOP. storage 232 are not utilized.
The operation of the logic circuitry of FIG. 7 can initially be examined by beginning at a point in time in which an output pulse is present from thesync divider 101 of FIG. 6 at each of itsoutput terminals 104, 106 and 108. The one KHz output pulse at the terminal 104 will initiate the sweep of the vidicon. Simultaneously, a pulse from whichever of the clock outputs at theterminals 106 or 108 is selected will be applied to thesync circuitry 200 of FIG. 7. Before any substantial sweeping occurs at the vidicon, a first latch pulse of short duration will occur at theoutput terminal 240 of thesync circuitry 200. This latch pulse is applied to thedisplay storage 216 to initiate a transfer of data from theupdown counter 212 to thedisplay storage 216. If initially zero is stored in the up-down counter, then zero will be transferred to thedisplay storage 216.
A clear pulse now occurs at theoutput terminal 242 of thesync circuitry 200. This clear pulse is applied to the up-down counter 212 to clear the up-down counter to a zero condition. The clear pulse is simultaneously applied to thecounter direction circuitry 214 to shift its condition so that it causes thecounter gate 210 to steer the pulses so that the up-down counter 270 will count up. A load pulse then occurs at theoutput terminal 244 of thesync circuitry 200 and is then applied to the zeroset switch 230. However, when the 0?. mode is selected, the zero setsync switch 230 functions merely as an open switch and the load pulse has no effect.
In summary then, the sync circuitry output has, before any vidicon sweeping occurs, cleared the up-down counter 212 to the zero position, transferred any data from the up-down counter 212 to thedisplay storage 216, and has shifted thecounter gate 210 to the count up state. The number of pulses in several pulse bursts can now be accumulated in the up-down counter as several sweeps of vidicon occur.
If theswitch 206 is positioned at the terminal 197 so that the output of the averaging divider is its input divided by 100, then the clock pulses from thesync divider 101 will be applied to thelogic sync circuit 200 at a 10 Hz rate. Thus, the up-downcounter 212 can accumulate counted pulses for one-tenth of a second. After the initial one-tenth of a second, async divider 101 output pulse at the terminal 106 will cause another latch pulse at theoutput 240 of thesync circuitry 200. This will cause the accumulated total in the up-down counter 212 to be transferred to thedisplay storage 216. The up-down counter 212 will then be cleared by a clear pulse at theoutput terminal 242 of thesync circuitry 200 to begin again counting subsequent pulses. Another one-tenth of a second series of bursts of pulses are counted by the up-down counter 212 and are again transferred to thedisplay storage 216.
If in the alternative theswitch 206 is positioned to re ceive pulses from the averaging divider 1911 which are its input pulses divided by one thousand, then the one Hz clock pulses from the syncdivider output terminal 108 are applied to thesync circuitry 200. In this condition, the up-down counter 212 accumulates pulses from the series of pulse bursts in a one second averag ing interval. After one second of accumulation, the next one Hz pulse from thesync divider 101 causes the total accumulated count in the up-down counter 212 to be transferred to thedisplay storage 216 by initiating a latch pulse at theoutput 240 of thesync circuitry 200. Another counting interval of one second duration then occurs.
Averaging is thereby accomplished by positioning theswitch 206 to average over one-tenth of a second or over one second. If the averagingswitch 206 is positioned to the terminal 197, averaging occurs over onetenth of a second. Because the vidicon sweeps at a one KHZ rate, one hundred sweeps will occur in each onetenth of a second. Thus, in one-tenth of a second, one hundred bursts of pulses will be applied to the input of the averagingdivider 100. By dividing the pulses by one hundred, the number of pulses at theoutput 197 of the averaging divider in a one-tenth of a second interval will equal the average number of pulses present in a single burst of pulses. This gives the average number of pulses in an average sweep of the vidicon.
If theswitch 206 is positioned to the terminal 199 to receive an output from the averaging divider which is divided by one thousand, then the one Hz clock pulses at the terminal 108 will be applied to thesync circuitry 200. In this condition, the up-down counter 212 accumulates the total number of pulses occurring in one seond. in one second, the vidicon will sweep one thousand times to provide one thousand bursts of pulses. By dividing these pulses by one thousand, at the averagingdivider 190, the total number of pulses occurring at the averagingdivider output terminal 194 in a one second interval will equal the average number of pulses occurring in a single sweep. The up-down counter, therefore, accumulates the average number of pulses present in a single sweep of the vidicon and takes its average over a selected interval of one-tenth of a second or one second.
In the deviation mode, a reference workpiece is to be positioned against the reference surface and its thickness AD to be read by the 'aser dimension comparator. This thickness reading is stored in the laser comparator as a reference. Other workpieces are then positioned beneath the gauging head and thedigital display 80 will display the deviation of other workpieces from the reference thickness dimension.
For operation in the deviation mode, the circuit utilizes the zero setsync switch 230. The zero setsync switch 230 includes, in a simplified basic form, a single pole,single throw switch 249 connected between theinput 250 and theoutput 252. Theswitch 249 is controlled by the O.P.-DEVmode selection switch 254 which is accessible on the control panel of FIG. 3. Thismode selection switch 254 is moved to its closed position to select the OP. mode of operation and to its opened position to select the deviation mode. The simplified zero setsync switch 249 is additionally controlled by the zeroset switch 256. When the 0.1. mode is selected, the simplified zero setsync switch 249 is opened and the load pulses occurring at theinput terminal 250 have no further eFfect on the circuitry.
However, selection of the deviation mode closes the simplified zero setsync switch 249 to permit the load pulses from theterminal 244 of thelogic sync circuitry 200 to be applied to the up-down counter 212 and to thecounter direction circuitry 214..
The fundamental operation in the deviation mode ordinarily begins with the O.lP.-DlEV switch 254 being opened to select the deviation mode. This automatically causes the zero setsync switch 249 to close. The standard workpiece is then positioned beneath the gauging head and the operator depresses the zeroset switch 256 to instruct the machine to store the dimen sion of the standard workpiece. To accomplish this ma chine function, depression of the zero set switch first opens the zero setsync switch 249 for a period of two seconds, for example, to cause operation of the comparator for this interval in the 0.1. mode of operation. This will, in the manner explained for the 0.1 mode operation, cause the dimensions of the standard workpiece to be stored in thedisplay storage 216. In addition, depression of the zeroset switch 256 also produces an output from the zero setsync switch 230 at the terminal 260 which causes theOP. storage 232 to shift data from thedisplay storage 216 to theOP. storage 232. The two second interval assures that the device will operate in the OP. mode and will measure the actual dimension AD regardless of whether one second or one-tenth of a second averaging is being used. It additionally assures that the dimension measured and indicated in the display storage is stored in the OP. storage for use in the deviation mode. After the two second interval, the simplified zero setsync switch 249 automatically recloses and the circuit is ready to display the deviation of other workpieces from the dimension of the standard workpiece.
Operating now in the deviation mode, a clock pulse from thesync divider 101 will be applied to thelogic sync circuitry 200 to produce the sequence of three output pulses. As in the OP. mode, the first pulse will be a latch pulse at theoutput terminal 240 which is applied to thedisplay storage 216 to transfer to thedisplay storage 216 any data in the up-down counter 212. The next pulse will be the clear pulse at theoutput terminal 242 of thesync circuitry 200 which is applied to the up-down counter to clear the up-down counter and return it to zero. In addition, the clear pulse is also applied to thecounter direction circuitry 214 to put it in its count up state. Thecounter direction circuitry 214 thus initially shifts thecounter gate 210 to steet the input pulse bursts to cause the up-down counter 212 to count up. However, the load pulse now occurs at theoutput terminal 244 of thesync circuitry 200 and is applied through the closed zero setsync switch 249 to thecounter direction circuitry 214. This load pulse switches thecounter direction circuitry 214 to its count down mode. Thecounter direction circuit 214 switches thecounter gate 210 to steer the incoming pulse bursts to the count down terminal of the up-down counter 212.
Simultaneously, the load pulse is also applied to the up-down counter to transfer the stored data from the OJP.storage 232 into the up-down counter 212. The logic circuitry now stands ready to begin counting the pulses in the pulse bursts which arrive at the input to thecounter gate 210 as the vidicon is periodically swept. The up-down counter 212 begins counting the pulses for a total of one-tenth of a second, or one second, whichever averaging is selected. With one exception, it does this exactly as it did in the 0.1. mode with the total number of pulses counted over a tenth of a second or over one second, being directly proportional to the thickness AD of the workpiece which is inserted beneath the gauging head. However, the one important difference is that the up-down counter 212 begins its counting from the number transferred into theupdown counter 212 from theOP. storage 232 and counts in a downward direction from the transferred number toward zero.
If the workpiece being measured in the deviation mode is of a thickness AD less than that of the reference workpiece, the u-down counter will not make it down to zero. Instead, thesync circuitry 200 will be actuated by the next clock ulse when the up-down counter 212 is at a number which represents the deviation of the measured workpiece from the reference workpiece. Actuation of thelogic sync circuitry 200, as before, first produces a latch pulse which initially transfers this number from the up-down counter 212 to thedisplay storage 216. Then a clear pulse is applied to the up-down counter 212 to clear it and return theupdown counter 212 to zero. The load pulse is then again applied to the up-down counter 212 to again transfer the stored operating point into the up-down counter 212.
Because the displayed number is less than the dimension of the standard workpiece, a negative symbol will be displayed on thedigital display 80 by thesign storage circuit 270. Thesign storage circuit 270 receives the output from thecounter direction circuitry 214. Whenever the counter direction circuitry is in the count up state, the sign storage circuitry stores the positive symbol. Whenever thecounter direction circuitry 214 is in the count down state, thesign storage circuitry 270 stores the negative symbol. The latch pulse at theoutput terminal 240 of thesync circuitry 200 is applied to thesign storage 270 to shift the stored sign into thedigital display 80. Thus, with an undersized workpiece, thecounter direction circuitry 214 is still in its count down state when counting ceases and when the data in the up-down counter 212 is transferred to thedisplay storage 216. Therefore, the subsequent latch pulse at theoutput terminal 240 will shift a negative sign from thesign storage 270 to thedigital display 80.
Consider now, the sequence of events when the workpiece is greater in dimension than the reference workpiece to which it is being compared. Asdescribed immediately above, the up-down counter 212 begins counting downwardly from the reference operating point toward zero when in the deviation mode. However, when the dimension of the measuredworkpiece is greater than the reference dimension, the up-down counter 212 counts all the way to zero and then begins counting upwardly. This occurs because thecounter direction circuitry 214 has logic which continuously receives the up-down counterdata from theoutput 270 of the up-down counter 212. When this logic sees a zero in the up-down counter 212, it shifts thecounter circuitry 214 to the count up mode. This in turn shifts the gate to steer the pulses to the count up terminal of the up-down counter 212 and additionally shifts thesign storage 270 to a plus sign.
The up-down counter now begins counting up and counts up to a number indicating the oversize deviation of the workpiece being measured. The next clock pulse actuates thesync circuitry 200 to shift the data from the up-down counter 212 to thedisplay storage 216, to then clear the up-down counter 212 to zero and to again load the operating point storage data into the updown counter to begin a second count.
FIG. 12 illustrates the details of the zero setsync switch 230. The zero setsync switch 230 comprises a pair ofrelays 302 and 304, each operating double pole, doublethrow switching contacts 306 and 308. The zero setsync switch 230 is also provided with a two secondtime delay circuit 310 for holding the circuit in the 0.1. mode for two seconds after depression of the zeroset switch 256.
Momentary depression of the zeroset switch 256 actuates thetime delay circuit 310. Thetime delay circuit 310 immediately energizes therelay 302 and therelay 304. This connects the terminal 260 to ground. The first effect of this is to cause theOP. storage 232 to track the data presented in the display storage 216 (FIG. 7). Thus, when therelay 302 is later de-energized the OP. storage will retain the data last present in thedisplay storage 216. In addition, this grounding of the terminal 260 is also applied to the display to blank thedisplay 80 and prevent any numerical display during the two second interval.
The energization of therelay 304 switches therelay 304 to the OP. mode. Of course, if the O.P.-DEV switch 254 were closed, therelay 304 would be continuously energized and the comparator would be set in the OP. mode. However, with the O.P.-DEV switch 254 opened, the comparator is in the deviation mode but is switched during the two second interval to the QP. mode by theswitch 308. During the two second interval of operation in the O.P. mode, the thickness of the reference workpiece is stored in the OP. storage as described above.
After the expiration of the two second interval, thetime delay circuit 310 de-energizes therelay 302 and therelay 304. Opening of theswitch 306 permits theOP. storage 232 to retain its stored data. Thecontacts 308 operate as the simplified switch249 in FIG. 7.
Closing of thecontact 308 connects theinput switch 250 directly to theoutput terminal 252 to permit passage of the load pulse from the output'244 of thesync circuitry 200 to the up-down counter 212 and to thecounter direction circuitry 214 illustrated in FIG. 7.
Returning now to FIG. 6, we have also provided for an analog readout of the workpiece dimension. For this purpose, the output of the videopulse shaping circuit 140 is applied to ananalog circuit 402. One can recall that the output of the videopulse shaping circuit 140 is a square pulse, the width of which is directly proportional to the distance between the light intensity spots and therefore to the dimension of the workpiece. In ad-' dition, the one KI-Iz clock pulse at the output terminal 104 of thesync divider 101 is also applied to theanalog circuitry 402. Theanalog circuitry 402 output is applied to therange display 86 which is visible on the control panel of the comparator illustrated in FIG. 3. Theanalog circuit 402 output is also applied to arange limit circuit 412 which comprises a pair of comparators. One comparator illuminates theoperating limit lamp 90 on the panel of the console illustrated in FIG. 3 when the dimension measured exceeds the limits of the system. The other comparator illuminates the operating limit light 90 when the lower limit of the system is exceeded.
FIG. 13 illustrates the details of the analog generating circuit which provides an analog output at itsterminal 502. The magnitude of the analog output is directly proportional to the width of the pulses applied to itsinput terminal 502 from the output of the videopulse shaping circuitry 140. The input terminal 51% of the analog generator in FIG. 13 is connected to receive the one Kl-lz clock pulses from the output terminal MM of thesync divider 101 illustrated in FIG. 6. The videopulse shaping circuit 140 output pulses are applied to theinput terminal 504 and then to a set/reset flip-flip 508 and a oneshot 510. The one KHZ clock pulses at the terminal 506 are applied to the set/reset flip-flop 508 and operate to reset this flip-flop.
A ramp generator indicated generally as 512 is connected to an integratingcapacitor 514, the discharging of which is controlled by thetransistor 516. Thetransistor 516 in turn is controlled by the set/reset flip-flop 508. Asample storing capacitor 518 samples and stores the voltage level on thecapacitor 514 whenever thefield effect transistor 520 switches closed for a short interval. A d-c amplifier indicated generally as 522 applies a d-c reference voltage at the terminal 524 and the sample voltage at the terminal 526 to adifferential amplifier 528. The output amplitude of the differential amplifier S28 is directly proportional to the width of the pulses applied at theinput terminal 504 and therefore is directly proportional to the dimension of the workpiece beneath the gauging head.
The pulse width of the pulse applied at theinput terminal 504 is sampled one thousand times each second. The sequence of events in the operation of the analog generator begins with the application of the one Kl-lz clock pulse at the terminal 504. This clock pulse resets the set/reset flip-flop 508 which brings thetransistors 516 into conduction to discharge thecapacitor 514 to a standard discharged level. The leading edge of the video input pulse at the terminal 5'04 sets the flip-flop 508 which switches thetransistor 516 to its nonconducting state. This permits the current from the constantcurrent generator 512 to begin charging thecapacitor 514 to provide a substantially linear increasing ramp voltage across thecapacitor 514.
The ramp charging of the capacitor 5114 continues. The trailing edge of the input pulse at the terminal 504 actuates the oneshot 510. The one shot 511) switches to its actuated position for a few microseconds to turn on thefield effect transistor 520 through a d-clevel shifting circuit 530.
In this few microsecond interval, thesample storage capacitor 518 charges to the voltage of thecapacitor 514. The one shot 510 then returns to its original condition and the FET 521] is rendered nonconducting. For the remainder of the one millisecond period, thecapacitor 518 stores the sampled voltage. This voltage is amplified and applied to the terminal 526 and to thedifferential amplifier 528. In addition, a d-c reference voltage is applied to thedifferential amplifier 528 at the terminal 524. The sample level will continue to be applied at the terminal 526 until in the next period, theFET 520 is again turned on, and a new sample is taken.
At the beginning of the next one millisecond sampling period, the clock pulse is again applied at the terminal 506 to reset the set/reset flip-flop 5G8. This discharges the capacitor 5114 again to a standard discharge level but has no effect on thesample storage capacitor 518. During this second sampling period, the new charging ramp voltage occurs across thecapacitor 514 and, as before, the trailing edge of the input pulse at the terminal 514 causes the lFET 52th to conduct to again sample the charge voltage of thecapacitor 514 for a few microsecond interval. llf the second sample is greater in voltage than the first sample, thestorage capacitor 518 will charge to the higher level. if the second sample is lower in magnitude than the first sample, thecapacitor 518 will discharge to the lower level. The level of the capacitor 5118 continues to be applied to thedifferential amplifier 528 until the next sampling occurs. However, the ramp charging of the capacitor 51 1 continues until the end of the one millisecond interval. This assures that during each millisecond sampling period, thecapacitor 514 charges to the same level and therefore upon discharging always discharges to the same standard discharge level.
Without filtering in thedifferential amplifier 528, the output of the differential amplifier would be a series of short steps. To avoid the short steps, a smoothingfilter 522 is provided in the differential amplifier circuitry.
Returning now to FIGS. 6 and 7, consideration should be given to the selection of the frequency of the scalingoscillator 102. The results of properly selecting the scalingoscillator 102 frequency provides one of the remarkably advantageous features of the invention. This discussion also includes a discussion of the function of the optionalpulse stretch circuit 182 and a discussion of the calibration of the laser comparator so that the number of pulses counted by the up-down counter 212 can be stored in thebinary display storage 216, converted directly to a decimal digital display by adecoder 217, and read as the dimension measured in an appropriate unit system.
From the mathematical consideration discussed above, a typical example may be considered. The geometry of the optical system illustrated in FIG. 1 may be set up, for example, such that the cross overpoint 27 of the incident beams 21]) and 22 is considered to be the reference and that therefore the reference spacing S will be zero. The geometry of the optics may typically be designed such that a workpiece of thickness AD of 200 Mils results in an image dot spacing on the screen of the vidicon of /2 inch. A typical horizontal sweep length across the vidicon screen is approximately 1 inch.
If the number of pulses counted by the up-down counter 2112 is to be converted to decimal digits and displayed directly on the display 8%, then the series of digits which represent the number of pulses counted must be identical series of digits which represent the measured dimension of the workpiece. With the typical example above, the number of pulses counted in each pulse burst should be 200 or 2,000 or some other decimal multiple of 2. Therefore, for example, the scaling oscillator frequency may be selected such that two thousand oscillator pulses are gated to the up-down counter during each vidicon sweep. These two thousand pulses would directly produce the binary coded decimal representing decimal 200.
If, however, the scaling oscillator frequency were selected such that during each sweep of the vidicon, or a decimal multiple thereof number of pulses were gated to the up-down, then the same circuitry would display 508. Thedigits 508 represents a dimension of 200 Mils stated as centimeters. Because the scalingoscillator 102 which is illustrated in detail in FIG. 9 is crystal controlled, by acrystal 103, these design considerations can be applied so that selection of an appropriate crystal will permit selection of the system of units in which the system operates. No other adjustment or modification of the laser comparator circuitry is needed.
Continuing with the typical example, the /2 inch spacing between the image spots on'the vidicon screen and the approximate 1 inch scan on the vidicon screen require that approximately 4000 scaling oscillator pulses are generated during each sweep of the vidicon. Since the vidicon sweeps at a l KHz rate, the scaling oscillator must operate at approximately a 4 MHz rate to provide the proper number of pulses during each sweep. Thus, with 4MHz scaling oscillator 102 frequency in the example, 2,000 pulses will be gated to the output of the scalinggate 184 during each 1 millisecond sweep of the vidicon. Typically, however, the scaling frequency is 4.2MH2 to permit scan return and still have 4,000 pulses per vidicon sweep. Because of the averaging circuitry described above, the counter will count 2,000 pulses during each one-tenth of a second or each second over which the count is averaged.
To calibrate the laser comparator exactly, thehorizontal sweep 36 is provided with a conventional sawtooth height adjustment. The sawtooth height is adjusted until the exact correct number of pulses are counted and displayed on thedigital display 80 for a standard workpiece known dimension. The sawtooth height adjustment, of course, serves to adjust the total scan length of the vidicon screen and therefore stretches or shrinks the time interval that the vidicon electron beam takes in traveling from one light intensity spot image to the next light intensity spot image. In this manner, the time width of the gating pulse from the output of thepulse shaping circuit 140 is adjusted to gate exactly the proper number of scaling oscillator pulses to the averagingdivider 190.
If now apulse stretching circuit 182 is interposed between thepulse shaping circuit 140 and the scalinggate 184, and functions to increase the pulse width by a selectable fixed time quantity, the result is to increase the pulse count and therefore the displayed dimension by a fixed quantity. Therefore, by using apulse stretch circuit 182, the actual reference surface may be positioned at a point other than the beam cross overpoint 27 illustrated in FIG. 1 and the displacement of the reference surface may be compensated for by adjustment of thepulse stretch circuit 182. For example, if the reference surface is displayed away from the gauging head l mils from the cross overpoint 27, then the pulse stretcher should add a time width to the pulse sufficient to gate an extra 1,000 pulses to the counting circuitry.
It is to be understood that while the detailed drawings and specific examples given describe preferred embodiments of the invention, they are for the purposes of illustration only, that the apparatus of the invention is not limited to the precise details and conditions disclosed, and that various changes may be made therein without departing from the spirit of the invention which is defined by the following claims:
We claim:
l. A distance measuring apparatus for providing an output correlatable to a distance dimension of a workpiece, said apparatus comprising:
a. a coherent light source means for directing coherent light onto said workpiece for illuminating-said workpiece in a manner to induce backscattered,
reflected light therefrom having an area of relatively large intensity gradient;
b. light directing means for directing said backscattered light from the workpiece, said directed backscattered light including at least a pair of relatively large intensity gradients which are spaced a distance proportional to the distance to be measured;
0. photo responsive detector means positioned to receive said directed backscattered light, for detecting said intensity gradients by providing an instantaneous output proportional to the intensity of the light instantaneously being detected thereby;
d. scanning means for presenting said backscattered light to said detector means for detection in a timed scanning sequence;
e. signal processing means connected to receive the output of said detector means and being responsive to the time period between the scanned detection of said intensity gradients for converting the output from the detector means to a signal which is correlatable to said distance dimension;
f. said light source means providing a single light beam incident upon said workpiece to provide a spot of increased light intensity;
g. said light directing means including a pair of spaced mirror means for reflecting a pair of spaced images of said spot to said detector means;
h. said detector means and said scanning means comprising an image tube including lenses and scanning means associated therewith;
i. said light directing means comprising an optical lens system for imaging said backscattered light in a selected position;
j. said detector means comprising an image detecting camera tube having a screen positioned at said selected position;
k. said scanning means comprising means for scanning said screen to detect said backscattered light image in a timed sequence;
. pulse shaping means connected to receive the output of said image detecting tube for providing an output pulse having a time width directly proportional to the spacing between said images;
m. a scaling oscillator means for generating oscillator pulses at a selected pulse rate;
n. a scaling gate means connected to receive the pulses from said pulse shaping means and said scaling oscillator means, said scaling gate means being controlled by said pulses from the pulse shaping means for gating said oscillator pulses to the scaling gate output; 0. counting means connected to the scaling gate for counting the scaling gate output pulses in a se- I lected time interval;
p. an output storage means for storing a count accumulated in said counting means;
q. logic sync means for providing a time-sequence of instruction pulses at its output in response to an input clock pulse, said instruction pulses includinga latch pulse, a clear pulse and a load pulse, said latch pulse being directed to said output storage