Movatterモバイル変換


[0]ホーム

URL:


US3767351A - Vibratory granulate compacting apparatus for block manufacture - Google Patents

Vibratory granulate compacting apparatus for block manufacture
Download PDF

Info

Publication number
US3767351A
US3767351AUS00188715AUS3767351DAUS3767351AUS 3767351 AUS3767351 AUS 3767351AUS 00188715 AUS00188715 AUS 00188715AUS 3767351D AUS3767351D AUS 3767351DAUS 3767351 AUS3767351 AUS 3767351A
Authority
US
United States
Prior art keywords
piston
cylinder
energy
pistons
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00188715A
Inventor
H Blaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Von Roll AG
Original Assignee
Von Roll AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CH1563670Aexternal-prioritypatent/CH518125A/en
Application filed by Von Roll AGfiledCriticalVon Roll AG
Application grantedgrantedCritical
Publication of US3767351ApublicationCriticalpatent/US3767351A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

An essentially tubular shell has movable tops and bottoms, which are subjected to vibratory impacts in non-cyclically recurring pulses; top or bottom may be subjected to a constant pressure, or both may be subjected to impacts which are synchronized and opposite each other. The impact pulses are controllable both as to frequency (which may be zero), amplitude and wave shape, the impulses being preferably controlled from an electrical programming source which controls application of pressure fluid to the top and bottom.

Description

States Patent 1 Blaser VllBRATORY' GRANULATE COMPACTING APPARATUS FOR BLOCK MANUFACTURE [75] Inventor: Harry Blaser, Oensingen,
Switzerland [73] Assignee: Von Roll A.G., Gerlafingen,
Switzerland [22] Filed: Oct. 13, 1971 [21] Appl. No.: 188,715
[30] Foreign Application Priority Data Oct. 22, 1970 Switzerland 15636/70 Nov. 9, 1970 Switzerland 16671/70 [52] U.S. Cl 425/432, 425/167, 425/352 [51] Int. CL...B28b 3/08 [58] Field of Search 425/352, 355, 167, 425/432 [56] References Cited UNITED STATES PATENTS 3,689,186 9/1972 Winter 425/352 Oct. 23, 1973 3,050,809 8/1962 Kupka 425/352 3,616,495 11/1971 Lemelson.... 425/167 X 3,013,321 12/1961 McElroy 425/167 X 2,348,197 5/1944 Ernst et al. 425/352 X Primary Examiner-J. Spencer Overholser Assistant Examiner-B. D. Tobor Attorney-Flynn & Frishauf [57] ABSTRACT An essentially tubular shell has movable tops and bottoms, which are subjected to vibratory impacts in noncyclically recurring pulses; top or bottom may be subjected to a constant pressure, or both may be subjected to impacts which are synchronized and opposite each other. The impact pulses are controllable both as to frequency (which may be zero), amplitude and wave shape, the impulses being preferably controlled from an electrical programming source which controls application of pressure fluid to the top and bottom.
19 Claims, 3 Drawing Figures PATENTEDURI 23 I975SHEET 2 OF 3 PATENTEU0U 23 I975SHEET 3BF 3 Fig 2/;
Tan k v Fad/a for VIBRATORY GRANULATE COMPACTHNG APPARATUS FOR BLOCK MANUFACTURE The present invention relates to a vibratory compacting apparatus particularly to manufacture blocks from granulates, such as block anodes, in which granulates are placed into a shell and subjected to vibration treatment, in which the granulates are compacted.
The manufacture of blocks from granulates by means of vibratory treatment is known. It has been proposed to utilize resiliently supported tables, or the like, on which the form in which the granulates are filled, is mounted. Such a vibratory table usually has a pair of rotating, unbalanced weights applied thereto. The unbalanced weights may be so arranged that their horizontal components cancel each other. Small vibratory tables of this type can utilize an electric motor which is mounted directly on the vibratory table in order to drive the rotating unbalanced weights. Large vibratory tables, however, require remotely located electric motors. The drive to the unbalanced weights then is over shafts with universal joints therein, or otherwise flexible shafts. Rotation of the unbalanced weights results in an essentially harmonic oscillation of the vibratory table, the granulate within the form being vibrated into one compact block. The compaction of the granulate upon vibration depends on the frequency and amplitude of vibrations.
Remotely located drives, transmitting power over shafts having universal joints, or the like therein are practically always used for vibration tables of high power. Such an arrangementv requires a substantial amount of space, since the shafts and the universal joints require a considerable length in order to compensate for the motion of the vibration table. The frequency can be changed by changing the speed of rotation, and amplitude of vibration can be changed within small limits; the type of vibration is, however, always cyclically recurring, due to the drive from a constant speed, or essentially constant speed motor.
It has been found that vibration of granulates to provide compaction is not as effective as non-harmonic, that is non-cyclically recurring vibrations, such as pulses, impacts and abrupt blows, presenting a welldefined maximum of energy for a short period of time, that is, when looked at in an oscillograph representation, presenting sharply definedpeaked pulses.
- It is'an object of the present invention to provide a compacting apparatus to compact granulates into blocks, which is compact, utilizes but small space for the energy source,and which is capable of providing energy for compaction which is non-cyclically recurring. By non-cyclical recurrance rate, as referred to in the present specification, a motion is meant which is nonharmonic in the sense of showing cyclically recurring oscillations.
Subject Matter of the Present Invention Briefly, a shell is provided having movable top and bottom parts, which are connected to a power transfer device such as a pressure fluid operated piston-cylinder arrangement. The granulate to be compacted is placed within the shell, and energy pulses are applied to at least one of the top, or bottom parts in non-cylically recurring pulses. One of the parts may be subjected to a constant compaction pressure, while the other is subjected to impacts, so that blows will be transmitted to the granulate to be compacted; or, both the top and bottom cover parts may be operated in synchronism, and in counter-acting directions so that compacting blows are delivered against the granulate within the shell, from both the top and the bottom.
In accordance with a feature of the invention, the blows are controlled from a programming source, which may be electrical, which provides a control for a transducer applying pressure fluid to the cylinderpiston arrangement. In addition to the cylinder-piston arrangements transmitting the blows, a steady compacting pressure may be exerted, for example by mounting one of the cylinder-piston arrangements transmitting the blow on a housing portion which is subjected to pressure, for example hydraulic pressure.
In accordance with a feature of the invention, both the amplitude, wave form and frequency of the compacting impulses is changeable; the frequency of compacting pressure applied to one of the cylinder-piston arrangements may be zero, that is, provide a constant essentially unvarying compacting pressure.
By providing pressure fluid operated cylinderpistons, directly acting over movable parts of the container'within which the granulate is placed, space for the apparatus is reduced and the source of energy may be located anywhere, connected to the apparatus itself merely by a fluid pressure line, such as a hydraulic pressure fluid line. Control of admission of the hydraulic pressure fluid is simple and can be carried out by means of electromagnetically operated valves, in accordance with an established program.
The invention will be described by way of example with reference to the accompanying drawings, wherein:
FIG. 1 is a highly schematic illustration of the apparatus to make blocks, and generally illustrating the application of the invention;
FIG. 2a is a schematic longitudinal sectional view through an apparatus to compact granulates; and
FIG. 2b is a schematic diagram illustrating control connections, and programming control for the apparatus of FIG. 2a.
Referring to FIG. 1: A press, or similar suitable arrangement has amovable bottom 201, slidable within ashell 202. Granulate, generally indicated at 203 is placed into the shell. Thebottom 201 is connected to astand 204 which bears against abase 205 in any suitable manner, and not illustrated in FIG. 1. The bearing connection betweenbase 205 andbottom 204 can be fixed, or can be resilient, that is, can be over interposed springs (not shown). An impacting apparatus 206, providing upward motion to thebottom 201 is located withinbase 204. Since the impacts can be recurring the apparatus will be referred to as a vibrator although it is to be understood that the recurrence rate of vibrations applied to thebottom 201 on which thegranulate 203 is located is non-cyclical. The vibrator,
or impacting device 206 has an impacting transducer operable in only a single directionmamely axially with respect to theshell 202, and transmitting blows or impacts against the granulate. In FIG. 1, the direction of impacts is vertical. This permits utilization of a single vibrator, which has advantages based on economics and space availability. The vibrator apparatus 206 provides blows and impacts which are non-harmonic, that is, non-cyclically recurring.
Anenergy source 207 which may,- for example, be a source of compressed air, hydraulic fluid, or electrical energy, provides energy overline 208 to acontrol device 209. The controlled energy is then transmitted over line 211 to the vibrator. The interconnection oflines 208, 211, and the placement of thecontrol apparatus 209 is variable in accordance with available space, and operating requirements.
Control apparatus 209, providing controlled application of energy over line 211 to the impacting apparatus 206 is itself controllable by means of acontroller 210 which may be manually operated, or electrically, for example by means of a programming source.
The vibrator itself is a cylinder-piston arrangement having masses movable relative with respect to each other, as controlled by the energy overlines 208, 211. One of these masses can be fixed with thebottom 201, or can be elastically secured thereto.
The granulate can be vibrated entirely from the bottom. It is, however, preferred and increases the compacting effect when the top of the granulate is likewise loaded. Atop cover 212, within a cylinder-piston device 213 is provided, which can be lowered against the top of the granulate. The cylinder-piston arrangement 213 provides a steady constant pressure against the granulate or, as will appear hereafter, can likewise be controlled to provide impacts or blows against the granulate, preferably in synchronism, and in opposite direction with the blows provided by device 206 and connected to the bottom. The top compacting arrangement is not strictly necessary, however, since the noncyclically recurring, .that is the non-harmonic vibrations transmitted from the device 206 already provide for substantial compaction.
A specific example of the apparatus is shown in FIG. 2a, wherein the device 1 is shown as a whole. Abase 2 has a machine frame 4 supported thereon by means ofsprings 3. Ahousing 5 is located within frame 4, the housing including a shell 6, atop cover 7 and abottom cover 8, theparts 6, 7 and 8 being sealed with respect to each other byseals 9, 10.
The interior ofshell 5 has atop part 12 and abottom part 13, parts l2, 13 being longitudinally guided byrods 14, 15, in the direction of the longitudinal axis of thehousing 5.
Top part 12, which forms a pressure piston, has apiston rod 16 secured thereto; slidable within apistoncylinder arrangement 17. The cylinder-piston arrangement 17 includes acylinder portion 18 within which acylinder 20 and acylinder housing 21 are located. Thecylinder housing 21 also carries control equipment to be described below.Cylinder housing 21 is secured to the inner wall of theupper cover 7.
A cylinder-piston arrangement which may be identical, or similar to the one just described, is located at the bottom of the shell, beneath abottom part 13 forming a counteracting piston.Bottom part 13 has apiston rod 23 connected to thebottom part 13. It includes acylinder portion 24 and apiston 25.Cylinder portion 24 has acylinder 26 and acylinder housing 27, thecylinder housing 27 carrying control equipment to control thepiston drive 22, and which will be described below.Cylinder housing 27 is not connected to the bottom shell, as the top cylinder housing, but rather is com nected to a table 29 of an additional cylinder-piston drive 30. Thecylinder 32 of the additional cylinderpiston drive is secured to thelower portion 8, closing off the shell.Pressure lines 31 lead to theadditional cylinder 32.
Abracket 35 extends from frame 4, and supports a furthercylinder piston arrangement 36. Thepiston rod 37 is pivotally connected to alink 38 which is secured to ashaft 39, joumalled on machine frame 4. Anarm 40 is secured to thetop cover 7 for the shell and is likewise connected toshaft 39. Upon application of differential pressure tolines 41, 43, into cylinder-piston drive 36, thepiston rod 37 is lowered, thus swingingshaft 39 and permitting removal of thetop cover 7 and all mechanism enclosed therein from the shell 6, so thatgranulate 44 can be introduced within the shell 6, for compaction therein.
Line connections 45, 47 are introduced above thetop piston 12, and below thebottom piston 13, and in the top and bottom regions of the apparatus.Connections 45, 47 are connectable withlines 48, 49 which can be connected to asuction apparatus 50 of any suitable form.
The compactor 1 is operated by hydraulic pressure. The hydraulic pressure, that is, the pressure pulses, are controlled from a programming source 60 (FIG. 2b), which is programmed to provide output signals which can vary as schematically indicated byboxes 61, 62, 63, 64. The programmer thus provides an output signal in which the feed of projection of any one of thepistons 12, 13 can be controlled (see box ofdiagram 61). Likewise, amplitude A (diagram 62); frequency, or duration of impact (diagram 63) and wave shape (diagram 64) are controllable. The signal provided fromprogrammer 60 represents a command signal. It is applied over twoparallel channels 65, 66 tocomparator 67, 68, where the command signal is compared with actual position signals applied overlines 69, 70 and 71, 72, respectively. The error signal is applied overline 73, 74 toamplifier 75, 76, supplied from apower source 77, the amplified signal being conducted overlines 78, 79 to transducers andamplifiers 80, 81 (FIG. 2a). The transducer-amplifiers 80, 81 may be electro-hydraulic servo valves which apply pressure fluid, such as hydraulic pressure fluid to the piston-cylinder arrangement 17, 22, respectively.
The valve may also control compressed air, or other pressure fluids; rather than utilizing valves, the control signals can be applied to magnetically operated impacting devices, over mechanical or solid state relays.
Thetransducers 80, 81 as shown in FIG. 2a are supplied overlines 82, 83 with hydraulic fluid under high pressure; the fluid at low pressure is taken overlines 84, 85 back to a reservoir or sump 87 (FIG. 2b), preferably over aradiator 86 to cool the fluid, to be then picked up by a pump 88, driven by amotor 89, and supplied over a filter 90 to apressure reservoir 91. The pressure atpressure reservoir 91 is controlled by means of a pressure regulating valve 92.
Transducer-amplifiers 80, 81 are connected overlines 93, 94, 95, 96 with the two piston-cylinder arrangements 17, 22 respectively.Position transducers 97, 98 for thetransducer amplifiers 80, 81, andposition transducers 99, 100 forpiston rods 16, 23 provide feedback signals which are conducted overlines 69, 70, 71, 72 to thecomparators 67, 68 (FIG. 2b), to be there compared with the command signal from theprogrammer 60.
A completely closed control loop is provided. The arrangement need not, however, have the closed control loop, in which measured position signals are compared with command signals, and the motion is controlled by an error signal. Other arrangements are possible. In the particular example shown, the two pistoncylinder drives 17, 22 provide the same impacts to the granulate 44 withinshell 5, that is, both piston-cylinder drives are controlled by asingle programming source 60, acting in opposition from each other, so that pistons l2, 13 will have the same motion, directed towards each other, in synchronism. Different programming arrangements can be used, that is, each one of thepistons 12, 13 may be controlled by its own programmer, or a single programmer can be used in a time-sharing arrangement. The feeback circuit described in detail is not necessary, but it provides for greater accuracy; direct connection of control signals from aprogrammer 60 to therespective pistons 12,13 can likewise be used.
The pressure medium applied to the cylinder-piston combinations 17, 22 is either hydraulic, or pneumatic.Indicators 102, 104 (FIG. 2b) can be included in thefeedback circuit 70, 72 which indicates the actual position of thepistons 12, 13 confining the granulate within the shell. Other indicators, or controllers and recorders can be connected as is well known in the art.
In the described example, the position of the pistons l2, 13 is used as a feedback signal. It is also possible to measure pressure being exerted by the pistons and compare the exerted pressure with a programming source providing pressure impacting signals.
The apparatus of the present invention can be used in accordance with various combinations of feed, steady pressure, impacts, and impacts superimposed on steady pressure or slowly varying pressure. At pressure variation with zero frequency, that is, at even or only very slowly changing pressure feed, the granulate is compacted by the pressure of the two piston-cylinder arrangements 17, 22 compressing the granulate. Superimposed non-cyclically recurring impacts provide additional energy for effective compaction of the granulate.
Various changes and modifications may be made within the inventive concept.
I claim:
1. Vibratory granulate compacting apparatus for the manufacture of blocks comprising a housing;
a multi-part container having a bottom part, a top part and a shell part located between the bottom and top part and having a central axis, the granular material being placed within the container for compaction;
a piston means connected to at least one of the parts to move the connected part in axial direction for compaction of material located within the container by steady-state pressure and, selectively, vibratory motion;
fluid energy means connected to said piston means and moving said piston means to provide compacting pressure and vibratory impacts in axial direction, the energy having parameters including amplitude, frequency, wave shape;
a fluid energy source;
electrical signal controlled fluid control means controlling application of fluid energy from said source to said energy means; and
programmed electrical control means generating signals representative of at least one of said parameters, connected to and controlling said signalcontrolled fluid control means to apply said fluid energy controlled by one of said parameters.
hydraulic pressure fluid.
3. Apparatus according to claim 1, comprising a pair of energy means, one each connected to the bottom and top part of the multi-part container, respectively;
and the piston means comprises a top and a bottom piston, respectively connected to the top and bottom part.
4. Apparatus according toclaim 3, wherein one of the energy means is controllable to provide steady compacting pressure, whereby the frequency of compaction is zero;
and the other energy means is controllable to provide impacts at non-cyclically recurring intervals to prevent harmonic oscillations from being established.
5. Apparatus according toclaim 3, wherein the energy means connected to both the top and bottom parts are controllable to provide, each, counter-acting synchronized impacts directed towards each other.
6. Apparatus according toclaim 3, wherein the energy means comprises a cylinder for the piston to form a piston-cylinder combination;
one of the cylinder parts of one piston-cylinder combination is fixedly connected to the housing; the pistons of both said piston-cylinder combinations being connected to the bottom and top parts respectively; and the other cylinder part is slidably secured in the housing.
7. Apparatus according to claim 6, including an additional cylinder-piston combination supporting the other cylinder part.
8. Apparatus according toclaim 7, wherein the housing closes the top and bottom parts and has a separable, removable top and bottom cover;
one of the cylinders being secured to the removable top cover, and the additional cylinder-piston combination being secured to the bottom cover.
9. Apparatus according toclaim 8, wherein at least one of the top and bottom covers is removable from the housing as an entirety including the respectively connected piston-cylinder combination.
10. Apparatus according to claim 1, wherein the means applying energy to the parts, and the means controlling the frequency and amplitude parameter of application of energy comprises a source of control signals;
transducer and amplifier means controlled by the control signal;
and means interconnecting the transducer means and the amplifier means with the energy means.
11. Apparatus according toclaim 10, wherein the control signals derived from the source provide signals of opposite polarity;
and a pair of energy means are provided acting in opposite axial directions, one energy means each being controllable by one of the signals.
12. Apparatus according to claim 1, including resilient means supporting the housing.
13. Apparatus according to claim 1, wherein the housing is sealed;
and suction outlet means are provided both at the upper and lower portions of the housing. I
14. Compaction apparatus comprising a generally tubular shell (6);
top piston and bottom pistons (12, 13) slidable in said shell, the material to be compacted being placed in the shell between the pistons;
top and bottom housing covers (7, 8) secured to the shell (6) and enclosing said top and bottom pistons, respectively;
hydraulic power means (17, 22) controlling movement of the pistons into the shell to compact granulate therein; an electro-hydraulic and program means (60) connected to said control loop and controlling the power means (17, 22) applying hydraulic pressure by each said pistons (12, 13) with respect to at least one of: amplitude; frequency; and wave shape of applied power to provide for compacting and retracting movement of the pistons and vibratory impacts thereof to be transmitted from the pistons to the material within the shell, as controlled by said program means (60).
15. Apparatus according toclaim 14, wherein the program means controlling the power means comprises a random signal generator providing non-cyclically recurring power control signals.
control loop (60,65-85,
16. Apparatus according toclaim 14, wherein the program means controlling the power means comprises a signal generator;
and the electrohydraulic control loop comprises transducer means connected to the power means to transduce the signals from the signal generator to compression strokes by said top, and bottom piston, respectively.
17. Apparatus according toclaim 16, wherein the signal controlling application of power to one of the pistons is a slowly, or unvarying compression signal and the signal controlling the other piston is a pulse-type signal providing impact, or blow-type excursions of the other piston at non-cyclically recurring rates.
18. Apparatus according to claim 15, wherein the signal from the signal generator controlling application of power controls both said pistons to move synchronously in opposition towards each other to provide counter-acting compression impacts against the material in the shell.
19. Apparatus according toclaim 2, comprising hydraulic connection means connecting the fluid energy source and the cylinder-piston combination, the electrical signal controlled fluid control means being interposed in the connection means and being located on the cylinder of the piston-cylinder combination.

Claims (19)

1. Vibratory granulate compacting apparatus for the manufacture of blocks comprising a housing; a multi-part container having a bottom part, a top part and a shell part located between the bottom and top part and having a central axis, the granular material being placed within the container for compaction; a piston means connected to at least one of the parts to move the connected part in axial direction for compaction of material located within the container by steady-state pressure and, selectively, vibratory motion; fluid energy means connected to said piston means and moving said piston means to provide compacting pressure and vibratory impacts in axial direction, the energy having parameters including amplitude, frequency, wave shape; a fluid energy source; electrical signal controlled fluid control means controlling application of fluid energy from said source to said energy means; and programmed electrical control means generating signals representative of at least one of said parameters, connected to and controlling said signal-controlled fluid control means to apply said fluid energy controlled by one of said parameters.
14. Compaction apparatus comprising a generally tubular shell (6); top piston and bottom pistons (12, 13) slidable in said shell, the material to be compacted being placed in the shell between the pistons; top and bottom housing covers (7, 8) secured to the shell (6) and enclosing said top and bottom pistons, respectively; hydraulic power means (17, 22) controlling movement of the pistons into the shell to compact granulate therein; an electro-hydraulic control loop (60, 65-85, 93-100); and program means (60) connected to said control loop and controlling the power means (17, 22) applying hydraulic pressure by each said pistons (12, 13) with respect to at least one of: amplitude; frequency; and wave shape of applied power to provide for compacting and retracting movement of the pistons and vibratory impacts thereof to be transmitted from the pistons to the material within the shell, as controlled by said program means (60).
US00188715A1970-10-221971-10-13Vibratory granulate compacting apparatus for block manufactureExpired - LifetimeUS3767351A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
CH1563670ACH518125A (en)1970-10-221970-10-22 Device for the production of blocks
CH1657170ACH529587A (en)1970-10-221970-11-09 Device for the production of blocks

Publications (1)

Publication NumberPublication Date
US3767351Atrue US3767351A (en)1973-10-23

Family

ID=25716753

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US00188715AExpired - LifetimeUS3767351A (en)1970-10-221971-10-13Vibratory granulate compacting apparatus for block manufacture

Country Status (5)

CountryLink
US (1)US3767351A (en)
CH (1)CH529587A (en)
DE (1)DE2145440C3 (en)
FR (1)FR2112330B1 (en)
GB (1)GB1374113A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3907474A (en)*1972-07-201975-09-23Von Roll AgCompacting apparatus including steady and vibratory force means
US4376744A (en)*1980-09-021983-03-15Ptx-Pentronix, Inc.Mechanical and fluid actuated ram for powder compacting press and method of compacting powder material
US4563144A (en)*1985-01-221986-01-07Rose Andrew FHydraulic block press
US5127816A (en)*1988-09-071992-07-07Heinrich Wagner Sinto Maschinenfabrik GmbhMolding machine
US5323655A (en)*1993-04-231994-06-28Troxler Electronic Laboratories, Inc.Method and apparatus for compacting material samples
NL1005779C2 (en)*1997-04-091998-10-12Boer Staal Bv DenMethod and installation for compacting granular mass such as concrete mortar
EP0870585A1 (en)*1997-04-091998-10-14Den Boer Staal B.V.Method and installation for compacting a granular mass, such as concrete mortar
US6099738A (en)*1997-12-172000-08-08Micromag CorporationMethod and system for removing solutes from a fluid using magnetically conditioned coagulation
US6305925B1 (en)*1997-08-012001-10-23Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L.Apparatus for pressing ceramic powders
US6309206B1 (en)*1997-08-012001-10-30Sacmi-Cooperativa Meccanici Imola-Soc Coop. A.R.L.Plant for forming ceramic tiles, including those of large dimensions, by means of a partially isostatic molds
EP1287978A2 (en)*2001-08-312003-03-05Fette GmbHProcess and apparatus for metal powder compression in a pressed body
WO2003008131A3 (en)*2001-07-202003-11-27Hawk Prec Components Group IncApparatus and method for high-velocity compaction of multiple-level parts
US6729189B2 (en)*2000-05-122004-05-04Antti PaakkinenMethod and apparatus for measuring packing properties
US20070221569A1 (en)*2006-03-222007-09-273M Innovative Properties CompanyFilter media
US20080164184A1 (en)*2007-01-092008-07-10Marston Peter GFluidic sealing system for a wet drum magnetic separator
US20080203015A1 (en)*2007-01-092008-08-28Marston Peter GSystem and method for enhancing an activated sludge process
US20080210613A1 (en)*2007-01-092008-09-04Ionel WechslerSystem and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US20100155327A1 (en)*2007-01-092010-06-24Steven WoodardSystem and method for enhancing a wastewater treatment process
US20100213123A1 (en)*2007-01-092010-08-26Marston Peter GBallasted sequencing batch reactor system and method for treating wastewater
US20110036771A1 (en)*2007-01-092011-02-17Steven WoodardBallasted anaerobic system and method for treating wastewater
EP2711149A1 (en)2012-09-252014-03-26Solios CarboneDevice for transporting slurry along two perpendicular axes and assembly for manufacturing mould blocks including such a device
JP2015003334A (en)*2013-06-212015-01-08花王株式会社 Powder compression molding equipment
CN104441201A (en)*2014-10-302015-03-25西安交通大学Bisynchronous press-vibration brick machine
US9651523B2 (en)2012-09-262017-05-16Evoqua Water Technologies LlcSystem for measuring the concentration of magnetic ballast in a slurry
CN109702144A (en)*2017-10-252019-05-03天津市东达伟业机车车辆有限公司A kind of sand core core box with inserted chill
US20200181032A1 (en)*2017-07-132020-06-11ImertechMethod for obtaining a compacted material and compacted material obtained thereby
US10919792B2 (en)2012-06-112021-02-16Evoqua Water Technologies LlcTreatment using fixed film processes and ballasted settling
US11460052B2 (en)2020-01-282022-10-04Caterpillar Paving Products Inc.Hydraulic oscillation mitigation system for working machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CH660631A5 (en)*1983-02-281987-05-15Fischer Ag Georg METHOD FOR MEASURING MOLDING MATERIAL PROPERTIES, A METHOD FOR IMPLEMENTING IT AND AN APPLICATION OF THE METHOD.
JPS60171104A (en)*1984-02-151985-09-04品川白煉瓦株式会社Hydraulic press for molding fire brick with vibrator

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2348197A (en)*1940-09-161944-05-09Hydraulic Dev Corp IncBriquetting press molding process
US3013321A (en)*1959-02-201961-12-19Internat Clay Machinery Of DelBrick press
US3050809A (en)*1960-12-081962-08-28Mckiernan Terry CorpSynchronized and equalized opposed hammer press
US3616495A (en)*1958-05-091971-11-02Jerome H LemelsonMolding apparatus
US3689186A (en)*1969-06-161972-09-05Von Roll AgApparatus for manufacturing blocks or the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2348197A (en)*1940-09-161944-05-09Hydraulic Dev Corp IncBriquetting press molding process
US3616495A (en)*1958-05-091971-11-02Jerome H LemelsonMolding apparatus
US3616495B1 (en)*1958-05-091994-11-22Jerome H LemelsonMolding apparatus
US3013321A (en)*1959-02-201961-12-19Internat Clay Machinery Of DelBrick press
US3050809A (en)*1960-12-081962-08-28Mckiernan Terry CorpSynchronized and equalized opposed hammer press
US3689186A (en)*1969-06-161972-09-05Von Roll AgApparatus for manufacturing blocks or the like

Cited By (46)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3907474A (en)*1972-07-201975-09-23Von Roll AgCompacting apparatus including steady and vibratory force means
US4376744A (en)*1980-09-021983-03-15Ptx-Pentronix, Inc.Mechanical and fluid actuated ram for powder compacting press and method of compacting powder material
US4563144A (en)*1985-01-221986-01-07Rose Andrew FHydraulic block press
US5127816A (en)*1988-09-071992-07-07Heinrich Wagner Sinto Maschinenfabrik GmbhMolding machine
US5323655A (en)*1993-04-231994-06-28Troxler Electronic Laboratories, Inc.Method and apparatus for compacting material samples
NL1005779C2 (en)*1997-04-091998-10-12Boer Staal Bv DenMethod and installation for compacting granular mass such as concrete mortar
EP0870585A1 (en)*1997-04-091998-10-14Den Boer Staal B.V.Method and installation for compacting a granular mass, such as concrete mortar
US6054079A (en)*1997-04-092000-04-25Den Boer Staal B. V.Method and installation for compacting a granular mass, such as concrete mortar
US6558593B2 (en)1997-08-012003-05-06Sacmi - Cooperativa Meccanici Imola - Soc. Coop. A.R.L.Method for pressing ceramic powders
US6305925B1 (en)*1997-08-012001-10-23Sacmi- Cooperative Meccanici Imola - Soc. Coop. A.R.L.Apparatus for pressing ceramic powders
US6309206B1 (en)*1997-08-012001-10-30Sacmi-Cooperativa Meccanici Imola-Soc Coop. A.R.L.Plant for forming ceramic tiles, including those of large dimensions, by means of a partially isostatic molds
US6099738A (en)*1997-12-172000-08-08Micromag CorporationMethod and system for removing solutes from a fluid using magnetically conditioned coagulation
US6729189B2 (en)*2000-05-122004-05-04Antti PaakkinenMethod and apparatus for measuring packing properties
WO2003008131A3 (en)*2001-07-202003-11-27Hawk Prec Components Group IncApparatus and method for high-velocity compaction of multiple-level parts
EP1287978A2 (en)*2001-08-312003-03-05Fette GmbHProcess and apparatus for metal powder compression in a pressed body
US20070221569A1 (en)*2006-03-222007-09-273M Innovative Properties CompanyFilter media
US20070222101A1 (en)*2006-03-222007-09-273M Innovative Properties CompanySystems and methods of making molded composite blocks
US8206627B2 (en)*2006-03-222012-06-263M Innovative Properties CompanySystems and methods of making molded composite blocks
US8205755B2 (en)2006-03-222012-06-263M Innovative Properties CompanyFilter media
US20100213123A1 (en)*2007-01-092010-08-26Marston Peter GBallasted sequencing batch reactor system and method for treating wastewater
US8702987B2 (en)2007-01-092014-04-22Evoqua Water Technologies LlcMethods for enhancing a wastewater treatment process
US20100155327A1 (en)*2007-01-092010-06-24Steven WoodardSystem and method for enhancing a wastewater treatment process
US20080210613A1 (en)*2007-01-092008-09-04Ionel WechslerSystem and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US20110036771A1 (en)*2007-01-092011-02-17Steven WoodardBallasted anaerobic system and method for treating wastewater
US20080203015A1 (en)*2007-01-092008-08-28Marston Peter GSystem and method for enhancing an activated sludge process
US20080164184A1 (en)*2007-01-092008-07-10Marston Peter GFluidic sealing system for a wet drum magnetic separator
US8470172B2 (en)2007-01-092013-06-25Siemens Industry, Inc.System for enhancing a wastewater treatment process
US8506800B2 (en)2007-01-092013-08-13Siemens Industry, Inc.System for enhancing a wastewater treatment process
US8540877B2 (en)2007-01-092013-09-24Siemens Water Technologies LlcBallasted sequencing batch reactor system and method for treating wastewater
US8623205B2 (en)2007-01-092014-01-07Siemens Water Technologies LlcBallasted anaerobic system
US8673142B2 (en)2007-01-092014-03-18Siemens Water Technologies LlcSystem for enhancing a wastewater treatment process
US10023486B2 (en)2007-01-092018-07-17Evoqua Water Technologies LlcBallasted sequencing batch reactor system and method for treating wastewater
US7695623B2 (en)2007-01-092010-04-13Cambridge Water Technology, Inc.System and method for enhancing an activated sludge process
US8840786B2 (en)2007-01-092014-09-23Evoqua Water Technologies LlcSystem and method for removing dissolved contaminants, particulate contaminants, and oil contaminants from industrial waste water
US8845901B2 (en)2007-01-092014-09-30Evoqua Water Technologies LlcBallasted anaerobic method for treating wastewater
US10919792B2 (en)2012-06-112021-02-16Evoqua Water Technologies LlcTreatment using fixed film processes and ballasted settling
RU2621094C2 (en)*2012-09-252017-05-31Солиос КарбонDevice for transportating paste in two perpendicular directions and plant for producing moulded blocks containing such device
EP2711149A1 (en)2012-09-252014-03-26Solios CarboneDevice for transporting slurry along two perpendicular axes and assembly for manufacturing mould blocks including such a device
US9651523B2 (en)2012-09-262017-05-16Evoqua Water Technologies LlcSystem for measuring the concentration of magnetic ballast in a slurry
JP2015003334A (en)*2013-06-212015-01-08花王株式会社 Powder compression molding equipment
CN104441201A (en)*2014-10-302015-03-25西安交通大学Bisynchronous press-vibration brick machine
CN104441201B (en)*2014-10-302016-06-29西安交通大学A kind of bi-directional synchronization is shaken pressure type vibration brick machine
US20200181032A1 (en)*2017-07-132020-06-11ImertechMethod for obtaining a compacted material and compacted material obtained thereby
US11840488B2 (en)*2017-07-132023-12-12ImertechMethod for obtaining a compacted material and compacted material obtained thereby
CN109702144A (en)*2017-10-252019-05-03天津市东达伟业机车车辆有限公司A kind of sand core core box with inserted chill
US11460052B2 (en)2020-01-282022-10-04Caterpillar Paving Products Inc.Hydraulic oscillation mitigation system for working machine

Also Published As

Publication numberPublication date
GB1374113A (en)1974-11-13
CH529587A (en)1972-10-31
DE2145440B2 (en)1977-07-28
FR2112330A1 (en)1972-06-16
DE2145440A1 (en)1972-04-27
FR2112330B1 (en)1974-09-27
DE2145440C3 (en)1978-03-23

Similar Documents

PublicationPublication DateTitle
US3767351A (en)Vibratory granulate compacting apparatus for block manufacture
US6342750B1 (en)Vibration drive for a mold
CA2428293A1 (en)Compacting device for compacting molded bodies from granular materials and method of using the compacting device
GB1445736A (en)Manufacture of blocks by compaction of granular material
US3262507A (en)Driving and extraction of piles and/or encasing structures
US4388981A (en)Variable cylinder hydraulic vibrator and control system
NO131822B (en)
US6263750B1 (en)Device for generating directed vibrations
US20030113397A1 (en)Compressing device for performing compression operations on shaped bodies made of grainy materials
US6544025B1 (en)Concrete compacting device with vibration sensor and control unit
US4878534A (en)Apparatus for the compacting of granular molding materials
US2622301A (en)Molding machine for hollow stones and the like
US3426404A (en)Block making machine
US5652002A (en)Vibration apparatus for concrete molding box
JP2662910B2 (en) Vibration compression molding machine
JP2595294Y2 (en) 3D vibrator
US4850421A (en)Shaking apparatus
JPH0783862B2 (en) Vibration force variable device for vibration generator
JPH01143799A (en)Method and device for vibration powder compacting
SU722680A1 (en)Vibration press for pressing powder
SU710788A1 (en)Vibrated press for moulding powders
CA1220014A (en)Method and apparatus for making foundry molds
JPH0538554A (en)Apparatus for filling molding sand
SU829340A1 (en)Vibration press for shaping articles from powder
SU383626A1 (en)

[8]ページ先頭

©2009-2025 Movatter.jp