United StatesPatent 1 Fletcher et al.
[ Sept. 18, 1973 RESPIRATORY ANALYSIS SYSTEM AND METHOD [22] Filed: Aug. 19, 1971 [21] Appl. No.: 173,190
[52] US. Cl. l28/2.08, 73/194 E, 73/194 M,
128/2.07 [51] Int. Cl A6lb 5/08 [58] Field of Search 128/208, 2.07, DlG. 17;
73/194 R, 194 E, 194 M, 23 R, 195; 324 35, 324/36: 340/239 [56] References Cited UNITED STATES PATENTS 3,523,529 8/1970 Kissen 128/2.07 3,396,719 8/1968 Taylor et al. 128/207 3,577,984 5/1971 Levy et al. 73/195 X 3,465,103 9/1969 Lynch l28/2.1 A X 3,572,331 3/1971 Kissen.... 340/239 R 3,507,146 4/1970 Webb 73/23 3,645,133 2/1972 Simeth et al... 128/208 X 3,309,684 3/1967 Kahn et al. 73/23 X 3,611,801 10/1971 Paine 128/208 X Primary Examiner-Kyle L. Howell Attorney-Russell A. Schlorff et al.
[57] ABSTRACT A system f the resniratnru nrocess.
wherein the gas flow rate and the frequency of respiration and expiration cycles can be determined on a real time basis. A face mask is provided with one-way inlet and outlet valves where the gas flow is through independent flowmeters and through a mass spectrometer. The opening and closing of a valve operates an electrical switch, and the combination of the two switches produces a low frequency electrical signal of the respiratory inhalation and exhalation cycles. During the time a switch is operated, the corresponding flowmeter produces electric pulses representative of the flow rate, the electrical pulses being at a higher frequency than that of the breathing cycle and combined with the low frequency signal. The high frequency pulses are supplied to a conventional analyzer computer which also receives temperature and pressure inputs and computes mass flow rate and totalized mass flow of gas. From the mass spectrometer, components of the gas are separately computed as to flow rate as well. The electrical switches cause operation of up-down inputs of a reversible counter. To measure a real time, a 1- minute clock pulse is used to operate the counter. The occurrence of a pulse alerts the counter, and the next succeeding reverse from down to up in the breathing cycle causes an electrical sequence to occur in which the counter is momentarily inhibited while the count therein is transferred to a printer. The electrical sequence is complete before the next up-to-down reverse in the breathing cycle occurs, so that there is no loss in the counting of cycles. Thus, the number of cycles closest to one-minute time are measured. The respective up and down cycles can be individually monitored and combined for various respiratory measurements.
7 Claims, 4 Drawing Figures RESPIRATORY ANALYSIS SYSTEM AND METHOD ORIGIN OF THE INVENTION The invention described herein was made in the performance of work under a NASA Contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Statute 435; 42 USC 2457).
FIELD OF THE INVENTION This invention relates to systems for quantitative analysis of the human respiratory process. In particular, it relates to methods and apparatus for obtaining an analysis of respiratory gas flow rate and frequency of inspiration and expiration cycles on a real time basis.
DESCRIPTION OF PRIOR ART Prior art devices presently known are as follows:
1. US. Pat. No. 3,368,212 discloses a gas flow monitor for respiratory supervision. In this sytem, thermistors are employed in an electrical circuit and used to monitor breathing. When gas flow fails, the thermistors trigger an alarm circuit.
2. U.S. Pat. No. 3,201,988 and U.S. Pat. No. 3,135,] 16 relate to turbine flowmeters to measure gas flow. f
3. Elastronics Laboratories of Tarzana, Calif. sell a Model FPAC-lOO Transient Flowrate Indicator and Electronic Frequency to Period-to Analog Computer used with flowmeters for accepting a pulse train signal and acting on the period T of each cycle to compute the inverse of the next time period e,= HT and hold the information for the next cycle.
4. Elastronics Laboratories of Tarzana, Calif. sell a Model PF/TSOO Mass-Flow Computer and Electronic Multiplier-Divider which computes mass flow rate and totalized mass flow of any gas or liquid providing a digital or analog output from an input frequency representing flow and analog voltages representing temperature and pressure.
SUMMARY OF THE INVENTION The human respiratory process is perhaps unique in that natural breathing varies in accordance with a person's physiological and metabolic condition and, of course, varies with physical conditions and activities. It is extremely important to respiratory physiologists, inhalation toxicologists, doctors and other biomedical workers to have a reliable analysis of the respiratory process and, particularly, to have an automated quantitative analysis of the respiratory process.
The respiratory process involves unrhythmic frequency in number of breaths per minute and gas flow rate in volume per unit time. The frequency (or periodicity) of breathing is a wave of alternating inspiration and exhalation cycles. By use of special switches which are operable by intake and outflow of gas, it is possible to obtain low frequency signals of the breath cycles. As will hereinafter be more fully explained, the breath cycles are correlated to real time" intervals. During the inhalation and exhalation cycle, the flow rate is measured and quantalized as a pulse rate signal. The pulse rate signal is superimpose onto the alternating low frequency inspiration and expiration waveform. Thus, both flow and breathing cycles are combined in a single data channel.
In the present invention, the breathing cycle, as a low frequency signal, is separated between inspiration and exhalation portions, and each is counted and processed to provide accurate respiratory measurements. For example, the uptake rate can be computed by subtracting the inspired flow quantity from the expired flow quantity during the same period. This can be accomplished by an up-down counter. The function of up or inspiration portions can be accumulated as can the exhalation portions. Consecutive counting of up" and down" portions of breathing cycles over a given period of time will give the desired uptake or expiration quantities.
The synchronization of the respiratory process to time is accomplished by using a time reference such as a clock which emits a pulse each minute. The control system to which the consecutive up-down pulses are supplied includes a counter for each parameter to be monitored. In an up-down counter, for example, assuming the system is in operation, the counter will count the up and down pulses. When the l-minute pulse is generated it alerts the counter, and on the next succeeding up pulse the counter is momentarily inhibited while the count on the memory therein is transferred to a printer. Upon transfer, the inhibiting pulse is removed and the counter continues counting the pulses until the next l-minute pulse appears. As is obvious, the respiratory system thus produces measurements related to the l-minute timing pulses.
The switches are of a design which generates an electrical signal at the instant inspiratory flow begins and turns off this signal when expiration starts or vice versa. In the respiratory measurement system, two valves are mounted in the face mask. One valve is open only to let in the fresh gas (air or oxygen) during the inspiratory period while the other valve opens only to vent expiratory flow. The valve has a diaphragm which is held closed by spring force and operated by a pressure differential. The pressure differential thus serves to open and close the valves. When the valve diaphragm is lifted from its seat, a stem on the valve interrupts a light-beam between a light source and a photoelectric cell. When this occurs, a negative electric pulse is generated which serves as a signal representative of the particular respiratory function.
BRIEF DESCRIPTION OF THE DRAWINGS Reference to the drawings will further explain the invention wherein like numerals refer to like parts, and in which: a
FIG. 1 is a schematic and functional illustration of an overall system including a mask and computers for obtaining flow rate and frequency of breathing indications;
FIG. 2 is a schematic and functional illustration of a typical counter system for counting respiration frequency in terms of real time;
FIG. 3 is a functional representation of a valve aned switch for obtaining signals indicative of the breathing functions; and
FIG. 4 is a timing diagram for illustrating a logic sequence for obtaining typical measurements.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to FIG. 1, a system is illustrated for a physiological clock of respiration." The system includes a face mask, schematically and generally indicated by the numeral 10. The face mask has an inlet or inspiratory valve 11 and an outlet orexpiratory valve 12.Valves 11 and 12 are one-way valves arranged so that flow is into themask 10 via valve 11 and out from themask 10 viavalve 12. Valves Ill and 112 are respectively coupled toflowmeters 13 and 14- which, in turn, open into amass spectrometer 15 with aflow conduit 16. Gas flow is into themask 10 viaconduit 16, spectrometer 1S, flowmeter i3 and valve 11 and out of themask 10 viavalve 12, flowmeter M,spectrometer 15 andconduit 16.Valves 11 and 12 are normally closed and operated by virtue of differential pressure caused by inhalation or exhalation of gas.
Referring now to FIG. 3, atypical flow valve 17 includes upper andlower plate members 18 and 19 which are spaced from one another by circumferentially disposedspacers 20 and attached to one another byfasteners 21. Thelower plate 19 has acentral alignment hub 22 which receives analignment stub 23 attached to the center of a diaphragm 243. About thehub 22 areperforations 26 so that gas may flow through the perforations and between the plates. Thediaphragm 24 is cylindrically formed and is constructed of a thin flexible material such as rubber or plastic. The diaphragm has a peripheral conically-shapedportion 25 arranged to make contact with the upper surface oflower plate 19. The arrangement is such that thediaphragm 24$ has a spring force tending to hold it in contact with the lower plate. Thus, if the valve is inserted into the face mask withhub 22 facing in one direction, exhalation gas may flow through the perforations 2d and between theplates 18 and 19. With the valve facing in an opposite direction, inhalation gas similarly is passed through theperforations 26 and between theplates 18 and 19.
In theupper plate 19 is acentral cavity 27 containing alight source system 2%.Communication passages 29 from thelight source 25% extend to cavities respectively containingphotoelectric cells 31. Thus, thecells 31 can be activated by thelight source 28. Theupper plate 1% hasrecesses 23 which traverse thecommunication passages 29 and receive an upwardly extendingextension 33 on thediaphragm 26. In the normally closed position of the diaphragm, as illustrated, openings (not shown) in the diaphragm permit light to pass from thesource 28 to acell 31. When gas flow moves thediaphragm 24, the openings in the extensions are transported from registry with the light beam, and interruption of the light beam deactivates thecell 33 to enable production of an electrical signal.
Referring now to the system illustrated in FIG. ll, during inhalation, valve H is open andvalve 12 is closed. While valve 11 is open, theflowmeter 13 will produce an electrical signal having a frequency dependent upon the inhalation flow rate. At the same time, a normally openelectrical switch 35 is closed by operation of the valve 11 to provide a ground potential to set a flip-flop 36.Switch 35 corresponds to the light beam switch previeusly described with respect to FIG. 3. When theflipflop 36 is set, a dc gating signal A conditions aNAND gate 37. TheNAND gate 37 is also connected to the output of theflowmeter 13 so that the signals from the flowmeter are passed to anotherNAND gate 38. Thus, during inhalation the period of the switch operation defines the inhalation cycle, and the flow rate is established by the frequency of the flowmeter pulses during the period.
During exhalation,valve 12 is open and valve ll is closed. Whilevalve 12 is open, the flowmeter l similarly will produce an electrical signal having a frequency dependent upon the exhalation flow rate. At the same time, a normally openelectrical switch 40 is closed by operation of the valve 112 to provide a ground potential to reset the flip-flop 36. When the flip-flop is reset, a dc. gating signal K conditions aNAND gate 41. The NAND gate at is also connected to the output offlowmeter 14 so that the signals from the flowmeter are passed to theNAND gate 38.
During the inhalation period, while the exhalation valve i2 is in closed position, the corresponding electrical switch 439 is open. Since the flip-flop 36 is in a set" positon and the NAND 4B is connected to the other terminal of the flip-flop 36, signals fromflowmeter 14 cannot pass through the NAND it. Thus, during the inhalation period, the inhalation signal from theflowineter 13 is passed through NAND 3'7 and 38 to the computer. This condition prevails unti the inhalation is complete and exhalation begins, whereupon switch 35 is opened and switch $0 is closed. When switch 40) closes, the flip-flop 36 is reset which causes a dc. potential at terminal K to open theNAND gate 41, permitting the flowrnetcr frequency signals to pass through NAND All and 38 to the computer.
With the foregoing system the inhalation and exhalation flows are readily segregated, and the breathing frequency or period' can be readily calculated. From the flow rate frequency, the total flow volume for inhalation and exhalation can easily be determined. Moreover, the frequency of breathing and flow rate are not integrated into a single electrical signal system containing all of the respiratory information, and this signal system can be correlated with a timing factor.
The flow rate signal for inhalation or exhalation, or both, can be re-separated, so that the flow rate can be computed with any and all of its corresponding partial pressure signals from themass spectrometer 15.
In the operation of the system, the inhalation of gas produces a train of electrical pulses which are a linear function of the inhalation flow, and the exhalation of gas produces a train of electrical pulses which are rep" resentative of the exhalation flow. The successively occurring trains of pulses which represent total flow are sent from theNAND circuit 38 to a conventionalmass flow computer 32. With the input of an absolute pressure signal P and an absolute temperature signal T, the total volumetric flow rate as determined fromcom puter 32 can be applied simultaneously to one of the input terminals of four or more computers @3 36. Each of the computers 43-46 receives from thespectrometer 15 the percentage concentration (or partial pressure in percent) of 0 C0,, N or H 0 as its other input. The partial percentages are also summed by a summing network d7 and applied as an input to computers 43-46. As a result, the respiratory flow rate caused by 0 C0,, etc., can be determined at any time.
To compute the up-talte rate of 0,, or the release rate of CO for example, the outputs of the computers 43-46 can be re-separated. This is accomplished by coupling the inputs of up and down NANlD gates 48-55 to respective computers for determining the status of the components. The up and down NAND gates, respectively, are also coupled to the flip-flop as so that A" and TC' steering outputs are applied to the gates. Thus, computers coupled to the up and down inputs can be used to provide an indication of the breathing function of the separate components in any detail desired.
Turning now to FIG. 2, the respective signals for up and down signals are supplied to acircuit 56 which conveys the respective signal to a reversible BCD counter 57 and to agate circuit 58. The gate circuit receives clock pulses which are spaced at 1-minute intervals. Upon the occurrence of a one-minute clock pulse, the counter 57 is set or alerted to be synchronized with the breathing function. When the transition from up to down next occurs after the l-minute alert pulse, the signals applied to the gate actuate it to inhibit the counter and actuate anothergate 59.Gate 59 is coupled to ahigh frequency clock 60 which applies a clocking pulse to the memory that effects a transfer of the stopped count in the counter 57 to thememory 61 and transfer of the count in the memory by atransfer circuit 62 to aprint system 63. The inhibit and transfer function occur in less time than it takes to count a single flowmeter output pulse so that no measurement function is discontinued prior to the beginning of the count ofup pulses by the counter 57. Thereafter, the counter 57 accepts the up" and down pulses until the next l-minute pulse to thegate 58 alerts the counter so that the next up transition repeats the op eration. Thus, it will be apparent that the up" and down counting is governed by the number of complete breath cycles occurring relative to a l-minute timing cycle.
A timing diagram is illustrated in FIG. 4 which is more fully illustrative of the technique. In FIG. 4, timingpulses 65 occur at 1-minute intervals. The operation ofswitches 35 and 40 of FIG. I produce the gating voltages A and A which operate the up and down gates for the counters. The flow rate in and out" is a high frequency signal such as typically illustrated at 66 and 67. As such, the higher frequency signals can be compressed with the switch signals such as illustrated at 68. At the instant the respiratory function changes function from exhalation to an inhalation, the corresponding switch signal triggers async signal 69 to inhibit the counter. Thesync signal 69 has a lesser period than ordinarily expected for an inhalation period. Thus, during an inhalation cycle, the counter is inhibited.
A free-running, high-frequency clock signal 70 is used to cause generation of another sync signal (identified as 71) with the generation of the next succeedingclock pulse 70. Thesync pulse 71 and the next succeedingclock pulse 70 produces a memory pulse which causes transfer gates to open and the counts from the counter to be dumped into the printer memory. Anothersync pulse 73 is generated so that aclear counter pulse 74 can reset the counters. Aprint sequence pulse 75 is generated simultaneously with thesync pulse 71.
One of the advantages of the present invention is that numerous measurements can be accomplished accurately on a strict l-minute, half-minute, breath-bybreath or other period basis. The common measurement of breath is the so-called T mode, where T is the period of time required to encompass a series of complete breath functions measured from a starting point on the breath waveform to a corresponding point after a time of approximately 1 minute. Thus it will be readily apparent that the counting function of the foregoing described function of the foregoing described system is regulated by the l-minutc pulses, and the T is governed precisely by the breath arrivals.
Further modifications and alternative embodiments will be apparent to those skilled in the art in view of this description, and, accordingly, the foregoing specification is considered to be illustrative only.
What is claimed is: 1. Apparatus for monitoring the respiratory function comprising:
respiratory means for receiving inhalation and exhalation gas flow, said respiratory means having inhalation and exhalation valve means respectively operative for opening in response to inhalation and expiration, said respiratory means including means for developing electrical signals representative of the respiratory functions; first computing means connected to the output of the respiratory means and also receiving signals indicative of absolute pressure and temperatures for providing a signal indicative of mass flow rate;
analyzing means determining the partial pressures of selected respiratory gases;
summing means receiving the partial pressures from the analyzing means and providing a signal representative of total pressure;
second computing means connected to the output of first computing means, the signal of partial pressure of a selected gas and the signal from the summing means to provide a signal representing mass flow of selected respiratory gas; and
first counter means connected to the second computing means and also receiving signals of inhalation and exhalation cycles to produce a signal indicative of net difference of selected respiratory gas.
2. The apparatus ofclaim 1 wherein there is a second counter means connected to the first counter means;
timing means for controlling the second counter means by providing timing signals, said timing signals defining a finite time reference for the respiratory function;
means responsive to said timing signals for stopping the measurement of the respiratory function and nearly simultaneously reinitiating a new measurement of the next respiratory function; and
means for transferring the counted data from said counter means to a storage means without affecting the measurement then underway thereby synchronizing the unrythmic respiratory phenomenon to a finite timing means so that each measurement begins and ends at the beginning of a respiratory function after the occurrence of the timing signal from the timing means.
3. The apparatus ofclaim 2 including a free running, high frequency clock to provide discrete time elements to the measurement.
4. The apparatus ofclaim 2 and further including means operative during the inhibition time period for printing the output of said counter means.
5. The apparatus ofclaim 1 wherein said valve means includes a flow passage and a pressure differential operated diaphragm in said flow passage, and means responsive tomovement of said diaphragm for generating an electrical signal.
6. A method for monitoring the respiratory process wherein the gas flow rate and the frequency of inhalation and exhalation cycles are determined on a real time basis, said method comprising:
deriving alternating low frequency signals of the inhalation and exhalation cycles;
measuring as pulse rate signals the flow rate during the inhalation and exhalation cycles;
converting the pulse rate signals and frequency signals to up and down signals representing inhalation and exhalation flow rate;
supplying the up and down signals to a continuous counter; and
providing to the counter a timing signal defining afir 10 counted data.
nite time which alerts the counter to be synchro-