United States Patent Conant et a1,
[ Oct. 24, 1972 COIN VALUE DETERMINING APPARATUS AND SYSTEM Inventors: Barton C. Conant, Westport; James A. Thomas, Stamford, both of Conn.
Assignee: Abbott Coin Counter Co., Inc
Greenwich, Conn. by said Conant Filed: March 23,1970
Appl. No.: 21,726
US. Cl. ..l33/8, 209/1 1 1.7, 235/92 CN Int. Cl. ..G07d 9/04 Field of Search.....l33/8; 194/1 M, l N; 209/80,
209/111.7; 235/92 CN, 92 V, 92 DN References Cited UNITED STATES PATENTS 4/1963 Klopp ..l33/8 Apparatus for Akira Abe 194/10 3,344,898 10/ 1 967 Klinikowski 194/9 3,513,321 5/1970 Sherman ..209/1l1.7 3,480,141 1l/1969 3,089,594 -5/ 1963 Early ..209/1 1 1.7
Primary ExaminerRobert B. Reeves Assistant Examiner-Thomas E. Kocovsky' Attorney-Watson, Leavenworth & Kelton ABSTRACT high speed, high volume coin processing comprises sensor elements adapted for indicating both sizes and positions of coins in continuous non-selective transit. Systems incorporating such apparatus and providing denominational value indication are also disclosed.
16 Claims, 9 Drawing Figures 65 l/Il PATENTED um 24 m2 SHEET 5 BF 5 I Now 8m 2& w 2% J 1P 8 00w wow 5 2a 1 COIN VALUE DETERMINING APPARATUS AND SYSTEM FIELD OF THE INVENTION BACKGROUND OF THE INVENTION Present day coin processing devices for determination of the number or denominational value of diverse coins have as their point of origin the detection of different size characteristics of the coins, such characteristics providing the only consistent basis of difference in the case of, for example, the U. S. coins comprising the half-dollar, quarter, nickel, penny and dime, which exhibit decreasing diameter in the stated succession.
Various mechanical, photoelectric and electromechanical apparatus presently known for such detection fall into one of two basic categories, a first type adapted for use where coin transit is momentarily interrupted and a second type adapted for use where coin transit is continuous and unaffected by the size detection. In the first type of apparatus, typified by that illustrated in U. S. Pat. No. 2,594,422, coins in transit are individually received prior to size segregation by an indexable rotor which controllably positions each received coin in precise relation to a sensor which generates an output signal having an amplitude characteristic related to coin size. The evident shortcomings of such apparatus are the severe limitation on coin processing speed and the need for the rotor and associated mechanism.
With respect to the second type of apparatus, two versions are known. In one version, coins in continuous transit are first segregated in accordance with size by selective deflection thereof into collection bins. Thereupon, as shown in U. S. Pat. Nos. 3,048,251 and 3,016,191, sensors not having size-discriminating capacity and disposed in the respective collection bins are actuated by the segregated coins to provide count signals. While processing speed is unlimited by the nature of coin size detection in such apparatus, the required multiple sensors are independent of one another and are randomly energized or deenergized by the segregated coins, simultaneous coin sensing by more than one sensor being probable. To avoid count confusion, it is necessary in such apparatus to provide independent counting means in association with each sensor. The dependency of such apparatus on coin segregating means is a further shortcoming thereof.
' In the other version of the second type of known sizedetection apparatus, typified by the showings of 'U. S. Pat. Nos. 2,237,132 and 3,086,536, observation is made of the selective interruption of multiple light beams disposed in succession along a chute adapted to continuously transfer the coins to segregating means. In order that such observation have meaning, it is essential in this version of the second type of apparatus that a single coin selectively completes its traverse of the succession of light beams before a second coin begins its traverse thereof. Thus, high speed processing of coins in non-selective transit is prohibited by the nature of these devices.
SUMMARY OF THE INVENTION It is an object of the present invention to provide coin size determination apparatus for use in high speed coin processing devices.
It is a particular object of this invention to provide apparatus for determination of the sizes of coins while same are in continuous non-selective transit.
It is a further object of the invention to provide coin size determining apparatus operative without need for prior coin sorting.
It is an additional object of the invention to provide a system for indication of denominational values of coins in continuous non-selective transit.
It is a more particular object of the invention to provide such denominational value indication systems adapted for use in conjunction with independent totalizers adapted to receive diverse indications of all denominational values of processed coins or in conjunction with cooperating totalizers adapted to receive indications of units and tens denominational values of processes coins.
In the efficient attainment of these and other objects, apparatus is provided in the present invention comprising a first sensor group adapted to provide first signals exhibiting changing characteristics in accordance with the varying sizes exhibited by each coin in transit, and second sensor means so positioned with respect to said first sensor group as to provide a second output signal exhibiting changing characteristics at such a time at which said first output signals provide size indication definitive of the denominational value of the coin in transit past the sensors. The sensor group and sensor means define a registration zone successively occupyable by each of successive coins in continuous, nonselective transit thereby. Coin processing speed and volume is substantially increased by such apparatus and same is readily adapted by signal processing circuitry to provide individual denominational value indication for each coin in transit or alternatively, to provide said units and tens denominational value indications. Systems employing the apparatus of the invention in combination with different signal processing circuitry comprise further aspects of the invention provided herein.
The manner in which the foregoing and other objects of the invention are attained will be evident from the detailed discussion of preferred embodiments of the invention hereinafter and from the drawings wherein like numerals are used to identify like parts throughout.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a coin counter and sorter partly broken away to show apparatus of the invention.
FIG. 2 is a frontal elevational view of a section oftransfer chute 18 of FIG. 1 illustrating coins in transit therethrough.
FIG. 3 is a pictorial side elevational view oftransfer chute 18 with block diagrammatic illustration of circuit elements associated therewith.
FIG. 4 is a schematic diagram ofdiscriminators 68 and 70 of FIG. 3.
FIG. 5 is a schematic diagram of denominational value detector of FIG. 3.
FIG. 6 is a schematic diagram ofregistration pulse generator 138 of FIG. 4.
FIG. 7 is a block diagrammatic illustration of alternate circuit elements usable in the arrangement of FIG. 3.
FIG. 8 is a schematic diagram of detector andencoder 202 of FIG. 7.
FIG. 9 is a schematic diagram ofdecimal converter 214 of FIG. '7. Y
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. 1, collector and transfer unit 10 of coin sorter-counter 1 includes a coin depository scoop 12 and a continuously rotatingturntable 14. Coins, the denominational values of which are to be totalized, are gravity-fed onto the turntable and are individually displaced byturntable pins 16 from the vicinity of .plate 12 and are carried by the turntable to acceptor 17 of chute l8,'the coins being maintained about the periphery of the turntable during such transfer by centripetal forces provided by retainingguard 20 or by gravitational forces depending upon turntable rotational speed.Chute 18 is inclined downwardly such that coins transferred thereto roll edgewise through the chute under the influence of either the force attending their issuance fromturntable 14 to acceptor 17 or gravitational force.Coin deflector elements 22, 24, 26 and 28 are secured inchute 18 at different elevations corresponding with the different sizes of coins traversing the chute for purposes of selectively deflecting coins intosorting bins 30, 32, 34 and 36. .In the arrangement of FIG. 1 sorting-countingapparatus 1 accommodates four. differently sized coins, e.g. dime, penny, nickel and quarter. In all discussion to follow, this specific exemplary arrangementwill be considered, modification .of the system and apparatus herein to accommodate coins of further different sizes requiring only evident modifications. Disposed alongchute 18 between collector and transfer unit 10 and thefirst deflector element 22 is a coin size andposition discriminator 38. This unit preferably includes photoelectric means for com size and position indication and to this extent embraces anexciting unit 40 and aunit 42 containing sensing devices and signal processing circuitry.
Referring to the side elevational view of chute l8 il- I lustrated in F IG. 2 and to the FIG. 3showing,apertures 44, 46, 48, 50 and 52 are provided inwall 54 of the chute andunit 42sensors 56, 58, 60, 62 and 64 are mounted onwall 54 in respective registration with the apertures such that the apertures define the fields of viewof the sensors. ln the absence of coins inchute 18 all of the sensors will be continually excited by illuminators 40a through 40e ofexciting unit 40 of FIG. 1. In the preferred arrangement,sensors 56, 58 and 60, constituting a first sensor group, are aligned in a plane transverse to the longitudinal axis ofchute 18 and are positioned at respectively increasing heights abovelongitudinal guide rail 55 to be selectively deenergized and to thereby provide size indication of diverse coins in transit through the chute.Sensors 62 and 64, constituting second sensor means, are preferably .aligned in a plane parallel tolongitudinal guide rail 55. will be clarified hereinafter in detail, the second sensor means is positioned with respect to the first sensor group such that, upon deenergization of the second sensor means by a coin in transit, the states of energization or deenergization of the individual sensors of the first sensor group will provide size indication definitive of the proper denominational value of the coin. In this respect, the first sensor group-output signals will be identified hereinafter as size-indicating signals and the second sensor group signals will be referred to as position-indicating or coin registration signals. Such distinction will be clarified by discussion of events accompanying the transit of a particular coin through chute l8. I
The four diverse coins discussed above are illustrated in solid lines in FIG. 2 in such position inchute 18 that each coin coversapertures 50 and 52 ofwall 54 thereby deenergizing the second sensor means. In this connection only one coin can pass a given position in v the chute at a given instant by reason of the cross-sectional dimensions of the chute (FIG. 3) and the indication in FIG. 2 of all four coins in common position is .thus descriptive only. With its direction of travel indicated by the arrow, the 25 piece is illustrated in successive transit positions a, b and c wherein its vertical diameter coincides with the vertical lines defining such positions In position a, the coin occupies the fields of sensitivity of certain of the sensors of the first sensor group, namely sensors 58 and 60. If the output signals of the first sensor group with the coin in this position were to be accepted as having size indication definitive of the size of the coin then traversing the chute, confusion would ensue since these output signals would be identical respecting the 25 piece at position a and the 5 piece at position c. Such confusion would similarly result if position b, wherein the coin is further advanced in transit throughchute 18, were employed as the denominational value sensing position in the chute,sensor 56 remaining partially excited at such position. To avoid such confusion the system herein has as a 25 piece-defining condition that all of the first group sensors be unenergized. At chute position 0, the size indication provided by the output signals of the first sensor group meets this condition and the signals are clearly definitive of size distinctly indicating the proper denominational value of the coin traversing the chute. Note that at position c, the second sensor means is unenergized by reason of the presence of each of the coins at said position.
The following other denominational value-defining conditions are applicable. If all sensors of the first sensor group are energized and the second sensor means is unenergized, a dime is in transit. With only the second sensor means and sensor unenergized, a penny is in transit. Deenergization ofsensors 50, 52, 58 and 60 occurs where a nickel is in transit. As previously stated, where all sensors are unenergized a quarter is in transit. Evidently the single position 0 is not the only position at which the above conditions occur. Rather a registration zone generally indicated at 66 may be readily defined wherein the conditions apply.
Such zone commences for each coin in transit upon the initial interruption of second sensor means excitation thereby and extends thereafter through and beyond position c above. Whereas any position within such zone may be employed in practicing the invention, said commencement of such zone is preferably employed. Reference hereinafter to such registration zone is intended to indicate such preferred portion of such registration zone.
A fourth sensor may be included in the first sensor group at a position below sensor 60 such that light beam excitation of said fourth sensor will be interrupted upon transit of a dime to provide specific first sensor group output signal change indicative of a dime in transit upon occurrence of second sensor means deenergization; On the other hand, such fourth sensor is unnecessary since n different denominational valuedefining conditions can be derived from n-l sensors as described above. I
Whereas the particular sensor arrangement of FIG. 2 is preferred, it is not requisite that the sensors of the first sensor group be aligned in the specified plane. Also, as mentioned, positioning of the second sensor means is dependent upon the choice of location of the first sensor group such that the respective output signals thereof are meaningful, of true coin denominational values.
From the'foregoing it will be evident that the first group of sensors generates first output signals exhibiting changing characteristics (e.g. HI to L0) upon deenergization thereof, which signals are indicative of varying sizes exhibited by individual coins traversing the chute as same are in transit. Such signals initially take on size definition according with the denominational value of the coin in transit when the coin is within said registration zone, i.e. when the second sensor group becomes deenergized and generates output signals exhibiting changing characteristics (e.g. HI to L0) indicative of such occurrence.
The first group of sensors and the circuitry processing the output signals thereof comprisecoin size discriminator 68 of FIG. 3. The second sensor means and circuitry processing the output signals thereof comprisecoin position discriminator 70 of FIG. 3.Discriminator 68 provides its output signals onlines 72, 74, 76 and 78 to adenominational value detector 80 to which is also applied overline 82 the output signals ofdiscriminator 70. A selective one ofoutput lines 84, 86, 88 and 90 ofdetector 80 is energized to thereby provide a denominational value indicating signal. In such selective energization,detector 80 is operatively responsive to theline 82 signal change characteristic to selectively gate the signals then provided onlines 72, 74, 76 and 78.
Circuitry employable indiscriminators 68 and 70 is illustrated in FIG. 4. Light beams S1, S2 and S3 impinge upon and excitephototransistors 92, 94 and 96, the collectors of which are connected to a voltage source providing a positive potential and the emitters of which are directly-connected respectively totransistors 98, 100 and 102. The transistor collectors are also tied to said positive potential and the emitters thereof are connected throughresistors 104, 106 and 108 to ground. Said positive potential constitutes a first voltage level (HI) for the logic circuits to be discussed hereinafter. A second voltage level for the logic circuits is ground (L0). The outputs of the transistors are coupled overlines 110, 112 and 114 to first inputs of ANDgates 1 16, 118 and 120. These gates have their outputs coupled directly to discriminator ,68output lines 72, 74 and 76. The fourth output of the discriminator is provided online 78 by direct interconnection thereof withline 1 14.
120 receives its second input from a further ANDgate 126, the output of which is applied toline 128/Gate 126 receives a first input fromline 112 over connectingline 130 and the second input thereto is grounded byline 132. I
The foregoing AND gates and all AND gates in subsequent discussion are adapted to provide a HI output only upon coincident LO state of both inputs thereto. Under all other input conditions the gates provide LO output signals. All gates to be discussed hereinafter are AND gates and follow this operating characteristic. Fairchild 99l4 Medium Power Dual Two lnput'Gate includes gates providing the foregoing logic and may be used throughout.
The operation ofdiscriminator 68 will be evident by consideration of the functions therein attendant upon consideration of a penny entering the aforementioned registration zone ofchute 18. In the absence of a coin in transit, all of the phototransistors 92-96 are energized, in turn energizing transistors 98-102. As aresult, all oflines 110, 112 and 114 are HI. Light beam S3 is interrupted by said penny with resulting deenergization ofphototransistor 96 andtransistor 102 whereuponline 114 is L0 as isoutput line 78. Since lines and 112 remain HI,output lines 72 and 74 are LO, since both inputs togates 116 and 118 are not LO. In contrast tooutput lines 72, 74 and 78output line 76 is HI indicating the interruption of light beam S3. Sameoccurs since both inputs to gate are LO. As men= tioned,line 114 is upon UPON deenergization oftransistor 102.Line 128 is also LO since the line' 130 input togate 126 is III.
The following other conditions apply as respects the condition of the output lines ofdiscriminator 68 and selective blocking of input light beams Sl-S3. Where S2 and S3 are interrupted, onlyline 74 is HI. Where S1, S2 and S3 are interrupted, onlyline 72 is HI. Where none of S1, S2 and S3 is interrupted,line 78 is HI. The logic operations involved in such selective generation of signals indicative of size characteristics of other coins in transit are provided by the remaining identified circuitry of the discriminator.
In order that the output signals ofdiscriminator 68 be processed at such time that they contain pertinent size information definitive of denominational values of coins in transit,discriminator 70 provides a signal online 82 at the instant a coin first enters the registration zone. To this effect the light beams P1 and P2 impinge upon and excitephototransistors 134 and 136, the collectors of which are coupled to the positive supply and emitters of which are connected toregistrationpulse generator 138 overlines 140 and. 142. The registration pulse generator, which is discussed in detail in connection with FIG. 6 below, receives a further input in the form of continuous clock pulses provided online 144. Suffice it to say for the present that pulsegenerator 138 provides on line 82 a LO signal only upon coincident deenergization ofphototransistors 134 and 136 upon interruption of both light beams P1 and P2.
One embodiment of coindenominational value detector 80 of FIG. 3 is shown in detail in FIG. 5. The detector includes ANDgates 145, 147, 149 and 151 each of which has one grounded input and one input connected individually tolines 72 through 78. Each of further ANDgates 146, 148, 150 and 152 receives a first input from one ofgates 145, 147,149 and 151. The coin registration signals provided online 82 are applied in common to all of the gates overlines 154, 156, 158 and 160 as the second gate inputs;
Inoperation detector 80 will provide a LO signal on a selective one of itsoutput lines 84, 86, 88 and 90 upon the occurrence of theline 82 registration signal thereby providing indication of one ofdenominational values 25, 5, 1 and respectively. Such output line will be associated with that one ofgates 145, 147, 149 and 151 which derives a HI input signal from lines 72-78. By way of example, ifinput line 76 is HI andlines 72,74and 78 are L0, as occurs when a' 1 piece enters said registration zone,gate 149 will provide a LO output andgates 145, 147 and 151 will provide a HI output. With one input HI,gates 146, 148 and 152 will yield low outputs irrespective of the occurrence of the LO signal online 82 indicative of coin registration. On the other hand,gate 150 will have both inputs thereto LO upon occurrence of the registration signal online 82 and will thereupon yield a I-II output signal online 88, the 1 denominational value line.
The respective characteristics of the size-indication signals of the sensors anddiscriminator 68, the position-indication signals ofdiscriminator 70, and the denomination value indication signals ofdetector 80 are set forth in Table I below for the cases of each diverse coin entering said registration zone and the 25 piece also in thenon-registration zone position b of FIG. 2.
. TABLEI Function Line Coin in Transit 25 5 II0 93 L0 HIHI HI HI 95 LO LO HIHI LO Size 97 LO LO LO HI LO Defini- 72 HI LO LOLO LO lion 74 L0 HI .LO LO HI 76 LO LOHI LO LO 78 LO LO LO HI LO Registra- 140 LO LO LO LO HI tion De- 142 LO LO L0 L0 HI finition 82 LO LO LO LO HI Denomina- 84 HI LO LOLO LO tional 86 L0 HI LO LO LO Value De- 88 LO LO Hl LO LO finition 90 LO LO HI LO *25 piece at position b of FIG. 2.
A preferred circuit arrangement forregistration pulse generator 138 is illustrated in FIG. 6 whereinlines 140 and 1420f FIG. 1 provide first inputs for ANDgates 162 and 164, the second inputs to which are connected to ground bylines 166 and 168.Lines 140 and 142 provide first and second inputs togate 170 overlines 172 and 174. Outputs ofgates 162 and 164 are applied togate 176 overlines 178 and 180. The outputs ofgates 170 and 176 provide first inputs forgates 182 and 184 throughlines 186 and 188. These gates provide their outputs onlines 190 and 192 which are respectively coupled to the alternate gate inputs overlines 194 and 196.
Lines 190 and 192 provide gating signals for flip-flop 198 to which clock pulses are applied overline 144. The logic for this flip-flop is thatoutput line 200 thereof will be set H1 upon the occurrence of a I-II gating signal online 190 and is set LO upon the occurrence of a HI gating signal online 192.Line 200 is coupled through appropriate pulse-shaping circuitry as indicated by the dotted line, to pulsegenerator output line 82. Since such pulse-shaping circuitry may take various forms depending upon the pulse width desired tobe produced by the generator, same is not indicated in detail.
In light of the foregoing detailed logic operations discussed in connection with FIGS. 4 and 5 the logic operations of the circuitry of FIG. 6 will be clear from Table II below, which indicates the states of circuit lines during transitof a coin throughchute 18 of FIG. 1.
TABLE II From Table II it will be seen thatline 200 is HI as the coin in transit enters the chute since both ofinput lines 140 and 142 are HI. This state ofline 200 continues as one of light beams P1 and P2exciting phototransistors 134 and 136 (FIG. 4) is interrupted.Line 200 goes L0 as both light beams P1 and P2 are interrupted and bothinput lines 140 and 142 are L0, andline 200 returns to its HI state as the coin leaves the registration zone and bothinput lines 140 and 142 are returned to the HI state. Thus, in terms ofcoin transit line 200 is HI at all times other than when the coin in transit interrupts both light beams P1 and P2, i.e. when the coin first enters and resides in the registration zone.
Whereas the foregoing system of FIG. 4 is adapted to provide coin size indicating signals discretely indicative of the denominational values of coins in transit and may be associated with various counting devices known in the art for totalization of such values, the foregoing sensing apparatus of the invention is preferably employed in the system embodiment disclosed in FIG. 7 wherein a coin denominational value detector andencoder 202 is employed in place of detector of FIG. 4. This detector and encoder receives signals from lines 72-78 and 82, as in the case ofdetector 80, and generates output signals onlines 206, 208, 210 and 212 which have characteristics both indicative of coin denominational value and adapted for automatic zeroing ofdecimal converter 214 to which they are applied. In response to the states of lines 206-212,converter 214 provides output pulses online 216 indicative of the denominational value of certain coins in units count and provides online 218 pulses indicative of the denominational value of other coins in tens count. For example, in the case of a processing of a quarter, five pulses are provided online 216 and two pulses online 218. The denominational value information is thus in the form adapted for direct use in connection with known decimal input totalizing display devices, such as Nixie-tube units and the like. An understanding of the FIG. 7 system will follow from detailed discussion of the circuit arrangements of FIGS. 8 and 9 respectively indicating the structure and operation, of detector andencoder 202 anddecimal converter 214.
In FIG. 8 a plurality of ANDgates 222, 224, 226 and 228 is provided'for selective combination of the input signals provided onlines 72 through 78. For this purpose, lines 72, 76 and 78 are connected directly to certain inputs of the gates whereasline 74 is applied directly to one input ofgate 230, the second input to which is derived over line 232.fromline 72.Gate 230 provides its output overline 234 togate 236, the output of which is'provided overline 238 to certain of the aforementioned four selective combination gates.Gate 236 provides on line 238 a signal which is I-Il only whenline 234 is LO which is the case when eitherline 72 orline 74 is 1-11. Thus ANDgates 230 and 236 combine to provide an OR function such that whenever the coin in transit is a piece or a 25 piece, i.e. when eitherline 72 orline 74 is HI,line 238 will be 1-11. Since it is desired to perform only two types of counting in the FIG. 7 system, i.e. multiples of one and multiples of ten,gates 230 and 236 act to indicate the 5 content of the quarter piece andline 72 may thereafter be considered as indicating a denominational value of or twice the desired multiplicand of ten.Line 78 provides denominational value indicative of 10 or one times this multiplicand.Lines 238 and 76, respectively indicative of denominational values of 5 and 1 involve the units multiplicand. The particular manner of interconnection of these denominational value lines and the selective combination AND gates is illustrated in FIG. 8.Output lines 242, 244, 246 and 248 have the states indicated in Table III below in accordance with the states ofinput lines 72 through 78 relating denominational values.
TABLE III 5 l 10Line 72 HI LOLO LO Line 74 L0 HlLO LO Line 76 LO LOHI LO Line 78 LO LOLO Hl Line 238 HI HlLO LO Line 242 LO LOLO HI Line 244 Hl HlLO Hl Line 246 Hl HlHl LO Line 248 L0 Hl Hl LO TABLE IV 25 5 l 10'Line 72 HI LOLO LO Line 74 L0 HILO LO Line 76 LO LOHl LO Line 78 LO LO LO l-Il Line 206 Hl HlHI LO Line 208 LO LOHl LO Line 210 LO LOLO Hl Line 212 Hl LOHl Output lines 206 and 208 are indicative of units values of certain coins in transit, i.e. of nickels and pennies, and. of a five-cent value of each quarter.Output lines 210 and 212 are indicative of tens values of coins in transit, i.e. dimes and a twenty-cent value of each quarter. The circuitry ofunit 202 is effective also to provide such units and tens values signals with encoding which effectuates an automatic zeroing ofdecimal converter 214 shown in detail in FIG. 9.
In FIG. 9 the converter comprises an upperchannel pulse generator 260 having anoutput terminal 261 and a lowerchannel pulse generator 262 having anoutput terminal 263. The upper channel provides units readout online 216 and includes flip-flops 264, 266, 268 and 270 and an ANDgate 272. The lower channel provides tens readout online 218 and includesflipflops 274, 276 and 278 and an ANDgate 280. The inputs to the converter are derived fromlines 206 andl 208 forchannel 260 fromlines 210 and 212 forchannel 262. Clock pulses are provided overlines 282 and 284.
The various flip-flops other than 264 and 274 of FIG. 9 exhibit like state-changing characteristics and detailed discussion will be given for flip-flop (F/F) 266 in explanation of flip-flop logic. The F/F has input gating terminals 286 (set) and 288 (clear), an input trigger (clock pulse) terminal 290, first and second output terminals 292 (output) and 294 (complementary output) and a further input terminal (preset) 296. When gatingterminals 286 and 288 are LO, any change in state at terminal 290 from a HI to a LO will alter the state of the FIR When the gating terminals are HI, no change in state will occur other than that which may be provided by application of either a L0 or HI signal to preset terminal 296, which is effective to respectively provide a L0 or HI signal atcomplementary output terminal 294.Output terminals 292 and 294 provide opposite phase signals at all times, one terminal yielding a H1 or LO signal and the other respectively yielding L0 or 1-11. In the case of F/F 266 thegating terminals 286 and 288 are constantly enabled by connection thereof directly to ground (LO) such that any change in state of F/F 264 from HI to L0 will change the state of F/F 266. In the case of F/F 266only output terminal 294 is used. Fairchild 9923 Medium Power .lK Flip Flop provides the foregoing logic and may be used inchannels 260 and 262.
As a typical example of flip-flop operation, let it be assumed that a BI signal is applied fromline 206 toterminal 296 thereby setting terminal 294 HI. If F/F 264 now changes state from 1-11 to L0 at the complementary output terminal thereof, F/F 266 will be triggered and terminal 294 will go LO. No further change will occur atline 294 until F/F 264 reverts to its original state and thereafter changes state from HI to L0 again, thereby directing terminal 294 to H1.
Flip-flops 268, 270, 276 and 278 are each connected in like manner to F/F 266, and presetting signals are applied to these flip-flops frominput lines 206 through 212. F/F 264 and F/F 274 are connected similarly with the exceptions that the trigger (clock pulse) terminals thereof are connected directly toclock pulse lines 282 and 284, that the preset terminals thereof are not used and that the gating terminals thereof are connected togates 272 and 280. Thus, these flip-flops change state only when the outputs of thegates 272 and 280 are LO, i.e. when at least one of the gate inputs is HI. As illustratedgate 272 derives its input signals fromlines 298 and 300 which are respectively connected to the complementary output terminals ofWP 266 and F/F 270. ANDgate 280 derives its input fromlines 302 and 304 which are respectively connected to the complementary output terminals ofWP 276 and F/F 278.
As a particular example of operation ofchannel 260 let it be assumed thatinput line 206 is HI andinput line 208 is LO. Note from Table IV that this condition occurs for the 5 and 25 pieces. F/F 266 and F/F 268 provide l-II signals at their output terminals and F/F 270 provides a LO signal at its output terminal. The signals appearing onlines 298, 300 being HI, LO,gate 272 provides a LO output online 273 and upon the occurrence of the next clock pulse (CPI) online 282, F/F 264 is triggered. This F/F, as is the case of F/F 274, is monostable in operation, since no signals are applied to its preset terminal.Output terminal 261 of the PIP exhibits a pulse (L to HI to L0) upon triggering in accordance with the monostable character thereof andinput terminal 290 of F/F 266 receives a triggering signal (HI to L0). F/F 266 is thereupon set LO, providing a LO signal online 298. F/F 268 is similarly changed in state since the trigger terminal thereof receives a HI to LO signal. The same result occurs in the case of F/F 270 wherebyline 300 goes HI. ANDgate 272 continues to provide a LO signal online 273 and F/F 264 is again triggered upon the occurrence of the next succeeding clock pulse (CP2). A second pulse is generated atterminal 261 and F/F 266 is again changed in state to exhibit a HI output signal online 298. F/F 268 does not change state atthis time, the triggering signal applied thereto changing from a L0 to a HI in contrast to the required triggering signal characteristic. With no change in state of F/F 268, F/F 270 remains unchanged. This sequence of events will continue until both inputs to ANDgate 272 are LO whereuponline 273 will go HI disabling the gating terminals of F/F 264. These events are compiled in Table V below.
TABLE V Before Upon Upon Upon Upon Upon Upon CPI CPl CPZ CP3 CP4CPS CP6 Line 298 Hl LO Hl LO HILO LO Line 269 HI LO LO Hl HILO LO Line 300 L0 HI HI HI HILO LO Line 273 LO LO L0 LO LOHI HI Terminal 261 pulse pulse pulse pulse pulse no pulse As a result of the states ofinput lines 206 and 208, five pulses only are generated atterminal 261, indicative of the units denominational value of the piece of five cents of a 25 piece.
With this example the circuit may be inspected in like manner upon the occurrence of 1 and 10 pieces in transit and it will be found that the number of pulses provided atterminal 261 will accord in number with the units denominational value of the penny, i.e. one pulse only, and no pulses will appear thereat for the dime. Furthermore, by reason of the particular encoding of the signals onlines 206 and 208, it will be noted that the counting flip-flops 266-268-270, and 276-278, each comprising a serial chain of bistable elemcnts, are all returned to a LO state upon the comple- 12 tion of generation of such precise number of pulses. The counter is thus automatically reset to zero upon the completion of pulse generation. The pulses generated atterminal 262 may be counted as units input by any appropriate totalizing device.
In thecase oflower channel 262 operation therein is similar to the foregoing exemplary operation of the units channel and there will be selectively generated at output terminal 263 a single pulse in the case of a 10 piece in transit and two pulses in the case of a 25 piece in transit. Table VI indicates circuit occurrences in the case of a quarter.
TABLE VI Before Upon Upon Upon CP'l CP'ICP'2 CP'3 Line 302 L0 HILO LO Line 304 HI HILO LO Line 281 LO LOHI HI Terminal 263 pulse pulse no pulse In Table VI, the clock pulses are identified at CP in contrast to those (CP) considered in Table V. The clock pulses, CP, provided to channel 260 overline 282 are in phase with those provided toregistration pulse generator 138 of FIG. 6 overline 144 such that units denominational value signals are generated bychannel 260 for counting prior to the tens denominational value signals generated bychannel 262. The latter channel operates with clock pulses CP" which are time-delayed with respect to clock pulses CP to insure the operating relation between the channels which permits carry computations in the counting or totalizing apparatus fed bydecimal converter 214.
By way of summary of The foregoing, in the system of FIG. 3, the apparatus of FIGS. 1 and 2 is adapted to provide n output signals onlines 84 to 90, each of which is indicative of the denominational value of one of the n (four) exemplary coins herein. To this end, then gating circuits 146 to 152 of detector receive, as a common input, the registration signal provided by the second sensor means ofdiscriminator 70, and as another input the output of one of gates to 151, i.e. a signal changing in accordance with a selective one of the signals provided by the first sensor group ofdiscriminator 68. These denominational value indicating signals may be totalized separately, eg by n counters or by a single units counter with multiplier inputs of 25, 10 and five.
In the system of FIG. 7, the apparatus of FIGS. 1 and 2 is adapted to provide n output signals onlines 206 to 212 indicative, separately or in combination, of the denominational values of the n (four) exemplary coins herein. To this end, then gating circuits 252 to 258 of detector andencoder 202 receive, as a common input, the registration signal provided by the second sensor means ofdiscriminator 70, and as another input, the output of one ofgates 222 to 228, i.e. a signal changing in accordance with a selective one or a combination of the signals provided by the first sensor group ofdiscriminator 68. The denominational value signals onlines 206 and 208 contain units value information and the denominational value signals onlines 210 and 212 contain tens value information and the respective lines are applied to units pulsegenerators 260 andtens pulse generator 262. These generators provide units and tens denominational value pulses adapted for totalization by a single units and tens decimal input counter. By virtue of the encoding capacity ofgates 222 to 228, the signals onlines 206 to 210 are adaptedfor both controlling the pulse generator output pulse provision and for automatically resetting the pulse generators to a common state of preparedness for the next subsequent count pulse generation.
Whereas the invention has been disclosed by way of particularly preferred embodiments for arrangement of the sensor groups of FIG. 2, for the systems of FIGS. 3 and 7 and for the logic circuit implementations thereof, various modifications thereof will be evident to those skilled in the art and can be introduced without departing from the spirit and scope of the invention. Such embodiments are thus intended in a descriptive and not in a limiting sense, the invention herein being defined in the following claims.
What is claimed is:
1. Apparatus for use in determining the denominational values of differently-sized coins in transit therethrough at random speeds comprising first sensor means generating signals varying in accordance with sensed coin size and second sensor means so positioned with respect to said first sensor means as to sense a coin then in transit concurrently with said first sensor means and to generate a signal of predetermined characteristics at a time at which said first output signals exhibit variation in accordance with sensed coin size indicative of the denominational value of said coin then in transit.
2. Apparatus for use in determining the denominational values of differently-sized coins in transit therethrough at random speeds, including first sensor means generating first output signals exhibiting changing characteristics indicative of coin sizes sensed during the time period in which a coin in transit is in the field of sensitivity thereof, and second sensor means generating second output signals positioned with respect to said first sensor means such that said coin in transit enters the field of sensitivity thereof during each said time period and such that a second output signal exhibiting changing characteristics is generated at a time during each said time period at which the coin size indication of said first output signals is definitive of the denominational value of said coin in transit.
3. The apparatus claimed inclaim 2 wherein said coins are of n different sizes and wherein said first sensing means provides first output signals exhibiting changing characteristics indicative of the varying sizes exhibited only by individual coins in transit of n-l of said n different sizes.
4. The apparatus claimed in claim 3 wherein said first sensor means comprises a group of n-l sensors each providing one of said first output signals.
5. The apparatus claimed in claim 4 wherein said first sensor group and second sensor means include radiant energy sensors normally receiving excitation and thereby generating said first and second output signals,-
14 said characteristics thereof changing upon interruption of said excitation by coins in transit.
6. The apparatus claimed in claim 5 wherein said n-l radiant energy sensors of said first sensor group are disposed in a common plane transverse to the direction of coin transit.
. The apparatus claimed in claim 5 wherein said second sensor means comprises radiant energy sensors disposed in a common plane parallel to the direction of coin transit.
8. A system providing denominational value indicating signals comprising the apparatus claimed inclaim 2 and circuit means including gating circuits providing said denominational value indicating signals, each gating circuit receiving said second output signal and another signal having a characteristic exhibiting change in accordance with one of said first output signals.
9. The system claimed inclaim 8 wherein n said gating circuits are included, each gating circuit providing a diverse denominational value indicating signal.
10. The system claimed in claim 9 wherein said first sensor means comprises a group of n-l sensors each providing one of said first output signals.
11. A system providing denominational value indicating signals comprising the apparatus claimed inclaim 2 and circuit means including gating circuits providing said denominational value indicating signals, each gating circuit receiving said second output signal and another signal having a characteristic exhibiting change in accordance with one of said first output signals or a combination thereof.
12. The system claimed in claim 11 wherein said denominational value indicating signals are indicative of units or tens denominational value.
13. A system providing first and second count signals for respective excitation of units and tens denominational value counters for totalization of the values of differently-sized coins in transit, comprising the system claimed in claim 10 and first and second pulse generators receiving said denominational value indicating signals and respectively providing said first and second count signals.
14. The system claimed in claim 13 wherein said denominational value indicating signals are indicative of units or tens denominational value and wherein said first pulse generator receives said units value signals and said second pulse generator receives said tensvalue signals.
15. The system claimed inclaim 14 wherein said pulse generators each comprise a serial chain of bistable elements, each bistable element receiving one of the denominational value signals received by said pulse generators.
16. The system claimed in claim 15 wherein said denominational value indicating value signals have characteristics adapted to change the states of said bistable elements both to provide said first and second count signals and to return all said bistable elements to a common state after provision of said count pulses.