O United States Patent [151 3,659,605
Sielaff May 2, 1972 54] PNEUMATIC SUCTION SYSTEM 3,042,042 7/1962 Blanck 128/276 3,142,298 7/1964 Koski et al ..128/276 [72] Inventor. Ulnch Slelafi, McFarland, WIS. 3142299 7/1964 Henderson 1 28/276 [73] Assignee: Airco, Inc. New York, N,Y 3,347,235 10/1967 Hunnicutt ..128/276 [22] Filed: 1970 Primary ExaminerCharles F. Rosenbaum [21] APP] 2 430 Attorney-Roger M. Rathbun, Edmund W. Bopp and H.
Hume Mathews [52] U.S. Cl ..128/276 57 BSTR CT [51] lnLCl. ..A6lm 1/00 58 Field of Search ..128/276-278, 145.5-145.s A Pneum"mc sumo sysem havmg extreme prising a plurality of interconnected, vacuum actuated modu- [56] Reterences Cited lar switches adapted to be connected to a vacuum source to provide an intermittent vacuum source having controllable UNITED STATES PATENTS timed intervals for withdrawing fluids from a patient.
3,086,528 4/1963 Eichelman et a1. ..128/276 6 Claims, 1 Drawing Figure VACUUM SUPPLY 56 VA cuu/w SUPPLY lTO PA TIENT Patented May 2, 1972 v4 cuuM sup/=4) VACUUM 5 SUPPLY T PATIENT 'ATTOIRNEY PNEUMATIC SUCTION SYSTEM BACKGROUND OF THE INVENTION This invention relates to pneumatic timing devices and, more particularly, to a pneumatic modular system for producing a pulsed suction having predetermined time intervals.
The use of intermittent suction devices is well known in the medical field, one of the more important uses being for the removal of drainage from the stomach or intestines of patients. The suction devices normally are connected to a tube which is internally inserted within the patient and which withdraws the fluid either continuously or intermittently.
In the intermittent type suction device, the suction cycle withdraws the fluid through the tubes for a predetennined period, at the end of which time the external end of the tubing is opened to atmospheric pressure, thereby allowing the draining liquid to reverse in direction and return toward the area being drained. As this atmospheric pressure cycle is terminated, the vacuum is again applied and the cycle repeated until the desired total draining time is attained.
Through the intermittency and timed alternating cycles, the back flow which occurs during the atmospheric pressure cycle assists in dislodging possible obstructions which might cause a stoppage in the internal tubing. The timing must, of course, be carefully set in order to insure that the total continual flow is outward from the patient and this is accomplished by providing relatively short intervals in which the tubing is allowed to be vented to atmospheric pressure as compared to the suction intervals.
It is advantageous in intermittent suction devices to adapt them for operation from a regulated source of vacuum since it is common in many hospitals to provide a vacuum outlet from a central system where outlets are accessible in a great number of locations, including the patients room. Therefore, the intermittent suction device is preferably suitable for attachment to a regulated vacuum source which provides a relatively constant vacuum and thereafter the device produces an intermittent cycling function.
There are devices presently used which are adapted to communicate with a regulated vacuum source and thereafter introduce an intermittently cycled vacuum to a patient; however, the present devices rely on various mechanical functions to effect the cycling. As an example, various of the known devices rely on sliding friction in some manner to create a timed interval and thus, are subject to irregularities in friction as well as eventual inaccuracies through wear of the sliding parts. Similar problems are inherent in the use of mechanical rotating valves, hydraulic fluids, lever arms and the like.
Of particular importance in medical applications is the reliability of suction devices. It is extremely important that the devices be as free as possible of moving parts or any features where wear or misadjustment could lead to even a temporary failure of the vacuum cycling, and therefore medical devices preferably incorporate the least number of moving or other stressed parts as is functionally possible.
BRIEF SUMMARY OF THE INVENTION The present pneumatic intermittent suction system overcomes present disadvantages by providing a modulized construction wherein standard pressure actuated logic switches are uniquely interconnected such than an extremely reliable intermittent suction system is produced which may easily be connected to a source of regulated vacuum. The logic switches themselves are compact and easily replaceable for servicing and are inherently reliable since the total movement of any single part is on the order of 0.010 inches. These switches do not rely upon any friction pistons or the like for their operation and, in addition, the intermittent devices of this invention operate entirely pneumatically from a vacuum service and require no additional source of energization for their functioning. All timed cycles are accurately adjustable and such adjustment or timing setting does not involve any change in moving parts, therefore, the timing is independent of sliding friction. The timed settings, once determined, are extremely stable and do not fluctuate or change through wear in any moving parts.
The improved intermittent suction system is illustrated in the accompanying drawing which shows the preferred embodiment of the invention, incorporating the features and advantages described.
FIG. 1 is a schematic diagram showing the assembled intermittent suction device. I
Referring now to FIG. 1, there is shown a schematic circuit utilizing pneumatic logic switches, identified as 14, l6, l8 and 20, all of which are of identical construction.
These logic switches are pneumatic, diaphragm switches of the type commercially available under the trademark UNILOGIC from the Robertshaw Controls Company and, therefore, only the basic function of one of these switches will be briefly described. Although this particular switch has been found preferable, the invention may easily be adaptable to be performed with other similar pneumatic switches.
As shown in FIG. 1, alogic switch 14 is provided having a plurality of ports, indicated as a V port, N0 port, NC port and a C port. Basically the C port is the common port and, when the switch is in its non-actuated state, C port communicates with the NO port, therefore, being a normally opened fluid circuit. In the same, non-actuated position, therefore, the NC port is normally closed with respect to the common or C port. The V port serves as an actuating port for the logic switch, and is sensitive to a vacuum signal of a specific value, whereupon the switch becomes actuated and the C port is in open communication with NC port while the NO port is then closed with respect to the C port. The use of these operations will become apparent during the later description of the overall function of the invention.
Referring again'to FIG. 1, the aforedescribed logic switches are shown schematically and are interconnected in such a manner as to provide an intermittent suction function.
Avacuum supply 22 is provided and, as explained, is normally supplied by a central supply system of a hospital; however, a suitable portable vacuum pump or other alternate means may be utilized.
The amount of vacuum from thesupply 22 is controlled byvacuum regulator 24. When thevacuum supply 22 is energized, a vacuum is continually drawn throughregulator 24 fromtubing 26. Since the extreme end oftubing 26 terminates at the NC port oflogic switch 16, theswitch 16 being in the non-actuated state, the vacuum ofsupply 22 is drawn from the interior oftank 32, throughbleed tubing 28 andrestriction 30. Therestriction 30 intubing 28 serves to increase or decrease the amount of resistance to fluid flow in thetubing 28, and thereby controls the rate of evacuation of thetank 32, which is of a predetermined volume.
Afurther tubing 33 communicates with the interior oftank 32; however, it terminates at the NC port ofunactuated logic switch 14 and, therefore, does not effect the evacuation oftank 32.
As the volume intank 32 continues to be evacuated, a vacuum signal is eventually reached of sufficient value to actuatelogic switch 16 throughtubing 34, which communicates between the interior oftank 32 and the V port ofswitch 16.
Actuation oflogic switch 16 causes its NO port to close and its NC port to be opened with respect to the C port ofswitch 16, and therefore the continuingvacuum supply 22 provides a vacuum signal to actuate bothswitch 18 and switch '20 throughtubing 46, 42, 44, and 46, 42 respectively. In addition, the vacuum begins to evacuatetank 36 throughrestriction 48 as will be later explained.
The actuation oflogic switch 20, as described, causes the NC port and C port ofswitch 20 to be in mutual communication. As shown, acontinuous vacuum supply 54 is provided to port NC ofswitch 20 through tubing 56 and such vacuum is normally provided through the same source asvacuum supply 22, preferably from a central hospital vacuum system and is at a regulated constant negative pressure. Sincelogic switch 20 is actuated, thisvacuum supply 54 is for application to a patient through tubing 58 to a suitable device, not shown, for entering the patient for withdrawal of the fluid to be removed. Aregulator 60 may be provided in tubing 58 in order to insure the proper amount of vacuum applied to the patient. The actuation oflogic switch 20, therefore, begins the cycle whereby vacuum is applied to the patient.
As explained, thetank 36 is being evacuated throughtubing 42. Arestriction 48 is provided intubing 42 in order to regulate the resistance to fluid flow throughtubing 42, and thereby control the rate at whichtank 36 is evacuated.
Atubing 40 communicates with the interior oftank 36; however, it terminates at the NO port oflogic switch 18 since this switch has been actuated and the NO port is efiectively closed.
As the predetermined volume intank 36 continues to be evacuated, a vacuum signal is eventually reached of sufficient value to actuatelogic switch 14 throughtubing 38 which communicates between the interior oftank 36 and the V port of logic switch.
The actuation oflogic switch 14 opens port NC to port C which is open to the atmosphere, and therefore the atmosphere enters evacuatedtank 32 throughtubing 33.
As the atmosphere enterstank 32, the vacuum within the tank is dissipated to the point where a vacuum signal is no longer provided fromtank 32, throughtubing 34 to the V port oflogic switch 16.Logic switch 16, therefore, becomes unactuated and the NC port is closed with respect to the C port, while the NO port opens to allow the C port ofswitch 16 to communicate with the atmosphere through now opened NO port. The atmospheric pressure enters the NO port ofswitch 16 through arestriction 51 andtubing 50. The purpose of therestriction 51 is to provide more positive control to switch 16. During the switching process of the pneumatic switches described, there is a certain amount of time when, due to the gradual application of vacuum to the V port, both the NC and N ports may be in communication with each other. By therefore restricting the entrance of atmospheric pressure into the NO port, this effect is minimized.
As atmospheric pressure enters thetubings 46, 42 and 44, both logic switches 20 and 18 lose the vacuum signal applied to their respective V ports, and both switches become unactuated.
The unactuation oflogic switch 20 closes NC port with respect to C port and, therefore, the vacuum signal fromvacuum supply 54 is no longer applied for the purpose of withdrawing fluids from the patient. Instead, atmospheric pressure is allowed to enter the tubing 58 to the patient from N0 port oflogic switch 20, thereby allowing the fluids within internal tubing to drain backward to the patient to facilitate unclogging of the lines.
in turn, the unactuation oflogic switch 18 allows communication between NO port and C port which is open to the atmosphere and, therefore, the atmosphere is allowed to enter the evacuatedtank 36 throughtubing 40. Again, to avoid the introduction of atmospheric pressure into the NC port ofswitch 18 and thereafter possibly to the NO port during switching, atubing 52 is connected to the NC port and is completely closed at itsend 53.
As the vacuum intank 36 is dissipated, the vacuum signal applied fromtank 36 to the V port oflogic switch 14 throughtubing 38 is removed andlogic switch 14 becomes unactuated.
The unactuation oflogic switch 14 closes communication between the NC port and C port, thereby closingtank 32 to the atmosphere.
At this point in the cycle, the entire system has been restored to its original disposition, all logic switches are unactuated and the described cycle begins anew by the gradual evacuation oftank 32.
As may now be seen, each time the vacuum intank 32 is sufficient to cause the actuation ofswitch 16, a vacuum signal is transmitted tologic switch 20 allowing thevacuum supply 54 to be applied to the patient for the withdrawal of fluids. When the volumn withintank 36 is then withdrawn sufficiently to actuatelogic switch 14, atmospheric pressure is allowed to entertank 32, thereby removing the vacuum signal fromswitch 16 to deactuate the switch. There is then no vacuum signal atswitch 20 and the patient line 58 is opened to the atmosphere.
By adjusting therestrictions 30 and 48, the rates of evacuation oftanks 32 and 36, respectively, may be independently controlled, thereby regulating the time required to evacuate each of the tanks.
Control of the evacuation times, as may be seen, also controls the time periods within which logic switch 20 alternately allowsvacuum or atmospheric pressure to be applied to the patient tube 58, thereby providing a system having independent control over the intermittent suction and atmosphere cycles.
There is thus provided a novel modular design system utilizing standard pneumatic logic components having negligible frictional resistance, extreme reliability, and which is capable of providing an intermittent suction function of predetermined variable cyclic periods for the removal of fluids from a patient.
I claim:
1. An intermittent suction system for alternately applying a vacuum and atmospheric pressure for removing fluids from a patient comprising a supply line adapted to communicate with a source of vacuum, a first container means communicating with said supply line and adapted to be evacuated, means responsive to a vacuum in said first container means for applying an independent supply vacuum to the patient, a second container means adapted to be evacuated, means responsive to a vacuum in said second container means for breaking the vacuum to the patient and applying atmospheric pressure to the patient.
2. An intermittent suction system for alternately applying a vacuum and atmospheric pressure to a patient line comprising a pneumatic switch having a first position where a vacuum is applied to the patient line and a second position where atmospheric pressure is applied to the patient line, and means for operating said neumatic switch comprising a first container adapted to be evacuated, means responsive to a vacuum in said first container to place said pneumatic switch in its first position, a second container adapted to be evacuated, means responsive to a vacuum in said second container for placing said pneumatic switch in its second position.
3. An intermittent suction system as in claim 2, wherein said first and second containers are evacuated at a predetermined rate.
4. An intermittent suction system as inclaim 3 wherein means are provided to vary the rate of evacuation of said first and second containers.
5. An intermittent suction system as inclaim 3 wherein means are provided for de-evacuating said first and second containers.
6 A method of providing an intermittent suction system comprisingthe steps of evacuating a known volume from a first container at a predetermined rate, sensing a vacuum produced in the first container, applying a vacuum to a patient in response to the sensed vacuum in the first container evacuating a second known volume from a second container at a predetermined rate, sensing a vacuum produced in the second container, breaking the vacuum to the patient and applying atmospheric pressure thereto in response to the sensed vacuum in the second container and restoring the first and second containers to a non-evacuated state.