United States Patent Inventors Edwin A. Miller Attleboro, Mm; Gregory 11. Parker, Rumford, R.l. Appl. No. 798,525 Filed Nov. 19, 1968 Patented Aug. 31, 1971 Assignee Texas Instruments Incorporated Dallas, Tex.
Continuation-impart of application Ser. No. 591,801, Nov. 3, 1966, now abandoned Continuation-impart of application Ser. No. 591,827, Nov. 3, 1966, now abandoned.
CABLE-SHIELDING MATERIAL 10 Claims, 6 Drawing Figs.
US. Cl 174/36, 174/102, 174/107, 174/126 CP Int. Cl. 1101b 7/18, H01b9/02,H01b 11/06 Field of Search 174/36, 102, 102.6, 106, I07, 108, 126. 2, 126.3, 126; 29/183.5,193,196.S,196.3,197
[56] References Cited UNITED STATES PATENTS 3,212,865 10/1965 Miller .l 29/1963 2.589.700 7/1949 1611681666.... l74/l06 3,272,911 4/1964 Rollinsetal 174/106 OTHER REFERENCES Electronic Design, Metals & Controls, p. 59, 0a. 14. 1959 Primary Examiner- Lewis H. Myers Assistant Examiner A. T. Grimley Attorneys-Harold Levine, Edward J. Connors, Jr., John A.
Haug and James P. McAndrews I ABSTRACT: A cable-shielding material is shown to comprise annealed, low carbonsteel and aluminum layers of selected thicknesses arranged and metallurgically bonded together in selected positions relative to each other to provide novel and advantageous properties ,of strength, weight, volume, electrical conductivity, magnetic permeability corrosion resistance, and formability, whereby the cable-shielding material can be economically manufactured and easily formed around a cable to. provide the cable with suitable electrical and electromagnetic shielding while further providing the cable with suitable protection against sharp objects, rodents and corrosion. Such a cable-shielding material having a layer of copper thereon for facilitating soldering of the material is also shown.
meminmcansn 3.602.633
SHEETZUFZ FIG. 6'
COPPER. STEEL ALUMINUM cABLE-smELmNG MATEiuAL.
. This applicationis a continuation-in-part ofcopending apthe weight and size of the cable and, including the basic cost of the shielding material as well as the cost of their application, add significantly to the cost of shielded cables. In fact, primarily because of cost factors, it has been conventional to use one of three different cable-shielding materials depending upon the requirements of the particular application. For example, one widely followed specification requires use of copper cable-shielding material, the specification requiring copper of 0.005 inch thickness to meet the electrical conductivity requirementof the specification but further requiring use of copper of 0.010 inch thickness to provide sufficient strength in the cable-shielding material. Altemately, where the strength requirements of the specification canbe waived in a particular application, an' aluminum cable-shielding material .of 0.008 inch thickness is used to meet the electrical conductivity requirements of thespecification.- Alternately, where stringent electrical requirenients do not have to be met, steel cab1e-shielding materials can be used to provide physical protection for cables. In all of these applications, the cableshielding material is preferably in annealed or easily formable condition to permit economical application of the shielding material to a cable. Further, in these known shieldingmaterials, the thickness of the material is preferably kept in the range from 0.010 to about 0.014 inches in order to'limit the bulkiness or volume factor in a shielded cable. formed with the shielding materials.
It is an object of the invention to provide a novel and improved cable-shielding material which is characterized by I suitable strength, low-weight, small volume, high electrical material which is economically manufactured and applied in" cable construction. v
The invention accordingly comprises the constructions hereinafter described, the scope of the invention being indicated in the following claims.
1n the accompanying drawings in which several of the various embodiments of the invention are illustrated:
FIG. 1 is a view illustrating a typical application of our new multilayered shielding material to form an improved cable, said material being shown diagrammatically by single lines;
FIG. 2 is an enlarged fragmentary cross section taken on line 2-2 of FIG. 1, illustrating a two-layered form of the invention;
FlGS. 3-5 are views similar to FIG. 2 showingthree-, fourand five-layered forms of the invention, respectively; and
FIG. 6 is a view similar to FIG. 2 illustrating an alternate five-layered form of the invention.
Corresponding reference characters indicate corresponding parts throughout the several views of the drawings. The drawings are illustrative andare not to exact' scale, the small thicknesses of the layerinvolved being exaggerated.
It is desirable, if possible,to avoid or to minimize the use of copper in a cable-shielding material because of the high cost of copper and the fact that copper sometimes is in shortsteel layers together with a very thin solderable layer of copper'as is hereinafter specified, the composite sheath thickness beingon the order from 0.010 to 0.014 inches and preferably being on the order of 0.0 l 0 to 0.012 inches.
Referring now more particularly to the drawings, there is shown at numeral 1 a typical conductive core of a cable or like construction to be shielded. Atnumerals 3 and 5 are shown the usualinner and outer nonmetallic flexible or resilient insulating sleeves that are employed in cable construction. Between thesesleeves 3 and 5, our composite shielding material orsheath 7 is employed as is described below. A strip ofsuch shielding material 7 made according to the invention is wrapped around theinner sleeve 3 in the usual manner, as suggested at 9'in FIG. 1, with or without transverse corrugations as illustrated at 11 in FIG. 1. The corrugations improve flexibility of the cable construction but are not always necessary. In the alternative,'particularly where used without corrugations, thestrip 7 may be applied helicall y to the cable'in known manner (not shown). in FIGS. 2-6, various different forms of our new composite shielding material are illustrated the component layers.
on an exaggerated scale of thickness in order to clearly show Referring now to FIG. 2, an improvedshielding material 7 is shown to be composed of a comparatively thick layer" 13 of aluminum having a thickness in the' range of 0.008 to 0.010 inches, and a comparatively thin layer ofsteel 15 of a thickness in the range from 0.002 to 0.004 inches, theselayers 13 and 15 being interfacially and metallurgically bonded together, preferably-by solid-phase bondingmethods as set forth, for example, in U.S. Pat. Nos. 2,691,815 and 2,753,623 The thickness of thelayers 13 and 15 are also preferably established with respect to each other so that the total thickness of thecomposite material 7 is kept within the range from 0.010 to 0.012 inches. It should be understood that methods for metallurgically bonding the composite layers .13 v
and 15 together" are not restricted to those described in the noted patents, butthat the solid-phase bondingmethods of said patents are believedto be superior for forming thecomposite material 7.
ln accordance with this invention, the compositecableshielding material 7 is annealed in order to provide the material with sufficient formability to permit economical application of the shielding material to a cable in the manner illustrated in FlG. l.
In this construction, it is found that a minimum thickness'of aluminum of 0.008 inches in thecomposite material 7 provides the cable-shielding material with suitable electrical conductivity to meet the requirements of most applications and of most widely used cable-shielding specifications and standards. That is, this minimum thickness of aluminum assures that the cable shielding material has the current-carrying capacity required to ground currents induced by lightning strokes that may reach the cable. The use of aluminum as a current-carrying memberinthe material 7 significantly reduces the cost of the material below the cost of the solid copper shielding material previously used in high electrical conductivity applications.
In this construction, it is also found that, while too great a thickness in thesteel layer 15 of thecomposite material 7 would unduly increase the weight and bulkiness of the cable shielding material and would tend to reduce the formability of the material, a minimum thickness of 0.002 inches for the steel layer provides thecomposite material 7 with the strength which is required for most cable-shielding applications and whichis required for meeting most widely used cable-shielding specifications and standards. That is, this minimum thickness in the steel layer provides the composite material with the strength to withstand blows from sharp objects and to shield a cable from rodents. The steel layer further provides thecomposite material 7 with abrasive-resistance properties which make it preferably to locate the steel layer on the outer surface of the material when applied to a cable. This minimum thickness of the steel layer also provides the cable-shielding material 7 with adequate magnetic permeability for shielding the cable from the effects of electromagnetic fields. Most important it is also found that this minimum thickness of thesteel layer 15 is also required to permit annealing of thesteel layer 15 while metallurgically bonded to thealuminum layer 13 without formation of aluminum-iron intermetallic compounds at the interface between the aluminum and steel layers. That is, it is found that where the thickness of thesteel layer 15 is less than about 0.002 inches, embrittling intermetallic compounds tend to form at the interface between the steel and aluminum layers in the composite, these intermetallics tending to reduce the formability and electrical conductivity of the composite material and tend to cause delamination or separation of the aluminum and steel layers within the composite material.
In this latter regard, to permit easy annealing of the steelaluminumcomposite material 7, the aluminum material embodied inlayer 13 preferably incorporates from 0.7 percent to 3.0 percent by weight of silicon. Similarly, for avoiding intermetallic formation during annealing, the steel material embodied inlayer 15 of the composite material preferably incorporates not more than about 0.08 percent by weight of carbon, not more than about 0.017 percent by weight of aluminum and from about 0.003 percent to 0.009 percent by weight of uncombined nitrogen. When such materials are utilized, thecomposite material 7 is easily annealed at temperatures in the range from 950 F. to about'1050 F. without significant formation of aluminum-iron intermetallics at the interface. I
In this construction, it can, be seen that thecomposite material 7 combines the desirable electrical conductivity and strength characteristics of a variety of prior art materials-in a single cable-shielding material while achieving these desirable results at lower cost in a lightweight low-volume material which is easily formed.
In FIG. 3 is shown another form of the invention in which there is bonded to the aluminum layer 13 asteel layer 15 having a range of thickness from 0.002 -0.004 inches. Bonded 'to thesteel layer 15 is another aluminum layer 17 of thickness in the range from 0.0002-0.0015 inches.'The total combined thickness oflayer 13 together with the thickness of the layer 17 again should be in the range of 0.008 to 0.010 inches in i order to provide the composite material with suitable electrical conductivity. As will be understood, the aluminum layer 17 provides corrosion protection for thesteel layer 15 while also tending to reduce the notch effect for increasing the strength of the steel layer. That is, layer 17 of the composite shields thesteel layer 15 from scratches which would tend to cause breaking of the thin steel layer. In this form of the invention it is preferable that the thicker layer ofaluminum 13 shall be inside of the steel layer and that the thinner layer of aluminum 17 shall be outside of the steel layer when applied to a cable although this arrangement may also be reversed. Alternatively, where soldering of thecomposite material 7 shown in F IG. 3 is desired, the layer 17 of the composite material can be formed of copper within the scope of this invention. As the layer 17 is extremely thin, this use of a copper layer 17 dies not unduly increase the cost of the composite material and slightly increases the electrical conductivity of the material.
In FIG. 4 is shown a fourlayered form of the invention in which thealuminum layer 13 has bonded on its oppositesides steel layers 19 and 21, each of which has a thickness in the range of from 0.0002-0.004 inches. Bonded to thesteel layer 19 is athinner aluminum layer 23, of thickness in the range from 0.0002 -0.00l inches. The total thickness of thelayer 13 together with the thickness of thelayer 23 is again preferably also, the range of 0.008 to 0.010 inches. Preferably also, the total thickness of thecomposite material 7 illustrated in FIG. 4 is kept within the range from about 0.012 to 0.014 inches. In this case it is preferable that thesteel layer 21 be inside oflayers 13 when applied to the cable and the aluminum protection against corrosion by reason ofthe outside position of thealuminum layer 23. The arrangement may, however, be reversed for use in noncorrosive surroundings. Alternatively, where solderability of this composite material is desired, thelayer 23 of the laminate material can be formed of copper within the scope of this invention for the purposes noted above.
In'FIG. 5 is shown a five-layered form of the invention in which athick aluminum layer 13 hassteel layers 25 and 27 bonded to opposite faces thereof,'the range of thickness of 1 each of theselayers 25 and 27 being in the range of 0.002- 0.004 inches. Bonded on the outside of the steel layers 25 and 27 arealuminum layers 29 and 31, respectively, the thicknesses of which are in the range of 0.0002-0.0015 inches. Again the total thickness of thelayers 13, 29 and 31 is preferably kept in the range 'of 0.008 to 0.010 inches and the total thickness of thecomposite material 7 illustrated in FIG. 5 is preferably kept within the range from 0.012 to 0.014 inches. As will be understood, one for both of thecomposite layers 29 and 31 can be formed of copper within the scope of this invention.
composite material of this invention in whichathin steel layer 33 has a pair of relatively thicker aluminum layers 35 and 37 metallurgically bonded to respective opposite faces thereof, each of the aluminum layers having arespective copper layer 7 39 and 41 bondedthereto. The thickness of the steel layer is in the range from about 0.002 to 0.004 inches and each of the copper layers has a thickness in the range from about 0.008 to 0.0015 inches, the total combined thickness of the copper and aluminum layers being in. the range from about 0.008 to 0.010 inches and the total combined thickness of the composite material illustrated in FIG. 6 being in the range from about of the composites of FIGS. 2-6, a tough, insulating adhesive plastic (not shown) such as, for example, polypropylene,
' which will stick tenaciously to metal. Such an adhesive layer 45 functions as a good bond with the insulatingsleeve 3 and/or 5. Italso provides protective barrier against corrosion in cases in which the cable is usedin corrosive surroundings.
It will be understood that in certain applications of the in vention corrosion of the steel or aluminum layers is not a problem and in such cases the use of the adhesive protective layer above described is not absolutely necessary.However, even in such cases, it provides a good bond with the insulatingsleeves 3 and/or 5.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above constructions without departing from the scope of the invention, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as il- I lustrative and not in a limiting sens surroundings. This arrangement gives thesteel layer 19 some We claim:
1. A composite cable-shielding material comprising at least one layer of steel metallurgically bonded to at least one layer of metal of relatively high electrical conductivity at least one of said layers of relatively high electrical conductivity being formed of aluminum metallurgically bonded to said steel layer, each of said steel layers having a thickness in the range from about 0.002 to 0.004 inches and being in annealed condition, the total thickness of said layers of relatively high electrical conductivity being in the range from about 0.008 to 0.010 inches, and the total thickness of said composite material being in the range from about 0.010 to 0.014 inches.
2. A composite material as set forth in claim 1 comprising one layer of steel and one layer of aluminum.
In FIG. 6 is shown an. alternate five-layered form of the trical conductivity being metallurgically bonded to respective opposite faces of said steel layer.
4; A composite material as set forth inclaim 3 wherein said relatively thin layer has a thickness in the range from about.
0.0002 to 0.0015 inches.
5;A composite cable-shielding material as set forth in claim 1 comprising a relatively thick layer of relatively high electrical conductivity formed of aluminum, said relatively thick layer being sandwiched between and metallurgically bonded to two steel layers, and a relatively thin layer of relativelyhigh electrical conductivity formed of a material selected from the 0.0002 to L00l5 inches.
75A composite material as set forth in claim 6-having an additional relatively thin layer of relatively high electrical congroup consisting of copper and aluminum, said relatively thin r layer being metallurgically bonded to one of said steel layers. 6. A composite material as set forth in claim wherein said relatively thin layer has a thickness in the range-from about ductivity formed of a material selected from the group consist ing. of copper and, aluminum, said additional relatively thin layer being metallurgically to the other of said steel layers.
8. A composite material as set forth inclaim 7 wherein said additional relatively thin layer has a thickness in the range from about 0.0002 to 0.0015 inches.
9. A composite material as set forth in claim 1 comprising one layer of steel sandwiched between and metallurgically bonded to two layers of relatively high electrical conductivity formed of aluminum, and two relatively thin layers of relatively high electrical conductivity formed of copper, said relatively thin layers being bonded to said aluminum layers respec-.
tively.
l0. A composite material as set forth in claim) wherein said relatively thin layers of copper each have a thickness in the range from about 0.0002 to 0.0015 inches.