Movatterモバイル変換


[0]ホーム

URL:


US3592283A - Tracked vehicle - Google Patents

Tracked vehicle
Download PDF

Info

Publication number
US3592283A
US3592283AUS871993AUS3592283DAUS3592283AUS 3592283 AUS3592283 AUS 3592283AUS 871993 AUS871993 AUS 871993AUS 3592283D AUS3592283D AUS 3592283DAUS 3592283 AUS3592283 AUS 3592283A
Authority
US
United States
Prior art keywords
track
flexible
vehicle
shaft
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US871993A
Inventor
Jacob Fischbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Application grantedgrantedCritical
Publication of US3592283ApublicationCriticalpatent/US3592283A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A tracked vehicle has a double-isosceles triangle support frame, the flexible tracks at the apices of the triangles, the steering tracks pivoting at front and rear in opposite directions.

Description

United States Patent [72] Inventor jacobi'ischbltll 3439 Knox Place, Bronx, N.Y. 10467 [21] Appl. No. 871,993 [22] Filed Sept. 25, 1969 Division of Ser. No. 687,252, Dec. 1, 1967, rans 49sw,-.
451 Patented July 13, 171
[54]TRACKED VEHICLE 5 Claims, 16 Drawing Flgs.
[52] [1.8. CI 180/9-44 {51] Int. 862d 11/20 [50] Field of Search 18019.46; 280/106; 305/34 [56] Reference Cited UNITED STATES PATENTS 2,592,893 4/1952 Hansen 280/106 X 2,652,290 9/1953 Bekkerm 305/34 X 3,419,097 12/1968 Nodwell 180/946 Primary Examiner-Richard J. Johnson AttorneyAuslander and Thomas ABSTRACT: A tracked vehicle has a double-isosceles triangle support frame, the flexible tracks at the apices of the triangles, the steering tracks pivoting at front and rear in opposite directions.
PATENTEDJUU 31971 3 5922 3 sum 1 [1F 6 INVENTOR. J4 COB FISC'HBACH A 7' TORA/E V5 PATENIEUJuUBM 3592.283
INVENTOR. JACOB FISCHBAC'H ATTORNEYS PATENIEBJULWQH 85920283 saw u [If 6 1N VENTOR. JACOB F/SCHBACH A TTORNEYS PATENTEI] Jun 3 Ian SHEEI 5 [IF 6 FIG. I4
INVENTOR. JACOB FISCHBACH MAN-JIM A r ram/5r:
PATENTEO JUU a m: 31592283 SHEETS 0r 6 INVENTOR. JACOB FISCHBACH U-M+M TRACKED VEHICLE CROSS-REFERENCE The present application is a divisional application of the invention as described in copending Ser. No. 687,252 filed the lst day ofDec. l967 now Pat. No. 3,495,883.
TRACKED VEHICLE The present invention relates to a divisional application of U.S. Ser. No. 687,252 filed the lst day of Dec. 1967 and copending herewith for a tracked vehicle.
Present motor vehicles ride on pneumatic tires which afford a substantially smooth ride when combined with suspension systems. While the pneumatic tire and suspension system combine to afford the resiliency desired, the wheel itself has little or no resiliency and the wheel together with the braking system usually carried on it contributes to the unsprung weight of the vehicle. While many braking -systems have been devised, those which are internal of the wheel itself are limited in size to the size of the wheel. Additionally the tractive surface of the present day automotive tires is limited.
In an attempt to improve on the pneumatic tire especially in the areas above specified new wide track and wider diameter tire and tire and vehicle combinations have been developed.
In the area of heavy vehicles where rough terrain need be encountered either tires of extremely large size have been developed, or especially in the area of defense and construction tracked vehicles have been developed. While the tracked or half-tracked vehicles have provided a means for travel in otherwise unacceptable environments, tracked vehicles of the past were severely limited. The nature of the track, that is its basic metallic construction and clear-type arrangement provides only limited resiliency or flexibility giving a vehicleaso equipped a rather uncomfortable ride. The tracks themselves are generally unacceptable for highway use since the .track causes rather severe damage to existing concrete or macadam roadways. Furthermore, the tracked vehicle carries asubstantial load of unsprung weight, much of which is .directly attributable to the weight of the track itself.
Additionally the track arrangements presently employed have relative ly complicated arrangements of driving and idler gears or gear trains which require maintenance and serve to reduce the power transmittable to the track for driving.
According to the present invention there is provided a flexible track arrangement offering greater resiliency and flexibility than found in either tracked vehicles of the past or pneumatic tires. In lieu of the solid substantially inflexible construction of wheels, the flexible track of the present invention provides a track constructed of a spring frame which if of the same height of a pneumatic tire provides a greater braking surface, and a greater area within the track for the maintaining of a braking system. Since the track is of a spring frame, the entire weight within the track is sprung.
In lieu of the. endless belting of hinged steel plates found in tracked vehicles today, the flexible track of the present invention provides an outer surface which may be constructed of flexible materials heretofore employed for pneumatic tires. Where endless tracks presently employed envelope at front and rear drive wheel carried on a roller track frame which supports the weight of the vehicle, the flexible track of the present invention is provided with parallel aligned elliptic springs.
Where the endless tracked vehicles presently employed require in many instances dual clutch mechanisms to manipulate the tracks for steering the flexible track of the present invention is adaptable for use with conventional steering such as used in automobiles.
While the comforts, speed and maneuverability of automobiles or the like is provided, the track of the present invention is readily adaptable for armor plating and/or amphibious uses and in the preferred embodiment, the flexible track is completely sealed.
Although greater detail with respect to-specific embodiments is hereinafter described, the track of the present invention generally comprises a'pair of elliptical flexible members maintained in parallel spaced apart relationship by spacer bars. The flexible members may include supplementary leaf springs'mounted thereon if desired. Shockabsorbingmeans such as telescoping shock absorbers are mounted, preferably in a triangular relationship from the central area between the flexible members, the central area of the flexible track having a mounting frame therein for the shock absorbers. Roller bearings mounted between the twoelliptical frames carry the track itself, the track preferably of a pliable flexible material. The track is preferably driven by a somewhat centrally located gear in active engagement with the central underside portion of the track. v
Various braking devices are readily employable within the track body as are various steering methods. 7
While the flexible track configuration of the present invention is readily adaptable for use in lieu of existing tracks or tires on existing vehicles the trackis especially adaptable for' use with a new chassis configuration especially adapted for high speed vehicles.
Automotive chassis arrangements generally proscribea rectangle with the four wheels generally located near the corners of the rectangle. Although some experimentation in newer model cars has encompassed front wheel drive, the general arrangement of the present day' automobiles has the steering at the front of the vehicle and the drive wheels at the rear. Therefore in turning the '-rear wheels act as the pivot points. So as-toallow for a power division, especially during 1 turning, a differential has been employed.
ln automotive chassis arrangements employed today the pivoting or tilting and/or jarring effect of bumps'or' road shock, or roll and lean on turns and dipping as in'hard'braking, has been absorbed or counteracted almost solely by the suspension system 'of the automobile.
According to the new chassis arrangement of thepresent invention, there is provided a chassis configuration which allows for the elimination of the differential and additionally substantially lessens the strain on the suspension system to maintain chassis stability. The location of the track centers on the chassis arrangement of the p resent invention describes the apices of two isosceles triangles h aving equal dimensions and a common base and preferably the dual triangular configuration is that of two' equilateral triangles having a common base. The wheel centers, or preferably the flexible track centers locations, are at the four points defined at the periphery of the conjoined triangles.
Steering is effected through pivoting of the front and rear tracks with the pivotal points for the chassis arrangement at the midchassis location. Not only does the foregoing configuration substantially shorten the turning radius of a vehicle, it provides a greater stability during movement. For example, in a conventional automobile a bump hit by one or more of the wheels causes transverse and/or longitudinal pivoting or tilting in various degrees with respect to the other wheels not directly affected by the bump. In the chassis arrangement of the present invention, taking a longitudinal view, the set of flexible tracks at the middle of the chassis become the pivotal points when a bump is hit by a front or rear truck. Under such circumstances, in addition to the suspension system of the flexible track which is directly affected by the bump, the track opposite the directly affected track and the pivotal middle tracks act as part of a counteracting lever with its fulcrum at the middle tracks to counteract tilting, etc. and provide stability. From the transverse viewpoint, the front and rear tracks" are the pivotal points when a bump is hit by the either of the side tracks.v Under such circumstances in addition to the suspension of the directly affected tracks, the track opposite the affected track in combination with the central stability due to the front and rear tracks act as a counteracting lever to the' shock. The counterbalancing effect can be equated with an outrigging" arrangement and these factors provide for I greater stability not only for bumps but for dipping in braking or leaning on turns. 7 i
Although such novel "feature or features believed to be characteristic of the invention are pointed out in the claims,
the invention and the mannerin which'it may be carried out may be further understood by reference to the description following and the accompanying drawings.
FIG. 1 is a cross-sectional view' of a flexible track constructed in accordance with the present invention.
I flexible track of the present invention.
FIG. Sis a detailed section of an alternate braking system of the present invention. I
FIG; 9 is a detailed section of another alternate braking system embodiment.
FIG. is a detailed top elevational sectional view of the braking system of FIG. 7.
FIG. 1 1 is a detailed side view section of the track FIG. 1. FIG. 12- is a detailed view of a flexible armor plating attached to the track of the present invention.
FIG. 13 is a detailed view of another flexible armor plating affixation.
FIG. 14 is a top elevational view of the flexible track of the present invention mounted on the chassis arrangement of the present invention showing the steering means and transmis- 'sion in detail. 7
FIG. is a top elevational view of another embodiment of the track and chassis configuration of FIG. l4;
FIG. 16 isa detail of the steering andpower transmission connections to the flexible track of the present invention.
Referring now tothe figures in greater detail, where like reference numbers denote like parts in the various figures.
In order to best describe the various components employed to construct a flexible track in accordance with the present invention, FIGS.. 2 -5 are details of the various major assemblies with various elements omitted for clarity. As shown in FIG. 2, the track assembly is borne on two flexible elliptic leaf sprin 'glike members 2 which are disposed in parallel spaced apart relationship.Supplementary leaf springs 4 or supplemental leaves having spring quality may be mounted on theelliptics 2 preferably on the peripheral upper and lower edges of theelliptics 2.
A stabilizingframe 5 which is affixed to the chassis of a vehicle extends horizontally and transversely within the frame work defined by the elliptics 2 and is substantially centrally located therein.
Each elliptic 2 is provided with shock absorbing interconnection with the stabilizingframe 5 and as shown in FIG. 2 fourtelescopic shock absorbers 6 disposed in triangular configuration so as to provide two shock absorbing connections with both the upper and lower periphery of each theelliptics 2 are preferable with the base of eachshock absorber 6 mounted to the stabilizer frame Sand the outward points of theshock absorbers 6 mounted to the inner, upper and lower periphery of theelliptics 2. As shown in FIG. 3, theelliptics 2 are maintained in parallel spaced apart relationship by crossmembersB which preferably are affixed to the underside of theelliptics 2. A plurality of such crossmembers 3 are provided along the circumferences of the elliptics suitably spaced so as not to interfere with the driving or braking mechanisms hereinafter described.
The track .7 rides onrollers 8 such as shown in FIG. 4. Roller bearing recesses 9 are provided along the inner edges of theelliptics 2 and are preferably plated or lined with hearing material.
Thetrack 7 is driven bydrive gear 10 shown in FIG. 1 as a two-gear arrangement and FIG. 5 as a single gear, the gear 10' the track. In view of the size of the gear or gears 10, the stabilizingframe 5 may include an opening oropenings 12 therethrough so that the lower portion of thegears 10 will depend therethrough. I
Referring now to FIG. 1 where the interrelational details of the foregoing are shown in preferred embodiment. 3
The flexible track 1 constructed as described, employing twoelliptics 2, withsupplemental leaf springs 4, andshock absorbers 6 is mountable to a vehicle chassis by interconnecting of thestabilizer frame 5 with the chassis (not shown). The drive gears 10 are vertically mounted along adrive shaft 14 which will actuate thegears 10 to rotation. A portion of thegears 10 extends upward above the upper edges of theelliptics 2 so thatteeth 15 of thegears 10 are in position to mesh with the centrally cogged underside 13 on thetrack 7. g
Thegears 10 are maintained in proper alignment and posi tion by use of a mountingbracket 11 which is preferably flexible so as to allow for universal movement, with the mountingbracket 11 anchored to the underside of theelliptics 2 orsupplemental leaves 4. As shown in FIG. I, thebracket 11 may be the terminal'receptacle for thedrive shaft 14 with the interconnection of thedrive shaft 14 and thebracket 11 effected by a thrust bearing arrangement.
Thetrack 7 rides onrollers 8, with the cogged underside 13 of the track in mesh with thegears 10. The cogged underside 13 of thetrack 7 is preferably partly recessed within thetrack 7 with thegears 10 fitting within the recess.
Thetrack 7 is preferably of a resilient material similar to materials presently employed in conventional pneumatic tires, or if desired, various fabric, metal and synthetic combinations may be employed. i
' As shown in FIG. 1, thetrack belt 7 preferably provides a substantially flatinner base 16, which includes the track teeth 13 on the underside thereof, a neck portion 17 which extends upward from the central portion of thebase 16 and thesupport portion 18 which preferably flares outward from the neck portion 17 to provide a wider bearing surface. Thesupport portion 18 as shown in FIG. 1 preferably "includes anair chamber 19 which can be convenientlyfedby valve 20. g
A plurality of dead air chambers such'as dead air chamber 21 more clearly shown in FIG. 11, maybe provided transversely across the neck portion 17 to increase the flexibility of thetrack 7 and minimize resistance of theinflated track 7 to rotation.
Greater traction is provided where a plurality of spaced apart bearingsurfaces 43 are employed therebyproviding'the track belt 7 with the advantages of a threaded tire.
Aflexible cover 22 envelops the main body portion of the flexible track arrangement 1 with thesupport portion 18 of j v thetrack 7 exposed. Thetrack cover 22 may include a plurali# ty ofcasters 23 mounted thereon so as to protectthetrack 7cover 22 from damage by lateral obstructions.
Spring sheaths 24 may be employed for afftxation of theI cover 22, thespring sheath 24 surrounding the elliptics 2andsupplemental leafs 4 except for the roller'8 socket areas, and
the crossmember 3 areas. The sheath24 is preferably of a resilient material so as to add further resiliency to the flexible A -track seal 28 maybe provided by the use of labyrinth seals such as theseal 28 shown in FIGS. 1 and 6, theseal 28 formed partly in thetrack 7 and thecover 22. While various seal configurations are readily adaptable for use, thecompound seal 28 illustrated wherein the central chamber of theseal 28 is star-shaped in cross section and two labyrinth seal configurations which preferably deter flow in opposite directions are provided extending laterally from the central portion, the star configuration presenting a greater changing surface area to act as a blockage, especially .when grease filled.
Agrease duct 29 formed in and through thetrack cover 22 leads into the central portion of theseal 28, and by employing connecting conduits (not shown) one greasing operation may lubricate bothseals 28. As shown inFIG. I, the flexible track 1 provides a fully sealed track.
Although various braking systems may beemployed with the flexible track 1, FIGS. 7-10 illustrate systems readily employable. As shown in FIGS. 7and a clamp-type brake may be employed. As shownin FIGS. 7 and 10, thetrack cover 22 may extend beyond the periphery of theelliptics 2 at the front and rear of theflexible track 7 so as to provide additional space for the braking system and further to provide for both internal and external impingement of thetrack 7 for braking.
As most clearly shown in FIG. I, where thebrake lining 30 is shown along the upper and lower outer edges of thebase portion 16 of thetrack 7 and FIG. 10, the braking forces are applied along the internal outer edges of thetrack 7 and do not interfere with the centrally disposed track teeth 13. As shown in FIG. 7, where the brakes are shown in applied position, there is provided a drum or endroller 31, abrake shoe 32, an actuatinglever 33 affixed to ashaft 34 which includes arelease 35, and anactuating lever 36 andhydraulic brake mechanism 37. Referring to FIG. 10, when the brakes are applied,brake shoes 32 impinge upon thebrake lining 30 of thetrack 7.
The basic braking mechanism above described provides a compound braking and as shown in FIG. 7, the blocklike brakes may be provided at opposite end portions of thetrack 7 with both forward and rear brakes on a single track actuatable by the single-actuatinglever 36. While a simple hydraulic actuation system has been schematically shown, it is readily apparent that various other actuating means may be employed, for example, compressed air devices or electrical devices such as those known in the art.
In FIG. 8, another braking embodiment is shown. As shown, there is provided an inner andouter brake shoe 38 with lining 30 thereon, thetrack 7, and the end roller ordrum 31. The brakes are shown in applied position. As with the braking system shown in FIGS. 7 and 10, each track may be provided with a dual-braking system having brakes on both the front and rear portions of thetrack 7. FIG. 9 is another embodiment of a compound brake of the clamp type. While theshoe 32,track 7 and end roller or drum 41 are in the sameor similar positions and operate in the same or similar manner as those herein before described for FIG. 7, the application of the braking force is different.Lever 39 actuates the level links 40 to impinge the track. As in all the systems shown, the braking mechanism may be located on both the front and rear of the track and may be actuatable by a single piston hydraulic mechanism or other actuating means known in the art.
As shown in FIGS. 7 and 9, pivoting mounting of the brakes to thesheath 24 or by clamping such mounting structure to thesupplemental springs 4, is desirable.
As shown in FIG. 11, thetrack 7 may have a roundedbearing surface 43 and the bearingsurface 43 spaced apart so as to provide for a cleatlike sequence of bearing surfaces, the spacing allowing for propulsion in aquatic environments. It is apparent that other configurations, such as triangular, or squared-off bearing surfaces are within the purview of the present invention.
FIGS. 12 and 13 illustrate in cross section one of many methods of armor plating the flexible track 1. As shown, aflexible mail armor 44 is provided over a closely spacedlattice 6work 45 which has been mounted over thetrack boot 25 and affixed by a throughbolt 46 tothespring sheath 24. Other flexible armor such as rubber-coated mail and/or scale arrangements or the like are similarly employable.
Although the flexible track 1 is readily adaptable for use with commercial as well as military vehicles, it is readily suitable to the chassis arrangement shown in FIGS. 14- 16.
The chassis configuration of the present invention while readily adaptable for use with the aforedescribed flexible track 1 providing maneuverability, stability, smoothness and speed heretofore unknown for tracked vehicles is also adaptable for wheeled vehicles, half tracks or other multiwheel and wheel and track devices, and the systems described with particular reference to the flexible track 1 are equally 'employable with wheels presently employed in vehicles. The positioning of the front and rear tracks or wheels so as to be centrally located at the respective front and rear peripheries of a vehicle, and the elimination of the need for a differential have equal validity whether track or wheels are employed. By positioning the front and rear tracks or wheels at the peripheral front and rear midpoints of the chassis and by the positioning of the side tracks or wheels at the midpoint of the peripheral sides of the chassis arrangement greater stability on turns, bumps and other road conditions is provided, and when combined with the steering and power transmission systems readily employable therewith, provides for greater maneuverability and a simplicity in construction.
Applying the chassis of the present invention to a vehicle equipped with tracks of the present invention there is provided a vehicle readily adaptable for commercial transportation as well as heavy duty and military uses.
Usually tracked vehicles are controlled or steered by changing the running speed of various of the tracks. While this type of steering may be employed with slow moving vehicles, at high speeds, or on rough terrain, it is difficult to properly steer a tracked vehicle.
While attempts have been made to provide a steering system for tracked vehicles which would turn the track in a desired manner to steer such attempts have been generally unsuccessful. Y
Where such attempts have been made, they neither contemplate nor make provision for the interrelationship of an interrelated power transmission system adaptable for high speed use.
According to the present invention, the front and rear tracks (or wheels) are positioned equidistant from two side tracks enabling both steering and power transmission to be effected to the front and rear tracks and pivotal steering of the tracked vehicle.
While vehicles employing six or more tracks are possible, the simplest arrangement is a four-tracked vehicle such as shown in FIGS. 14-16.
Referring to FIG. 14 there is shown a chassis arrangement constructed according to the present invention with the tracks positioned so that the central portions of the tracks describe two triangles, with the central portions at the apices of the triangles, with each track located somewhat centrally with respect to the peripheral sides. of the chassis frame.
Thesteering system 47 and thepower transmission system 48 describe an X configuration, that is, bothsystems 47, 48 run diagonally from an end of theframe 49 to an opposite end of theframe 49 crossing somewhat centrally, and eliminate in the two-track drive embodiment the necessity for a differential. Supporting mounting structure has not been shown for thesystems 47 and 48 for purposes of clarity.
As shown-in- FIG. 14, thepower transmission system 48 crosses above thesteering system 47 and while other positioning is possible, when used in combination with the flexible tracks 1, the more elevated position of thepower transmission system 48 is preferable, since thedrive gear 10 as shown in FIG. 1 for the'flexible track 1 is located, preferably in the upper portion of the flexible track I.
interconnected at a universal joint 52toa worm gear 53. The
worm gear 53 is in mesh with a horizontally disposedsector gear 54 shown as a 3/4. gear, which is pivotally mounted to alateral frame member 55.
Rods 56 are pivotally mounted to the extremities of thesector gear 54 and extend transversely to the flexible track assembly l where they are pivotally mounted by pivot joints 57.
Themain pivot shaft 58 acts like a king pin, and is shown mounted on the inboard end of theframe member 55, and either themain pivot shaft 58 or theframe member 55 mounted to the stabilizingframe 59 of the flexible track assembly l. i
Steering is transmitted to the rear track by thesector gear 54 in mesh'with "gear 60 shown as a bevel gear rotating themain steering shaft 61 which rotatesrear bevel gear 62 to actuate therear sector gear 63, the rear track pivoting in the manner heretofore described with respect to the forward track.
Power is transmitted to the front and rear flexible tracks IV on themain drive shaft 64 powered by aconventional engine 65, shown'in dotted lines on the rear portion of the chassis. The maindrive shaft .64 rotation is transmitted by angulated gears, shown as bev'el gears 66 on both ends of thedrive shaft 64, torods 67, therods 67 preferably having a slip universal joint 68 at its interconnection with bevel gears 66. A universal jointj69 interconnects therod 67 to the flexible track I, and a shaft (not shown) rotates the drive within the flexible track. The use of the slip universal joint 68 (which may be interchangeably locatedwith universal joint 69) allows for axial movement of therod 67 during steering.
As herein described, the tracked vehicle is driven and steered through the forward and rear tracks and the differential eliminated.
Where four-track drive is desired, such as shown in F l6. 15, a differential 70 may be employed to drive the central tracks; however, this. still eliminates the use of a second differential which would ordinarily be necessitated for four-unit drive.
Asshown in FIG. 15, themain steering shaft 71 and themain drive shaft 72 are parallel and run diagonally across thechassis frame 49. The engine 73 (shown schematically dotted in) is shown located at the front end portion of thechassis frame 49. The steering and driving arrangements for the front and rear tracks are similar to that heretofore described with respect to FIG. 14, it being realized that various gear arrangements and pivot mountings to efiect the desired result are also employable, such as the rectifying gears 74 shown in FIG. 15 which rectifies direction of rotation and movement of the components as indicated by the arrows, or by use of a hypoid gear as a sector gear to allow greater freedom of lateral placement of the steering.
Power is transmitted to the centrally located tracks through the differential 70 by means known in the art, such as by having the ring gear of the differential 70 driven by an angle gear,
such as a bevel gear on the main driveshaft72.
FIG. 16 shows the details of the relationship of the power transmission and steering systems of FIG. 15 viewing the rear track.
There is therefore provided herein a flexible track and a.
terms of description; it is recognized, though that various modifications are possible within the scope of the invention claimed.
lclaim: 1
l. A tracked vehicle comprisinga vehicle support frame,
said vehicle support frame having locations therein which are defined by two isosceles triangles having a common base, flexible tracks, said flexible tracks mounted to the apices of said 7 triangles, each said flexible track including; a pair of elliptical metallic springlike members, means to maintain said flexible metallic springlike members in parallel spaced apart relationship; flexible support means for said flexible metallic springlike members; endless track belt bearing means mounted between said flexible metallic springlike members; and an endless track belt mounted on said bearing means and drive means adapted to engage said endless belt between said metal-' licspringlike members to drive said track, vehicle drive means, vehicle steering means, said vehicle steering means linked to simultaneously actuate the front and rear tracks to pivot in opposition directions.
2. The tracked vehicle as claimed in claim 1 wherein said drive means includes; a drive shaft running diagonally across such support frame between points on said frame juxtaposed to said front and rear tracks; connecting means on one end of said drive shaft linking said shaft to said endless track drive means on said front track and connecting means on the other end of said drive shaft linking said shaft to said endless track drive means on said rear track.
3. The tracked vehicle as claimed in claim 1 wherein said vehicle steering means include; a shaft running diagonally across said support frame between points on said frame juxtaposed to said front and rear tracks; connectingmeans on one end of said shaft linking said shaft to said front track; connecting means on the other end of said shaft linking said shaft to said rear track and actuating means adapted to rotate said shaft.
4. The tracked vehicle as claimed in claim 1 wherein said vehicle includes a differential through which power is transmitted to two of said tracks.
5. The tracked vehicle as claimed in claim 1 wherein said steering means are l at a level below said track drive means.

Claims (5)

1. A tracked vehicle comprising a vehicle support frame, said vehicle support frame having locations therein which are defined by two isosceles triangles having a common base, flexible tracks, said flexible tracks mounted to the apices of said triangles, each said flexible track including; a pair of elliptical metallic springlike members, means to maintain said flexible metallic springlike members in parallel spaced apart relationship; flexible support means for said flexible metallic springlike members; endless track belt bearing means mounted between said flexible metallic springlike members; and an endless track belt mounted on said bearing means and drive means adapted to engage said endless belt between said metallic springlike members to drive said track, vehicle drive means, vehicle steering means, said vehicle steering means linked to simultaneously actuate the front and rear tracks to pivot in opposition directions.
US871993A1967-12-011969-09-25Tracked vehicleExpired - LifetimeUS3592283A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US68725267A1967-12-011967-12-01
US87199369A1969-09-251969-09-25

Publications (1)

Publication NumberPublication Date
US3592283Atrue US3592283A (en)1971-07-13

Family

ID=27103966

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US871993AExpired - LifetimeUS3592283A (en)1967-12-011969-09-25Tracked vehicle

Country Status (1)

CountryLink
US (1)US3592283A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2529157A1 (en)*1982-06-261983-12-30Tokyo Shibaura Electric Co TRACKED VEHICLE REMOTE CONTROL
US6089339A (en)*1998-02-182000-07-18Bechtel Bwxt Idaho, LlcDrive reconfiguration mechanism for tracked robotic vehicle
US20100181135A1 (en)*2007-07-052010-07-22Assystem S.A.Hybrid motor vehicle
US20180021960A1 (en)*2016-07-222018-01-25Cambridge Medical Robotics LimitedGear packaging for robotic joints

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2592893A (en)*1947-12-261952-04-15Hansen Harvey GordonSuspension means for drive axles
US2652290A (en)*1952-04-211953-09-15Bekker Mieczyslaw GregoryMobile support
US3419097A (en)*1965-10-151968-12-31Nodwell William BruceSingle frame tracked carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2592893A (en)*1947-12-261952-04-15Hansen Harvey GordonSuspension means for drive axles
US2652290A (en)*1952-04-211953-09-15Bekker Mieczyslaw GregoryMobile support
US3419097A (en)*1965-10-151968-12-31Nodwell William BruceSingle frame tracked carrier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR2529157A1 (en)*1982-06-261983-12-30Tokyo Shibaura Electric Co TRACKED VEHICLE REMOTE CONTROL
US4596298A (en)*1982-06-261986-06-24Tokyo Shibaura Denki Kabushiki KaishaCrawler vehicles
US6089339A (en)*1998-02-182000-07-18Bechtel Bwxt Idaho, LlcDrive reconfiguration mechanism for tracked robotic vehicle
US20100181135A1 (en)*2007-07-052010-07-22Assystem S.A.Hybrid motor vehicle
US20180021960A1 (en)*2016-07-222018-01-25Cambridge Medical Robotics LimitedGear packaging for robotic joints
US11597102B2 (en)*2016-07-222023-03-07Cmr Surgical LimitedGear packaging for robotic joints

Similar Documents

PublicationPublication DateTitle
US5533587A (en)Track vehicles and power drive apparatus for motivating tracked vehicles
US3964563A (en)Wheel-support structure in vehicles
US5915495A (en)Engine and transaxle mounting and suspension system for a vehicle
US8955925B2 (en)Traction assembly for vehicle
JP3560915B2 (en) Modular crawler
US8302710B2 (en)Vehicle suspension system
US5575347A (en)Suspension device for crawler vehicle
JPH04505902A (en) track mounted vehicle
GB1121958A (en)Vehicle
JPH03501238A (en) Suspension structure of tracked vehicle
US3495672A (en)Dual-wheeled unit independent suspension for cross-country vehicle
JPS6120468B2 (en)
US3807752A (en)Vehicle wheel support
US3592283A (en)Tracked vehicle
US3495883A (en)Track and tracked vehicle
CN112373587A (en)All-terrain shock-absorbing tracked vehicle chassis and tracked vehicle with same
US3533482A (en)Circumferentially loaded and snubbered hubless wheel surface locomotion apparatus
US3689122A (en)Road wheel for crawler tractor
US4046211A (en)Wheel-support structures for vehicles
CN113844251A (en)Amphibious soft-landing front-rear driving transport vehicle
US2988162A (en)Motor vehicle
US3659666A (en)Articulated vehicle
CN1241499A (en)Automobile with the functions of car, boat and sledge
US3814025A (en)Transportation system
US4119170A (en)Interacting steering-suspension system for a wheeled vehicle and the like

[8]ページ先頭

©2009-2025 Movatter.jp