Movatterモバイル変換


[0]ホーム

URL:


US3588071A - Apparatus for powdering metals - Google Patents

Apparatus for powdering metals
Download PDF

Info

Publication number
US3588071A
US3588071AUS866323AUS3588071DAUS3588071AUS 3588071 AUS3588071 AUS 3588071AUS 866323 AUS866323 AUS 866323AUS 3588071D AUS3588071D AUS 3588071DAUS 3588071 AUS3588071 AUS 3588071A
Authority
US
United States
Prior art keywords
chamber
metal
orifice
molten metal
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US866323A
Inventor
Joseph M Wentzell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Homogeneous Metals Inc
Original Assignee
Homogeneous Metals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Homogeneous Metals IncfiledCriticalHomogeneous Metals Inc
Application grantedgrantedCritical
Publication of US3588071ApublicationCriticalpatent/US3588071A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

AN APPARATUS IS PROVIDED FOR FORMING METAL POWDERS BY ADDING TO A BATH OF MOLTEN METAL AN ADDITIVE MATERIAL HAVING A VAPOR PRESSURE SUBSTANTIALLY HIGHER THAN THE METAL SPRAYING THE MOLTEN METAL AND ADDITIVE INTO A REDUCED PRESSURE CHAMBER THROUGH AN ORIFICE, COOLING THE PARTICLES FORMED IN THE SPRAY AND COLLECTING THE COOLED PARTICLES.

Description

United States atent Joseph M. Wentull Remsen, N.Y.
June 28, 1971 Homogeneous Metakz, Inc.
Division of Ser. No. 691.052. Dec. 15. 1967. Pat. No. 3.510.546
inventor Appl. No. Filed Patented Assignee APPARATUS FOR POWDERING METALS 5 Claims, 1 Drawing Fig.
(1.8. Cl 266/3411, 266/34V Int. Cl C21: 7/00 Field of Search 264/12, 13,
(inquired); 266/34 (R), 34 (T), 34 (V) 56] References Cited UNITED STATES PATENTS 2,209,964 8/1940 Ferguson 264/12 2,638,630 5/1953 Golwynne 264/12 2,701,775 2/1955 Brennan 264/13 Primary Examiner-Gerald A. Dost A!t0rney-Buell, Blenko & Ziesenheim ABSTRACT: An apparatus is provided for forming metal powders by adding to a bath of molten metal an additive material having a vapor pressure substantially higher than the metal, spraying the molten metal and additive into a reduced pressure chamber through an orifice, cooling the particles formed in the spray and collecting the cooled particles.
PATENTEU JUN28 1971 INVENTOR Joseph M. Wen #2 e3! [alight his ATTORNE Y 5 APPARATUS FOR POWDERING METALS This application is a division of my copending application Ser. No. 691,052 filed Dec. 15, l967 and now Pat. No. 3,510,546.
This invention relates to methods and apparatus for powdering metals and particularly to a method of processing metals to provide high purity, generally uniform metal particles of exceptional quality.
The use of metal powders in forming solid articles of complex shape is well known. It has long been recognized that the quality of such articles and the intricacy of detail to be obtained is in large measure determined by the quality of the starting metal powders. Many methods of making metal powders have been proposed and used with some degree of success. In every case, however, the method is intricate, expensive and difficult to control so as to provide uniformhigh quality powdered metals.
l have invented a method and apparatus for making metal powders which is relatively simple and easy to control and which provides a uniformly high-quality powdered metal satisfactory for the powder metallurgy art.
Preferably, l form metal powders by saturating a molten metal bath with a gas substantially nonreactive with the metal, spray the molten metal into discrete particles by introducing the gas-saturated molten metal under pressure through an orifice into a reduced pressure chamber while simultaneously percolating nonreactive gas into the molten metal passing through the orifice, cooling the discrete particles in the spray and collecting the cooled particles as a powdered-metal product. Preferably, I provide an apparatus consisting of a melting chamber having a container'for molten metal and means for heating the same, means for controlling the gas pressure into said melting chamber, a vacuum chamber superimposed on said melting chamber, an orifice tube connecting the container for molten metal and the vacuum chamber, closure means on said orifice and means for percolating gas into the orifice.
Preferably, the metal container is a refractory crucible provided with induction heating means. The means for percolat- I ing gas into the orifice is preferably a porous transfer tube between the melting chamber and the vacuum chamber.
ln the foregoing general statement, I have set out certain purposes, objects and advantages. Other objects, purposes and advantages will be apparent from a consideration of the following description and the accompanying drawing in which I have illustrated a melting chamber formed by a cylindrical wall 11 having atop flange 12 and abottom plate 13. An innerprotective shell 14 is removably attached tobottom plate 13. The melting chamber is closed at the top by aplate 15.Plate 13 is provided with an opening 13a in the bottom, through which access is had to a chargingchamber 16 connected to plate 13. The charging chamber is provided with anaccess door 17 and a verticallymovable crucible holder 18 mounted on ashaft 19 sealingly slidable in opening 20 in the bottom ofchamber 16. Induction lead-ins 21 are fixed through the outer wall 11 of the melting chamber and connect with induction coil 22 located centrally of the melting chamber. A crucible 23 is preferably supported on a base ofrefractory sand 24 held within aretainer ring 25 onholder 18. Atransfer tube 26 is removably and sealingly held in opening 27 inplate 15. A vacuum andpressure lead 28 is connected to sidewall 11 to permit evacuation or pressurization of the melting chamber.
' Avacuum chamber 30 in the form of a cylinder havingend flanges 31 and 32 is provided above the melting chamber and is connected to plate 15 by one of saidflanges 31. The end oftransfer tube 26 extends into thechamber 30 and closed by a spring-loadedtrap door 36 held by a latch 37. Thechamber 30 is closed byhead 38 fixed toflange 32.
The operation of the invention is as follows. A charge of metal to be powdered is placed in the crucible 23 and the crucible is placed onsand base 24 throughaccess door 17. The crucible and metal is raised to the melting chamber byelevator shaft 19 until the crucible is within coil 22 where the metal is meltedby the induction coil and the melting chamber evacuated by means oflead 28. When the charge is molten, the melting chamber is pressurized with a desired gas such as hydrogen which is absorbed by the melt. Thetrap door 36 is released by releasing latch 37. The charge sprays throughtransfer tube 26 into thevacuum chamber 30 which is maintained under vacuum. The metal, particularly where soluble gas is used, virtually explodes in the vacuum chamber providing a finely divided powder which is cooled in the suspended state and collected in the vacuum chamber.
Anaccess port 40 is preferably provided on top of the upper chamber and is closed by a plate 41, sealingly attached thereto.
Preferably, the transfer tube is provided with fine holes or pores 42 through which is percolated as the metal rises. This promotes the explosive effect of the gas on the metal in the vacuum chamber.
Sight tubes 43, 44, 45 and 46 are provided in the melting and vacuum chambers as shown.
The operation of the method of the invention will perhaps be best illustrated by reference to the following example:
EXAMPLE A crucible 23 containing pieces of Astroloy metal was placed in the melting chamber within heating coil 22. The melting chamber was evacuated and the metal heated until molten. Approximately minutes later, hydrogen was introduced into the melting chamber over a period of 30 minutes. At the same time, the power was raised from 18 kw. to 24 kw. to compensate for the cooling effect of the hydrogen. The temperature of the molten bath was held at 2,400" P. (optical). The pressure of the melting chamber washeld at 45 p.s.i.g. for 5 minutes at the end of the pressurizing period to assure diffusion of hydrogen in the molten metal. The crucible was raised byelevator shaft 19 until thetransfer tube 26 approaches the bottom of the crucible and thetrap door 36 was released. The saturated metal was injected throughtube 26 intochamber 30 held at 14 microns pressure. The screen analysis of the resultant spherical powder was:
Screen Size: Percent' While I prefer to use gases which are soluble in the molten metal in order to get the greatest efficiency, I have found that a solid gas reaction in the metal such as:
will give a similar result. It is also possible to use nonreactive relatively insoluble gases such as argon in my invention, however, the explosive effect is much reduced and the yields of satisfactory powder are lower. It is also possible to use a high vapor pressure material such as zinc to cause the explosive effect in a lower vapor pressure metal. However, the choice of such a metal-activating media is one that must be compatible with the end product desired.
While I have illustrated and described certain preferred practices and embodiments of my invention in the foregoing specification, it will be understood that this invention may be otherwise embodied within the scope of the following claims.
lclaim:
1. An apparatus for forming metal powders comprising a melting chamber, means for controlling the pressure in said chamber through removing and adding gas, means for forming a bath of molten metal in said chamber, a vacuum-receiving chamber above said melting chamber, an orifice tube connecting said melting and vacuum-receiving chambers, said orifice having a portion extending into said bath of molten metal, means for opening and closing said orifice and vacuum means acting on said vacuum-receiving chamber for creating a reduced pressure relative to the melting chamber whereby metal passing through the orifice is caused to be atomized into said vacuum-receiving chamber.
2. An apparatus as claimed in claim I wherein means are provided at the orifice tube for percolating gas into the metal passing therethrough.
3. An apparatus as claimed in claim 1 wherein the means for forming a bath of molten metal is a crucible surrounded by an induction coil.
4. An apparatus for forming metal powders comprising a melting chamber, means for controlling the pressure in said chamber through removing and adding gas. means for forming a bath of molten metal in said chamber, a receiving chamber above said melting chamber, said receiving chamber having a geometry such that particles entering at the bottom traverse in an upward and then in a downward direction, an orifice tube connecting said melting and receiving chambers, said orifice having a portion extending into said bath of molten metal, means for opening and closing said orifice and means acting on said receiving chamber for creating a reduced pressure relative to the melting chamber whereby metal passing through the orifice is caused to be atomized into said receiving chamber.
5. An apparatus as claimed in claim 4 wherein the means acting on the receiving chamber for creating a reduced pressure relative to the melting chamber is a vacuum means.
US866323A1969-10-141969-10-14Apparatus for powdering metalsExpired - LifetimeUS3588071A (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US86632369A1969-10-141969-10-14

Publications (1)

Publication NumberPublication Date
US3588071Atrue US3588071A (en)1971-06-28

Family

ID=25347361

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US866323AExpired - LifetimeUS3588071A (en)1969-10-141969-10-14Apparatus for powdering metals

Country Status (1)

CountryLink
US (1)US3588071A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4610719A (en)*1984-01-251986-09-09Nyby Uddeholm Powder AbMethod of an apparatus for making metal powder
US4808218A (en)*1987-09-041989-02-28United Technologies CorporationMethod and apparatus for making metal powder
US4810288A (en)*1987-09-011989-03-07United Technologies CorporationMethod and apparatus for making metal powder
US5582670A (en)*1992-08-111996-12-10E. Khashoggi IndustriesMethods for the manufacture of sheets having a highly inorganically filled organic polymer matrix

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4610719A (en)*1984-01-251986-09-09Nyby Uddeholm Powder AbMethod of an apparatus for making metal powder
AU575518B2 (en)*1984-01-251988-07-28Avesta Nyby Powder A.B.Making metal powder
US4810288A (en)*1987-09-011989-03-07United Technologies CorporationMethod and apparatus for making metal powder
US4808218A (en)*1987-09-041989-02-28United Technologies CorporationMethod and apparatus for making metal powder
US5582670A (en)*1992-08-111996-12-10E. Khashoggi IndustriesMethods for the manufacture of sheets having a highly inorganically filled organic polymer matrix

Similar Documents

PublicationPublication DateTitle
US3510546A (en)Methods for powdering metals
US5032176A (en)Method for manufacturing titanium powder or titanium composite powder
EP0194847B1 (en)Method for producing titanium particles
US3407057A (en)Molybdenum powder for use in spray coating
GB1438693A (en)Metho- for producing directionally solidified castings
GB1307941A (en)Method and an apparatus for manufacturing fine powders of metal or alloy
GB1131570A (en)Method of improving the properties of a ferrous metal by treatment in the molten state
GB1281233A (en)Improved method and apparatus for incorporating additives in a melt
JP2935281B2 (en) Induction melting furnace
US3588071A (en)Apparatus for powdering metals
DK161571B (en) METHOD AND PREPARATION FOR METAL POWDER
US3065958A (en)Production of metals
ES426737A1 (en)Method for manufacturing ingots of high-melting ferroalloys and metal alloys with good forming properties
GB1244136A (en)A metal casting apparatus
GB1287877A (en)
US3650517A (en)Device for removing gas from molten metals contained in a ladle
GB1213611A (en)Method and apparatus for the formation of an alloy composed of metals reactive in their elemental form with a melting container
EP0149027B1 (en)Process and apparatus for manufacturing spheroidal metal particles
US3013316A (en)Method and apparatus for vacuum casting
US4009233A (en)Method for producing alloy particles
GB1339420A (en)Alloy with a high content of primary carbides and a method for the manufacturing of the alloy
US3785633A (en)Means for atomizing molten metal
US3512962A (en)Cobalt-tungsten carbide alloy and process
JPS56136634A (en)Production of ultra-fine powder and particle using laser beam
US4735652A (en)Process for producing agglomerates of aluminum based material

[8]ページ先頭

©2009-2025 Movatter.jp