Movatterモバイル変換


[0]ホーム

URL:


US3563462A - Oscillator and shower head for use therewith - Google Patents

Oscillator and shower head for use therewith
Download PDF

Info

Publication number
US3563462A
US3563462AUS3563462DAUS3563462AUS 3563462 AUS3563462 AUS 3563462AUS 3563462D AUS3563462D AUS 3563462DAUS 3563462 AUS3563462 AUS 3563462A
Authority
US
United States
Prior art keywords
region
fluid
passages
output
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Peter Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bowles Engineering Corp
Original Assignee
Bowles Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bowles Engineering CorpfiledCriticalBowles Engineering Corp
Application grantedgrantedCritical
Publication of US3563462ApublicationCriticalpatent/US3563462A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A gas-liquid fluidic oscillator is provided employing liquid as the operating fluid and gas as the control fluid, a pair of feedback channels to opposed central passages are provided, the liquid stream sealing one feedback channel while gas admitted to the other feedback channels produces stream switching. A shower head is also provided which may operate conventionally as a spray source or by rotation of a lever or a ring on the shower head or other suitable means may be converted to a source of fluid pulses generated by the oscillator located in the head to provide a fluidic massaging device.

Description

United States Patent OSCILLATOR AND SHOWEll HEAD FOR USE THEREWITH 22 Claims, 14 Drawing Figs.
239/456, 137/81.5 Int.Cl B05b 3/14 Field ofSearch 9/101,
[56] References Cited UNITED STATES PATENTS 3,247,861 4/1966 Bauer 137/815 3,432,102 3/1969 Turner et a1. 239/242 Primary ExaminerM. Henson Wood, Jr. Assistant Examiner--Michael Y. Mar AttorneyHurvitz & Rose ABSTRACT: A gas-liquid fluidic oscillator is provided employing liquid as the operating fluid and gas as the control fluid, a pair of feedback channels to opposed central passages are provided, the liquid stream sealing one feedback channel while gas admitted to the other feedback channels produces stream switching.
A shower'head is also provided which may operate conventionally as a spray source or by rotation of a lever or a ring on the shower head or other suitable means may be converted to a source of fluid pulses generated by the oscillator located in the head to provide a fluidic massaging device.
PATENTEU FEB 1 s |97|SHEET 3 OF 3 INVENTOR PETER BAUER ATTORNEYS OSCILLATOR AND SHOWER HEAD FOR USE THEREWITH BACKGROUND OF THE INVENTION Fluidic oscillators of the type of interest herein employ feedback to accomplish stream switching, conventionally by feeding back a portion of the operating fluid to control nozzles to produce stream diversion in opposite senses. Where the operating fluid is a liquid, oscillators are usually quite slow and the oscillators'must operate in a liquid environment thereby limiting their applicability. Such a limitation makes the use of such prior art oscillators impractical in applications where the operating fluid is liquid and the operating environment is gaseous, such as in a shower head.
Conventional shower heads provide the ability to change the intensity of flow of the water by varying the size of the streams issuing from the head. Different types of mechanisms are conventionally employed for accomplishing the above result, but regardless of the operating mechanism employed, the result is basically achieved by varying the size of the channels or orifices through which the water issues. In some instances this is accomplished by rotating a lever and in other instances the result is accomplished by rotating a ring disposed about the end of the head. 1
SUMMARY OF THE INVENTION In accordance with the present invention there is provided a shower head which in many respects appears conventional, but which in fact, gives the user the ability to choose between a spray type or conventional head and a pulsating moving stream of water which has a massaging effect upon the body. Specifically, in the latter mode of operation, the stream of liquid moves between two extreme positions, maintaining the position at the two extremes for a time interval which is normally longer than the interval during which the stream is moving from one stream position to the other. The pulsating stream produces a massaging effect upon the body which has been found pleasing and invigorating to users of the device. In the embodiment of the device described above, the water impacts upon the body primarilyat the two extremes of the deflection of the stream. By placing deflectors at appropriate locations within the shower head, the effect of the stream upon the body can be rendered more'uniform, i.e., the body is swept by a dispersed moving stream. The operation of the unit as a pulsating or sweeping stream is determined by basic design parameters of the device.
Various mechanisms may be employed for converting the shower head of the present invention from one mode of operation to the other. The pulsating mode of operation is effected by means of a pure fluid oscillator formed in the shower head. In order to convert to a spray operation, water is either diverted prior to or after proceeding through the oscillator to a series of holes disposed about the end plate of the shower in a conventional manner. Conversion of the operation of the device may be aflected by a slide, by a rotating ring or by a rotatable lever or simply by a push pull operation on the shower head itself.
As indicated above, the pulsating mode of operation of the shower head is achieved by a fluid oscillator. Various types of fluid oscillators may be employed but it has been found that given the size and cost limitations of a shower head and the desired frequency range, the oscillator of the present invention has been found to be the most practical for this and related applications.
It is an object of the present invention to provide a shower head having a first mode of operation providing a conventional spray of water and a second mode of operation providing an oscillating or pulsating stream of water.
It is another object of the present invention to provide a shower head which is readily convertible from one mode of operation to another, one mode of operation providing a puleating or sweeping stream, and the other mode of operation providing a conventional water spray.
Still another object of the present invention is to provide a shower head having several modes of operation in which conversion from one mode of operation to another may be made simply and easily.
It is another object of the present invention to provide a multiple-mode-operation shower head which is economical to build and which is simple in operation.
Yet another objectzof the present invention is to provide a gas-liquid fluid oscillator employing gas feedback to effect stream switching.
Still another object of the present invention is to provide a gas-liquid oscillator in which a stream of liquid is switched between two extreme states, in each state the stream preventing gas from entering one of the two opposed feedback channels whereby gas flowing through the other of the feedback channels produces detachment from an adjacent sidewall, switching to the other sidewall thereafter being effected by appropriate shaping of a chamber located downstream of the sidewalls.
BRIEF DESCRIPTION OF THE DRAWINGS The above and still further objects, features and advantages of the present invention will become apparent upon consideration of the following detailed description of several specific embodiments thereof, especially when taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a cross-sectional diagrammatic view of an oscillator employed in the apparatus of the present invention;
FIG. 2 is a graph illustrating the interrelationship between various dimensions of the oscillator of FIG. 1 necessary to produce the oscillatory effect;
FIG. 3 is an end view of an embodimentof the invention utilizing a slide to control conversion of the shower head from one mode of operation to the other;
FIG. 4 is a side view section of the shower head of FIG. 3;
FIG. 5 is an end view of a shower head which may be converted from one mode of operation to the other by rotation of a ring at the end of the shower head;
FIG. 6 is a side view in partial section of the shower head of FIG. 5;
FIG. 7 is a bottom view of the end ring of the apparatus of FIG. 6 of the accompanying drawings;
FIG. 8 of the accompanying drawings is a bottom view of an end ring or plate of a modification of the apparatus of FIGS. 5- 7 which permits variation in the intensity of the spray of the water during conventional mode of operation;
FIG. 9 is a cross-sectional view in elevation of the apparatus of the ring of FIG. 8 of the accompanying drawings;
FIG. 10 is a partial sectional view of the apparatus of FIGS. 8 and 9 illustrating the different positions ofcertain parts to effect spray control;
FIG. 11 is a partial sectional view in elevation of a modification of FIG. 10 in which physical translation of the body is accomplished by an external lever;
FIG. 12 of the accompanying drawings is a partial sectional view in elevation of a still further embodiment of the invention in which conversion from one mode of operation to another is accomplished by manually translating a portion of the apparatus in order to selectively control flow to or divert flow from the power nozzle of a fluid oscillator;
FIG. 13 is a partial view in cross section of a further embodiment of the invention; and
FIG. I4 is a partial view in cross section with parts rotated about 30 relative to FIG. 13.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring now specifically to FIG. 1 of the accompanying drawings, there is illustrated one form of oscillator which may be employed with the apparatus of the present invention. It is to be understood that other forms of fluidic oscillators may be employed and the specific type of oscillator illustrated and described is a preferred embodiment only.
The oscillator generally designated by the reference numeral is provided with a power nozzle 1 which directs a stream of fluid into an interaction region 2 and thence through an initially outwardly and then inwardlytapered region 3 which terminates in a throat that opens into an outwardly tapering output region 4. The oscillator is provided with a pair ofcontrol nozzles 6 and 7 connected viafeedback passages 8 and 9 to the lower and upper sides respectively (as viewed in FIG. 1) of the outwardly tapered enlarged. region 4 downstream of theregion 3.
In operation, fluid issued by the power nozzle 1 is initially directed centrally of the interaction region 2 and fills the region orchamber 3 with a mixture of fluid, fluid spray, and entrained air bubbles, whilst some fluid exits fromregion 3 into region 4. The fluid stream issuing from the power nozzle 1 (its momentum and velocity), and the resulting mixture of fluid, fluid spray, and air bubbles, which moves from region 2 throughregion 3 into region 4, tends to become biased due to stream perturbations closer to the lower or the upper wall ofregion 3. The biased fluid mixture flow tends to follow, for instance, the lower wall ofregion 3, and is injected into region 4 tending toward the upper wall thereof. The fluid flow passing by thecontrol nozzles 6 and 7 in region 2 strongly aspirates these control nozzles and the connectedfeedback channels 8 and 9. The biased fluid mixture flow injected into region 4 tending toward the upper wall thereof is aspirated into thefeedback channel 9 and flows back through this channel and through control nozzle 7 into region 2, whilst only air is aspirated through thefeedback channel 8 and controlnozzle 6 into region 2 on the lower side of the fluid power stream issued by the power nozzle 1. Since volumetric flow of air due to the aspiration throughcontrol nozzle 6 is much greater than the volumetric flow of fluid mixture through control nozzle 7, the upper side of the power stream in region 2 experiences a lower pressure than the lower side, which in turn causes the power stream to attach to the upper wall of region 2 and to follow the upper wall of theregion 3 so that the stream is now diverted to the lower wall of the region 4.
The above operation is aided and enhanced by a small portion of the stream inregion 3 by the cusp at theexit throat 10 fromregion 3 into region 4. The returned stream portion circulates withinregion 3 in clockwise direction in the above example, thus providing a positive feedback to hold the power stream to the upper wall. This feedback flow also effects a closure of theregion 3 exit against external air which might otherwise enter from the only partially fluid filled region 4 intoregion 3 and which might interfere with the correct and desired oscillator operation.
The power stream diversion to the lower wall of region 4 seals the entry topassage 8 so that volumetric flow therethrough is less than throughpassage 9 and the stream in the region 2 is again switched to the upper wall.
In the above manner, the stream is caused to switch back and forth between the upper and lower walls of the region 4 at a rate determined by the time delay in the circuitry, which is proportional to the fluid flow velocity in the channels, whereby the power stream flow velocity provides the forward time delay from region 2 to region 4 and the feedback flow velocity provides the feedback time delay from region 4 to region 2. The latter velocity is a function of the pressure difference between feedback channel entry in region 4 and the feedback control nozzle in region 2. Since the pressures in both these positions are given by the amount of aspiration, whereby aspiration in region 2 is always stronger than in region 4, the time delay and therefore the oscillator frequency can be varied, not only by channel length and power stream velocity changes, but also by configuration changes in region 2 and 4. Especially changes of shape and direction of the feedback channel entries in region 4 can provide large changes in pressure at these locations, as can be readily visualized from FIG. 1, where, in the extreme, one could scoop out flow by the feedback channel entry and obtain in a high pressure (and thus a small feedback delay) or where one could strongly aspirate by means of leading the feedback channel almost tangentially into region 4 (and thus obtain a low pressure and a large delay). The angle of entry of the feedback channel into region 4 is limited in the case of scooping off fluid, since if the angle is too great, feedback pressure of the liquid predominates and the fluid stream is switched to one wall ofregion 3 and cannot thereafter be switched.
As described, the water is switched back and forth between the upper and lower walls and provides an oscillating stream, producing a massaging effect on the body when the stream is directed against the user.
In the region 4 there may be located twosmall islands 11 which may be employed to diffuse the streams so as, if desired, to reduce the pulsating effect and to cause the water to provide a more constant flow versus position of the stream across the mouth of the region 4. Theislands 11 may or may not be added depending upon the final effect desired from the apparatus. The oscillator may be formed as a flat device, that is, each of the channels is rectangular in cross section; the channels of the oscillator having a depth depending upon the quantity of water desired to be issued under specified water pressure conditions.
Certain parameters of the oscillator are critical and reference is made to the graph of FIG. 2 for a description of these parameters. In referring to the graph D, W and T stand for distance from the power nozzle exit to thethroat 10, the width of the power nozzle and the width of thethroat 10, respectively. The dimensions D and T have been standardized with respect to the power nozzle width, W.
The graph provides a region defined by lines A and B emanating from the point C which region delimits on three sides the operating region of the oscillator. If the aforesaid dimensions of the oscillator fall above the operating region or about aline drawn parallel to the T/W axis from the point C, the device is monostable. If, however, the dimensions of the oscillator are such that they fall below the operation region on the aforesaid line, the power stream is undeflected.
Over a large part of their length the lines A and B are parallel having a slope of roughly 10. As the lines approach the point C they converge, starting at about 2.4 on the T/W scale, intersecting at about 2 on the T/W scale and about 19 on the D/W scale.
Referring now specifically to FIGS. 3 and 4 of the accompanying drawings there is illustrated ashower head 12 having an internally threadednut 13 for connecting the shower head to an outlet pipe of the plumbing system to which the head is to be connected. Theshower head 12 may be externally conventional in design tapering outwardly in a generally conical arrangement. Secured internally of the shower head is afluidic oscillator 14 which may be of the design illustrated in HO. 1. in actual practice the shower head may be fabricated from molded plastic with theoscillator 14 formed by channels in the mating faces of the mold halves. Theshower head 12 terminates at its water emitting end or at the right end, as illustrated in FIG. 4, in anannular shoulder 16 which defines a recessedregion 17 interiorly thereof.
The output region 4 of theoscillator 14 has arranged interiorly thereof a generally outwardly divergingmember 18 having a rounded left or smaller end as viewed in FIG. 4, to which various parts of the head, to be described subsequently, may be secured as by means of abolt 19. The annulus I6 is slotted at the regions defined byreference numerals 21 and 22 in H6. 4 to receive aslide 23 having two generallyrectangular passages 24 therethrough. The slide carries a pair of stop pins 24 and 26 on its left surface, as viewed in FIG. 4, which engage theannulus 16 so as to limit the translating movement of the slide.
In the position of the slide illustrated in both FIGS. 3 and 4, theslots 24 are aligned with the exit passages of the region 4 so that in this position, water proceeding through the oscillator passes through the slide to be projected against the body of the user.
If the slide is moved upwardly, as illustrated in FIGS. 3 and 4, thepassages 24 are no longer aligned with the region 4 so that the water proceeding through the oscillator contacts a solid surface of the slide and is diverted into the recessedregion 17 of theshower head 12 which is defined by theannulus 16. Specifically, theslide 23 is disposed above the bottom surface of the recessedregion 17 so that water may flow around the slide when thepassages 24 are not aligned with the region 4 of the oscillator. The shower head is provided with anend plate 27 having a plurality of small holes orapertures 28 proceeding therethrough in the direction of travel of the water. Water diverted by theslide 23, when itsapertures 24 are not aligned with the output passages of the oscillator, flows around the slide and through theapertures 28 and is directed as a spray toward the body of the user.
In operation when the user wishes to use the oscillating effect of the shower head, theslide 23 is positioned as illustrated in FIGS. 3 and 4, and when the shower is turned on, theoscillator 14 causes the water to switch alternately between the upper and lower portions of the region 4 and to flow around themember 18 and throughapertures 24 in theslide 23 and throughcorresponding apertures 29 in theend plate 27. When it is desired to employ a conventional spray, theslide 23 is moved upwardly in FIGS. 3 and 4, blocking flow through the slide and causing the watertodivert into theregion 17 and through theholes 28 formed in theplate 27, at the same time sealing offapertures 29 in theend plate 27 by means of a rectangular shaped block 30 extending from the left of theend plate 27 into engagement withslide 23 and completely enclosing theapertures 29.
Referring now specifically to FIGS. 5, 6 and 7 of the accompanying drawings, there is illustrated another embodiment of the invention in which the slide of the prior embodiment is eliminated and the same function obtained by means of a rotatable ring, i.e. conversion of one mode of operation to another may be obtained by rotating the end plate of the device. The shower head againmay be formed from mirrorimaged pieces of molded or cast plastic or metal to provide anoscillator 31 formed as an integral part of ashower head body 32. The shower head again terminates in its right end in anannulus 33 defining a recessedregion 34 in the end of the head. A unitary end plate ormember 36 is provided and is secured to thehead 32 by means of a screw 37 which threads into an integrally-moldedmember 38 of thehead 32.
Themember 38 again defines two specific passages in the region 4 of the oscillator. Theend member 36 is formed with aflat region 40 lying generally perpendicular to the axis of symmetry of the oscillator and therefore of thehead 32. Theregion 40 terminates in an inwardly extendingannular wall 39 which is generally parallel to the axis of the oscillator. Theannular wall 39 of theend member 36 abuts the inner circumference of theannular wall 33 and is provided with axially extending serrations to permit water to pass between the two surfaces and to produce multiple streams so as to provide a spray effect. Theregion 40 of theplate 36 is provided with a plurality ofarcuate apertures 41 through which water may pass to define a shower spray or spray of water when the apparatus is to be operated in the spray mode.
The hollowcylindrical wall 39 of themember 36 terminates in a further wall 42 which is again perpendicular to the center line of the head. The wall 42 is provided with tworectangular apertures 43 which, when the apparatus is in the pulsating mode of operation, are aligned with the output passages of the region 4 of the oscillator. Theapertures 43 extend through a generallyrectangular block 44 which projects from the left surface of theend plate 36 and seats against the right end surface of the recessedregion 34 of thebody 32 to provide a fluid seal therebetween. As previously indicated, theplate 36 is biased against thebody 32 by a screw 37 which passes through the wall 42 in the region between the tworectangular apertures 43 and a spring 46 against which the head of the screw 37 presses.
In operation, with theplate 36 in the position illustrated in FIGS. 5 and 6, theapertures 43 which extend through theblock 44, are aligned with the passages of the region 4 of the oscillator (alignment being assured by astop 45 in FIG. 4 extending to the right from the left end surface ofbody 32 in FIG. 5), and fluid is emitted in pulses from first the one and then the other passage and are directed toward the body of the user. Theend plate 36 may be rotated so as to move theapertures 43 out of alignment with the passages of the region 4 in which case the fluid being emitted from these passages is directed against the recessed or solid part of theblock 44 of theplate 36. The water now flows through theregion 34 and through the serrations lying between the inner and outer sur faces of thewalls 33 and 39 respectively and is projected through the slottedapertures 41 of theplate 36 toward the body of the user.
Theend plate 36 of the shower head may be readily rotated since the screw 37 presses against the spring 46 to provide a spring bias force against themember 36 to maintain engagement with the right end surface of thebody 32.
Referring specifically to FIGS. 8 through 10 of the accompanying drawings; there is illustrated a further modification of the present invention in which the flow of the water during the spray mode of operation may be varied or adjusted in accordance with the desires of the user. This embodiment of the invention is basically a modification of the apparatus of FIGS. 5 through 7 hereof. In the present embodiment of the invention there is provided a flat, disclike member 51 secured, by means of a bolt 61, to abody member 38 which is substantially identical with thebody member 38 of FIG. 5. The edge of the plate 51 is provided with a helical slot orscrew thread 50 which extends about the periphery of the plate through approximately 270 of the plate. The number of degrees is not intended to be limiting and may be varied as will become apparent subsequently. The apparatus is again with anend plate 52 having aflat region 53 generally perpendicular to the centerline of the oscillator, a generally cylindrical but inwardly tapered,region 54 generally parallel to the centerline of the apparatus and anotherflat region 56 again generally perpendicular to the centerline of the apparatus. The outer edge of theregion 53 of theend plate 52 terminates in an annulus 57 of sufficient diameter to extend about the outer periphery of thebody 32 of the shower head. The inner cylindrical surface of the annulus 57 is threaded so as to engage threads on the exterior surface of the annulus 33' of the shower body so that theplate 52 may be screwed onto the end of the shower head and thereafter rotated so as to cause theplate 52 to translate parallel to the axis of the body. The threadedly engaged regions of theplate 52 and of the body 33' are generally designated by thereference numeral 58.
Theregion 56 of theend plate 52 is provided with acylindrical recess 60 in its left side as illustrated in FIG. 10, to receive the circular plate 5ll. Apin 59 is inserted through the unrecessed part of theregion 56 of theplate 52 and extends into the threads orhelix 56 formed in the edge of the plate 51. The pitch of thethread 50 is the same'as that of thethreads 58 in the walls of themembers 33' and 39 for reasons to be apparent subsequently, and the axial width of the slot of thethread 50 is at least the tangent of the helix angle times the circumferential length corresponding to of plate 51 plus the pin diameter. This width permits axial translation of thepin 50 when the plate 51 is rotating with the pin.
The plate 51 is centrally apertured to receive a screw 61 which is threaded into the member 38' to retain theplate 52 against thebody 38. A spring may be interposed between the head of the screw and the plate to facilitate adjustment of the holding force on the plate.
The plate 51 is rotated when thepin 59, upon rotation of theplate 52 by the user, engages one or the other end of thethread 50 formed in the edge of the plate 51. The plate 51 is provided withapertures 62 which are aligned with the channels of the region 4 of the oscillator in the pulsating mode of operation. By rotation of the plate 51, the pin may be caused to traverse to the other end of thediscontinuous thread 50 and further rotation of themember 52 causes the plate 51 to rotate so that theapertures 62 become misaligned relative to the output channels of the oscillator. The wide slot orhelix 50 permits the pin to move axially in the slot at this time.
The left surface of the plate 51 is again provided with a rectangular block 63 (see FIG. 8) through which theapertures 62 extend so that when the ring 51 is rotated to produce misalignment of theapertures 62 and the oscillator channels, the output passages of the oscillator feed aregion 65 existing between the plate 51 and the vertical right hand face of thebody 32 as viewed in FIG. 9. The water now disperses into the region between thewall 54 of theend member 52 and the inner wall of the annulus 33' of the shower head.
Formed on the outer periphery of thewall 54 of themember 52, isconical surface 64 through which the water may pass between the member 33' and thewall 54 of theplate 52. Upon rotation of theplate 52, it is translated due to thethreads 58 to the left and right depending upon the direction of rotation. Translation ofmember 52 causes the opening between themember 54 and the inner wall of theannulus 33 to become larger and smaller depending upon the direction of displacement of themember 52. If the ring is rotated so that it is moved a maximum distance to the right, as illustrated in FIG. 11, the spacing between the inner wall of the annulus 33' and theconical wall 64 is at its maximum distance. If the ring is rotated in the opposite direction so that thering 52 is moved its maximum displacement to the left, as illustrated in FIG. 9, the distance between the wall of 33' and the wall of thecone 64 is narrowed. Consequently, the quantity of flow through these regions, is determined by the position of theplate 52 relative to the body of the shower head.
Aligned with the region between the inner wall of annulus 33' ofthe shower head and thecone 64 in thewall member 54 of theend member 52 are a plurality ofcircumferential holes 66 through which the water is projected.
In use if it is wished to employ the shower head in the oscillating mode, the plate 51 is positioned as illustrated in FIG. 9. When it is desired to change the mode of operation, themember 52 is rotated until thepin 59 engages the end of the thread orslot 50 formed on the edge of the plate 51 so that continued rotation of themember 52 causes the plate 51 to rotate until theapertures 62 are misaligned with the output channels of the oscillator. When it is desired to convert back to the oscillating mode of operation, themember 52 is again rotated until thepin 59 engages the other end of the slottedthread 50 so that continued rotation of themember 52 rotates the plate 51 until theslots 62 become aligned with the output channels of the oscillator. About a 90 rotation ofthe plate 51 has been found adequate to seal thepassages 62, although other degrees of rotation may be employed depending primarily on the circumferences of the head and the width of the head and the width of the slots. Theplate 52 may, after connecting the unit to the spray mode, be rotated in the opposite direction to cause themember 52 to translate parallel to the axis of the oscillator and thereby change the spray effect from the shower head.
In order to provide precise alignment of thepassages 62 with the output channels of the oscillator an aligningpin 67 may be provided which is seated in the vertical end surface of thebody 32 so that when thepassages 62 are aligned with the output channels of the oscillator, thepin 67 engages an edge of theblock 63 and maintains the proper alignment between the various parts.
Referring now specifically to FIG. 11 of the accompanying drawings, there is illustrated an embodiment of the invention which differs from each ofthe prior embodiments in that when it is desired to switch from the oscillatory mode of operation to a spray mode, the oscillator is disabled and the fluid is diverted directly to the spray apertures of the head rather than first preceding through the oscillator and then being diverted directly to the spray apertures of the head rather than first preceding through the oscillator and then being diverted to the spray forming regions. The shower head comprises a generally hollowcylindrical body 67 having an inwardly tapered region terminating at the left end as viewed in FIG. 11, in a threaded member 68 of a diameter to accept a nut fitting on the end of a conventional plumbing pipe. Arranged interiorly of the body is generallysolid member 69 having a fluidic oscillator 71 formed therein. Thebody 69 is provided with a series of peripherally arranged axially extendingvanes 72 which contact the interior surface of thebody 67. The oscillator terminates at its left end in a power nozzle 73 which terminates at its left end in a recessedregion 74 formed in the left end of thebody 69. The recessedregion 74 is disposed opposite a domed member 76 carried on aspider 77 formed, for instance, integrally with anannular slide 83 seated in a recessed annular region in thebody 67. Downstream of thevanes 72, thebody 69 is provided with a plurality of flutes orslots 78 to provide a spray of water when the device is operated in the spray mode.
As viewed in FIG. 11, alever mechanism 79 enters through thebody 67 from the bottom thereof. The lever mechanism is rotatable in thebody 67 and carries on its interior end an eccentric or pin 81. The pin 81 engages arecess 82 formed in the lower surface of theslide 83.
In the position illustrated in FIG. 11, theslide 83 is in its rightmost position with the dome-shaped member 76 seated against the end ofbody 69 so as to seal the entry to the oscillator power nozzle 73. Under these circumstances water entering the hollow left end of thebody 67 cannot enter the power nozzle 73 and is diverted into a region between thebodies 67 and 69 and is expelled through theslots 78 subsisting between thebodies 67 and 69 at the right end of the shower head, to produce a water sprayhWhen it is wished to produce a pulsating flow from the shower head, that is, cause the water to proceed through the oscillator, thelever mechanism 79 is rotated a specified number of degrees and theslide 83 is translated to the right as viewed in FIG. 11. The dome 76 is thus moved away from thebody 69 and the left end of theslide 83 is seated againstinterior wall 84 of thebody 67 to saidpassages 72 against entry of water. Water entering through the left end of thehollow shower head 67 is now constrained to proceed through the opening between the left end of thebody 69 and the dome 76 and into the power nozzle 73 of the oscillator.
The oscillator may be provided withdeflector vanes 86 for the same purpose that thevanes 11 are provided in FIG. 1; that is, to produce a more uniform distribution of the water in proceeding from one side of the oscillator to the other.
Referring now specifically to FIG. 12 of the accompanying drawings, there is illustrated a shower head comprising a hollowouter body 87 having ahollow sleeve 88 spaced interiorly thereof to provide anannular passage 89 therebetween. Thesleeve 88 is supported interiorly of the body by outwardly extendingvanes 89 which engage the interior surface of thebody 87. A dome shapedmember 91 is carried on a spider interiorly of thesleeve 88 adjacent its left end.
Anoscillator body 92 is slidably received in thesleeve 88 and has aninput passage 93 to the oscillator carried adjacent the left end of thebody 92 in alignment with thedomed member 91. The right end ofbody 92 is provided with an outwardly flaring annulus which may be gripped by the hand of the user to axially translate thebody 92. When thebody 92 is in its left position, the entrance to the oscillator is sealed and water is diverted tochannels 89 and issues throughapertures 94. When the body is moved right, as viewed in FIG. 12, water enters the oscillator and pulsating flow issues from the region 4 of the oscillator.
It should be noted relative to FIG. 12, that the adjacent surfaces of themembers 88 and 92 may be threaded, so that control of the position of thebody 92 may be varied by rotation thereof.
Referring specifically to FIGS. 13 and 14 of the accompanying drawings, there is illustrated a version of the shower head having a total of only 4 parts including an O-ring and a retainer ring.
The apparatus includes a hollowouter body 96, aninner oscillator body 97, an O-ring seal 98 betweenbodies 96 and 97 and aretainer ring 99 to prevent movement of theoscillator body 97 to the right, as viewed in FIGS. 13 and 14, relative toouter body 96. Thebody 97 is connected to the water supply and thebody 96 is rotatable about thebody 97.
Theoscillator body 97 has anaxial entry passage 101 which terminates incross arm passages 102 and 103. When thebody 96 is in the position illustrated in FIG. 13, relative tobody 97,passage 102 registers withrecesses 104 inbody 96 which extends into communication with afurther passage 106 in thebody 97. Thepassage 106 communicates with afluid oscillator 107 andfluid entering passage 101 is directed outwardly through both ends ofpassage 102 torecesses 104 to both ends ofpassage 106 to the oscillator. Therecesses 104 have'an arcuate length about the same as thepassages 102 and 106, a few degrees.
When thebody 96 is in the position illustrated in FIG. 14, relative tobody 96, a rotation of about relative to F 1G. 13, the two ends of thecross passage 103 are aligned with recesses 108 inbody 96 while thepassage 102 is out of alignment withrecesses 104 and are sealed against a solid wall ofbody 96. The recesses 108 have an arcuate length of only a few degrees but open into anannular chamber 109 between themembers 96 and 97. Anannular projection 111 frombody 97 defines a restrictedflow path 112 between the bodies so as to uniformly pressurize theregion 109.
The restrictedflow path 112 enters a furtherannular chamber 113 which terminates in a plurality of holes 114 to define spray of water.
If thebody 96 is rotated another 30 allpassages 102 and 103 are sealed. if the, for instance,oscillator body 97 is made of a softer material then thebody 96 and a tight fit is provided therebetween, the shower head may serve as its own shutoff valve. in this case, only a mixing chamber is required for use with the head. i
Although the apparatus of the present invention has been described in conjunction with a shower head it is not intended to limit the utility of the device .to one particular use. It is known that a pulsating stream of water has the ability to move, for instance, dirt or debris, far more efficiently than a continuous stream of water. Thus in cleaning driveways and sidewalks the principles of the present invention may be employed for a nozzle for use on the end of a hose. Similar problems arise in industrial uses particularly in the field of agitation of materials and objects.
The oscillator of FIG. 1 is described as a planar device. it should be noted that the oscillator may be three dimensional and specifically could have the geometric configuration generated by rotating an axis parallel to the two dimensional diagram of FIG. 1 about an axis parallel to its longitudinal centerline for instance, about the lower edge of the body 5. Such a device produces an annular liquid stream which expands and contracts in diameter. Such a device is of great use in agitation since the quantities of liquid supplied are quite large and thus the power supplied is great.
While I have described and illustrated several specific embodiments of my invention, it will be clear that variations of the details of construction which are specifically illustrated and described may be resorted to without departing from the true spirit and scope of the invention as defined in the appended claims.
lclaim:
l. in combination:
a. a body having a first output region and a second output region, one of said output regions being disposed around the other of said output regions;
b. said body including a device for producing oscillatory lateral deflection of fluid flow upon application of a pressurized fluid thereto; A
c. said device having an output region capable of delivering to said first output region of said body said fluid having an oscillatory lateral deflection;
d. said body having at least one passage terminating in said second output region, said second output region having a plurality of small fluid passages;
e. selectively operable means having a first position and a second position;
f. said means in said first position being arranged to direct fluid to said device to issue oscillatory fluid through said first output region of said body; and
g. said means in said second position being arranged to cause fluid to issue through said plurality of small apertures in said second output region of said body.
2. The combination according to claim 1: wherein said device is a pure fluid oscillator for laterally oscillating a stream between two extreme positions.
3. The combination according to claim 1:
a. wherein said device has an input passage for receiving fluid under pressure;
b. wherein said body is provided with a passage for delivering substantially all of said fluid supplied to said body to said input passage of said device; and
0. wherein said selectively operable means in said second position diverts fluid issuing from said device to said at least one passage of said body.
41. The combination according to claim 3:
a. wherein said selectively operable means comprises;
b. a member having at least one aperture therethrough;
c. said member being movable between a first and a second position;
said aperture in said member being positioned in line in the direction of flow of fluid from said device when said member is in said first position;
. said member having a wall presenting a solid barrier along the direction of flow of fluid from said device when said member is in said second position; and
f. wherein said at least one passage extends from a region between said output region of said device and said member and said plurality of small fluid passages.
5. The combination according to claim 4:
a. wherein said member is a slide having a region at each end thereof extending outwardly from said body; and
b. wherein said body has channel means formed therein for slideably receiving said slide.
6. The combination according to claim 4:
a. wherein said member is an end plate;
b. wherein means are provided for rotatably securing said end plate to said body;
0. said end plate having formed therein a plurality of passages communicating with said at least one passage in said body; and
said end plate having passage means in line with said output region of said device.
The combination according to claim 1:
a. wherein said selectively operable means in said second position comprises further operable means for varying the cross-sectional area of said small fluid passages.
8. The combination according to claim 2:
a. comprising deflector means disposed in said first output region of said body for rendering the flow of fluid through said region more uniform between said two extreme positions than in the absence of said means.
The combination according to claim 1:
a. wherein said device has an input passage for receiving fluid under pressure;
. wherein said body is provided with an input passage for receiving fluid under pressure; and
c. wherein said selectively operable means in said first position directs the pressurized fluid to said input passage of said device and in said second position directs the fluid under pressure in said input passage of said body only to said at least one passage in said body.
10. The combination according to claim 9:
a. further comprising means for mounting said device in said body for at least translatory movement;
b. said selectively operable means adapted to translate said device between a first and a second position;
c. means adapted to seal said input passage of said device and divert fluid to said at least one passage when said means is in said second position; and
d. means adapted to direct fluid to said input passage of said device when said means is in said first position.
11. The combination according to claim a. wherein said selectively operable means is a lever;
b. said lever rotatably about a centerline and having an eccentric member in engagement with said device.
12. The combination according to claim 10:
a. wherein said device is slidably received in said body; and
b. means adapted to be engaged by the hand of the user to translate said device.
13. The combination according to claim 10:
a. wherein said device is in threaded engagement with said body; and
b. wherein said device is provided with a hand engageable member whereby translation of said device relative to said body is affected by rotation of said device.
14. The combination according to claim 10:
a. wherein there is provided in said body a hollow region between said input passages of said body a said device;
b. said region having an outwardly flared interior wall having predetermined angle such that said fluid flows as a solid stream to said input passage in the absence of back pressure in said region, and said stream attaches to said flared wall in the presence of back pressure in said region due to scaling of said input passage to said device.
157 The combination according to claim 10:
a. wherein there is provided in said body a hollow region between said input passages of said body a said device;
b. an annular wall extending from the outer periphery of said device toward said input passage of said body to define a region upstream of said input passage to said device in which pressurized fluid egressing from said input passage of said body may be collected and at least partially confined.
16. The combination according toclaim 9 wherein said selectively operable means comprises:
a. an outer part of said body arranged for rotation about the remainder of said body;
b. said outer part having in a first rotational position, first passage means interconnecting said input passages; and
c. said outer part having in a second rotational position, second passage means interconnecting said input passage of said body and said at least one passage and means for blocking flow between said input passages.
17. The combination according to claim 16 wherein said outer part includes means for blocking all output flow from said input passage of said body in a third position of said outer part.
18. A gas-liquid fluidic oscillator comprising:
a. a power nozzle for issuing a power stream ofliquid;
b. a chamber generally symmetrical with respect to the centerline of said power nozzle and having a narrow entry region at one end and a throat region at the other end of said chamber;
0. an interaction region lying between said nozzle and said entry region of said chamber;
d. said chamber having continuous walls diverging outwardly at a small angle from said narrow entry region and converging at a relatively sharp curved angle to said throat region;
e. a pair of control passages opening into said interaction region from opposite sides thereof;
f. an output region extending from immediately downstream of said throat region into a gaseous region;
g. said output region having outwardly extending walls;
h. a pair of feedback channels each extending between a different control passage and said output region through opposed locations in said walls of said output region;
i. said chamber and said region having contours such that the power stream flows over the ends of said feedback channels entering said output region each in turn, such as to prevent entry of gas therein; and
j. said passages entering said output region at an angle such that the pressure in the interaction region on one side of said stream resulting from feedback of operating fluid through one of said channels is less then the pressure on the other side of the power stream resulting from the feedback of ambient gas in said output region through the other of said feedback passages.
19. The combination according to claim 18 wherein the interrelationship of dimensions of the width, W, of said power nozzle, the distance, D, from said power nozzle to said throat region and the width, T, of the throat region, are such as to lie within the lines A and B of the graph of FIG. 2 of the accompanying drawings.
20. A gas-liquid oscillator comprising:
a. a power nozzle for issuing a power stream of liquid;
b. an output region having walls diverging outwardly from an upstream to a downstream region;
c. an interaction region lying between said nozzle and said output region;
(1. a pair of control passages entering from opposite sides of said interaction region adjacent said power nozzle;
e. a pair of feedback channels each extending from a different wall of said output region to a different one of said control passages;
. means for directing fluid of said stream from said interaction region to said output region such that the stream of fluid flows selectively over one and the other of said walls of said output region to seal the entry of first one and then the other of said feedback passages into said output region against entry of gas thereinto; and
said output region opening into a gaseous region at its downstream end and having a centrally located body defining with said walls a pair ofdiscrete output passages.
21. A gas-liquid oscillator comprising:
a. a fluidic flip-flop having sidewalls defining an interaction region, a pair of control passages entering said interaction region through said sidewalls from opposite sides thereof and a power nozzle for issuing a stream of liquid through said interaction region;
b. an output region located downstream of and in comm unication with said interaction region;
c. said output region having walls diverging outwardly from its upstream to its downstream region;
(1. a pair of ports extending into said walls of output region at opposed locations relative to the axis of said power nozzle;
e. a pair of passages each extending from a different one of said ports to a different one of said control passages;
. said output region opening at its downstream end into a gaseous region;
g. means directing said fluid stream across the one of said ports connected to said control passages opposite the sidewall to which the fluid stream is attached;
h. the stream of fluid sealing the port across which it is directed to prevent flow of gas thereinto whereby the volume of fluid entering said last mentioned port is less than the volume of fluid entering the other of said ports.
22. A gas-liquid oscillator comprising:
a. a power nozzle for issuing a power stream ofliquid;
b. an output region having walls diverging outwardly from an upstream to a downstream region;
c. an interaction region lying between said nozzle and said output region;
d. a pair of control passages entering from opposite sides of said interaction region adjacent said power nozzle;
e. a pair of feedback channels each extending from a different wall of said output region to a different one of said control passages;
. said output region opening into a gaseous region at its downstream end and having a centrally located body defining with said walls a pair of discrete output passages; and
means for directing fluid of said stream from said interaction region to said output region:
i. such that the stream of fluid-selectively flows over the

Claims (22)

1. In combination: a. a body having a first output region and a second output region, one of said output regions being disposed around the other of said output regions; b. said body including a device for producing oscillatory lateral deflection of fluid flow upon application of a pressurized fluid thereto; c. said device having an output region capable of delivering to said first output region of said body said fluid having an oscillatory lateral deflection; d. said body having at least one passage terminating in said second output region, said second output region having a plurality of small fluid passages; e. selectively operable means having a first position and a second position; f. said means in said first position being arranged to direct fluid to said device to issue oscillatory fluid through said first output region of said body; and g. said means in said second position being arranged to cause fluid to issue through said plurality of small apertures in said second output region of said body.
18. A gas-liquid fluidic oscillator comprising: a. a power nozzle for issuing a power stream of liquid; b. a chamber generally symmetrical with respect to the centerline of said power nozzle and having a narrow entry region at one end and a throat region at the other end of said chamber; c. an interaction region lying between said nozzle and said entry region of said chamber; d. said chamber having continuous walls diverging outwardly at a small angle from said narrow entry region and converging at a relatively sharp curved angle to said throat region; e. a pair of control passages opening into said interaction region from opposite sides thereof; f. an output region extending from immediately downstream of said throat region into a gaseous region; g. said output region having outwardly extending walls; h. a pair of feedback channels each extending between a different control passage and said output region through opposed locations in said walls of said output region; i. said chamber and said region having contours such that the power stream flows over the ends of said feedback channels entering said output region each in turn, such as to prevent entry of gas therein; and j. said passages entering said output region at an angle such that the pressure in the interaction region on one side of said stream resulting from feedback of operating fluid through one of said channels is less then the pressure on the other side of the power stream resulting from the feedback of ambient gas in said output region through the other of said feedback passages.
20. A gas-liquid oscillator comprising: a. a power nozzle for issuing a power stream of liquid; b. an output region having walls diverging outwardly from an upstream to a downstream region; c. an interaction region lying between said nozzle and said output region; d. a pair of control passages entering from opposite sides of said interaction region adjacent said power nozzle; e. a pair of feedback channels each extending from a different wall of said output region to a different one of said control passages; f. means for directing fluid of said stream from said interaction region to said output region such that the stream of fluid flows selectively over one and the other of said walls of said output region to seal the entry of first one and then the other of said feedback passages into said output region against entry of gas thereinto; and G. said output region opening into a gaseous region at its downstream end and having a centrally located body defining with said walls a pair of discrete output passages.
21. A gas-liquid oscillator comprising: a. a fluidic flip-flop having sidewalls defining an interaction region, a pair of control passages entering said interaction region through said sidewalls from opposite sides thereof and a power nozzle for issuing a stream of liquid through said interaction region; b. an output region located downstream of and in communication with said interaction region; c. said output region having walls diverging outwardly from its upstream to its downstream region; d. a pair of ports extending into said walls of output region at opposed locations relative to the axis of said power nozzle; e. a pair of passages each extending from a different one of said ports to a different one of said control passages; f. said output region opening at its downstream end into a gaseous region; g. means directing said fluid stream across the one of said ports connected to said control passages opposite the sidewall to which the fluid stream is attached; h. the stream of fluid sealing the port across which it is directed to prevent flow of gas thereinto whereby the volume of fluid entering said last mentioned port is less than the volume of fluid entering the other of said ports.
22. A gas-liquid oscillator comprising: a. a power nozzle for issuing a power stream of liquid; b. an output region having walls diverging outwardly from an upstream to a downstream region; c. an interaction region lying between said nozzle and said output region; d. a pair of control passages entering from opposite sides of said interaction region adjacent said power nozzle; e. a pair of feedback channels each extending from a different wall of said output region to a different one of said control passages; f. said output region opening into a gaseous region at its downstream end and having a centrally located body defining with said walls a pair of discrete output passages; and g. means for directing fluid of said stream from said interaction region to said output region: i. such that the stream of fluid selectively flows over the entry of only one and then the other of said walls of said output region to permit liquid to be entrained into one and then the other respectively of said pair of feedback passages; and ii. such that gas only is entrained into said other and then said one of said pair of feedback channels respectively.
US3563462D1968-11-211968-11-21Oscillator and shower head for use therewithExpired - LifetimeUS3563462A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US77769468A1968-11-211968-11-21
CA079755ACA935762A (en)1968-11-211970-04-10Oscillator and shower head for use therewith
CA160,788ACA942676A (en)1968-11-211973-01-08Oscillator and shower head for use therewith

Publications (1)

Publication NumberPublication Date
US3563462Atrue US3563462A (en)1971-02-16

Family

ID=55177676

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US3563462DExpired - LifetimeUS3563462A (en)1968-11-211968-11-21Oscillator and shower head for use therewith

Country Status (2)

CountryLink
US (1)US3563462A (en)
CA (2)CA935762A (en)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3741481A (en)*1971-07-191973-06-26Bowles Fluidics CorpShower spray
US3762445A (en)*1971-11-291973-10-02Agency Ind Science TechnFluidic device
US3770200A (en)*1972-07-241973-11-06Bowles Fluidics CorpPersonal spray and massage apparatus
US3811475A (en)*1972-10-311974-05-21Us ArmyFlueric gas-to-liquid interface amplifier
DE2505695A1 (en)*1974-09-301976-04-22Bowles Fluidics Corp DEVICE FOR SPRAYING A FLUID, IN PARTICULAR FLUIDIC OSCILLATOR
FR2303602A1 (en)*1975-03-141976-10-08Stanadyne Inc SHOWERHEAD
US3998386A (en)*1976-02-231976-12-21The United States Of America As Represented By The Secretary Of The Air ForceOscillating liquid nozzle
US4052002A (en)*1974-09-301977-10-04Bowles Fluidics CorporationControlled fluid dispersal techniques
US4157161A (en)*1975-09-301979-06-05Bowles Fluidics CorporationWindshield washer
DE2853327A1 (en)*1977-12-091979-06-21Peter Bauer METHOD FOR GENERATING A PULSATING FLUIDIC SPRAY JET AND OSCILLATOR, INTERESTED IN CARRYING OUT THE METHOD
FR2448941A2 (en)*1979-02-191980-09-12Valentin SaAdjustable head for shower - has channels providing constant part or full water flow to prevent interruption and water hammer
US4227550A (en)*1975-05-121980-10-14Bowles Fluidics CorporationLiquid oscillator having control passages continuously communicating with ambient air
US4325235A (en)*1973-05-021982-04-20Bowles Fluidics CorporationWashing apparatus
US4394965A (en)*1980-05-171983-07-26Friedrich Grohe Armaturenfabrik Gmbh & Co.Pulsating shower using a swirl chamber
US4480793A (en)*1981-07-021984-11-06Grande Gary RLiquid distribution device
EP0197346A3 (en)*1985-03-271987-04-22Bowles Fluidics CorporationAir sweep defroster
US4676201A (en)*1984-07-251987-06-30Westinghouse Electric Corp.Method and apparatus for removal of residual sludge from a nuclear steam generator
US4774975A (en)*1984-09-171988-10-04Westinghouse Electric Corp.Method and apparatus for providing oscillating contaminant-removal stream
EP0299977A4 (en)*1986-04-071990-01-08Bowles Fluidics CorpFluidic oscillator.
US5129585A (en)*1991-05-211992-07-14Peter BauerSpray-forming output device for fluidic oscillators
WO1998010870A1 (en)*1996-09-121998-03-19Bowles Fluidics CorporationLow pressure, full coverage fluidic spray device
US6110292A (en)*1997-08-122000-08-29Warren R. JewettOscillating liquid jet washing system
US6497375B1 (en)*2000-02-222002-12-24Bowles Fluidics CorporationFluidic nozzle with multiple operating modes
US6581856B1 (en)*1998-11-062003-06-24Bowles Fluidics CorporationFluid mixer
US20040050980A1 (en)*2002-06-252004-03-18Hydrosystem Project A.S.Fluidic nozzle with stream deflector
US20050087633A1 (en)*2003-10-282005-04-28Bowles Fluidics CorporationThree jet island fluidic oscillator
US6904626B1 (en)*2001-11-092005-06-14Bowles Fluidics CorporationFluidic spa nozzle
US6908047B2 (en)2001-12-072005-06-21Nottingham Spirk, LlcOscillating shower sprayer
US20050214147A1 (en)*2004-03-252005-09-29Schultz Roger LApparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US6976507B1 (en)2005-02-082005-12-20Halliburton Energy Services, Inc.Apparatus for creating pulsating fluid flow
US20060065765A1 (en)*2004-09-242006-03-30Bowles Fluidics CorporationFluidic nozzle for trigger spray applications
US20060091242A1 (en)*2004-11-012006-05-04Bowles Fluidics CorporationCold-performance fluidic oscillator
WO2006049622A1 (en)2004-11-012006-05-11Bowles Fluidics CorporationImproved cold-performance fluidic oscillator
US20060108442A1 (en)*2003-09-292006-05-25Bowles Fluidics CorporationEnclosures for fluidic oscillators
US20060226266A1 (en)*2005-04-072006-10-12Bowles Fluidics CorporationAdjustable fluidic sprayer
US20070063076A1 (en)*2005-09-202007-03-22Bowles Fluidics CorporationFluidic oscillator for thick/three-dimensional spray applications
WO2007149436A1 (en)2006-06-162007-12-27Bowles Fluidics CorporationFluidic device yielding three-dimensional spray patterns
US20070295840A1 (en)*2003-09-292007-12-27Bowles Fluidics CorporationFluidic oscillators and enclosures with split throats
WO2009030878A1 (en)2007-09-042009-03-12Reckitt Benckiser Inc.Liquid spray dispenser
CN102059178A (en)*2010-12-022011-05-18厦门松霖科技有限公司Water pulsating spraying mechanism
US8172162B2 (en)2005-10-062012-05-08Bowles Fluidics Corp.High efficiency, multiple throat fluidic oscillator
US8205812B2 (en)2005-10-062012-06-26Bowles Fluidics CorporationEnclosures for multiple fluidic oscillators
US20120168013A1 (en)*2010-12-312012-07-05Halliburton Energy Services, Inc.Conical fluidic oscillator inserts for use with a subterranean well
US20120175438A1 (en)*2011-01-072012-07-12Xiamen Solex High-Tech Industries Co., Ltd.Device that can make pulsed water
CN102688817A (en)*2011-03-222012-09-26厦门松霖科技有限公司Device for discharging high-frequency pulse water
WO2012126325A1 (en)*2011-03-222012-09-27厦门松霖科技有限公司Device for outputting water with high frequency pulse
US20120312156A1 (en)*2009-10-292012-12-13Baker Hughes IncorporatedFluidic Impulse Generator
US8418725B2 (en)2010-12-312013-04-16Halliburton Energy Services, Inc.Fluidic oscillators for use with a subterranean well
US8573066B2 (en)2011-08-192013-11-05Halliburton Energy Services, Inc.Fluidic oscillator flowmeter for use with a subterranean well
US8646483B2 (en)2010-12-312014-02-11Halliburton Energy Services, Inc.Cross-flow fluidic oscillators for use with a subterranean well
US8733401B2 (en)2010-12-312014-05-27Halliburton Energy Services, Inc.Cone and plate fluidic oscillator inserts for use with a subterranean well
US8955585B2 (en)2011-09-272015-02-17Halliburton Energy Services, Inc.Forming inclusions in selected azimuthal orientations from a casing section
USD735428S1 (en)2014-02-172015-07-28The Toro CompanyNozzle for a debris blower
CN104874494A (en)*2015-05-202015-09-02厦门建霖工业有限公司Bi-stable wall-attached current core, water outlet device and water outlet method of bi-stable wall-attached current core
US9420924B2 (en)2014-02-172016-08-23The Toro CompanyOscillating airstream nozzle for debris blower
US9706882B2 (en)2010-12-302017-07-18Xiamen Solex High-Tech Industries Co., Ltd.Splicing shower
DE102016114624A1 (en)2016-08-082018-02-08Miele & Cie. Kg Oven with a circulating air fan
US9943863B2 (en)2015-04-292018-04-17Delta Faucet CompanyShowerhead with scanner nozzles
US9987639B2 (en)2007-12-072018-06-05Dlhbowles, Inc.Irrigation nozzle assembly and method
DE112016005360T5 (en)2015-11-232018-08-09dlhBowles Inc. Scanning nozzle assembly, showerhead assembly and method
US10532367B2 (en)2014-07-152020-01-14Dlhbowles, Inc.Three-jet fluidic oscillator circuit, method and nozzle assembly
US10722907B2 (en)2016-08-112020-07-28Xiamen Solex High-Tech Industries Co., Ltd.Splash water outlet mechanism
US10974260B2 (en)2015-11-232021-04-13Dlhbowles, Inc.Gapped scanner nozzle assembly and method
WO2021077077A1 (en)2019-10-182021-04-22Dlhbowles, Inc.Fluidic oscillator for a nozzle assembly for enhanced cold performance
US20210170427A1 (en)*2019-12-062021-06-10Runner(Xiamen) Corp.Alternating water delivery device
US11192124B2 (en)2016-05-032021-12-07Dlhbowles, Inc.Fluidic scanner nozzle and spray unit employing same
WO2022036295A1 (en)*2020-08-142022-02-17Board Of Regents, The University Of Texas SystemTunable, pulsatile, and 3-dimensional fluidic oscillator
US20220064929A1 (en)*2019-05-172022-03-03Kohler Co.Fluidics devices for plumbing fixtures
US11471898B2 (en)2015-11-182022-10-18Fdx Fluid Dynamix GmbhFluidic component
US11739517B2 (en)2019-05-172023-08-29Kohler Co.Fluidics devices for plumbing fixtures
IT202300007872A1 (en)*2023-04-212024-10-21Pnr Italia S R L FLUID NOZZLE FOR DELIVERY OF A HIGH PRESSURE FLUID

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4177927A (en)*1977-12-141979-12-11Simmons Thomas RApparatus for shaping and positioning fluid dispersal patterns
DE19943262A1 (en)*1999-09-102001-03-15Mannesmann Vdo Ag fluidic
CN109847959A (en)*2019-02-132019-06-07厦门建霖健康家居股份有限公司 A water outlet device with alternate water outlet

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3247861A (en)*1963-11-201966-04-26Sperry Rand CorpFluid device
US3432102A (en)*1966-10-031969-03-11Sherman Mfg Co H BLiquid dispensing apparatus,motor and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3247861A (en)*1963-11-201966-04-26Sperry Rand CorpFluid device
US3432102A (en)*1966-10-031969-03-11Sherman Mfg Co H BLiquid dispensing apparatus,motor and method

Cited By (98)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3741481A (en)*1971-07-191973-06-26Bowles Fluidics CorpShower spray
US3762445A (en)*1971-11-291973-10-02Agency Ind Science TechnFluidic device
US3770200A (en)*1972-07-241973-11-06Bowles Fluidics CorpPersonal spray and massage apparatus
US3811475A (en)*1972-10-311974-05-21Us ArmyFlueric gas-to-liquid interface amplifier
US4325235A (en)*1973-05-021982-04-20Bowles Fluidics CorporationWashing apparatus
DE2505695A1 (en)*1974-09-301976-04-22Bowles Fluidics Corp DEVICE FOR SPRAYING A FLUID, IN PARTICULAR FLUIDIC OSCILLATOR
US4052002A (en)*1974-09-301977-10-04Bowles Fluidics CorporationControlled fluid dispersal techniques
FR2303602A1 (en)*1975-03-141976-10-08Stanadyne Inc SHOWERHEAD
US4227550A (en)*1975-05-121980-10-14Bowles Fluidics CorporationLiquid oscillator having control passages continuously communicating with ambient air
US4157161A (en)*1975-09-301979-06-05Bowles Fluidics CorporationWindshield washer
US3998386A (en)*1976-02-231976-12-21The United States Of America As Represented By The Secretary Of The Air ForceOscillating liquid nozzle
DE2853327A1 (en)*1977-12-091979-06-21Peter Bauer METHOD FOR GENERATING A PULSATING FLUIDIC SPRAY JET AND OSCILLATOR, INTERESTED IN CARRYING OUT THE METHOD
FR2448941A2 (en)*1979-02-191980-09-12Valentin SaAdjustable head for shower - has channels providing constant part or full water flow to prevent interruption and water hammer
US4394965A (en)*1980-05-171983-07-26Friedrich Grohe Armaturenfabrik Gmbh & Co.Pulsating shower using a swirl chamber
US4480793A (en)*1981-07-021984-11-06Grande Gary RLiquid distribution device
US4676201A (en)*1984-07-251987-06-30Westinghouse Electric Corp.Method and apparatus for removal of residual sludge from a nuclear steam generator
US4774975A (en)*1984-09-171988-10-04Westinghouse Electric Corp.Method and apparatus for providing oscillating contaminant-removal stream
EP0197346A3 (en)*1985-03-271987-04-22Bowles Fluidics CorporationAir sweep defroster
EP0299977A4 (en)*1986-04-071990-01-08Bowles Fluidics CorpFluidic oscillator.
US5129585A (en)*1991-05-211992-07-14Peter BauerSpray-forming output device for fluidic oscillators
WO1998010870A1 (en)*1996-09-121998-03-19Bowles Fluidics CorporationLow pressure, full coverage fluidic spray device
US5860603A (en)*1996-09-121999-01-19Bowles Fluidics CorporationLow pressure, full coverage fluidic spray device
AU723232B2 (en)*1996-09-122000-08-24Bowles Fluidics CorporationLow pressure, full coverage fluidic spray device
US6110292A (en)*1997-08-122000-08-29Warren R. JewettOscillating liquid jet washing system
US6176941B1 (en)1997-08-122001-01-23Warren R. JewettMethod of removing contaminants from an epidermal surface using an oscillating fluidic spray
US6581856B1 (en)*1998-11-062003-06-24Bowles Fluidics CorporationFluid mixer
US6497375B1 (en)*2000-02-222002-12-24Bowles Fluidics CorporationFluidic nozzle with multiple operating modes
US6904626B1 (en)*2001-11-092005-06-14Bowles Fluidics CorporationFluidic spa nozzle
US6908047B2 (en)2001-12-072005-06-21Nottingham Spirk, LlcOscillating shower sprayer
US20040050980A1 (en)*2002-06-252004-03-18Hydrosystem Project A.S.Fluidic nozzle with stream deflector
US7677480B2 (en)2003-09-292010-03-16Bowles Fluidics CorporationEnclosures for fluidic oscillators
US20070295840A1 (en)*2003-09-292007-12-27Bowles Fluidics CorporationFluidic oscillators and enclosures with split throats
US20060108442A1 (en)*2003-09-292006-05-25Bowles Fluidics CorporationEnclosures for fluidic oscillators
US20050087633A1 (en)*2003-10-282005-04-28Bowles Fluidics CorporationThree jet island fluidic oscillator
US7651036B2 (en)2003-10-282010-01-26Bowles Fluidics CorporationThree jet island fluidic oscillator
US20050214147A1 (en)*2004-03-252005-09-29Schultz Roger LApparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US7404416B2 (en)2004-03-252008-07-29Halliburton Energy Services, Inc.Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus
US7354008B2 (en)2004-09-242008-04-08Bowles Fluidics CorporationFluidic nozzle for trigger spray applications
US20060065765A1 (en)*2004-09-242006-03-30Bowles Fluidics CorporationFluidic nozzle for trigger spray applications
US20080067267A1 (en)*2004-11-012008-03-20Bowles Fluidics CorporationCold-performance fluidic oscillator
US7472848B2 (en)*2004-11-012009-01-06Bowles Fluidics CorporationCold-performance fluidic oscillator
US7267290B2 (en)2004-11-012007-09-11Bowles Fluidics CorporationCold-performance fluidic oscillator
US20060091242A1 (en)*2004-11-012006-05-04Bowles Fluidics CorporationCold-performance fluidic oscillator
WO2006049622A1 (en)2004-11-012006-05-11Bowles Fluidics CorporationImproved cold-performance fluidic oscillator
US6976507B1 (en)2005-02-082005-12-20Halliburton Energy Services, Inc.Apparatus for creating pulsating fluid flow
US8662421B2 (en)2005-04-072014-03-04Bowles Fluidics CorporationAdjustable fluidic sprayer
CN101247895B (en)*2005-04-072012-05-30鲍尔斯应用流体力学公司 Adjustable fluid ejection device and method of manufacture
US20060226266A1 (en)*2005-04-072006-10-12Bowles Fluidics CorporationAdjustable fluidic sprayer
WO2006110154A1 (en)2005-04-072006-10-19Bowles Fluidics CorporationAdjustable fluidic sprayer with oscillating characteristics
WO2007035767A1 (en)2005-09-202007-03-29Bowles Fluidics CorporationImproved fluidic oscillator for thick/three-dimensional spray applications
US7478764B2 (en)2005-09-202009-01-20Bowles Fluidics CorporationFluidic oscillator for thick/three-dimensional spray applications
US20070063076A1 (en)*2005-09-202007-03-22Bowles Fluidics CorporationFluidic oscillator for thick/three-dimensional spray applications
US8205812B2 (en)2005-10-062012-06-26Bowles Fluidics CorporationEnclosures for multiple fluidic oscillators
US8172162B2 (en)2005-10-062012-05-08Bowles Fluidics Corp.High efficiency, multiple throat fluidic oscillator
WO2007044354A2 (en)2005-10-062007-04-19Bowles Fluidics CorporationEnclosures for fluidic oscillators
WO2007149436A1 (en)2006-06-162007-12-27Bowles Fluidics CorporationFluidic device yielding three-dimensional spray patterns
US20080011868A1 (en)*2006-06-162008-01-17Bowels Fluidics CorporationFluidic device yielding three-dimensional spray patterns
US7775456B2 (en)2006-06-162010-08-17Bowles Fluidics CorporationFluidic device yielding three-dimensional spray patterns
WO2009030878A1 (en)2007-09-042009-03-12Reckitt Benckiser Inc.Liquid spray dispenser
US9987639B2 (en)2007-12-072018-06-05Dlhbowles, Inc.Irrigation nozzle assembly and method
US9033003B2 (en)*2009-10-292015-05-19Baker Hughes IncorporatedFluidic impulse generator
US20120312156A1 (en)*2009-10-292012-12-13Baker Hughes IncorporatedFluidic Impulse Generator
CN102059178A (en)*2010-12-022011-05-18厦门松霖科技有限公司Water pulsating spraying mechanism
WO2012072018A1 (en)*2010-12-022012-06-07厦门松霖科技有限公司Pulsation spray water jetting mechanism
US9168540B2 (en)2010-12-022015-10-27Xiamen Solex High-Tech Industries Co., Ltd.Outlet mechanism with pulsatile splash
US9706882B2 (en)2010-12-302017-07-18Xiamen Solex High-Tech Industries Co., Ltd.Splicing shower
US8646483B2 (en)2010-12-312014-02-11Halliburton Energy Services, Inc.Cross-flow fluidic oscillators for use with a subterranean well
US8418725B2 (en)2010-12-312013-04-16Halliburton Energy Services, Inc.Fluidic oscillators for use with a subterranean well
US8733401B2 (en)2010-12-312014-05-27Halliburton Energy Services, Inc.Cone and plate fluidic oscillator inserts for use with a subterranean well
US20120168013A1 (en)*2010-12-312012-07-05Halliburton Energy Services, Inc.Conical fluidic oscillator inserts for use with a subterranean well
US20120175438A1 (en)*2011-01-072012-07-12Xiamen Solex High-Tech Industries Co., Ltd.Device that can make pulsed water
WO2012126325A1 (en)*2011-03-222012-09-27厦门松霖科技有限公司Device for outputting water with high frequency pulse
CN102688817A (en)*2011-03-222012-09-26厦门松霖科技有限公司Device for discharging high-frequency pulse water
US8573066B2 (en)2011-08-192013-11-05Halliburton Energy Services, Inc.Fluidic oscillator flowmeter for use with a subterranean well
US8955585B2 (en)2011-09-272015-02-17Halliburton Energy Services, Inc.Forming inclusions in selected azimuthal orientations from a casing section
US10119356B2 (en)2011-09-272018-11-06Halliburton Energy Services, Inc.Forming inclusions in selected azimuthal orientations from a casing section
US9420924B2 (en)2014-02-172016-08-23The Toro CompanyOscillating airstream nozzle for debris blower
USD735428S1 (en)2014-02-172015-07-28The Toro CompanyNozzle for a debris blower
US10532367B2 (en)2014-07-152020-01-14Dlhbowles, Inc.Three-jet fluidic oscillator circuit, method and nozzle assembly
US9943863B2 (en)2015-04-292018-04-17Delta Faucet CompanyShowerhead with scanner nozzles
US11241702B2 (en)2015-04-292022-02-08Delta Faucet CompanyShowerhead with scanner nozzles
US10399094B2 (en)2015-04-292019-09-03Delta Faucet CompanyShowerhead with scanner nozzles
CN104874494B (en)*2015-05-202017-10-24厦门建霖工业有限公司Bistable wall-attachment current core and its discharging device and method for yielding water
CN104874494A (en)*2015-05-202015-09-02厦门建霖工业有限公司Bi-stable wall-attached current core, water outlet device and water outlet method of bi-stable wall-attached current core
US11471898B2 (en)2015-11-182022-10-18Fdx Fluid Dynamix GmbhFluidic component
DE112016005360T5 (en)2015-11-232018-08-09dlhBowles Inc. Scanning nozzle assembly, showerhead assembly and method
US10974260B2 (en)2015-11-232021-04-13Dlhbowles, Inc.Gapped scanner nozzle assembly and method
US11192124B2 (en)2016-05-032021-12-07Dlhbowles, Inc.Fluidic scanner nozzle and spray unit employing same
DE102016114624A1 (en)2016-08-082018-02-08Miele & Cie. Kg Oven with a circulating air fan
US10722907B2 (en)2016-08-112020-07-28Xiamen Solex High-Tech Industries Co., Ltd.Splash water outlet mechanism
US20220064929A1 (en)*2019-05-172022-03-03Kohler Co.Fluidics devices for plumbing fixtures
US11739517B2 (en)2019-05-172023-08-29Kohler Co.Fluidics devices for plumbing fixtures
US11987969B2 (en)2019-05-172024-05-21Kohler Co.Fluidics devices for plumbing fixtures
WO2021077077A1 (en)2019-10-182021-04-22Dlhbowles, Inc.Fluidic oscillator for a nozzle assembly for enhanced cold performance
DE112020004973T5 (en)2019-10-182022-06-30Dhlbowles, Inc. Nozzle assembly fluidic oscillator for improved cold performance
US20210170427A1 (en)*2019-12-062021-06-10Runner(Xiamen) Corp.Alternating water delivery device
WO2022036295A1 (en)*2020-08-142022-02-17Board Of Regents, The University Of Texas SystemTunable, pulsatile, and 3-dimensional fluidic oscillator
IT202300007872A1 (en)*2023-04-212024-10-21Pnr Italia S R L FLUID NOZZLE FOR DELIVERY OF A HIGH PRESSURE FLUID

Also Published As

Publication numberPublication date
CA935762A (en)1973-10-23
CA942676A (en)1974-02-26

Similar Documents

PublicationPublication DateTitle
US3563462A (en)Oscillator and shower head for use therewith
US3447753A (en)Spray washer with detergent feed
US3341132A (en)Spout diverter valve
US3332624A (en)Turret lawn sprinkler with oscillating mechanism
US3632046A (en)Spray nozzle
US3741481A (en)Shower spray
US5111994A (en)Flow booster apparatus
US3735778A (en)Driving of fluids
USRE27938E (en)Oscillator and shower head for use therewith
US4151955A (en)Oscillating spray device
USRE33159E (en)Fluidic oscillator with resonant inertance and dynamic compliance circuit
US4682734A (en)Spraying device having controlled additive fluid feed and a telescoping spray tube assembly
US3445067A (en)Eductor type proportioner
US3437274A (en)Liquid spray apparatus
US2719704A (en)Chemical mixing nozzle and water shut-off valve
US4886212A (en)Spraying device having controlled additive fluid feed and a telescoping spray tube assembly
EP0007950A4 (en)Oscillating spray device.
US3180580A (en)Hand sprayer having on-off control valve mechanism
US3568667A (en)Hydraulic teeth cleaner and gum massager
EP0386800A1 (en)Spraying device having controlled additive fluid feed and a telescoping spray tube assembly
US6581856B1 (en)Fluid mixer
US3529774A (en)Adjustable liquid spray apparatus
JPH0543879Y2 (en)
US4394965A (en)Pulsating shower using a swirl chamber
US4116382A (en)Spray nozzle for atomizing a liquid by directing it against an obstruction and having it mix with air

[8]ページ先頭

©2009-2025 Movatter.jp