United States Patent 72] inventors Will R. Pierie Tustin; Donald A. Raible, Corona; David L. Swendson, Garden Grove, Calif.
[21] Appl. No. 650,863
[22] Filed July 3, 1967 [45] Patented Jan. 5, 1971 [73] Assignee American Hospital Supply Corporation Evanston, Ill. a corporation of Illinois. by mesne assignment [54] CONTROLLABLE TIP GUIDE BODY AND OTHER REFERENCES Smith. et 21].: Surgery. vol. 27. no. 6. June 1950, pp. 817-821.
Primary Examiner Dalton L. Truluck Attorney-Lee R. Schermerhorn ABSTRACT: A device for general and selective angiography and other purposes having a handle, controllable tip guide body, injection tube unit and catheter outer body wherein the tip of the guide body may be bent, rotated, exposed and sheathed in the catheter by control means on the handle and injection tube unit, and locked in selected position, the several parts being usable as a complete assemblage and in different combinations. The guide body is made torsionally rigid so that the rotation of the tip corresponds to the manipulation of a rotator on the handle, the guide body rotating within the catheter outer body which is nonrotatable. The guide body extends through the injection tube unit which is interposed between the handle and the catheter outer body. The injection tube unit has a sliding telescoping part for extending the catheter outer body to sheath the guide body and for retracting the catheter outer body to unsheath the tip of the guide body.' For certain purposes the injection tube unit and catheter outer body may be removed and the guide body and handle used together as an operative unit. Also, the guide body is conveniently removable from the handle.
PATENIED JAN 5m: 3,552,384
sum 1 or 4 INVENTOR5= WILL R. PIERIE DONALD A. RAIBLE DAVID L.- SWENDSON Bag Attorney on on A .9 R 8 Q G 3 2\ 3 5S S 92 lvwwl EW PATENTEU JAN 5197:
SHEET U 0F 4 INVENTORS: WILL R. PIERJE.
DONALD A. RABBLE pvm L. SWENDSON Aflorne I 1 CONTROLLABLE TIP GUIDE BODY AND CATHETER BACKGROUND OF THE INVENTION It is often desired to place a catheter or other instrument at a particular point in a body lumen, such as a blood vessel, which is difficult of access. In selective angiography, for example, the blood vessel often must be entered at some remote point and the catheter or instrument guided into a selected branch as it is pushed along throughthe vessel. The necessary guidance to effect entry into the selected branch involves the two variables of bending and orientation of bending.
The change of direction has generally been accomplished heretofore by the use of prebent catheter tips. This has advantages for certain purposes but the configuration of the bend cannot be changed after the catheter has been inserted entire length. It isdesireable to provide precise control of the orientation of the bendable tip as well as the degree of bending and it is further desirable to afford greater flexibility in the manner in which such instruments may be used in blood ves' sels and other body lumens. Torsional rigidity is necessary for control of orientation.
SUMMARY OF THE INVENTION This invention relates to an improved controllable tip guide body which may be used to guide a catheter tube or other instrument into a relatively inaccessible location in a blood vessel or other body lumen and to an improved intralumenal device including such a guide body.
The present instrument comprises a handle detachably connected with an injection tube unit. A catheter outer body may be detachably mounted on the'latter. The handle carries a controllable tip guide body which extends through the injection tube unit and catheter outer body and is removable therefrom. The guide body is freely flexible in bending but torsionally rigid. It has a tip which is bendable in one direction. Devices are provided on the handle for bending and rotating the tip. Means are provided on the injection tube unit for sliding the catheter outer body on the guide body to expose or sheath the bendable tip. Means are also provided for locking the bending and sliding adjustments in selected positions.
The detachable connections are arranged in such a way that the guide body may be inserted intothe vessel first and then the catheter outer body applied over the guide body, or the catheter outer body may be first inserted in the vessel and then the guide body inserted through the catheter. After the catheter has been inserted to its desired position in the vessel or other lumen, the handIe and guide body may be removed from the injection fitting and catheter. The injection tube unit may be used to introduce an X-ray opaque dye through the catheter either while the guide body remains in the catheter or after the guide body has been removed. These capabilities provide a flexibility of operation which is of great advantage to the surgeon and which has not been available in prior instruments.
Objects of the invention are, therefore, to provide an improved controllable tip guide bodyfor a catheter and other purposes, to provide a controllable tip guide body in which the degree of bending may be controlled and locked in selected adjustment on a handle part, to provide a controllable tip guide body and catheter combination in which the guide body tip may be sheathed and unsheathed by the catheter, to provide a catheter probe assembly having an inner guide bodywhich is rotatable within a nonrotatable catheter outer body, to provide an improved injection tube unit fora catheter of the type described to provide a handle having a controllable tip guide body and detachable injection tube unit and catheter wherein the guide body is removable along with the handle from the injection tube unit and catheter and to provide an instrument of the type described in which the several parts may be used in different combinations and as a complete assemblage.
The foregoing and other objects and advantages will become apparent and the invention will be better understood with reference to the following description of the preferred embodiment illustrated in the accompanying drawings. Various changes may be made, however, in the details of construction and arrangement of the parts and certain features may be used without others. All such modifications within the scope of the appended claims are included in the invention.
BRIEF DESCRIPTION OF THE DRAWINGS ,FIG. 1 is an elevation view of a complete instrument embodying the features of the invention, showing the bendable tip of the guide body unsheathed by the catheter;
FIG. 2 is view similar to FIG. 1, showing thebendable tip sheathed;
FIG. 3 is a longitudinal sectional view of the handle of the instrument, showing the palm lever in relaxed position FIG. 4 is an elevation view of the handle, with parts broken away, showing the palm lever in actuated position;
FIG. 5 is a view on the line 5-5 in FIG. 3;
FIG. 6 is a view on the line 6-6 in FIG. 3;
FIG. 7 is a view on the line 7-7 in FIG. 3', I
FIG. 8 is an exploded perspective view of the slide in FIGS. 3 and 4;
FIG. 9 is a longitudinal sectional view of the injection tube unit;
FIG. 10 is a view on the line 10-10 in FIG. 9;
FIG. 11 is an enlarged fragmentary sectional view showing a portion of the handle and a portion of the injection tube unit;
FIG. 12 is an elevation view of the catheter outer body;
FIG. 13 is an elevation view of the controllable tip guide body, with parts broken away, showing the tip in straight position FIG. 14 is a view similar to FIG. 13, showing the tip in bent position;
FIG. 15 is an enlarged longitudinal sectional view, showing the bendable tip portion of the guide body;
FIG. 16 is a view on the line l6-I6 in FIG. 15; I
FIG. 17 is an enlarged view on the line l7-l7 in FIG. 14; and
FIG. 18 is a view on the line l8-l8 in FIG. 17.
The complete instrument comprises a handle A, guide body B, injection tube unit C and catheter outer body D as shown in FIGS. 1 and 2.
Referring now to FIG. 3, the operating mechanism in the handle A is carried by atubular body member 10.Body member 10 has adistal end wall 11 provided with abore 12 to receive acylindrical rotator support 13. The rotator support is fixedly secured in this bore by setscrews l4. Extending through the rotator support is naxial passageway 15 which opens into asocket 16 in the outer end of the rotator support. The inside ofsocket 16 is provided with a plurality oflongitudinal grooves 17. Rotatably mounted on the outside ofsocket 16 is a threadedsupport collar 20 for connecting the injection tube unit C with handle A.
A knurledcylindrical rotator 21 is rotatably mounted onTeflon balls 22 on the inner end ofsupport 13. These balls are introduced through aradial bore 23 which is closed by ascrew plug 24. An index fitting 25 is fixedly mounted by press fit in intersect opposite sides ofpassageway 26 to form a transversely'elongated slot extending through the length of index fitting 25.1The adjacent ends of passageways and 26 are chamfered at 28. The distal end ofpassageway 26 is counterbored to form an enlargedcircular end portion 29 having a seating shoulder at 30. The proximal end of guide body B extends throughpassageway 15 and seats againstshoulder 30. The proximal end ofpassageway 26 is chamfered at 31. An axial tube is soldered onto the proximal end of index fitting 25, this tube being provided with a pair oflongitudinal slots 36.
A lever bracket is detachably mounted inbody 10 by means ofthumb screw 41. A forwardly extendingpalm lever 42 is pivotally mounted on apin 43 inears 44 on thebracket 40 as shown in FIG. 6. In order to reduce friction, thepin 43 is 7 preferably equipped with anoil-less nylon bushing 45.
Aslide bracket 46 is mounted onlever bracket 40 by means ofscrews 47.Slide bracket 46 is bored to receive abushing 48 for acylindrical slide 50 which is adapted to reciprocate and rotate in thebushing 48.Slide 50 is: urged toward the left in FIG. 3 by acompression spring 51 which is seated at its opposite ends on thebushing 48 and asupport washer 52 which is rotatable on the slide.Washer 52 abuts aradial flange 53 on the slide. The distal end ofslide 50 is equipped witha pair of radial guide pins 54 which are disposed in theslots 36 oftube 35.Slide 50 further contains anaxial passageway 55 in alignment with the in alignment with thepassageways 15 and 26, the distal end ofpassageway 55 being chamfered at 56.
Palm lever 42 is in bell crank shape having a forkedinner end 60 which straddlesslide 50 on the proximal side ofslide bracket 46. Theend 60 is rounded to function as a cam and is normally held in a limit position againstslide bracket 46 by acam washer 61 on the slide.Washer 61 is mounted so that it rotates when theslide 50 rotates, by means of asetscrew 62 which enters alongitudinal slot 63 in the slide. The position ofwasher 61 is fixed by aretainer 65 which bears against a thrust abutment in the form of a two-part stop washer 66.Washer 66 is mounted in acircumferential groove 67 inslide 50 as best shown in FIG. 8. The position ofwasher 66 is fixed by its abutment against the right side ofgroove 67 as shown in FIG. 3.
Whenpalm lever 42 is squeezed towardbody 10 as shown in FIG. 4, its cam-shapedinner end 60 bearing againstwasher 61 moves slide 50 to the right in FIG. 3, causingpins 54 to slide inslots 36. The purpose of this movement is to retract a pull wire, presently to be described, which bends the tip of guide body B. The proximal end of the guide body seats incounterbore 29 and the pull wire extends throughpassageways 26 and 55 and has its end anchored at the extreme proximal end ofslide 50 by means presently to be described. Such squeezing movement oflever 42 compresses thespring 51 and when the squeezing force on the lever is relaxed, the spring acts throughwasher 61 to return the parts to their FIG. 3 position.Slide bracket 46 acts as a stop for this return movement, aswasher 61presses lever end 60 against the end ofbracket 46.
Slide 50 may be rotated at all times 'by finger and thumb manipulation ofrotator 21.Rotator 21 directly rotates the guide body seating bore 29 and indirectly rotatesslide 50 through itspins 54. During such rotation,washer 61 slides freely against theinner lever end 60 regardless of the position of the lever.
An adjustable anchor for the guide body pull wire will now be described with reference to FIG. 3. Aslide cap 70 is mounted for longitudinal sliding movement on the end ofslide 50. For this purpose theslide 50 is provided with alongitudinal tongue 71 which is received in aslot 72 in one side of the slide cap. The slide cap is externally threaded at 73 for engagement with aninternallythreaded adjustment nut 75. The
inner end of nut is externally threaded at 74 for connection with theretainer 65, this connection being screwed tightly together so that the retainer will rotate as a part of the nut. Thus, the longitudinal position ofnut 75 is fixed byretainer 65 which is confined betweenstop washer 66 andcam washer 61 so thatrotation of the nut causesslide cap 70 to move longitudinally onslide 50.
Slide cap 70 has a slot for the guide body pull wire with a narrowcentral portion 76 interconnecting awider end portion 77 and ahole 78.Wide portion 77 has aseat 80 for a button on the end of the pull wire whilehole 78 forms a smooth bore angular passage for insertion of the pullvwire' from the distal end of the handle. The inner end of this slot communicates withpassageway 55 and the proximal end' ofpassageway 55 is chamfered as indicated at81.- at .-1.. t v
The proximal end ofbody 10 is covered-by a'cap85 having an opening 86 therein for the adjustinglnut-75. This cap is secured to handlebracket 40 byscrews 87. Mounted on the cap is a lockingthumb screw 90 for holding the palm-lever 42 I in adjusted position. The inner end of this thumb screw has i threaded engagement with a bore- 91- in lever bracket. 40.
Thumb screw 90 extends between. the forks of lever end portion 60 and is equipped with anabu tment flange 92 which is FIG. 4. a
By removingthumb screw 41, the'entire assemblage ofpalm lever 42,brackets 40 and .46; slide '50 ,"andadjustment devices 75 and 90 are removable through the proximal end' ofhandle body 10. I I I Injection Tube Unit C and Catheter Outer Body -D Referring now to FIG. 9 the injection tube unit C comprises an injection tube slidably mounted in aguide tube 101. The guide tube has a threaded proximal end.102 for detachable connection withsupport collar 20 on the handle A and aprojection 103 to fit in the socket l6as shown in FIG. 11.Lands 104 fit ingrooves 17 so that the unit will fit in the handle in different rotative positions but' will be' fixedly held against relative rotation. e
Astop screw 105 intube 100 extends through alongitudinal slot 106 inguide tube 101. Tighteningscrew 105 clamps the two parts in adjusted position and loosening the screw permits longitudinal movement of theinjection tube 100 in theguide tube 101 within the range of travel allowed by end stops .107 and 108. The injection tube is shown fully retracted in FIGS. 1 and 9 and fully extended in FIG. 2.
Injection tube 100 has anaxialv passageway 110 for the guide body B. The distal end of the injection tube is provided with a branch fitting 111 communicating withpassageway 110 and immediately on the proximal side of branch 111 is ashutoff valve 112 to open andclose passageway 110. The distal extremity of tube 100is threaded at 113for connection with the catheter outer body D. Fitting 111 maybe use'dfor injecting dye or medication through catheter outer body D, for withdrawing a blood sample or for taking blood pressure measurements.
Theproximalend'of injection tube 100 is threaded at119 to receive a squeeze .nut 120 containing a.resilientrubber O-ring 121.Nut 120 is adjusted to squeeze the O-ring. sufficiently to effect a seal with the guide body B at theendiof passageway 110 while still permitting the guide body to beihserted and removed through the O-ring, as shown in FIG. 11. Thus,,whenvalve 112 is open and guide body B is in place inpassageway 110, the passageway is sealed by O-ring l21so that fluid'in jected through branch 111 cannot escape fromtube 100,-and enter the handle A. When-the -guide body is removed in a proximal direction, valve ll2;is closed as soon: as the distal end of the guide body has'cleared the valve in FIG. 9.- but-;before the end of the guide body has cleared the-seal l 2-1;-. After' the guide body has been completelywithdrawmthe'valve 112, prevents any fluid in branch"1-11"a'rrd outer body D from escapingfromtube 100. i r T The catheter outer body D 'is shown in FIG:- 12. This is simply a flexible plastic tube' having'a screw threaded fitting 126 on its proximal end for connection wit the threadeded l ever end 60 as shown inmember 113 in FIG 9. Thedistal end 127 oftube 125 is open so that guide body B may be projected as shown in FIG. 2 and for the other purposes mentioned.
Guide Body B Guide body B is illustrated in-FIGS. 13 to 18. This guide body comprises a flexibleplastic tube 140 having a tip end and cannot be compressed lengthwise, although it is freely flexible in bending. The mandrel on whichcoil 155 is wound is of a suitable size so that the pull wire 150'will be freely slidable therein. Surroundingcoil 155 is a tightly woundtriple wrap coil 156 of finer wire in three layers as best shown in FIG. 17. The center layer is wound in the opposite direction from the inner and outer layers. That is to say, that if the center layer is wound clockwise, the inner and outer layers are wound counterclockwise.Coil 156 is wound on a mandrel of a size to form an inside coil'diameter suitable for insertion ofcoil 155.
Coil 155 may be omitted if desired.Triple wrap coil 156 in itself provides adequate thrust resistance for the pull wire.
The purpose of the three layer,triple wrap coil 156 is to provide torsional rigidity for guide body B while still retaining free flexibility in bending. Since the middle layer ofcoil 156 is a locked between the inner and outer layers, the middle layer can neither contract nor expand radially when the tube is stressed in torsion in opposite directions of rotation. Also, the inner layer cannot expand in one direction of rotation and the outer layer cannot contract in the oppositedirection of rota tion. This internal and external restraint eliminates all torsional flexibility so that when one end of the tube is rotated about its axis, the opposite end will rotate preciselythe same amount. v
Such rotation is imparted by theflat tongue 160 on the end of fitting 142 which fits in thegrooves 27 of index fitting 25 on therotator 21 in FIG. 3. Fitting 142 has aflat end surface 161 which seats against theshoulder 30. FIG. 11 shows these parts in assembled relation.
Guide body tube 140 further includes an outer layer ofplastic 162 which encloses the wire coil assemblage just described and provides a smooth outer surface to minimize sliding and rotating friction against other objects.Plastic 162 also prevents leakage of any fluid into thecoils 155 and 156. Fitting 142 is secured tightly to thetube 140 so as to transmit rotative movements ofrotator 21 to the tube. Pullwire 150 slides freely in abore 163 in the fitting 142.
The distal end oftube 140 is equipped with a tip junction fitting 165 which is likewise securely attached to the tube. The opposite ends of bothcoils 155 and 156 seat against end walls in the twofittings 142 and 165 as shown. Fitting 165 has abore 166 slidably receiving thepull wire 150. Fitting 165 has anextension 167 with aflat side 168 offset frombore 166 on which is soldered a proximal end of a metalleaf spring member 170. The distal end ofspring leaf 170 is similarly sol-- dered to atip wire fitting 171. Full wire'150 extends along one flat side ofspring leaf 170 and the end of the pull wire is soldered at 172 to the fitting 171.
Spring leaf 170 and pullwire 150 are enclosed in a cage formed by wrapping awire 173 around the two elements in spiral configuration. One end ofwire 173 is soldered at 174 tospring leaf 170 and fitting 165 and the other end is soldered at 175 tospring leaf 170 andfitting 171. Thespiral wrap 173 is sufficiently loose that it does not impede free axial movement ofpull wire 150.
Themetal parts 165, 170,171 and 173 are then coated with a primer and pullwire 150 is coated with a lubricant and aplastic covering 176 is molded around the parts as shown. The
plastic bonds itself to the primer coated surfaces but does not adhere to pullwire 150 whereby the latter may slide freely through the plastic and throughwire cage 173 for bending thetip 141. During the molding operation the plastic 176 on the tip is merged with the plastic 162 on the tube portion making a smooth surfaced juncture completely covering the fitting 165. Thetip 141, however,'may be molded separately and attached to thebody 140.
When pull wire is drawn through fitting 165, leaf spring is caused to bend, producing the curved tip configuration shown in FIG. 14. Coil 155in themain tube portion 140 acts as a thrust member to prevent snaking of the whole length of the guide body when the pull wire is-tensioned. Thus, thetip 141 may be bent at any angle desired up to 180. I
An advantage of the present form of construction ofguide body tube 140 is that this tube may be manufactured conveniently incontinuous length and then cut to the desired lengths for different surgical purposes. Thebendable tip portions 141 may be standardized and used with anylength tube portion 140. This effects distinct economy in manufacture while still permitting the different lengths required by surgeons.
Adjustment nut 75 in conjunction withslide cap 70 in FIG. 3 allowsfor reasonable manufacturing tolerance in the length ofpull wire 150. In installing guide body B in handle A, the
.button 151 is inserted in' a proximal direction throughpassageways 15, 26 and 55 until the button appears inwide slot portion 78 ofslide cap 70. The depth of insertion is limited by the seating of tube fitting 142 againstshoulder 30. If necessary, adjustingnut 75 is turned to retractslide cap 70 into the nut untilbutton 151 is emergent from the slide cap so thatguide wire 150 may be passed through thenarrow portion 76 of the slot to the upperwide portion 77 in FIGS. 3 and 7. Thennut 75 is rotated in the reverse direction toseat button 151 against theseat 80. This longitudinal adjustment ofslide cap 70 thereby compensates for any variation in the distance betweenbutton 151 and the proximal end fitting 142 on thetube 140.
Whenlever 42 is squeezed towardhandle body 10, theentire slide 50 is moved rearwardly carrying with it slidecap 70 andnut 75 and causingtip 141 to bend. A desired degree of bending may be retained by means of locking thumb screw 9 is previously described.
Guide body B is removed from handle A by merely returningpalm lever 42 to its FIG. 3 position and movingslide cap 70 inwardly by rotatingnut 75 untilbutton 151 emerges from thewide slot portion 77. Then pullwire 150 is shifted throughnarrow slot portion 76 to .the oppositewide slot portion 78. Guide body B may then be withdrawn from the distal end of the handle.Passageway 55 andhole 78 are of sufficient width to permit thebutton 151 to pass freely through the angular juncture. Y
Operation The parts A, B, C and D may be assembled in different order andused in different combinations for different purposes.
In one type of-use guide body B may be assembled with handle A without injection tube unit C and catheter outer body D. After guide body B has been advanced to its destination in a blood vessel or other body lumen, the handle A maybe removed and catheter outer body D, with or without injection tube unit C, may be introduced over guide body B and inserted into the vessel or lumen to follow the path of the guide body. Then guide body B may be withdrawn if desired, leaving outer body D in the vessel.
Alternatively, the catheter outer body D, with injection tube unit C attached, may be inserted first for a distance into the vessel or lumen and then the guide body B, assembled with handle A, may be pushed through the injection tube unit and catheter outer body and the handle connected with the injection tube unit. Then the complete. assemblage may be advanced farther into the vessel or into a. branch of the vessel.
gthe desired vessel, then setting guide body B and catheter outer body D into this vessel for further advance in the vessel or into a branch vessel.
. In a third alternative, the 355 B and D of the complete assemblage may be inserted in the vessel or other lumen. This shown in FIG. 1 or with the catheter outer body projected to cove the bendable tip of the guide body as shown in' FIG. 2. In some cases, it is most effective to proceed with a step-by-step movement advancing first the guide body B and then the catheter outer body D by slidingstop screw 105 back and forth in itsslot 106 in FIG. 9 and continuing in this manner until the objective has been reached. In this connection, it will be mentioned that thebendable tip portion 141 of the guide body will bend the catheter outer body D when completely enclosed by the latter,'when desired.
The instrument may be used in three different catheterization techniques known as cutdown, percutaneous with separate guide wire and percutaneous using guide body B in place of separate guide wire. The cutdown procedure involves simply cutting through the overlyingtissue to obtain access to cannulating this vessel and, finally, in-
ln the general percutaneous procedure,a conventional flexible guide wire is first inserted into the vessel and then the catheter outer body D is inserted over the guide wire. Injection tube unit'C may be assembled to the catheter outer body D optionally before or after the catheter outer body is inserted over the guide wire. Then, the flexible guide wire is removed and guide body B, assembled with handle A, is inserted through injection tube unit C and catheter outer bodyD for further advance.
In the second percutaneous procedure, guide body B is inserted through the needle cannula into the vessel. Then the cannula is removed over the proximal end of guide body B and catheter outer body D is inserted into the vessel over guide body B. Handle A may be assembled to guide body B before or after the guide body is inserted through the needle cannula into the vessel. Likewise, the injection tube unit C may optionally be assembled with the catheter outer body D before or after the latter is inserted into the vessel over guide body B. A surgeon will usually elect to minimize the bulk assembled to intralumenal devices during the installation phases, hence will defer attachment of assemblies and instrumentalities.
Specialized types of catheters may be used instead of the plan tube catheter outer body D. For example, the guide body B is of particular advantage in guiding a double lumen balloon catheter to a desired location in the body. Such catheter is attached to the injection tube unit C for injection of an X-ray contrast medium or localized medication through branch connector 111. With the vessel occluded by inflation of the balloon, washing of the blood is minimized and less contrast dye ormedication is required.
The present instrument is also useful in connection with other specialized instrumentalities. For example, in fiber optics visualization guide body B is used as previously described to get an outer body tube D to the desired location within the body. Then the guide body B is removed and a fiber optic device inserted through the outer body D for the visualization study. Similarly, the present instrument may be used to guide the placement of other devices such as flow probes, pressure probes, etc.
For still other purposes, a PH probe, pressure transducer or thermistor is attached to the tip of guide body B which my then be used advantageously in combination with a double lumen balloon catheter. Very selective localized measuremetres of a variety of kinds are thereby possible concurrently with angiography or administration of medication in a single procedure. Such modifications are applicable to systems other than vascular, such a the urinary system.
The foregoing examples are merely illustrative of the wide variety of uses of the present instrument. Still other applications are possible and the field of use is not intended to be limited tojthe specific examples cited.
The handle A is easily taken apart for cleaning and autoclaving and is reusable indefinitely as is also the injection tube unit C. Guide body B is intended to be reusable for a limited timefCatheter outer body D is essentially'a single-use, disposable device, although it may be cleaned, sterilized and reused a number of times, if desired.
Two other advantages of major importance are the rotatability of guide body B continuously in one direction without twisting the pull wire and therotatability ofzthe guide body within the nonrotatable catheter outer body D.. ln regard to the former, it will be observed in FIG, 3thatrotator 21 rotates the pull wire anchorage in slide cap70 together with index fitting 25 which rotatesguide body tube 140. There is no restraint upon the degree of rptation. The advantage of the latter is that the smooth inner surface of catheter other body D imposes less frictional resistance against rotation ofthe guide body than does the inner surface of a body lumen. This makes it easier to orient the bendable tip. v I
1. An instrument comprising an elongated flexible guide body having bending means in its tip portion, a pull wire in said guide body for actuating said bending means, a handle lo'n the proximal end of said guidebody, means in said handle connected with said guide bodyforfrotatling said guide relative to said handle, means in said handle for pulling sa d'piill wire relative to said guide body,.an injection tube unitfi'xedly mounted on said handlega catheter outer body fixedly mounted on a portion of said injection tube unit, said guide body extending through saidcatheter outeribod'y and said 'injection tube unit, detachable connections between the proximal end of said injection tube unitand said handle and between the distal end of said injection tube unit and said catheter outer body, a shutoff valve insaidinjection tube unit arranged to close a passageway for s'aidjg uide body in said unit, a branch fitting on said injectiori'tube unit between said valve and the distal end of the unit, and a resilient circular seal in said unit on the opposite side of said valve engaging said guide body. I s
2. A handle for a flexible, elongated controllable guide body having a pull wire extending out of said body for bending.
said tip; said handle comprising an elongated body member, a rotator on said body member, a slide mounted in said body member for rotation and reciprocation on the axis of said rotator, means on said rotator or rotating said slide, means on said handle for reciprocating said slide, axial'passageways through said rotator and slide, an axial thrust seat in said rotator passageway for the proximal end of said guide body, an axial thrust seat on said side at the proximal end of said slide passageway for a button on the proximal end of said pullwire, a hole in the proximal end of said slide at one side of said button thrust seat arranged to convey said button toa'position emergent from said slidewhen said guide body and'pull wire are inserted in said passageways, and a slot of less width than said button interconnecting said hole and button seat for lateral transfer of said pull wire from said hole to said button seat for seating said button. a
3. A handle as defined in claim 2, said rotator bein'g sit'uated at the distal end of said slide, said rotator having a sliding connection with said slide for rotating the slide. I
4. A handle as defined in claim 2, including means for adjusting said button seat lengthwise on said slide.
5. A handle as defined in claim'Z, including adjustable stop means on said handle to hold said slide in longitudinally adjusted positions. '5
6. A handle as defined in claim 2,-includin'g 'a connec'tor on the distal end of the ha'ndleifor mounting a tub'iila'rrii'rnber over said guide body.
7. A handle as defined in claim 2 includinga rotator support having an outer end extending outside of said handle-find means on said outer end of saidrotator support for mounting a tubular member concentric with said passageways:
8, A handle as defined in claim 2, including aspri gurging said slide in a distal direction, said means for reciprocating said slide comprising a lever on said handle arranged toi'nove said slide in a proximaldirection. v
9. A handle as defined in claim 8, including a lever bracket in said body member having a pivotal support for said lever, a slide bracket mounted on said lever bracket and having a bearing for said slide, said lever having a cam-shaped inner end, a cam washer on said slide engaging said cam-shaped inner end, and a thumb screw securing said lever bracket in said body member, said brackets, slide and lever being removable from said proximal end of said body member as a unit when said thumb screw is removed.
10. An injection tube unit comprising a guide tube, an injection tube slidably mounted in said guide tub, a longitudinal passageway through said injection tube, a shutoff valve for said passageway, a branch fitting communication with said passageway between said valve and one end of said injection tube, and a resilient circular seal in said passageway at the opposite end of said injection tube arranged to engage a body extending through said passageway.
11. An injection tube unit as defined inclaim 10, said one end of said injection tube projecting out of one end of said guide tube, connector means in communication with said passageway on said one end of said injection tube, and connector means in communication with said passageway on the opposite end of said guide tube.
12. An injection tube unit as defined inclaim 10, including a longitudinal guide slot in said guide tube, a stop screw in said injection tube slidable in said slot, and stop means for said screw at the opposite ends of said slot.
13. A torsionally rigid controllable tip guide body comprising a plural layer wire coil having adjacent turns in each layer in contact with each other and adjacent layers wound in opposite directions, a pull 'wireslidable in said coil, a distal end fitting on said guide body abutting the distal ends of said coil and layers of wire, a spring leaf having a proximal end connected with said fitting, said pull wire extending slidably through said fitting and connected with the distal end of said spring leaf, and a continuous plastic covering over said coil, said fitting and said spring leaf and pull wire, said plastic being adherent to said coil, fitting and spring leaf and nonadherent to said pull wire,
14. A guide body as defined inclaim 13, including guide means for said pull wire along the length of said spring leaf.
15. A guide body as defined inclaim 14, said guide means comprising a coil of wire surrounding said spring leaf and pull wire.
16. A guide body as defined inclaim 13, including a fitting on the proximal end of said guide body having an end seating surface and a flat tongue extending therefrom for rotating the guide body. l
17. An instrument comprising an elongated flexible and torsionally rigid guide body having bending means in its tip portion, a handle on said guide body having means to operate said bending means and means to rotate said guide body relative to said handle, a catheter outer body surrounding said guide body, and means connected with said handle and said catheter outer body arranged to slide said catheterouter body on said guide body so as to sheath and unsheath the bendable tip portion of said guide body, said last means holding said catheter outer body nonrotatable relative to said handle.