Feb. 4,1969- J GULDE 3,425,105
C. APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH VARIED COLOR AND TEXTURE Filed Sept. 23, 1965 Sheet of 4 INVENTOR.
CHARLES JAMES GULD ATTORNEY 3,425,105 BRICKS MG CONCRETE FACING coma AND TEXTURE mmnu - Sheet uuuunn INVENTOR.
ATTORNEY Feb. 4, 1969 c. J. GULDE- 3,
' APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH VARIED COLOR AND TEXTURE Filed Sept. 23, 1965Sheet 3 of 4 F/G/l F G. /2 CHARLES JAMES GULDE ATTORNEY IN VEN TOR.
Feb. 4, 1969 J. GULDE 3,425,105
APPARATUS FOR MAKING CONCRETE FACING BRICKS WITH YARIED COLOR AND TEXTURE Filed Sept. 23, 1965Sheet 4 r'4 FIG. /3 l 25s\ |7a L 1 25m 170k I 25s;L 169/ 175 I781 CHARLES JAMES GULDE INVENTOR.
ATTORNEY I74 u 229 I68 I73 United States Patent APPARATUS FOR MAKING CONCRETE FACING 3 Claims ABSTRACT OF THE DISCLOSURE This disclosure comprises a process of and apparatus for producing concrete bricks. The apparatus comprises a cooperative combination of a block making machine slurry spraying apparatus and a slurry flow and spray control arrayed and interconnected to rapidly coat the vertical walls of the mold chambers of the block making machine on each short cycle of its block producing operation in a manner utilizing the action of the machine to distribute colored pigment in the slurry on the brick surface as desired. The disclosure also comprises the product of such a process. The product is a concrete brick with a sufliciently smooth and attractively colored surface to be used as a facing or outside surface building unit. The process provides for applying colors as color mixes to a portion of one or more vertical faces of mold chambers in a block making machine prior to adding concrete mix thereto and rapidly thereafter adding concrete mix and vibrating the mold to compact the mix and concurrently distribute over the surface of the material in the mold portions of the color mix to achieve a desired color effect; the color mix applied to the mold surfaces may be changed according to a predetermined pattern on each batch of bricks. The process is capable of considerable variation. The product, according to one embodiment thereof, has a smooth and colored surface. The concrete bricks produced by the process of this disclosure have improved mechanical characteristics as well as attractive appearance. One embodiment of the product according to this disclosure has the general appearance of a clay brick that has undergone substantial aging.
This invention relates to concrete bricks for building purposes.
Accordingly, one object of this invention is to provide apparatus for producing a new and useful concrete brick, i.e., a brick that may be used for the exterior facing of a building but which is made of concrete.
Another object of this invention is to provide apparatus for producing an improved concrete brick.
Yet another object of this invention is to provide an apparatus for producing colored and/or imperforate appearing bricks.
Yet another object of this invention is to provide apparatus for producing concrete facing brick with the colored components and the support components mutually interpenetrating at the surface of the bricks and the color components of the concrete being specifically distributed on the brick surface according to a variety of plans and effects.
Other objects of this invention will become apparent to those skilled in the art on a study of the below drawings which form a part of the specification and wherein the same numerals refer to the same parts throughout.
FIGURE 1 is a perspective view of the apparatus of this invention, comprising a conventional block making apparatus operatively attached to a pigment slurry spray and control subassemblies to produce the product of this 'ice invention; thestamp subassembly 71 is here shown in its uppermost position;
FIGURE 2 is, generally, a front perspective view of thezone 2 of the apparatus shown in FIGURE 1; more particularly, this view shows themold frame 50 and related parts of the block making apparatus as seen along the line of discharge from thecenter spray head 126;
FIGURE 3 is a top and side oblique view of a single brick made according to this invention;
FIGURES 4, 5, 6, 7, 8, and 9 are, respectively, views of the faces of the block shown in FIGURE 3 along the direction of thearrows 4, 5, 6, 7, 8, and 9, respectively;
FIGURE 10 is a diagrammatic perspective view of the main subassemblies of the apparatus shown in FIGURE 1; this figure is a composite figure: it shows in dotted lines a pallet in its position prior to when the feed drawer moves over themold frame 50 and shows apallet 86 in full lines in its position after the concrete bricks have been formed by vibration and are stripped frommold frame 50 and are ready for transfer to thedischarge conveyor 89;
FIGURE 11 is a microphotograph View of zone 11 of FIGURE 5;
FIGURE 12 shows a microphotographic view ofzone 12 of FIGURE 5; this is shown to the same scale as in FIGURE 11;
FIGURE 13 is an overall diagrammatic view of the spray sequence controller subassembly showing the electrical apparatus elements and their connections for control of the sequence in which the spray subassemblies are actuated;
FIGURE 14 is a diagrammatic representation of a spray timer control subassembly for feed and discharge of one of the spray subassemblies;
FIGURE 15 is a diagrammatic showing of overall relations of the major subassemblies which perform the process steps of this invention; and
FIGURE 16 is a portion of a brick wall produced with the bricks of this invention.
Theapparatus 16 according to this invention, to perform the process and provide the product of this invention comprises ablock making apparatus 17 in operative combination with a pigment slurry spraying subassembly 19.
Theapparatus 17 is a standard block making machine such as in U.S. Patent No. 2,366,780. It comprises a bin and chute subassembly 20, a feed distributor subassembly 26, a motor andframe subassembly 21, a mold andvibrator subassembly 30, a stamp andstripper subassembly 32, and a pallet feed andconveyor subassembly 36.
The bin andchute subassembly 20 comprises aconventional bin 18 and, operatively connected thereto, a discharge chute therefor, 22. Aslidable valve plate 24 is located at the bottom of thechute 22, seals it and provides for controlling the discharge of material therefrom. Amixer 265 feeds concrete mix 35 into thebin 18.
Thefeed distributor subassembly 26 comprises amovable feed drawer 25 and a movablecutoff plate subassembly 28. Thedrawer 25 is located below thechute 22 and separated therefrom by thevalve plate 24. The feed drawer is moved between its rearmost or feed position shown in solid lines in FIGURE 2 and FIGURE 10, which is to the rear (as herein described) of themold frame 50 and its forward discharge position, shown in dotted lines in FIGURE 2, by its actuation subassembly 29.
The mold and vibrator subassembly 30 comprises amold frame 50 with a plurality of like rectangular chambers therein such as 51, 52, 53, 54, 55, and 56. The mold frame is supported on a pallet as 85. Thepallet 85 is supported on resilient pier members as 41 and 42.Frame 50 has a vibratory subassembly as 43 on each side there- 3 of.Subassembly 43 comprises eccentric weight members as 44A and 44B firmly fixed on ashaft 45. Theshaft 45 is rotatably mounted in hearings in mold ears 48 and 49 which ears are firmly attached to themold frame 50. Each shaft as 45 is driven, as by pulley, 46, by motor as 61.
The motor andframe subassembly 21 comprises the block makingmachine frame 66 mounted on thefoundation 67, and mold vibration motors 61 and 62 mounted on theframe 66. The mold vibration motors 61 and 62 each drive a pulley, as 46, by a belt, as 47, between each motor and pulley. The motor 61 drives apulley 46 on one side of themold frame 50 and another similar drive wheel pulley serves to transmit power from the motor 62 to a vibration generating subassembly similar to 43 on the other side offrame 50. Theframe subassembly 66 is provided with a feed drawer motor anddrive subassembly 68 which is operatively connected to the feed drawer actuation subassembly 29 (as described in U.S. Patent No. 2,366,780).
The stamp andstripper subassembly 32 comprises a set of stamps as 71 through 76 which match and enter the chambers such aschambers 51 through 56 respectively in theframe 50. Astamp drive mechanism 69 is supported onframe 66 for the stamp subassembly 32 (as described in U.S. Patent No. 2,366,780).
Theconveyor subassembly 36 comprises the conveyor frame 80 on which are supportedconventional conveyor chains 82 and 83 and pallets as '84, 85, 86, and 87. Theconveyor feed portion 88 passes pallets as 84 and 85 to the supports, as 41 and 42 therefor below themold frame 50. The pallets as 86 and 87 with the plastic bricks thereon move away from theframe 50 on thedischarge portion 89 of the conveyor. Details of such conventional structures are given in U.S. Patent No. 2,366,780.
The pigmentslurry spray subassembly 19 comprises a slurry tank subassembly 92, a slurry pipe andvalve subassembly 94 and a slurry flow andspray control subassembly 96.
The slurry tank subassembly comprises threesimilar tanks 101, 102 and 103 each of 55 gallon capacity and each is firmly supported on atank support frame 104 at a level substantially higher than themold frame subassembly 50. In the preferred embodiment the bottoms oftanks 101, 102 and 103 are all at the same level and 20 feet above the top ofmold frame 50. Each tank as 101, 102, and 103 is connected by its discharge line as 105, 106, and 107 at the bottom thereof to a one-way check valve 109, 110, 111, respectively.
The slurry pipe and valve subassembly 94- comprisescheck valves 109, 110, 111;metering conduits 113, 114, 115; ventlines 117, 118, 119; spray heads 125, 126, 127; ventline valves 135, 136, 137;discharge head valves 138, 139, 140; a compressedair reservoir tank 132;air manifold line 134;air inlet lines 121, 122, 123; and airdischarge control valves 128, 129, and 130. Thecheck valves 109, 110, 111 are respectively connected to the top portion of downwardly extending verticalspray metering conduits 113, 114 and 115 respectively. Tho top ofconduits 113, 114 and 115 are respectively connected to the inlet portion ofvent line valves 135, 136, and 137 respectively; the outlet ends ofvalves 135, 136, and 137 are operatively connected to the bottom portion of upwardly extendingvent lines 117, 118 and 119.Lines 117, 118, and 119 extend to the height of the top oftanks 101, 102 and 103. Valves 109, 110' and 111 are belowvalves 135, 136 and 137. Below the connection ofvalves 109, 110 and 111 thereto, each vertical spray metering conduit line as 113, 114 and 115 is operatively attached to an air inlet line, as 121, 122, and 123 respectively and, at its bottom end to a slurry discharge spray head, as 125, 126, and 127, respectively. Theair inlet lines 121, 122, and 123 are provided with airdischarge control valves 128, 129 and 130 respectively; and such valves control the air flow to the corresponding spray head for that line from theair reservoir tank 132 byair manifold line 134.
Thetank 132 is operatively attached to aconventional air compressor 133 therefor, and itsindicator controller 147.
The spray lines 113, 114 and are rigid 1 OD. steel pipes and at their lower end, adjacent the spray head therefor are provided withspray head valves 138, 139 and 140 respectively, which control the discharge from saidlines 113, 114, and 115 through the spray heads therefor. Thelines 113, 114 and 115 are firmly supported onframe 66 by abracket 142 which is firmly attached to frame 66 andlines 113, 114 and 115. Thereby theheads 125, 126 and 127 are firmly supported to the front of the most forward extension of thefeed subassembly 26 and above the top of theframe 50 and below the uppermost extension of the bottom of thestamp subassembly 71, as shown in FIGURES 1, 2 and 10. FIGURE 2 is taken along a view of themold frame 50 as seen along the axis of slurrydischarge spray head 126. Each spray head as 125, 126, and 127 is aligned to direct slurry fromtanks 101, 102, and 103 respectively in a stream or spray to initially strike the back faces (the faces to the rear) ofmold frame 50 of all the mold cavities or chambers such as 51, 52, 53, 54, 55, and 56, offrame 50.
The slurry flow andspray control subassembly 96 comprises a spray sequence controller subassembly and a spraytimer controller subassembly 152. Thesubassembly 150 is operatively connected to and actuated by the stamp drive mechanism subassembly '69 and is operatively connected to and actuates one or all of the subassemblies ofsubassembly 152.Subassembly 152 is operatively connected to and actuates various valves ofsubassembly 94. Thevalves 138, 139, 140 and 128, 129 and 130 and 135, 136 and 137 are all actuated electromagnetically by relays therefor as below described for the valves ofsubassembly 153.
Subassembly 152 comprises a plurality of like individual spray subassemblytimer control subassemblies 153, 154 and 155 for respectively the valves associated with each of thelines 113, 114 and 115 respectively. As thesesubassemblies 153, 154 and 155 are alike the description ofsubassembly 153 applies to thesubassemblies 154 and 155.
Thesubassembly 150 comprises anactuator switch subassembly 160,step switch subassembly 162, sequence choice switches as 163 through anddistribution lines 253, 254 and 255 all operatively connected.
Switch subassembly 160 comprises (a) aswitch support bar 159 which is rigidly attached to frame 66 and firmly supported onfoundation 67 and (b) afeeler switch subassembly 158. Thesubassembly 158 comprises arigid casing 157 supported onbar 159. The casing supports a switch feeler arm and aswitch 191.Arm 190 is operatively attached to switch 191 and spring means keepsarm 190 in extended position whereby theswitch 191 is normally open.Switch 191 is connected at one end or terminal to apower source 192 and at its other end or terminal is connected by theactuator line 161 to Stepswitch 162.Arm 190 extends from casing 157; thearm 190 is actuated by contact with a link member, as 195, which is a part of thestamp drive mechanism 69.Arm 190 is moved bymember 195 and actuates (closes) switch 191 'at the time the stamp orpressure head subassembly 71 is raised to its uppermost position as in FIGURE 1, becauselink 195 attached tosubassembly 71 is then raised and strikes the arm 190: this striking and closing ofswitch 191 passes power fromsource 192 toelectromagnetic drive piston 197 ofstep switch 162.
An arm 199 ofpiston 197 then turns step slave wheel 200 ofstep switch 162 one step in a predetermined sequence of spray compositions. The step switch control wheel 200 is firmly and operatively connected to and rotates rigidstep switch shaft 202 about its axis and so actuates each of a set of eccentric sequential step switch plates as 203209 also attached to that shaft.
Each step switch plate as 203-209 actuates one of a pair of normally open electrical switch contact points as 213-219 respectively.Points 213 only are shown in closed position in FIGURE 13. One of each pair of points, as 213219 is connected topower source 192 and the other of each pair is connected to the solenoid coil of a relay switch as 223-229 respectively. Each relay solenoid coil serves to actuate a relay switch (as 230 and 231 forcoils 223 and 224, respectively). Each such switch as 230 is operatively connected to one terminal of each of three switches as 163, 164 and 165.
Eachswitch 163, 164 and 165 is connected at its other terminal tolines 253, 254 and 255.Lines 253, 254 and 255 are each respectively connected tosubassemblies 153, 154 and 155.
Each relay as 223, 224, 225, 226, 227, and 228 is connected by three switches (163, 164, 165 for relay 23; 166, 167, 168 forrelay 224; 169, 170, 171 forrelay 225; 172, 173, 174 forrelay 226; 175, 176, 177 forrelay 227; 178, 179, 180 for relay 228) whereby each position of thestep relay switch 162 may actuate any or all of thesubassemblies 153, 154 or 155. FIGURE 13 diagrammatically shows the relations of Table I.
In the preferred embodiment,switch 162 is a 9-position step switch and each closure of theswitch 191 by movement ofarm 195 of pressure head subassembly 71' sequentially brings one other plate of the step switch into operation, whereby a predetermined sequence of actuation ofsubassemblies 153, 154 and/ or 155 and spray from tank 101 and/ ortank 102 and/ or tank 103 into themold 50 is achieved.
subassembly 153 comprises a firsttime delay subassembly 240, a secondtime delay subassembly 244, andelectromagnetic solenoids 242, 243 and 245 actuating the pistons ofvalves 128, 138 and 135 respectively. These are operatively connected as shown in FIGURE 14. The representation of the electrically operated valves conforms in general to the Recommended Practices Committee of Instrument Society of America. Such solenoid operated control valves are conventional (pages 260 and 258 of Handbook of Measurement and Control, Instruments Publishing Co., 1951). The time delays are also conventional and may have a wiring diagram as shown in Figures 4-9', page 62, Typical Electronic Timing Relay Circuit, and as discussed at pages 410 of Maintenance Manual of Electronic Control, E. Miller, McGraw-Hill Book Co., New York, 1949, or Figures 206 and 208 (pages 240 244) of Electronics for Electricians and Radio Men, Coyne Electrical School, Chicago, 1945. The details of such conventional timers and solenoid valves are not the essence of this invention.
Timedelay relay subassembly 240 has anadjustable control dial 247. This dial provides for adjustably setting and controlling the length of time of opening ofvalves 128 and 138 and the discharge from pipe 113.Time delay 244 has a similar adjustable control dial 248 to control the time of delay between closing ofvalves 128 and 138 and opening ofvalves 135 and discharge from line 113 and refill thereof from tank 101 afterline 253 is activated bysubassembly 150.subassemblies 154 and 155 have similar or commercially identical time delay subassemblies to control the time of discharge from filling oflines 114 and 115 respectively with the liquid fromtanks 102 and 103, respectively afterlines 254 and 255, respectively are actuated bysubassembly 150.
According to this invention, the components of the concrete (sand, gravel, cement and water) are stored at 261, 262, 263, and 264, respectively, blended in amixer 265, and passed tobin 18. The surfaces of the cavities in themold assembly 50 are covered with a layer of pigment slurry by thesubassembly 19. The chambers as 51-56 of the mold are then filled with concrete mix agitated and compacted. The peripheral layer of pigment slurry is then distributed over and through the surface layer of the concrete block thus formed. The resulting coated bricks as 270 are then stripped from the mold and forwarded over theconveyor system 36 to a kiln as 277 whereat they are cured.
According to this invention, a standardconcrete mix 16 for a concrete block such as set out at Table II is fed into atumbler 18, there well mixed and thence to thebin 20. The concrete passes via chute and accumulates above thevalve subassembly plate 24. It opens to pass a given volume of concrete to adistributor subassembly 26 which has alower cutoff plate 28 provided therewith. A pallet is moved to below the mold and held in contact therewith by piers as 41, 42.subassembly 19 sprays and then thedistributor subassembly 26 moves forward from the position shown in FIGURE 10 to the dotted line position 27 shown in FIGURE 2. Thereafter (during its operating cycle) thecutoff plate 28 is moved backward from the forward position of thedistributor subassembly 26 and the concrete mix material therefor carried in the distributor ordrawer subassembly 25 drops into the block-forming orifices of themold subassembly 30. The distributor subassembly frame then moves backward to the position shown in FIGURE 10 beneathchute 22.
When the feed drawer moves back to its original position it strikes off excess material from the top of the mold. A quantity of material adequate in amounts to make a commercial desirable block is left in the mold chambers but the top of this block is not completely packed. The mold is designed so that it is higher than the required height of the block. When the pressure head comes down and the vibrations continue the top of the block will be packed and smoothed out and thus completed. Although the vibration units as 43 have sufficient power to move themold 50 through a larger amplitude than its actual operating amplitude, the jolting effect adequately packs the concrete in the mold and when the pressure head falls down upon the concrete material in the mold (which mold continues to vibrate) the top of 'the concrete material is rapidly packed and smoothed out. The pressure head orstamp subassembly 32 rests on the concrete material in the mold and progressively descends as the concrete becomes packed. The pressure head is limited so that the pressure head sinks only a predetermined amount into the mold and so forms blocks of universal height. Thereafter thepallet 85 is moved downward; the blocks in the mold follow the pallet and are stripped from the mold as thestamp subassembly 32 moves from its upper position shown in FIGURES 2 and 10 downward and pushes out the concrete bricks as 270 formed by the vibration onto theconveyor belt subassembly 36. The bricks are then passed to kilns as 277 whereat they are treated at F. for four hours; the temperature is then gradually raised at a substantially even rate to 360 F. over a period of two hours and then held at 360 F. for five hours. Following this five hour treatment the bricks are discharged.
Theplastic masses 290 of compacted concrete mix produced by any of the procedures of Table III, parts A, B, and C, or the antique brick process herein described, may be separately treated in a conventionalpressing apparatus 278 to provide rough surfaces on the future exterior surface of the brick by conventional mold or die machines and processes, e.g., as shown in US. Patents 415,774 and 415,773 prior to passage of those plastic concrete brick masses tokiln 277.
Themold frame 50 is supported on theframe 66 in slots that permit the mold to vibrate in a vertical plane; the belts betweenpulleys 46 and the motor as 61 driving such pulley prevents motion forward and rearward. Each mold cavity as 5156 is 8% deep, 2 /4 wide and 3%" long. The rear face of each chamber, asface 271 ofchamber 56, forms the exterior or veneer face of each concrete brick formed as 270.
Thetanks 101, 102, 103 are each provided with mixers therein and the mixers are driven by /3 HP. electric motors to keep the slurry therein uniformly mixed.
Thelines 113, 114 and 115 are each 4 feet long from junction of line 113 of such line with theair line 121, 122 and 123 to the inlet of theirdischarge valves 138, 139 and 140, respectively. All these pipes have a 1 outside diameter and /4- internal diameter and are made of rigid steel.Sprays 125, 126 and 127 are of the same size and shape.
The components of theapparatus 16 are arranged, as shown in FIGURE 1 so that the operator at 260 may, While at a safe distance from theblock making machine 17 andspray subassembly 19 conveniently view the bricks on thedischarge conveyor 89 produced by theapparatus 16 and adjust control dials as 247, 249 and 250 ofsubassemblies 153, 154 and 155 respectively for control of duration of time of discharge of liquid fromlines 113, 114 and 115.
The size distribution of the aggregate used for the concrete brick is given in Table II below.
TABLE II Gravel Sand Sieve size -200 Total weight, pereen The percentage of cement (by weight) for the concrete mix of Table II is 10% (A.S.T.M. type I, physical and chemical properties in A.S.T.M. C-l50-4l).
The same cement is used in the color mixes of Table III herebelow.
In regard to the spray subassembly action, at starting or zero time,subassembly 32 has finished its downward stripping motion and starts upward. About A second later,subassembly 32 has finished its upward motion, arm H movesarm 190 and closes switch 191 and actuatescontroller subassemblies 150 and 152.
When the solenoid controls as 242 and 243 open valves as 138 and 128 the pressure in theair compressor chamber 132 is applied against the liquid in line 113,valve 135 then being closed. Liquid in line 113 is then driven out ofspray head 125. Thespray head 125 discharges the liquid against all of the rearmost faces as 271 of the chambers as 56 inmold 50. The liquid stream so delivered is bounced back, in part, from such rear walls, and hits the front walls as 273 and side walls as 272 and 274 of each chamber. The thus impinged slurry adheres to the walls so impinged upon. Subsequent addition of the material from thedrawer subassembly 26 into the mold chamber cavities and vibration of such material, principally in a vertical direction, results in a relatively even distribution of the impinged liquid slurry over the surfaces of the compacted material. This distribution of slurry over the surfaces of the compacted material is limited by the quantity of liquid delivered to each chamber; when more slurry is added there will be a relatively even distribution over all the surfaces of the mold chambers, e.g., surfaces 271, 272, 273, and 274 ofchamber 56;
when the pressure inair tank reservoir 132 is high the stream of liquid will be bounced off more vigorously from the rear walls, as 271, to the front walls, as 273, of each chamber. When the volume of slurry delivered from a spray head as to the mold chamber as 56 is increased there will be more coverage of all surfaces of the brick. When the pressure inair line 134 is kept at 40 p.s.i.g., as shown by indicator-controller 147 and one full second is allowed from discharge from each of thelines 113, 114 and 115, a full and even coating of all faces of the bricks as 270 formed is obtained. When lesser time, i.e., 0.3 second is allowed for slurry discharge from lines 113, the surfaces of the brick as 281, 282, 283, 284, 285 and 286 appear as diagrammatically shown in FIGURES 3-9. The composition of the spray is then as in Table 111, part B,color mix 2 of red blend.
These bricks as 275 made by such process are not evenly colored throughout their entire surface; to the contrary, each surface as 281 of such brick has one portion as 287 that is a surface, which, to the naked eye, is as smooth as the outer surface of a conventional clay brick used for outside or finish or veneer purpose, while the remaining,lower portion 288 of that brick surface has an uneven appearance, as though the surface of such brick had worn or spalled slightly over the years. As such brick simulates an antique or used brick, such brick is referred to herein as antique brick. It may be made with any color pigment such a brown, green or yellow or with any combination of colors as is done by the process taught in Table III herebelow.
There is a slightly different appearance of each brick made inmold 50 at one time by this process when the surfaces of the brick are thus starved with an amount of slurry insufficient to cover the entire surface thereof. Thesurfaces 281, 282, 283, and 284 which extend from top (285) to bottom (286) surfaces are referred to herein as the longitudinal faces or surfaces of the brick. Thesurface 281 adjacent the rear mold surface, as 271 inmold chamber 56, is the one most completely covered by the color mix when the starvation mixture of the antique brick procedure is used.
The feed of concrete mixture tomold 50 begins aftersubassembly 17 spray has been completed, and usually takes about 2 to 3 full seconds; the striking of excess concrete mix takes about /2 second. The finished vibrations to compact the mix takes about 4 seconds and is followed by upward motion ofsubassembly 32 by the stamp andstripper drive subassembly 69, motion of thearm 195 thereof attached to subassembly 32 and closure of the theretoforeopen switch 191 and the procedure of coating the mold with a spray fromsubassembly 19 is repeated. The exact times for each of these steps of operation ofapparatus 17 are conventionally controlled.
In the preferred embodiment of this invention the switches as 163-180 ofsubassembly 150 are arranged as in Table III, part B, to connect thelines 253, 254 and 255 and color mixes intanks 101, 102 and 103 to operate in the sequences there shown and with the compositions of pigment slurry shown in Table III, part A. FIGURE 16 shows a section of wall made with concrete brick surfaced according to the Aspen Tones procedure of this invention. Other procedures using the apparatus of the invention are also shown in Table III (parts A, B, and C).
As each chamber in themold 50 presents a somewhat different combination of surfaces to the spray. So there is a variation in the amount of slurry impinged upon surface of the rear face, as 271 inchamber 56, of each chamber in themold 50. Each resultant brick as 275 therefore not only has a varied surface color and texture on each face thereof but also each brick in the batch has a surface color and texture different than the others in that same batch. This relationship occurs in the manufacture of antique brick as above described as well as in the processes performed according to the operations set out in Table III herebelow.
TABLE III [Part A] Color mix 1Color mix 2Color mix 3 Commercial Color Name Color, type and Cement, Water, Color Cement, Water, Color Cement, Water,
lbs. lbs. gals. lbs. gals. lbs. gals. Canadian Range R1599, 10# 10 20 k 10 20 YLO 1788, l# 10 20 Aspen Tones... YLO 1788, 15# 10 20 10 20 R0 3097, l0# 10 20Tascosa Tinge VVF 525013, 25# 10 20 10 20 YLO 1788,l# 20 Aspen Tones, withoutyell0w 0 0 0 10 20 R0 3097, 10# 10 20 Tascosa Tinge, withoutyellow VVF 5250 F, 25# 10 20 10 20 0 0 0 Candaian Range, without yellow.-. R1599, 10# 10 20 10 20 Yellow Blend, allyellow YLO 1788, 5# 10 20 10 20 YLO 1788, l5# 10 20 Brown Blend, all brown VVF 5250 R, 10#. 10 20 5250 R, 10 20 V1370 5250 R, 10 20 Red Blend, all red R1599, 5t 10' 20 R1590, 10# 10 20 R1590, 10
' I 15 TABLE IV, PART B.COMPRESSIVE STRENGTH DATA 1 TABLE III (PART B).-SWITOH SEQUENCE OF COLOR MIX [DeS. C 62-62] XVITH EACH SWITCH FOR EFFECT OF TABLE III, Sample 6 7 8 9 10 Aver age Switch No. Width,inches 3. 65 3. 65 3.65 3. 65 Length, inches. 3. 65 3. 75 3. 70 3. 80l 2 3 4 5 6 7 8 9 20 Gross area, sq. i 13. 69 13. 50 13.87
13. 32 Maximum load, lbs 103,000 93,000 93,000 112,
Canadian Range 1 2 3 1 1 2 3 1 1 Strength, p.s.i 7, 240 6,800 6,890 8,080 6,060 7,114 $spen Ta lles 1g g 2 1 5 31 :1; 2 (3,000)
ascosa 1 The parenthetic figure is the corresponding figure for grade SW spenge lgg fi 2g g 2 3 Clay Facing Brick (A.S.I.M. 0-216). By test A.S.T.M. designation ascosa mg iwl ye C55-64%, Tentative Specifications for Concrete Building Brick, the Canadian Range, without yellow 1 1 2 1 1 2 1 1 2 results were as follows Yellow Blend, all yellow 1 2 a 1 2 3 1 2 3 sample Brown Blend, all brown. 1 2 3 1 2 3 1 2 3 1 5 m Red Blend, allred 1 2 3 1 2 3 1 2 2::::::::::::::::::::::: u
NoTE.C0lor mix No. 1 in tank 101, actuated byline 253;color mix 2 No. 2 intank 102, actuated byline 254; color mix No. 3 in tank 103, actu- 5 5 902 ated byline 255.
Average 5. 630 TABLE III [Part C] Color and number Brick Red 1599 1 Yellow 1788 2 Crimson 6090 8 Salmon Pink 3097 Brown 5250 Black I MB222 Composition percent FE2O5 (90.51)- FezOs=H2O 86-88.. F0205, 98. F FezOs. 88-95 F8304. 7 Particle shape Spherical"... Acicular RhombohedraL. hedral Cubic. Hiding sq. ftjlb 700-1,100 275-375 1,000 1,250. 825 mesh retention, percent O.10 0.10 10 10. Size (n) 0.20.8 .2.8 15 2.4 Federal specification- TTP375 13-4075, 'ITP40 Specific gravity 5.15-5.20 4.03 3.54.7 4.96.
1 Produced by thermal decomposition and oxidation of iron salts. 2 Hydrated ferric oxide.
3 Precipitated noncalcined.
4 Precipitated ferrosoferric oxide.
As shown in FIGURE 16, the process of this invention The process of this invention producing 'Aspen Tones not only provides that there is variation of surface color produces 32 bricks, each 2%" x 3 /8" X 7%" per stroke and texture on each exposed brick surface, but also theref subassembly 32, a d, on each 700* strokes uses a total is variation of surface color between the bricks produced of 30 gallons of slurry and 10 pounds ement and 15 by the same process while utilizing conventional block pounds color per 20 gallons of Water in the slurry for an making apparatus, as 17 and 277, and-conventi nal ck overall average solids thickness of only about 3.3,u. (or
making materials (261, 262, 263, 264).' Further still, by less a below calculations).
this invention the variations are readily made, c.g., by The square inches of surface per brick are: changing pattern of switches as 163-180 as shown in Table III (parts A and B) as well as by changes in com- (3% x 7% X 2)+(7% x 2% X 2)+(3% X 2% x 2):
position of the color mixes used intanks 101, 102 and 106 sq. inches 103 (vide Table III, part A). The intensity of coloration is readily varied bydials 247, 249 and 250. As shown in 30n X 20 lbs. solid the procedures of Table III, parts A and B, entitled Yelga ons 20 l Slurry low Blend and Red Blend and Brown Blend the same 32 bricks 100 color may be applied to all portions of the brick sur- 700 strokesxw W faces.
The characteristics of the Aspen Tones concrete brick brick surface produced by the process of this invention are illustrated in test results from 10 samples shown in Table IV, here- Assuming for purpose of calculations a Specific gravity of below- 3 for the average of 5 to 20 lbs. of pigment (of specific TABLE IV, PART x-rns'r RESULT 1 gravity of 4 to 5) per 10 lbs. of cement, the thickness of Sample No 1 2 3 4 5 Average the cement and pigment layer is:
Width inches 3.65 3.05 3.65 3.05 3.55 3.55 Length, inch s 7.65 7. 05 7.65 7. e5 7. 05 7.65 10 5 1193- specgrav- 13X1O 4 in hei ht Height, inches. 2.25 2.25 2.25 2.25 2.25 2.25 Water g Absorption, percent.
24-hour submersion. 5.6 6.4 5 5 6.2 6.3 2 144 sq. inch/12 inch height 5-hour boiling 10.3 10.8 9.5 10.5 10.5 10.3
(17.0) or, expressed 111 microns,
l The parenthetic figure is the corresponding figure for grade SW clay facing brick (A.S.T.M. 0-216).
Z This is a 24-hour submersion test in cold water. 1.3 X 10' in.X 3 5-hour submersion in boiling water.
As cement particles average over 10,u in diameter (with an average surface area of 1600 sq. c./ gram) the layer of cement and pigment formed by the liquid slurry fromtank 101, 102, and 103 isusually not complete. Nevertheless the coated surface portion as 287 of the bricks as 270 or 275 appears as smooth to the naked eye as does clay brick veneer facing. At about 8 magnification as shown in FIGURE 11, zone 11 of FIGURE 5 has some perforations 291-301. The same magnification ofarea 12 inzone 288 ofbrick 275 on which surface area where there is no coating is shown for comparison in FIGURE 12; such common concrete block surface appears rough to the naked eye. The antique brick process produces a gradation between the smooth portion concrete with a pigment-cement layer as 287 and the nonsmooth uncovered portions as 288 andzone 12 of FIG-URE 5.
Portland cement has a coefficient of thermal expansion of 5.9 inch/inch F. and concrete is normally accepted as having a coefiicient of thermal expansion of 5.5)(10- inch/inch F. (Concrete Manual by US. Department of Interior, Bureau of Reclamation, sixth edition,page 16; and Engineering Materials Handbook, Mantell, pp. 2324). However, the use of high pressure steam curing or autoclaving as used in the process of this invention decreases the amount of cement needed in the mix and provides a unit of very low reactivity to moisture expansion.
The concrete mix may be reduced in cement content, according to this invention, to reduce the coefficient of thermal expansion to 2.9x l0 (A.S.T.M. C426). The surface of the concrete bricks produced by the operation of Table III are also as smooth as clay brick to the naked eye and at 8X still appears fairly continuous and unbroken. The finely divided cement and pigment slurry here also does not, however, form a complete and unbroken surface and the expansion that such surface veneer does undergo does not accordingly provide severe stress to the more porous concrete meshwork therebelow because sueh surface is not in fact complete and the pores provide for stress relief. Therefore, this high cement content layer does not interfere with the low coefficient of thermal expansion of the mass of the concrete brick therebelow. The pore sizes are less than .015 inch in diameter and about .005 inch in diameter average.
Accordingly, the concrete bricks produced by the apparatus of this invention present exterior surfaces that appear smooth and continuous to the naked eye but do not suffer any mechanical disadvantage from a relatively high cement content in their surface layer. There is no mechanical disadvantage due to the high thermal coefficient of expansion of the cement (5.56 to 6x 10 in./in. F.) in the high cement content surface layer because the surface layer of cement and pigment, although complete to the naked eye (like a halftone or newspaper picture) is (like a newspaper picture formed of dots), not complete and so does not interfere with the design factor of lower (as low as 29x10 in./in. F.) coefficient of thermal expansion provided by the concrete mixes used in this invention. In the preferred embodiment of this invention the coefficient of thermal expansion of the bricks as 270 and 290 produced thereby is 3.3)(10' to 4.0 10- in./in. F., the same as clay brick (Engineering Materials Handbook, Mantell, pp. -15).
While the operations have been here disclosed as making concrete bricks of a given size, the scope of the invention, of course, covers making concrete blocks colored as above described in regard to the process of Table III whereby to provide a permanent and uniform coloration and surface texture to all of a group of such blocks notwithstanding any variations in the color of the concrete of which made, as well as to produce a variation of surface color on such blocks as above described in particular for bricks. This is accomplished by using a conventional block mold in lieu of thebrick mold 50 above described.
Although in accordance with the provisions of the patent statutes, particular preferred embodiments of this invention have been described and the principles of the invention have been described in the best mode in which it is ow contemplated applying such principles, it will be understood that the operations, constructions and compositions shown and described are merely illustrative and that my invention is not limited thereto and, accordingly, alterations and modifications which readily suggest themselves to persons skilled in the art without departing from the true spirit of the disclosure hereinabove are intended to be included in the scope of the annexed claims.
I claim;
1. Apparatus for making concrete bricks, each of which bricks has a varied surface color and texture on each face thereof made in a given batch and a surface color and texture made in a separate batch are different from that in the first batch, comprising a brick making apparatus and a slurry spraying assembly, the brick making apparatus comprising a concrete feed distributor subassembly, a motor and frame subassembly, a mold and vibrating subassembly, a stamp and stripper subassembly, and a pallet feed and conveyor subassembly operatively connected, the pallet feed and conveyor assembly comprising a pallet,
the mold and vibrating subassembly comprising a mold,
said mold comprising a plurality of vertically extending mold chambers within the outline of the sides of said mold, each of said mold chambers open at its top end and open at its bottom end, said vertically extending mold chambers outlined by vertically extending walls, said pallet located at the bottom of said vertically extending walls and extending across and closing the bottom of said mold chambers,
the spray assembly comprising a tank subassembly, a
slurry pipe and valve subassembly, and a valve control subassembly operatively connected,
the tank subassembly comprising a plurality of liquid containing tanks, the slurry pipe and valve subassembly comprising a vertically extending conduit, a liquid inlet valve at one end thereof, an outlet valve and spray head at the other, and an air inlet line thereto operatively connected, said air line being connected by separate valve means to each of said conduit lines between their inlet and outlet valve, each of said separate valve means operatively connected to said valve control subassembly, each of said conduit means operatively connected to one of the liquid tank means,
the valve control subassembly comprising means operatively connected to and actuated by movement of said stamp and stripper subassembly when said stamp and stripper subassembly is raised from said mold subassembly, a sequential step switch means in said control subassembly operatively attached at each different step thereof to different groups of valve control means, each of said groups of valve control means is operatively attached to a plurality of switches, each of which switches is attached to the said separate valve means of one of said conduits, and the discharge valve of each of said conduits is adjacent to but laterally spaced away from a side of said mold and directed at a vertically extending wall portion of the mold chambers therein.
2. Apparatus as in claim 1 wherein the discharge portion of the conveyor system of the brick making apparatus is in the line of sight of the valve control subassembly of the spray assembly.
3. Apparatus as in claim 1 wherein the valve control means includes time control means to vary the duration of time of discharge from each said conduit spray head between 0.3 and 1.0 second.
(References on following page) Poston.
Marshall 264-256 5 Paashe 118315 Gelbman et a1 25-45 'Hand et a1 264309 14 I. SPENCER OVERHOLZER, Primary Examiner.
ROBERT D. BALDWIN, Assistant Examiner.
US. Cl. X.R.