Movatterモバイル変換


[0]ホーム

URL:


US3379248A - In situ combustion process utilizing waste heat - Google Patents

In situ combustion process utilizing waste heat
Download PDF

Info

Publication number
US3379248A
US3379248AUS513139AUS51313965AUS3379248AUS 3379248 AUS3379248 AUS 3379248AUS 513139 AUS513139 AUS 513139AUS 51313965 AUS51313965 AUS 51313965AUS 3379248 AUS3379248 AUS 3379248A
Authority
US
United States
Prior art keywords
formation
steam
combustion
water
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US513139A
Inventor
Lloyd K Strange
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mobil Oil AS
Original Assignee
Mobil Oil AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil ASfiledCriticalMobil Oil AS
Priority to US513139ApriorityCriticalpatent/US3379248A/en
Application grantedgrantedCritical
Publication of US3379248ApublicationCriticalpatent/US3379248A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Description

Aril 23, 1968 K. STRANGE 3,379,243
m srru comsuswxon BRocEss uwmzme WASTE HEAT Filed Dec. 10, I965 LLOYD K STRANGE INVENTOR BY 53M ATTORNEY 3,379,243 IN SITU CGMBUSTION FRGCESS UTILEZING WASTE HEAT Lloyd K. Strange, Grand Prairie, Tex, assignor to Mobil (Bil Qorporation, a corporation of New York Filed 10, 19-65, Ser. No. 513,139 Qlairns. (Cl. 166-11) ABTRACT IF THE DISCLGSURE This specification discloses:
Injecting water into a hot portion of a formation traversed by a combustion front to produce a flow of steam therefrom at certain temperature and pressure conditions. Heat energy is removed from the steam until a substantial part thereof is condensed to Water. This heat energy is employed to power mechan ms for moving fluids between the earths surface and a second portion of the formation in which in situ combustion is being undertaken. The water condensed from the steam may be used as feed water for conversion to steam by heat exchange with hot produced fluids. This resultant steam may also be employed for moving fluids between the earths surface and the portion of the formation in which in situ combustion is being undertaken.
This process relates to the recovery of hydrocarbons from a subterranean formation, and more particularly, it relates to the recovery of such hydrocarbons by an improved in situ combustion procedure.
The recovery of hydrocarbons may be effected from a subterranean formation by various in situ combustion procedures. In such procedures, a combustion front is moved etween input and output well means through the subterr nean formation by the passage therethrough of a combustion-supporting gas from input to output well means. As a result of the fronts passage, with its elevated temperatures, hydrocarbons are thermally stimulated to flow through the formation and to be produced from output well means, The portion of the formation traversed by the combustion front remains at elevated temperatures. The elevated temperatures in such portion of the formation result from the substantially complete combustion of resident carbonaceous materials and may reach a magnitude, for example, of about 1000 F. As is apparent, large quantities of energy are expended in an in situ combustion process for the compression and movement of a combustion-supporting gas through the subterranean formation and also for the production and subsequent recovery of the desired hydrocarbons. It is the purpose of the present invention to employ the heat energy remaining within that portion of the formation traversed by a combustion front and which portion remains at elevated temperature to assist in carrying out the in situ combustion procedure in unburned portions of the formation.
It is therefore an object of the present invention to provide an improved in situ combustion process for the recovery of hydrocarbons from a subterranean formation wherein the heat energy remaining in that portion of the formation traversed by a combustion front is employed for carrying out the in situ combustion procedure in further portions of the formation. Other objects of the in vention will become apparent on consideration of the ac companying description.
The present invention in its broadest aspect comprises the injection of water into a portion of the formation, which remains at elevated temperatures after being traversed by a combustion front, so as to produce a flow of steam therefrom at a temperature above the condensation temperature of water at the pressure existing in the flow- States Patent 0 ing steam through suitable Well means, Thereafter, heat energy is removed from the steam until a substantial part thereof is condensed to water and the heat energy removed from the steam is employed for moving fluids between the earths surface and the second portion of the formation in which in situ combustion is being undertaken. ()ther aspects of the present invention include employing the water condensed from the steam as feed water for reconversion to steam with the resulting steam at least in part employed for moving fluids between the earths surface and another portion of the formation in which in situ combustion is undertaken.
The present invention will be now described in reference to the attached drawings, wherein: FIGURE 1 is a vertical section of a subterranean formation provided with suitable apparatus by which hydrocarbons are recovered in accordance with this improved in situ combustion process with a combustion front being shown during its initial stages of movement through the formation between well means; FIGURE 2 illustrates the structure of FIGURE 1 but with the combustion front having nearly traversed the entire formation between the well means; and FIGURE 3 illustrates the structures of FIGURES 1 and 2 after the formation between the well means is completely traversed by the combustion front.
In FIGURE 1, a subterranean formation 11 from which hydrocarbons can be freed by an in situ combustion process is shown residing below theearths surface 12. Usually, the formation 11 resides below an overburden 13 of earthen materials, and in many instances, there may be additionalsuperimposed strata 14 of a rock material relatively free of carbonaceous material. The formation 11 usually rests upon asubstrata 16 which, like thestrata 14, may be free of any recoverable carbonaceous material, A plurality of well means, extending vertically into the earth, provide for fluid communication between theearths surface 12 and the formation 11. These well means may include one ormore input wells 17 and one ormore output wells 13, which may be provided in any suitable manner. Thewells 17 and is are provided with casings I9 and 21, respectively, extending downwardly into the formation 11 with. fluid communication at their lower extremities directly to the formation 11. Such fluid communication may be by terminating thecasings 19 and 21 short of the lower extremities of thewells 17 and 18 in the formation 11, by perforations therethrough, or by other suitable modes. At the top of the casings I9 and 2.: are carriedwellheads 22 and 23, respectively, through which fluid conduits 24 and 26, respectively, extend downwardly to the lower extremities ofwells 17 and 18. The fluid conduits 24 and 26 convey fluids between theearths surface 12 and the formation 11. Generally, thecasings 19 and 21 are secured in fluid-tight engagement with the overburden 13 and thestrata 14, preferably by cementing. The arrangement in FIGURES 2 and 3 of the structures including the formation 11 and Well means may be considered to be identical to that of FIGURE 1, and for purposes of description like reference numerals are used. However, it will be apparent that other arrangements for these structures may be used with equal facility.
In situ combustion processes now may be carried out in the formation 11 with the described structural arrangements. For this purpose, the formation 11 adjacent thewell 17 is heated sufliciently for igniting the carbonaceous material contained therein. Such igniting means may be of any suitable form, such as electric igniters or other types of heaters. With the formation lit at ignition temperatures, a combustion-supporting gas is passed into the conduit 2% under suitable flow conditions to traverse the formation 11 and be produced from theconduit 26 in thewell 18. The combustion-supporting gas may include any oxidant for sustaining combustion, usually air. However, it may also be a combination of oxygencontaining materials enriched or diluted with inert or combustion-supporting gases, as is well known to those skilled in the art. The combustion-supporting gas traversing the formation 11 produces a combustion front 27 which moves between thewells 17 and 18. Although the description herein is directed toward a direct movement combustion front 27, the combustion front may be moved inversely to the flow of the combustion supporting gas to roduce the results of this invention with equal facility. The heat generated by the combustion front 27 moving through the formation 11 thermally releases the hydrocarbons from the formation 11. These hydrocarbons are carried concurrently with the injected combustion-supporting and residual-combustion gases into thewell 18 and are produced from theconduit 26. The produced fluids from theconduit 26 are passed to any suitable utilization, such as to a separator in which the hydrocarbons are recovered from water and inert fluids.
Referring now to FIGURE 2, it will be seen that after some period of time of injecting the combustion-supporting gas, the combustion front 27 has advanced adjacent to the output well 18, over a substantial portion of the formation 11 which is freed of combustible carbonaceous material. At the time the combustion front 27 first appears at the output well 18, the produced fluids from theconduit 26 will become in part heated to elevated temperatures. The heat energy contained in these produced fluids will be employed, as described hereinafter, for further purposes of this invention.
Referring now to FIGURE 3, it will be seen that eventually the combustion front 27 will substantially and completely sweep that portion of the formation 11 residing between thewells 17 and 18. The combustion front 27 may then move beyond thewell 18 in the formation 11. Alternatively, the combustion front 27, at this time, may be extinguished. If desired, other portions of the formation f1 may be subject to traverse of the combustion front 27 as was shown and described relative to FIGURES l, 2 and 3.
In FIGURE 3, the formation 11 traversed by the combustion front 27 is heated to elevated temperatures of about 1000 F. At this time, water is passed through theconduit 24 into the well -17 under suitable pressure to enter the burned out portion of the formation 11 residing between thewells 17 and 18. The water is injected into the formation 11 at a rate sutflcient to produce from the well 18 a flow of steam at a temperature at or above the condensation temperature of water at the pressure existing in the flowing steam. It will be seen that the raw water introduced from thewell 17 into the hot formation 11 will be in situ converted to steam, and that the steam produced from thewell 18 will be substantially free of entrained inorganic materials which remain in the formation 11. The raw water can be from any source which is available and includes brine-loaded oil field water, sea water, and the like. Thus, raw water is converted into steam substantially free of inorganic materials. This steam is utilized for further purposes in the present process.
The formation 11 is filled by the raw water as it cools during the generation of steam. This is of particular advantage in that no re-invasion of the water-filled formation 11 by hydrocarbons produced from adjacent portions of the formation can occur.
The steam produced from thewell 18 carries a considerable amount of heat energy recovered from the formation 11. For example, one acre-foot of the burned out formation 11, as for example in a heavy oil sand, may reside after being burned at a temperature of about 1000 F. The heat content of the formation 11 under these conditions is approximately 800 million B.t.u. A portion of the formation 11 adjacent the input well 17 may be cooled by the injected fluids moving the combustion front 27 to thewell 18. However, the estimated heat lost in this cool region by the input well 17 will be approximately only 250 million B.t.u. Thus, the heat energy within the burned out formation available for conversion to steam is about 550 million B.t.u. It is estimated that the heat energy required to drive compressors to inject sufficient combustion-supporting gas to move a combustion front through such area of the formation 11 is about 1000 million B.t.u. Thus, the heat energy contained in the burned out formation 11 between thewells 17 and 18 can provide over half the amount of heat energy required to inject the combustion supporting gas moving a combustion front through a like area in the formation 11.
A suitable system to utilize the heat energy of the steam produced from tle formation 11 through theconduit 26 is shown in FIGURE 3. Usually, the steam from theconduit 26 will be passed to aseparator 31 in which hydrocarbon and water portions may be removed fromoutlets 32 and 33, respectively, and the remaining steam leaves throughoverhead line 34. Since the formation 11 was substantially freed of carbonaceous material, the steam inline 34 will be largely free of hydrocarbons. The steam inline 34 is passed through a steam engine means, which may be turbine 35, wherein heat energy is removed from the steam by conversion to mechanical energy until a substantial part is condensed to water which is removed in theline 37. The mechanical energy output of theturbine 36 is applied to operate the pumping means, such ascompressor 38, which is employed for injecting the combustion-supporting gas into the input well 17. At times when the flow of steam may be insufficient to operate theturbine 36 at the desired capacity, the steam inline 34 can be supplemented by steam from asuitable steam generator 39. Thesteam generator 39, of any suitable form capable of converting water into steam, provides steam in an output steam line 41 which is combinable with steam in the line 34- for operating theturbine 36.Valves 43 and 44 may be interposed into therespective steam lines 34 and 41 for selectively controlling the source and amounts of steam from theseparator 31 and thesteam generator 39 passing to theturbine 36. Thesteam generator 39 may be operated from any source of combustible fuel supplied to fuel inlet 45 in the usual fashion. After combustion of the fuel, the exhaust vapors pass from thesteam generator 39 through thestack 47.
Thesteam generator 39 requires a source of suitable feed water for its operation which generally requires softening of raw or naturally occurring water. Raw water is passed through atreater 48, such as a sodium zeolite bed, wherein scale-forming constituents are converted to a more soluble form. The treated water from thetreater 48 is collected in tank 4*) until it is to be supplied to thesteam generator 39. The feed water from thetank 49 passes through aheat exchanger 51 and thence to feedwater inlet 56 of thesteam generator 39 by suitable pumping means (not shown). The feed water in theheat exchanger 51 derives heat from the produced fluids obtained from the well 18 (in FIGURE 2) when such fluids are heated sufficiently that their heat content is usable. From theheat exchanger 51 these produced fluids may be passed to aseparator 52 and the contained gases and liquids may be removed throughoutlets 53, 54, and 55. Abypass line 56 is provided about theheat exchanger 51 when it is desired not to employ the heat within the produced fluids from the well 18 for preheating the feed water to thesteam generator 39. Valves 5'7 and 58 are provided for this function. The condensate inline 37 from theturbine 36 is combined as needed with the feed water from thetank 49. It will be apparent that a substantial part of the water for thesteam generator 39 will come from theturbine 36. This is of great advantage in that the costs for treating the water to a suitable degree for use in thesame generator 39 are greatly reduced by the amount of steam produced from the well l8. Further, the costs of water are reduced in that brine water may be injected into the well 17 with the production of solid and salt-free steam from the well 18 being obtained. Also, the necessity of disposing of the scale-forming inorganic materials ordinarily a problem with asurface treater 48 is avoided.
It will be apparent that thecompressor 38 may be employed for injecting combustion-supporting gas into various of the combustion fronts employed in the formation 11 and at any stage therein whether such combustion fronts are operated conjunctively or serially, or a combination of both.
It will be apparent that Where it is desired to do so, the mechanical output of theturbine 36 may be employed for driving other types of pumping means than thecompressor 38, such as pumps for moving the produced fluids from the well 18 to suitable storage. Also, the heat energy of the stream from the well 18 (in FIGURE 2) may be employed in breaking emulsions and otherwise treating the produced fluids, or for other purposes as desired.
From the foregoing description it will be apparent that there has been provided a process suited for obtaining all the objects stated for the present invention. It will be readily appreciated from the foregoing description that herein is fully disclosed a process also adapted for Ohtaining recovery of hydrocarbons from formations with the utilization of waste heat from in situ combustion procedures.
It will be understood that certain features of the present procedure are of utility and may be employed without reference to other features and combinations. This is contemplated by and within the scope of the appended claims.
As many embodiments as possible may be made of the invention without departing from the scope thereof. It is to be understood that all matter herein set forth is to be interpreted as illustrative and not limitative of this invention.
What is claimed is:
1. In an in situ combustion process for the recovery of hydrocarbons from a subterranean formation wherein a combustion front is moved between input and output well means through the formation by the passage therethrough of a combustion-supporting gas from input to output well means, and with said hydrocarbons produced from said output well means, the improvement comprising:
(a) passing a combustion front through a first portion of the formation between input and output well means, and producing and recovering hydrocarbons from the output well means so as to leave said first portion at elevated temperatures resulting from substantially complete combustion of resident carbonaceous matter,
(b) moving a second combustion front through a second portion of the formation by passing a combustion-supporting gas between input and output well means with hydrocarbons at least in part heated to elevated temperatures being produced from the output well means,
(c) injecting water into the first portion of the formation at a rate suflicient to produce a flow of steam from one of said well means at a temperature above the condensation temperature of water at the pressure existing in said flowing steam,
(c1 removing heat energy from said steam until a substantlal part thereof is condensed to water, and
(e) employing said heat energy for moving fluids between the earths surface and the second portion of the formation in which in situ combustion is being undertaken.
2. The method ofclaim 1 wherein at least a part of said condensed water from Step d is reconverted to steam in surface disposed steam generating means with the steam at least in part employed for moving fluids between the earths surface and the second portion of the formation in which in situ combustion is undertaken.
3. The method ofclaim 1 wherein steam produced in Step c is converted in Step d to mechanical power adapted for operating pumping means to move fluids in Step e between the earths surface and the second portion of the formation in which in situ combustion is undertaken.
4. The method ofclaim 1 wherein Step e heat energy is employed for converting the condensed water from Step (1 into steam, and at least a part of the generated steam is employed for moving fluids between the earths surface and the second portion of the formation in which in situ combustion is being undertaken.
5. The method of claim 4 wherein the produced hydrocarbons in Step b, when in a heated condition, are heat exchanged with the water being converted to steam.
References Cited UNITED STATES PATENTS 2,497,868 2/1950 Dalin 166-39 X 2,823,752 2/1958 Walter 166-11 2,839,141 6/1958 Walter 166-11 3,113,620 12/1963 Hemminger 166-11 3,150,716 9/1964 Strelzotf et a1. 166-11 3,193,009 7/1965 Wallace et al. 166-11 3,294,167 12/1966 Vogel 166-11 STEPHEN J. NOVOSAD, Primary Examiner.
US513139A1965-12-101965-12-10In situ combustion process utilizing waste heatExpired - LifetimeUS3379248A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US513139AUS3379248A (en)1965-12-101965-12-10In situ combustion process utilizing waste heat

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US513139AUS3379248A (en)1965-12-101965-12-10In situ combustion process utilizing waste heat

Publications (1)

Publication NumberPublication Date
US3379248Atrue US3379248A (en)1968-04-23

Family

ID=24042040

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US513139AExpired - LifetimeUS3379248A (en)1965-12-101965-12-10In situ combustion process utilizing waste heat

Country Status (1)

CountryLink
US (1)US3379248A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3827243A (en)*1972-09-011974-08-06Texaco Development CorpMethod for recovering geothermal energy
US3972372A (en)*1975-03-101976-08-03Fisher Sidney TExraction of hydrocarbons in situ from underground hydrocarbon deposits
US4043393A (en)*1976-07-291977-08-23Fisher Sidney TExtraction from underground coal deposits
US4063416A (en)*1975-12-031977-12-20Cooper Jack MSteam generator
US4089373A (en)*1975-11-121978-05-16Reynolds Merrill JSitu coal combustion heat recovery method
US4109718A (en)*1975-12-291978-08-29Occidental Oil Shale, Inc.Method of breaking shale oil-water emulsion
US4116273A (en)*1976-07-291978-09-26Fisher Sidney TInduction heating of coal in situ
US4120158A (en)*1976-11-151978-10-17Itzhak SheinbaumPower conversion and systems for recovering geothermal heat
DE2924580A1 (en)*1978-07-031980-01-24Gulf Research Development CoCatalytic oxidn. of gas mixts. with low heat value - giving exhaust gas with reduced carbon mon:oxide (NL 7.1.80)
US4186801A (en)*1978-12-181980-02-05Gulf Research And Development CompanyIn situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4273188A (en)*1980-04-301981-06-16Gulf Research & Development CompanyIn situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4401163A (en)*1980-12-291983-08-30The Standard Oil CompanyModified in situ retorting of oil shale
US4537252A (en)*1982-04-231985-08-27Standard Oil Company (Indiana)Method of underground conversion of coal
US4577690A (en)*1984-04-181986-03-25Mobil Oil CorporationMethod of using seismic data to monitor firefloods
US4745756A (en)*1987-10-061988-05-24Robert SederquistHDR closed loop steam generation
US20020053431A1 (en)*2000-04-242002-05-09Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US20030066642A1 (en)*2000-04-242003-04-10Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6588504B2 (en)2000-04-242003-07-08Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6698515B2 (en)2000-04-242004-03-02Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6715546B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US20040144541A1 (en)*2002-10-242004-07-29Picha Mark GregoryForming wellbores using acoustic methods
US6877555B2 (en)2001-04-242005-04-12Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6932155B2 (en)2001-10-242005-08-23Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US6948562B2 (en)2001-04-242005-09-27Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6969123B2 (en)2001-10-242005-11-29Shell Oil CompanyUpgrading and mining of coal
US7011154B2 (en)2000-04-242006-03-14Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US7040400B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7066254B2 (en)2001-04-242006-06-27Shell Oil CompanyIn situ thermal processing of a tar sands formation
US7077199B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7090013B2 (en)2001-10-242006-08-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7096953B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7104319B2 (en)2001-10-242006-09-12Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7121342B2 (en)2003-04-242006-10-17Shell Oil CompanyThermal processes for subsurface formations
US7165615B2 (en)2001-10-242007-01-23Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US20070137857A1 (en)*2005-04-222007-06-21Vinegar Harold JLow temperature monitoring system for subsurface barriers
US7320364B2 (en)2004-04-232008-01-22Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US20080217016A1 (en)*2006-10-202008-09-11George Leo StegemeierCreating fluid injectivity in tar sands formations
US7533719B2 (en)2006-04-212009-05-19Shell Oil CompanyWellhead with non-ferromagnetic materials
US7549470B2 (en)2005-10-242009-06-23Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7640987B2 (en)2005-08-172010-01-05Halliburton Energy Services, Inc.Communicating fluids with a heated-fluid generation system
US20100071904A1 (en)*2008-04-182010-03-25Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US7770643B2 (en)2006-10-102010-08-10Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US7798220B2 (en)2007-04-202010-09-21Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US7809538B2 (en)2006-01-132010-10-05Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482B2 (en)2006-10-102010-11-16Halliburton Energy Services, Inc.Producing resources using steam injection
US7866388B2 (en)2007-10-192011-01-11Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US8220539B2 (en)2008-10-132012-07-17Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US8327932B2 (en)2009-04-102012-12-11Shell Oil CompanyRecovering energy from a subsurface formation
US8631866B2 (en)2010-04-092014-01-21Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8701769B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US8820406B2 (en)2010-04-092014-09-02Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9016370B2 (en)2011-04-082015-04-28Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9033042B2 (en)2010-04-092015-05-19Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US20150144345A1 (en)*2013-11-222015-05-28Cenovus Energy Inc.Waste heat recovery from depleted reservoir
US20150144337A1 (en)*2013-11-222015-05-28Cenovus Energy Inc.Waste heat recovery from depleted reservoir
US9309755B2 (en)2011-10-072016-04-12Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en)2012-01-232018-08-14Genie Ip B.V.Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US10487636B2 (en)2017-07-272019-11-26Exxonmobil Upstream Research CompanyEnhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en)2017-08-312021-05-11Exxonmobil Upstream Research CompanyThermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11142681B2 (en)2017-06-292021-10-12Exxonmobil Upstream Research CompanyChasing solvent for enhanced recovery processes
US11261725B2 (en)2017-10-242022-03-01Exxonmobil Upstream Research CompanySystems and methods for estimating and controlling liquid level using periodic shut-ins

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2497868A (en)*1946-10-101950-02-21Dalin DavidUnderground exploitation of fuel deposits
US2823752A (en)*1955-08-301958-02-18Worthington CorpMethod and arrangement of apparatus for oil recovery
US2839141A (en)*1956-01-301958-06-17Worthington CorpMethod for oil recovery with "in situ" combustion
US3113620A (en)*1959-07-061963-12-10Exxon Research Engineering CoProcess for producing viscous oil
US3150716A (en)*1959-10-011964-09-29Chemical Construction CorpPressurizing oil fields
US3193009A (en)*1963-02-281965-07-06Shell Oil CoUse of low-grade steam containing dissolved salts in an oil production method
US3294167A (en)*1964-04-131966-12-27Shell Oil CoThermal oil recovery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2497868A (en)*1946-10-101950-02-21Dalin DavidUnderground exploitation of fuel deposits
US2823752A (en)*1955-08-301958-02-18Worthington CorpMethod and arrangement of apparatus for oil recovery
US2839141A (en)*1956-01-301958-06-17Worthington CorpMethod for oil recovery with "in situ" combustion
US3113620A (en)*1959-07-061963-12-10Exxon Research Engineering CoProcess for producing viscous oil
US3150716A (en)*1959-10-011964-09-29Chemical Construction CorpPressurizing oil fields
US3193009A (en)*1963-02-281965-07-06Shell Oil CoUse of low-grade steam containing dissolved salts in an oil production method
US3294167A (en)*1964-04-131966-12-27Shell Oil CoThermal oil recovery

Cited By (313)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3827243A (en)*1972-09-011974-08-06Texaco Development CorpMethod for recovering geothermal energy
US3972372A (en)*1975-03-101976-08-03Fisher Sidney TExraction of hydrocarbons in situ from underground hydrocarbon deposits
US4089373A (en)*1975-11-121978-05-16Reynolds Merrill JSitu coal combustion heat recovery method
US4063416A (en)*1975-12-031977-12-20Cooper Jack MSteam generator
US4109718A (en)*1975-12-291978-08-29Occidental Oil Shale, Inc.Method of breaking shale oil-water emulsion
US4116273A (en)*1976-07-291978-09-26Fisher Sidney TInduction heating of coal in situ
US4043393A (en)*1976-07-291977-08-23Fisher Sidney TExtraction from underground coal deposits
US4120158A (en)*1976-11-151978-10-17Itzhak SheinbaumPower conversion and systems for recovering geothermal heat
DE2924580A1 (en)*1978-07-031980-01-24Gulf Research Development CoCatalytic oxidn. of gas mixts. with low heat value - giving exhaust gas with reduced carbon mon:oxide (NL 7.1.80)
US4186801A (en)*1978-12-181980-02-05Gulf Research And Development CompanyIn situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4273188A (en)*1980-04-301981-06-16Gulf Research & Development CompanyIn situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4401163A (en)*1980-12-291983-08-30The Standard Oil CompanyModified in situ retorting of oil shale
US4537252A (en)*1982-04-231985-08-27Standard Oil Company (Indiana)Method of underground conversion of coal
US4577690A (en)*1984-04-181986-03-25Mobil Oil CorporationMethod of using seismic data to monitor firefloods
US4745756A (en)*1987-10-061988-05-24Robert SederquistHDR closed loop steam generation
US6902004B2 (en)2000-04-242005-06-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a movable heating element
US6715549B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected atomic oxygen to carbon ratio
GB2379469A (en)*2000-04-242003-03-12Shell Int ResearchIn situ recovery from a hydrocarbon containing formation
US20030066642A1 (en)*2000-04-242003-04-10Wellington Scott LeeIn situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US6581684B2 (en)2000-04-242003-06-24Shell Oil CompanyIn Situ thermal processing of a hydrocarbon containing formation to produce sulfur containing formation fluids
US6588504B2 (en)2000-04-242003-07-08Shell Oil CompanyIn situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US6588503B2 (en)2000-04-242003-07-08Shell Oil CompanyIn Situ thermal processing of a coal formation to control product composition
US6591907B2 (en)2000-04-242003-07-15Shell Oil CompanyIn situ thermal processing of a coal formation with a selected vitrinite reflectance
US6591906B2 (en)2000-04-242003-07-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected oxygen content
US6607033B2 (en)2000-04-242003-08-19Shell Oil CompanyIn Situ thermal processing of a coal formation to produce a condensate
US6609570B2 (en)2000-04-242003-08-26Shell Oil CompanyIn situ thermal processing of a coal formation and ammonia production
US6688387B1 (en)2000-04-242004-02-10Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a hydrocarbon condensate
US6698515B2 (en)2000-04-242004-03-02Shell Oil CompanyIn situ thermal processing of a coal formation using a relatively slow heating rate
US6702016B2 (en)2000-04-242004-03-09Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with heat sources located at an edge of a formation layer
US6708758B2 (en)2000-04-242004-03-23Shell Oil CompanyIn situ thermal processing of a coal formation leaving one or more selected unprocessed areas
US6712135B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a coal formation in reducing environment
US6712136B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a selected production well spacing
US6712137B2 (en)2000-04-242004-03-30Shell Oil CompanyIn situ thermal processing of a coal formation to pyrolyze a selected percentage of hydrocarbon material
US6715546B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US6715548B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715547B2 (en)2000-04-242004-04-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to form a substantially uniform, high permeability formation
US7798221B2 (en)2000-04-242010-09-21Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6719047B2 (en)2000-04-242004-04-13Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a hydrogen-rich environment
US6722431B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of hydrocarbons within a relatively permeable formation
US6722429B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation leaving one or more selected unprocessed areas
US6722430B2 (en)2000-04-242004-04-20Shell Oil CompanyIn situ thermal processing of a coal formation with a selected oxygen content and/or selected O/C ratio
US6725928B2 (en)2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a coal formation using a distributed combustor
US6725921B2 (en)2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a coal formation by controlling a pressure of the formation
US6725920B2 (en)2000-04-242004-04-27Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to convert a selected amount of total organic carbon into hydrocarbon products
US6729401B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation and ammonia production
US6729395B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected ratio of heat sources to production wells
US6729397B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected vitrinite reflectance
US6729396B2 (en)2000-04-242004-05-04Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbons having a selected carbon number range
US6732795B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to pyrolyze a selected percentage of hydrocarbon material
US6732796B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ production of synthesis gas from a hydrocarbon containing formation, the synthesis gas having a selected H2 to CO ratio
US6732794B2 (en)2000-04-242004-05-11Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6736215B2 (en)2000-04-242004-05-18Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation, in situ production of synthesis gas, and carbon dioxide sequestration
US6739393B2 (en)2000-04-242004-05-25Shell Oil CompanyIn situ thermal processing of a coal formation and tuning production
US6739394B2 (en)2000-04-242004-05-25Shell Oil CompanyProduction of synthesis gas from a hydrocarbon containing formation
US6742589B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a coal formation using repeating triangular patterns of heat sources
US6742587B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a coal formation to form a substantially uniform, relatively high permeable formation
US6742588B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce formation fluids having a relatively low olefin content
US6742593B2 (en)2000-04-242004-06-01Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation
US6745832B2 (en)2000-04-242004-06-08Shell Oil CompanySitu thermal processing of a hydrocarbon containing formation to control product composition
US6745831B2 (en)2000-04-242004-06-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation by controlling a pressure of the formation
US6745837B2 (en)2000-04-242004-06-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a controlled heating rate
US6749021B2 (en)2000-04-242004-06-15Shell Oil CompanyIn situ thermal processing of a coal formation using a controlled heating rate
US6752210B2 (en)2000-04-242004-06-22Shell Oil CompanyIn situ thermal processing of a coal formation using heat sources positioned within open wellbores
US6758268B2 (en)2000-04-242004-07-06Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a relatively slow heating rate
US6761216B2 (en)2000-04-242004-07-13Shell Oil CompanyIn situ thermal processing of a coal formation to produce hydrocarbon fluids and synthesis gas
US6763886B2 (en)2000-04-242004-07-20Shell Oil CompanyIn situ thermal processing of a coal formation with carbon dioxide sequestration
US8225866B2 (en)2000-04-242012-07-24Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6769485B2 (en)2000-04-242004-08-03Shell Oil CompanyIn situ production of synthesis gas from a coal formation through a heat source wellbore
US6769483B2 (en)2000-04-242004-08-03Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using conductor in conduit heat sources
US6789625B2 (en)2000-04-242004-09-14Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using exposed metal heat sources
GB2379469B (en)*2000-04-242004-09-29Shell Int ResearchIn situ recovery from a hydrocarbon containing formation
US6805195B2 (en)2000-04-242004-10-19Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbon fluids and synthesis gas
US6820688B2 (en)2000-04-242004-11-23Shell Oil CompanyIn situ thermal processing of coal formation with a selected hydrogen content and/or selected H/C ratio
US6866097B2 (en)2000-04-242005-03-15Shell Oil CompanyIn situ thermal processing of a coal formation to increase a permeability/porosity of the formation
US6871707B2 (en)2000-04-242005-03-29Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with carbon dioxide sequestration
US6877554B2 (en)2000-04-242005-04-12Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using pressure and/or temperature control
US20020053431A1 (en)*2000-04-242002-05-09Wellington Scott LeeIn situ thermal processing of a hydrocarbon containing formation to produce a selected ratio of components in a gas
US8485252B2 (en)2000-04-242013-07-16Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6880635B2 (en)2000-04-242005-04-19Shell Oil CompanyIn situ production of synthesis gas from a coal formation, the synthesis gas having a selected H2 to CO ratio
US8789586B2 (en)2000-04-242014-07-29Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6896053B2 (en)2000-04-242005-05-24Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using repeating triangular patterns of heat sources
US6902003B2 (en)2000-04-242005-06-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation having a selected total organic carbon content
US7096941B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation with heat sources located at an edge of a coal layer
US6910536B2 (en)2000-04-242005-06-28Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6913078B2 (en)2000-04-242005-07-05Shell Oil CompanyIn Situ thermal processing of hydrocarbons within a relatively impermeable formation
US7096953B2 (en)2000-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a coal formation using a movable heating element
US7086468B2 (en)2000-04-242006-08-08Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores
US7036583B2 (en)2000-04-242006-05-02Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation
US6923258B2 (en)2000-04-242005-08-02Shell Oil CompanyIn situ thermal processsing of a hydrocarbon containing formation to produce a mixture with a selected hydrogen content
US6889769B2 (en)2000-04-242005-05-10Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected moisture content
US7017661B2 (en)2000-04-242006-03-28Shell Oil CompanyProduction of synthesis gas from a coal formation
WO2001081239A3 (en)*2000-04-242002-05-23Shell Oil CoIn situ recovery from a hydrocarbon containing formation
US6948563B2 (en)2000-04-242005-09-27Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen content
US7011154B2 (en)2000-04-242006-03-14Shell Oil CompanyIn situ recovery from a kerogen and liquid hydrocarbon containing formation
US6997255B2 (en)2000-04-242006-02-14Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation in a reducing environment
US6953087B2 (en)2000-04-242005-10-11Shell Oil CompanyThermal processing of a hydrocarbon containing formation to increase a permeability of the formation
US6959761B2 (en)2000-04-242005-11-01Shell Oil CompanyIn situ thermal processing of a coal formation with a selected ratio of heat sources to production wells
US6994160B2 (en)2000-04-242006-02-07Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range
US6994168B2 (en)2000-04-242006-02-07Scott Lee WellingtonIn situ thermal processing of a hydrocarbon containing formation with a selected hydrogen to carbon ratio
US6966372B2 (en)2000-04-242005-11-22Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids
US6994161B2 (en)2000-04-242006-02-07Kevin Albert MaherIn situ thermal processing of a coal formation with a selected moisture content
US6973967B2 (en)2000-04-242005-12-13Shell Oil CompanySitu thermal processing of a coal formation using pressure and/or temperature control
US6991031B2 (en)2000-04-242006-01-31Shell Oil CompanyIn situ thermal processing of a coal formation to convert a selected total organic carbon content into hydrocarbon products
US7013972B2 (en)2001-04-242006-03-21Shell Oil CompanyIn situ thermal processing of an oil shale formation using a natural distributed combustor
US6923257B2 (en)2001-04-242005-08-02Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a condensate
US7735935B2 (en)2001-04-242010-06-15Shell Oil CompanyIn situ thermal processing of an oil shale formation containing carbonate minerals
US6991036B2 (en)2001-04-242006-01-31Shell Oil CompanyThermal processing of a relatively permeable formation
US6991032B2 (en)2001-04-242006-01-31Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US6918442B2 (en)2001-04-242005-07-19Shell Oil CompanyIn situ thermal processing of an oil shale formation in a reducing environment
US6966374B2 (en)2001-04-242005-11-22Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation using gas to increase mobility
US6964300B2 (en)2001-04-242005-11-15Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore
US6994169B2 (en)2001-04-242006-02-07Shell Oil CompanyIn situ thermal processing of an oil shale formation with a selected property
US6997518B2 (en)2001-04-242006-02-14Shell Oil CompanyIn situ thermal processing and solution mining of an oil shale formation
US6951247B2 (en)2001-04-242005-10-04Shell Oil CompanyIn situ thermal processing of an oil shale formation using horizontal heat sources
US7004251B2 (en)2001-04-242006-02-28Shell Oil CompanyIn situ thermal processing and remediation of an oil shale formation
US7004247B2 (en)2001-04-242006-02-28Shell Oil CompanyConductor-in-conduit heat sources for in situ thermal processing of an oil shale formation
US6948562B2 (en)2001-04-242005-09-27Shell Oil CompanyProduction of a blending agent using an in situ thermal process in a relatively permeable formation
US6877555B2 (en)2001-04-242005-04-12Shell Oil CompanyIn situ thermal processing of an oil shale formation while inhibiting coking
US6929067B2 (en)2001-04-242005-08-16Shell Oil CompanyHeat sources with conductive material for in situ thermal processing of an oil shale formation
US7032660B2 (en)2001-04-242006-04-25Shell Oil CompanyIn situ thermal processing and inhibiting migration of fluids into or out of an in situ oil shale formation
US6918443B2 (en)2001-04-242005-07-19Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce hydrocarbons having a selected carbon number range
US7040400B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively impermeable formation using an open wellbore
US7040399B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of an oil shale formation using a controlled heating rate
US7040398B2 (en)2001-04-242006-05-09Shell Oil CompanyIn situ thermal processing of a relatively permeable formation in a reducing environment
US7051811B2 (en)2001-04-242006-05-30Shell Oil CompanyIn situ thermal processing through an open wellbore in an oil shale formation
US6880633B2 (en)2001-04-242005-04-19Shell Oil CompanyIn situ thermal processing of an oil shale formation to produce a desired product
US7051807B2 (en)2001-04-242006-05-30Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with quality control
US7055600B2 (en)2001-04-242006-06-06Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation with controlled production rate
US8608249B2 (en)2001-04-242013-12-17Shell Oil CompanyIn situ thermal processing of an oil shale formation
US7225866B2 (en)2001-04-242007-06-05Shell Oil CompanyIn situ thermal processing of an oil shale formation using a pattern of heat sources
US7066254B2 (en)2001-04-242006-06-27Shell Oil CompanyIn situ thermal processing of a tar sands formation
US6915850B2 (en)2001-04-242005-07-12Shell Oil CompanyIn situ thermal processing of an oil shale formation having permeable and impermeable sections
US6991033B2 (en)2001-04-242006-01-31Shell Oil CompanyIn situ thermal processing while controlling pressure in an oil shale formation
US6981548B2 (en)2001-04-242006-01-03Shell Oil CompanyIn situ thermal recovery from a relatively permeable formation
US7096942B1 (en)2001-04-242006-08-29Shell Oil CompanyIn situ thermal processing of a relatively permeable formation while controlling pressure
US7090013B2 (en)2001-10-242006-08-15Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US8627887B2 (en)2001-10-242014-01-14Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US6991045B2 (en)2001-10-242006-01-31Shell Oil CompanyForming openings in a hydrocarbon containing formation using magnetic tracking
US6932155B2 (en)2001-10-242005-08-23Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
US7077198B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using barriers
US7100994B2 (en)2001-10-242006-09-05Shell Oil CompanyProducing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7104319B2 (en)2001-10-242006-09-12Shell Oil CompanyIn situ thermal processing of a heavy oil diatomite formation
US7114566B2 (en)2001-10-242006-10-03Shell Oil CompanyIn situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US7461691B2 (en)2001-10-242008-12-09Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation
US7086465B2 (en)2001-10-242006-08-08Shell Oil CompanyIn situ production of a blending agent from a hydrocarbon containing formation
US7128153B2 (en)2001-10-242006-10-31Shell Oil CompanyTreatment of a hydrocarbon containing formation after heating
US7156176B2 (en)2001-10-242007-01-02Shell Oil CompanyInstallation and use of removable heaters in a hydrocarbon containing formation
US7165615B2 (en)2001-10-242007-01-23Shell Oil CompanyIn situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
US7063145B2 (en)2001-10-242006-06-20Shell Oil CompanyMethods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations
US7077199B2 (en)2001-10-242006-07-18Shell Oil CompanyIn situ thermal processing of an oil reservoir formation
US7051808B1 (en)2001-10-242006-05-30Shell Oil CompanySeismic monitoring of in situ conversion in a hydrocarbon containing formation
US6969123B2 (en)2001-10-242005-11-29Shell Oil CompanyUpgrading and mining of coal
US7066257B2 (en)2001-10-242006-06-27Shell Oil CompanyIn situ recovery from lean and rich zones in a hydrocarbon containing formation
US8238730B2 (en)2002-10-242012-08-07Shell Oil CompanyHigh voltage temperature limited heaters
US7121341B2 (en)2002-10-242006-10-17Shell Oil CompanyConductor-in-conduit temperature limited heaters
US7219734B2 (en)2002-10-242007-05-22Shell Oil CompanyInhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US20040144541A1 (en)*2002-10-242004-07-29Picha Mark GregoryForming wellbores using acoustic methods
US8224164B2 (en)2002-10-242012-07-17Shell Oil CompanyInsulated conductor temperature limited heaters
US8224163B2 (en)2002-10-242012-07-17Shell Oil CompanyVariable frequency temperature limited heaters
US7073578B2 (en)2002-10-242006-07-11Shell Oil CompanyStaged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation
US8579031B2 (en)2003-04-242013-11-12Shell Oil CompanyThermal processes for subsurface formations
US7360588B2 (en)2003-04-242008-04-22Shell Oil CompanyThermal processes for subsurface formations
US7942203B2 (en)2003-04-242011-05-17Shell Oil CompanyThermal processes for subsurface formations
US7121342B2 (en)2003-04-242006-10-17Shell Oil CompanyThermal processes for subsurface formations
US7640980B2 (en)2003-04-242010-01-05Shell Oil CompanyThermal processes for subsurface formations
US7383877B2 (en)2004-04-232008-06-10Shell Oil CompanyTemperature limited heaters with thermally conductive fluid used to heat subsurface formations
US7490665B2 (en)2004-04-232009-02-17Shell Oil CompanyVariable frequency temperature limited heaters
US7510000B2 (en)2004-04-232009-03-31Shell Oil CompanyReducing viscosity of oil for production from a hydrocarbon containing formation
US7370704B2 (en)2004-04-232008-05-13Shell Oil CompanyTriaxial temperature limited heater
US7353872B2 (en)2004-04-232008-04-08Shell Oil CompanyStart-up of temperature limited heaters using direct current (DC)
US8355623B2 (en)2004-04-232013-01-15Shell Oil CompanyTemperature limited heaters with high power factors
US7320364B2 (en)2004-04-232008-01-22Shell Oil CompanyInhibiting reflux in a heated well of an in situ conversion system
US7424915B2 (en)2004-04-232008-09-16Shell Oil CompanyVacuum pumping of conductor-in-conduit heaters
US7431076B2 (en)2004-04-232008-10-07Shell Oil CompanyTemperature limited heaters using modulated DC power
US7357180B2 (en)2004-04-232008-04-15Shell Oil CompanyInhibiting effects of sloughing in wellbores
US7481274B2 (en)2004-04-232009-01-27Shell Oil CompanyTemperature limited heaters with relatively constant current
US7575053B2 (en)2005-04-222009-08-18Shell Oil CompanyLow temperature monitoring system for subsurface barriers
US7986869B2 (en)*2005-04-222011-07-26Shell Oil CompanyVarying properties along lengths of temperature limited heaters
US7831134B2 (en)2005-04-222010-11-09Shell Oil CompanyGrouped exposed metal heaters
US7575052B2 (en)2005-04-222009-08-18Shell Oil CompanyIn situ conversion process utilizing a closed loop heating system
US7435037B2 (en)2005-04-222008-10-14Shell Oil CompanyLow temperature barriers with heat interceptor wells for in situ processes
US8224165B2 (en)2005-04-222012-07-17Shell Oil CompanyTemperature limited heater utilizing non-ferromagnetic conductor
US8070840B2 (en)2005-04-222011-12-06Shell Oil CompanyTreatment of gas from an in situ conversion process
US8027571B2 (en)2005-04-222011-09-27Shell Oil CompanyIn situ conversion process systems utilizing wellbores in at least two regions of a formation
US8230927B2 (en)2005-04-222012-07-31Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US20070137857A1 (en)*2005-04-222007-06-21Vinegar Harold JLow temperature monitoring system for subsurface barriers
US8233782B2 (en)2005-04-222012-07-31Shell Oil CompanyGrouped exposed metal heaters
US7546873B2 (en)2005-04-222009-06-16Shell Oil CompanyLow temperature barriers for use with in situ processes
US7942197B2 (en)2005-04-222011-05-17Shell Oil CompanyMethods and systems for producing fluid from an in situ conversion process
US7860377B2 (en)2005-04-222010-12-28Shell Oil CompanySubsurface connection methods for subsurface heaters
US7527094B2 (en)2005-04-222009-05-05Shell Oil CompanyDouble barrier system for an in situ conversion process
US7500528B2 (en)2005-04-222009-03-10Shell Oil CompanyLow temperature barrier wellbores formed using water flushing
US7640987B2 (en)2005-08-172010-01-05Halliburton Energy Services, Inc.Communicating fluids with a heated-fluid generation system
US7581589B2 (en)2005-10-242009-09-01Shell Oil CompanyMethods of producing alkylated hydrocarbons from an in situ heat treatment process liquid
US7559368B2 (en)2005-10-242009-07-14Shell Oil CompanySolution mining systems and methods for treating hydrocarbon containing formations
US8606091B2 (en)2005-10-242013-12-10Shell Oil CompanySubsurface heaters with low sulfidation rates
US7549470B2 (en)2005-10-242009-06-23Shell Oil CompanySolution mining and heating by oxidation for treating hydrocarbon containing formations
US7556095B2 (en)2005-10-242009-07-07Shell Oil CompanySolution mining dawsonite from hydrocarbon containing formations with a chelating agent
US7635025B2 (en)2005-10-242009-12-22Shell Oil CompanyCogeneration systems and processes for treating hydrocarbon containing formations
US7556096B2 (en)2005-10-242009-07-07Shell Oil CompanyVarying heating in dawsonite zones in hydrocarbon containing formations
US8151880B2 (en)2005-10-242012-04-10Shell Oil CompanyMethods of making transportation fuel
US7559367B2 (en)2005-10-242009-07-14Shell Oil CompanyTemperature limited heater with a conduit substantially electrically isolated from the formation
US7591310B2 (en)2005-10-242009-09-22Shell Oil CompanyMethods of hydrotreating a liquid stream to remove clogging compounds
US7584789B2 (en)2005-10-242009-09-08Shell Oil CompanyMethods of cracking a crude product to produce additional crude products
US7562706B2 (en)2005-10-242009-07-21Shell Oil CompanySystems and methods for producing hydrocarbons from tar sands formations
US7809538B2 (en)2006-01-132010-10-05Halliburton Energy Services, Inc.Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7793722B2 (en)2006-04-212010-09-14Shell Oil CompanyNon-ferromagnetic overburden casing
US7631689B2 (en)2006-04-212009-12-15Shell Oil CompanySulfur barrier for use with in situ processes for treating formations
US7673786B2 (en)2006-04-212010-03-09Shell Oil CompanyWelding shield for coupling heaters
US7866385B2 (en)2006-04-212011-01-11Shell Oil CompanyPower systems utilizing the heat of produced formation fluid
US8192682B2 (en)2006-04-212012-06-05Shell Oil CompanyHigh strength alloys
US7912358B2 (en)2006-04-212011-03-22Shell Oil CompanyAlternate energy source usage for in situ heat treatment processes
US7597147B2 (en)2006-04-212009-10-06Shell Oil CompanyTemperature limited heaters using phase transformation of ferromagnetic material
US7533719B2 (en)2006-04-212009-05-19Shell Oil CompanyWellhead with non-ferromagnetic materials
US7610962B2 (en)2006-04-212009-11-03Shell Oil CompanySour gas injection for use with in situ heat treatment
US8083813B2 (en)2006-04-212011-12-27Shell Oil CompanyMethods of producing transportation fuel
US7785427B2 (en)2006-04-212010-08-31Shell Oil CompanyHigh strength alloys
US7683296B2 (en)2006-04-212010-03-23Shell Oil CompanyAdjusting alloy compositions for selected properties in temperature limited heaters
US7635023B2 (en)2006-04-212009-12-22Shell Oil CompanyTime sequenced heating of multiple layers in a hydrocarbon containing formation
US8857506B2 (en)2006-04-212014-10-14Shell Oil CompanyAlternate energy source usage methods for in situ heat treatment processes
US7832482B2 (en)2006-10-102010-11-16Halliburton Energy Services, Inc.Producing resources using steam injection
US7770643B2 (en)2006-10-102010-08-10Halliburton Energy Services, Inc.Hydrocarbon recovery using fluids
US8555971B2 (en)2006-10-202013-10-15Shell Oil CompanyTreating tar sands formations with dolomite
US8191630B2 (en)2006-10-202012-06-05Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7540324B2 (en)2006-10-202009-06-02Shell Oil CompanyHeating hydrocarbon containing formations in a checkerboard pattern staged process
US7562707B2 (en)2006-10-202009-07-21Shell Oil CompanyHeating hydrocarbon containing formations in a line drive staged process
US20080283246A1 (en)*2006-10-202008-11-20John Michael KaranikasHeating tar sands formations to visbreaking temperatures
US7631690B2 (en)2006-10-202009-12-15Shell Oil CompanyHeating hydrocarbon containing formations in a spiral startup staged sequence
US7635024B2 (en)2006-10-202009-12-22Shell Oil CompanyHeating tar sands formations to visbreaking temperatures
US7845411B2 (en)2006-10-202010-12-07Shell Oil CompanyIn situ heat treatment process utilizing a closed loop heating system
US7644765B2 (en)2006-10-202010-01-12Shell Oil CompanyHeating tar sands formations while controlling pressure
US7673681B2 (en)2006-10-202010-03-09Shell Oil CompanyTreating tar sands formations with karsted zones
US7677314B2 (en)2006-10-202010-03-16Shell Oil CompanyMethod of condensing vaporized water in situ to treat tar sands formations
US7677310B2 (en)2006-10-202010-03-16Shell Oil CompanyCreating and maintaining a gas cap in tar sands formations
US7841401B2 (en)2006-10-202010-11-30Shell Oil CompanyGas injection to inhibit migration during an in situ heat treatment process
US7681647B2 (en)2006-10-202010-03-23Shell Oil CompanyMethod of producing drive fluid in situ in tar sands formations
US20080217016A1 (en)*2006-10-202008-09-11George Leo StegemeierCreating fluid injectivity in tar sands formations
US7703513B2 (en)2006-10-202010-04-27Shell Oil CompanyWax barrier for use with in situ processes for treating formations
US7717171B2 (en)2006-10-202010-05-18Shell Oil CompanyMoving hydrocarbons through portions of tar sands formations with a fluid
US7730946B2 (en)2006-10-202010-06-08Shell Oil CompanyTreating tar sands formations with dolomite
US7730947B2 (en)2006-10-202010-06-08Shell Oil CompanyCreating fluid injectivity in tar sands formations
US7730945B2 (en)2006-10-202010-06-08Shell Oil CompanyUsing geothermal energy to heat a portion of a formation for an in situ heat treatment process
US8381815B2 (en)2007-04-202013-02-26Shell Oil CompanyProduction from multiple zones of a tar sands formation
US8327681B2 (en)2007-04-202012-12-11Shell Oil CompanyWellbore manufacturing processes for in situ heat treatment processes
US7798220B2 (en)2007-04-202010-09-21Shell Oil CompanyIn situ heat treatment of a tar sands formation after drive process treatment
US9181780B2 (en)2007-04-202015-11-10Shell Oil CompanyControlling and assessing pressure conditions during treatment of tar sands formations
US8791396B2 (en)2007-04-202014-07-29Shell Oil CompanyFloating insulated conductors for heating subsurface formations
US7931086B2 (en)2007-04-202011-04-26Shell Oil CompanyHeating systems for heating subsurface formations
US8662175B2 (en)2007-04-202014-03-04Shell Oil CompanyVarying properties of in situ heat treatment of a tar sands formation based on assessed viscosities
US7849922B2 (en)2007-04-202010-12-14Shell Oil CompanyIn situ recovery from residually heated sections in a hydrocarbon containing formation
US7832484B2 (en)2007-04-202010-11-16Shell Oil CompanyMolten salt as a heat transfer fluid for heating a subsurface formation
US7950453B2 (en)2007-04-202011-05-31Shell Oil CompanyDownhole burner systems and methods for heating subsurface formations
US7841408B2 (en)2007-04-202010-11-30Shell Oil CompanyIn situ heat treatment from multiple layers of a tar sands formation
US8042610B2 (en)2007-04-202011-10-25Shell Oil CompanyParallel heater system for subsurface formations
US7841425B2 (en)2007-04-202010-11-30Shell Oil CompanyDrilling subsurface wellbores with cutting structures
US8459359B2 (en)2007-04-202013-06-11Shell Oil CompanyTreating nahcolite containing formations and saline zones
US8276661B2 (en)2007-10-192012-10-02Shell Oil CompanyHeating subsurface formations by oxidizing fuel on a fuel carrier
US7866386B2 (en)2007-10-192011-01-11Shell Oil CompanyIn situ oxidation of subsurface formations
US8011451B2 (en)2007-10-192011-09-06Shell Oil CompanyRanging methods for developing wellbores in subsurface formations
US8146669B2 (en)2007-10-192012-04-03Shell Oil CompanyMulti-step heater deployment in a subsurface formation
US8272455B2 (en)2007-10-192012-09-25Shell Oil CompanyMethods for forming wellbores in heated formations
US8536497B2 (en)2007-10-192013-09-17Shell Oil CompanyMethods for forming long subsurface heaters
US7866388B2 (en)2007-10-192011-01-11Shell Oil CompanyHigh temperature methods for forming oxidizer fuel
US8196658B2 (en)2007-10-192012-06-12Shell Oil CompanyIrregular spacing of heat sources for treating hydrocarbon containing formations
US8146661B2 (en)2007-10-192012-04-03Shell Oil CompanyCryogenic treatment of gas
US8240774B2 (en)2007-10-192012-08-14Shell Oil CompanySolution mining and in situ treatment of nahcolite beds
US8113272B2 (en)2007-10-192012-02-14Shell Oil CompanyThree-phase heaters with common overburden sections for heating subsurface formations
US8162059B2 (en)2007-10-192012-04-24Shell Oil CompanyInduction heaters used to heat subsurface formations
US8636323B2 (en)2008-04-182014-01-28Shell Oil CompanyMines and tunnels for use in treating subsurface hydrocarbon containing formations
US8151907B2 (en)2008-04-182012-04-10Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8162405B2 (en)2008-04-182012-04-24Shell Oil CompanyUsing tunnels for treating subsurface hydrocarbon containing formations
US8752904B2 (en)2008-04-182014-06-17Shell Oil CompanyHeated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations
US8177305B2 (en)2008-04-182012-05-15Shell Oil CompanyHeater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20100071904A1 (en)*2008-04-182010-03-25Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8562078B2 (en)2008-04-182013-10-22Shell Oil CompanyHydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations
US8172335B2 (en)2008-04-182012-05-08Shell Oil CompanyElectrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations
US9528322B2 (en)2008-04-182016-12-27Shell Oil CompanyDual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations
US8220539B2 (en)2008-10-132012-07-17Shell Oil CompanyControlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation
US9051829B2 (en)2008-10-132015-06-09Shell Oil CompanyPerforated electrical conductors for treating subsurface formations
US8267185B2 (en)2008-10-132012-09-18Shell Oil CompanyCirculated heated transfer fluid systems used to treat a subsurface formation
US8281861B2 (en)2008-10-132012-10-09Shell Oil CompanyCirculated heated transfer fluid heating of subsurface hydrocarbon formations
US8353347B2 (en)2008-10-132013-01-15Shell Oil CompanyDeployment of insulated conductors for treating subsurface formations
US8267170B2 (en)2008-10-132012-09-18Shell Oil CompanyOffset barrier wells in subsurface formations
US9129728B2 (en)2008-10-132015-09-08Shell Oil CompanySystems and methods of forming subsurface wellbores
US8881806B2 (en)2008-10-132014-11-11Shell Oil CompanySystems and methods for treating a subsurface formation with electrical conductors
US9022118B2 (en)2008-10-132015-05-05Shell Oil CompanyDouble insulated heaters for treating subsurface formations
US8261832B2 (en)2008-10-132012-09-11Shell Oil CompanyHeating subsurface formations with fluids
US8256512B2 (en)2008-10-132012-09-04Shell Oil CompanyMovable heaters for treating subsurface hydrocarbon containing formations
US8327932B2 (en)2009-04-102012-12-11Shell Oil CompanyRecovering energy from a subsurface formation
US8448707B2 (en)2009-04-102013-05-28Shell Oil CompanyNon-conducting heater casings
US8851170B2 (en)2009-04-102014-10-07Shell Oil CompanyHeater assisted fluid treatment of a subsurface formation
US8434555B2 (en)2009-04-102013-05-07Shell Oil CompanyIrregular pattern treatment of a subsurface formation
US9022109B2 (en)2010-04-092015-05-05Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US9399905B2 (en)2010-04-092016-07-26Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8833453B2 (en)2010-04-092014-09-16Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8820406B2 (en)2010-04-092014-09-02Shell Oil CompanyElectrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US9033042B2 (en)2010-04-092015-05-19Shell Oil CompanyForming bitumen barriers in subsurface hydrocarbon formations
US8631866B2 (en)2010-04-092014-01-21Shell Oil CompanyLeak detection in circulated fluid systems for heating subsurface formations
US8739874B2 (en)2010-04-092014-06-03Shell Oil CompanyMethods for heating with slots in hydrocarbon formations
US9127538B2 (en)2010-04-092015-09-08Shell Oil CompanyMethodologies for treatment of hydrocarbon formations using staged pyrolyzation
US8701768B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations
US9127523B2 (en)2010-04-092015-09-08Shell Oil CompanyBarrier methods for use in subsurface hydrocarbon formations
US8701769B2 (en)2010-04-092014-04-22Shell Oil CompanyMethods for treating hydrocarbon formations based on geology
US9016370B2 (en)2011-04-082015-04-28Shell Oil CompanyPartial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9309755B2 (en)2011-10-072016-04-12Shell Oil CompanyThermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US10047594B2 (en)2012-01-232018-08-14Genie Ip B.V.Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US20150144337A1 (en)*2013-11-222015-05-28Cenovus Energy Inc.Waste heat recovery from depleted reservoir
US9562424B2 (en)*2013-11-222017-02-07Cenovus Energy Inc.Waste heat recovery from depleted reservoir
US20150144345A1 (en)*2013-11-222015-05-28Cenovus Energy Inc.Waste heat recovery from depleted reservoir
US11142681B2 (en)2017-06-292021-10-12Exxonmobil Upstream Research CompanyChasing solvent for enhanced recovery processes
US10487636B2 (en)2017-07-272019-11-26Exxonmobil Upstream Research CompanyEnhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en)2017-08-312021-05-11Exxonmobil Upstream Research CompanyThermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11261725B2 (en)2017-10-242022-03-01Exxonmobil Upstream Research CompanySystems and methods for estimating and controlling liquid level using periodic shut-ins

Similar Documents

PublicationPublication DateTitle
US3379248A (en)In situ combustion process utilizing waste heat
CA2713536C (en)Method of controlling a recovery and upgrading operation in a reservoir
US3139928A (en)Thermal process for in situ decomposition of oil shale
US4597441A (en)Recovery of oil by in situ hydrogenation
US2497868A (en)Underground exploitation of fuel deposits
RU2487236C2 (en)Method of subsurface formation treatment (versions) and motor fuel produced by this method
US4099566A (en)Vicous oil recovery method
US3294167A (en)Thermal oil recovery
US2795279A (en)Method of underground electrolinking and electrocarbonization of mineral fuels
US4537252A (en)Method of underground conversion of coal
US3548938A (en)In situ method of producing oil from oil shale
US4691771A (en)Recovery of oil by in-situ combustion followed by in-situ hydrogenation
US4429745A (en)Oil recovery method
US4384613A (en)Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US5058675A (en)Method and apparatus for the destructive distillation of kerogen in situ
US4662439A (en)Method of underground conversion of coal
US5217076A (en)Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US4005752A (en)Method of igniting in situ oil shale retort with fuel rich flue gas
US4019577A (en)Thermal energy production by in situ combustion of coal
US3516495A (en)Recovery of shale oil
US2946382A (en)Process for recovering hydrocarbons from underground formations
US3734184A (en)Method of in situ coal gasification
WO2004069750A2 (en)Recovery of products from oil shale
US20100258317A1 (en)Apparatus and methods for the recovery of hydrocarbonaceous and additional products from oil shale and oil sands
US3327782A (en)Underground hydrogenation of oil

[8]ページ先頭

©2009-2025 Movatter.jp