Movatterモバイル変換


[0]ホーム

URL:


US3372446A - Jet crimping and texturizing apparatus - Google Patents

Jet crimping and texturizing apparatus
Download PDF

Info

Publication number
US3372446A
US3372446AUS643265AUS64326567AUS3372446AUS 3372446 AUS3372446 AUS 3372446AUS 643265 AUS643265 AUS 643265AUS 64326567 AUS64326567 AUS 64326567AUS 3372446 AUS3372446 AUS 3372446A
Authority
US
United States
Prior art keywords
yarn
rolls
nip
steam
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US643265A
Inventor
Shichman Daniel
Arthur D Siegel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uniroyal Inc
Original Assignee
Uniroyal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US373686Aexternal-prioritypatent/US3363041A/en
Priority to GB20903/65ApriorityCriticalpatent/GB1044697A/en
Priority to LU48764Aprioritypatent/LU48764A1/xx
Priority to NL6507239Aprioritypatent/NL6507239A/xx
Priority to FR19948Aprioritypatent/FR1444344A/en
Priority to CH818267Aprioritypatent/CH471916A/en
Priority to CH804465Aprioritypatent/CH473918A/en
Priority to BE665175Dprioritypatent/BE665175A/xx
Priority to US539215Aprioritypatent/US3367005A/en
Priority to GB11605/67Aprioritypatent/GB1149740A/en
Priority to NL6703882Aprioritypatent/NL6703882A/xx
Priority to FR99686Aprioritypatent/FR92247E/en
Priority to SE3937/67Aprioritypatent/SE306592B/xx
Priority to BE695999Dprioritypatent/BE695999A/xx
Priority to LU53292Dprioritypatent/LU53292A1/xx
Application filed by Uniroyal IncfiledCriticalUniroyal Inc
Priority to US643265Aprioritypatent/US3372446A/en
Publication of US3372446ApublicationCriticalpatent/US3372446A/en
Application grantedgrantedCritical
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Description

March 12, 1968 D. SHICHMAN ET AL 3,372,446
JET CRIMPING AND TEXTURIZING APPARATUS Original Filed June 9, 1964 5 Sheets-Sheet, 1
March 12, 1968 D. SHICHMAN ET AL 3,372,446
JET CRIMPING AND TEXTURIZING APPARATUS Original Filed June 9, 1964 5 Sheets-Sheet 2 INVENTORS March 12, 1968 o. SHICHMAN ET AL 3,372,446
JET CRIMPING AND TEXTURIZING APPARATUS I N VENTORS 0A NIEL J'H/C/l/VAA/ 4H 7H0)? D. JVEGEL March 12, 1968 sHlCHMAN ET AL JET CRIMPING AND TEXTURIZING APPARATUS 5 Sheets-Sheet 4 Original Filed June 9, 1964 INVENTORS DAN/E L d H/C HIV/41V A/PTHUR D. J/EEL March 12, 1968 D. SHICHMAN ET AL 3,372,446
I JET CRIMPING AND TEXTURIZING APPARATUS Oiiginal Filed June 9, 1964 5 Sheets-Sheet 5 INVENTORS DAN/EL JH/CH/V l/V ARTHUR 0 J/EEL United States Patent 3,372,446 JET CRIMPING AND TEXTURIZING APPARATUS Daniel Shichman, Cedar Grove, and Arthur D. Siegel, Upper Montclair, N.J., assignors to Uniroyal, Inc., a corporation of New Jersey Original application June 9, 1964, Ser. No. 373,686. Divided and this application June 2, 1967, Ser. No. 643,265
10 Claims. (Cl. 28-1) ABSTRACT OF THE DISCLGSURE Apparatus for texturing yarn in which the yarn is steam jetted through a hypodermic needle into the nip of arcuate converging surfaces where it is compressed longitudinally and packed into the nip. One of the surfaces is rotated to pass the pack through the nip after which the yarn is taken up.
This application is a division of our co-pending application Ser. No. 373,686, filed June 9, 1964-, in which the method disclosed herein is claimed.
This invention relates to an apparatus for texturing thermoplastic yarn.
In United States Patent 2,435,891, granted Feb. 10, 1948 there is disclosed a method of crimping textile yarns in which the yarn is jetted toward the nip formed by a cylindrical cage like roller and a cylindrical roller with a resilient cover. I l This invention relates to an improved apparatus for texturing yarn by jetting the yarn toward a nip. In accordance with one embodiment of this invention a nip is formed between a pair of rotatable rolls each having a roughened yarn contacting surface. At the nip these surfaces are spaced fromeach other a finite distance sufiiciently great that the driving force generated by a hot gas, to be described, on the yarn is not lost, yet not far enough apart to lose the compressive force on the yarn. Yarn to be textured is introduced from a central tube into a moving stream of heated gas and is hurled longitudinally of itself toward the nip to pack the yarn into a chamber partially blocked by the roughened surfaces. These surfaces are converged into the nip to carry the yarn through the nip, the yarn is cooled and subsequently wound up.
The invention will be further described with reference to the accompanying drawings forming a part hereof, wherein:
FIG. 1 is a schematic elevational view of an apparatus according to the invention suitable for carrying out the method of the invention;
FIG. 2 is a top view of the nip rolls shown in FIG. I; 3 FIG. 3 is an enlarged fragmentary perspective view of the nip rolls and delivery tube used in the apparatus of FIG. 1;
FIG. 4 is an enlarged elevational view, partly in section, of a second embodiment of a nip apparatus showing in detail one embodiment of a jet nozzle, also used in FIG. 1;
FIG. 5 is a transverse sectional view taken. along theline 55 of FIG. 4;
FIG. 6 is a view similar to FIG. 1 of a'second embodiment of apparatus of the invention suitable for carrying,
'ice
invention is illustrated in FIGS. 1 through 3. A detail of the apparatus used in this embodiment appears in FIGS. 4 and 5. A second embodiment of apparatus according to this invention is illustrated in FIGS. 4 through 8. The method will be described in connection with these two embodiments.
Referring first to the embodiment disclosed in FIGS. 1 through 3 a texturizer in accordance with this invention is shown in conjunction with draw rolls which are adapted to draw an undrawn thermoplastic yarn Y, for example, a polypropylene multifilament continuous filament yarn. Yarn Y is delivered to a first pair ofgodet rolls 10, 11 and thence to a second pair ofgodet rolls 12, 13-. As is customary, each pair of godet rolls consists of a relativelylarge roll 10 or 12 and a relatively small roll 11 or 13 v with the two rolls in a pair arranged at an axis angle to.
each other so as to advance yarn in a series of spaced loops about the pair. Yarn Y is wrapped 6 to 8 times about each pair of driven godet rolls, and is advanced from thelast pair 12, 13 to a texturing apparatus in acpolypropylene yarn is processed,roll 10 is heated to 200-;
250 F. and is rotated at a surface speed of 250 feet per minute, while roll 12, heated to a temperature of 200 to 350 F., is rotated at a surface speed of 1000 feet per minute to draw the yarn Y four to one between the pairs of rolls. The drawn yarn next enters the steam propulsion device indicated generally at 14 and shown in detail in" FIG. 4. v Thesteam device 14 for propelling the yarn includes acylindrical tube 15 partially closed at its bottom by aplug 16 and at its top by aplug 17 which together form the shell of the propulsion device.Plug 17 as a central dependingboss 18 projecting into the chamber enclosed bytube 15 which is adapted to fit snugly into, and to substantially close, the open upper end of a second, smaller diameter, generallycylindrical tube 19 arranged coaxially withintube 15. The reduced diameterlower end 20 oftube 19 is received snugly within the central axial hole throughlower plug 16 andis fastened to the outer shell by anut 21. Tube 19' has a generally rectangular externally cross sectionedextension 22 projecting beneath theplug 16 for a purpose to be described.
Tube 19, arranged coaxially withintube 15 has in its upper end an axialcylindrical chamber 23 in free communication with a smaller axialcylindrical chamber 24,
a dependingprojection 22 and opens to the atmosphere through the lower faces ofprojection 22. Thechamber 23.
communicates withchamber 24 through a frusto-conicalshaped chamber 25 which, in this case, has a cone angle of 30. A fluid directionalizing disc 26 is disposed in the.chamber 23 intermediate its ends for a purpose to be described. Ahypodermic needle 27 passes axially throughchamber 23 and projects axially part way intochamber 24. Needle 27 is supported inplug 17, and passes centrally through disc 26. A polytetrafluoroethylene (Teflon) packing 28 and packinggland nut 29 of customary design seals the opening whereneedle 27 passes throughplug 17. The size of the hypodermic needle used can be varied with the size of yarn being textured. A thirteen gauge needle works well when processing 3,000denier'2l0 filament polypropylene yarn.
Superheated steam at p.s.i. from a supply pipe30 is admitted through a bore in the upper end ofsleeve 15 into aplenum chamber 31 betweensleeves 15 and 19. A
thermocouple 62 extends intochamber 31 to sense the steam temperature. Tube 19 has a pair of inch diameterradial holes 32 therethrough communicating thechamber 23. Steam fromplenum chamber 31 finds its way through theseradial holes 32 to the portion ofchamber 23 above disc 26.
Disc 26 seals against both thehypodermic needle 27 and the internal walls oftube 19 to dividechamber 23 into two sections. Communication between the two sections ofchamber 23 is obtained through four inch diameter holes 60 whose axes parallel the axis oftube 19 and, as shown in FIG. 5, are symmetrically arranged at 90 intervals about the axis of the hypodermic needle. Disc 26 serves to parallelize the direction of steam fiow to the direction of yarn advance through the center ofhypodermic needle 27, so that as the steam is fed past the open lower end ofhypodermic needle 27 it is travelling in a direction generally parallel to theyarn leaving needle 27Chamber 23, which has a substantial length beneath disc 26, and the small 30 cone angle ofchamber 25 tend to maintain this parallel flow direction of the steam.
Hypodermic needle 27 projects intochamber 24, but its lower end terminates a substantial distance short of the lower terminus of thischamber 24 at the lower face ofprojection 22. Thus a cylindrical chamber is provided withinprojection 22 beneath the lower tip of the hypodermic needle in which yarn may be packed. As will appear in FIGS. 3 and 4projection 22 has lower concave faces 33, 34 shaped to an arcuate surface substantially complementary to the path of rotation at this point of the roughened surfaces on the wheels next to be described. The yarn Y, fed into the upper end ofhypodermic needle 27, is hurled from its lower end and toward the nip of a pair of roughened surfaces advancing toward each other.
As will appear in FIG. 1projection 22 fits closely into the nip of a pair ofrolls 35, 36 rotatably driven in the direction indicated by the arrows in FIG. 1. Althoughprojection 22 is shown spaced a substantial distance from the point of nearest approach ofrolls 35 and 36 to each other, this spacing has been exaggerated for the purpose of clarity, and it will be understood thatprojection 22 has a lower knife-like edge that projects into the nip ofrolls 35, 36 as close as can conveniently be obtained. In one embodiment the spacing betweenarcuate surfaces 33, 34 and the outer path of the roughened surface onrolls 36, 35, respectively, measured radially of the rolls, is .025".
As best appears in FIGS. 2 and 3, rolls 35 and 36 each have a multiplicity of gear tooth-like projections and indentations disposed around their entire peripheries. Although therolls 35, 36 are equipped with gear tooth-like projections and indentations, these teeth do not mesh; rather the closest approach of the circular path followed by the radially outermost surface of the teeth onroll 35 as this roll rotates about its. axis is spaced from the similar path of the teeth on roll 36 a finite distance but not far enough to lose compressive force on the yarn. These paths should not be so close to each other as to lose driving force generated by the steam on the yarn.
Although the theory is only imperfectly understood, when-the rolls are too close together tension is lost on the yarn entering thepropulsion device 14, and the driving force on the yarn is lost. It is thought this driving force created by the steam is due to aspiration of yarn from lower end ofneedle 27 and in part results from friction of the advancing steam on the yarn. If the rolls are too far apart, the yarn is blown through the nip without extensive crimping because a resistance against which this driving force must act in order to crimp the yarn as desired herein is lost.
Rolls 35, 36 are geared to counter-rotate at equal peripheral speeds. Both rolls have the same diameters, and in one embodiment each of two 6 inch diameter wheels is equipped with 280 48 pitch, 14 /2 degree pressure angle teeth of .045" depth. For the above-mentioned 3,000 denier 210 filament polypropylene yarn and the same draw speeds and temperatures described above for 12,000 denier polypropylene, a typical gap between the rolls is .010", and a typical peripheral speed of the rolls is feet per minute.
As appears best in FIGS. 2 and 3, roll 36 is provided with flanges '37, 38 which project beyond the roughened surface ofroll 36 proper at each side thereof and which snugly receive the sides ofroll 35 andprojection 22 to enclose the space betweenprojection 22 and rolls 3'5, 36.Flanges 37, 38 have a multiplicity ofholes 39 there through to permit steam to escape from this enclosed space.
The yarn is withdrawn fromT0115 35, 36 by an aspirator indicated generally at 40 in FIG. 1. As shown in FIG. 9, this aspirator consists of a tube 41 having a core 42 fitting snugly in the upper end thereof. A triangular crosssection plenum chamber 44 communicates 'with com pressed air supply 45.Core 42 has a venturiaxial opening 43 therethrough through which the yarn passes. Four downwardly directed bores 61 communicate between theair plenum chamber 44 and thepassage 43, opening into the latter beneath the constricted throat of the vent-uri. This air aspirator simultaneously withdraws yarn fromrolls 35, 3'6 and air quenches the yarn which had been heated prior to texturing by the draw rolls and the superheated steam.
After the yarn leaves air quenchaspirator 40, it passes around apulley 46 and is directed to a first pair of driven draw out rolls 47, 48 and thence to a second pair of draw out rolls 49, '50 driven at a slightly faster speed than thefirst pair 47, 48. In the heretofore described embodiment processing 3,000 denier polypropylene the first pair of rolls rotate at 760 feet per minute and the second at 860 feet per minute, hence a 14% reduction in length has been effected by the crimping.
The relative treating conditions may be var-led Within limits. The yarn should be fed to the hypodermic needle at a linear speed not less than five times faster than the linear speed of the surface ofrolls 35, 36. Other thermo plastic yarns, for example, nylon, polyester, and cellulose acetate, may be processed on this apparatus, and the proc ess conditions would be modified as appropriate for such yarns. Instead of parallel holes through disc 26 as shown in FIGS. 4 and 5, torque holes may be provided having their axes arranged so as to swirl the steam abouthypodermic needle 27. This could be used to produce slub and false twist effects.
Other heated gases may be used in place of steam but this is most commonly available in economical form. Su-perheating the steam to remove liquid is most advantageous. Whatever gas is used, it should be at a temperature to heat the fiber to be crimped to the heat-forming temperature, or if the fiber has been previously heated to such temperature, the gas should be at a temperature suificiently high as not to cool the fiber before the oesired crimp has been induced therein.
Referring next to FIGS. 4 and 6 through 8, a further embodiment of this invention is disclosed. In FIG. 6 certain elements similar to elements appearing in FIG. 1 and operating in the same way and performing the same function have been designated by the same reference numbers but with the addition of the superscript prime mark, i.e., 10, 11', 12', 13, 40', 46', 47, 48, 49' and 50', and will not be again described. Thesteam propulsion unit 14 used in this embodiment is the same as that previously described, and accordingly will not be further described. In the embodiment shown in these figures three yarn ends Y, Y" and Y are processed as one throughdevice 14 and to a pair of drivenrolls 51, 52 rotated in the direction indicated by the arrows. As best appears in FIG. 7 these rolls are generally cylindrical rolls each having a flange on one end, and having a series of peripheral grooves in which toroidal silicon 0 rings 59 fit. A second pair of drivenrolls 53, 54 identical to IOlls 51, 52 and containing similar 0 rings is located about two feet beneathrolls 51, '52. There is trained overrolls 51, 53 a first chain belt '55. Asecond chain belt 56 is trained overrolls 52, 54. 'In one specific embodiment, rolls 51, 52, 53 and '54 are each 2 inches in external diameter and 3 inches wide and each is equipped with twelve s'ilicon O tringsunifior-mly spaced there'along. The rings transmit a t-ractive force to the chain belts, and they elevate the belts off the polls so that steam from the steam propulsion unit can pass away from the nip. The rolls in each pair ofrolls 51, '52, 53, and 54 are counter-rotated at the same speed.
In this embodiment the roughened surfaces onrolls 51, 52 are provided by the stainlesssteel chain belts 55, 56. These belts, shown in more detail in FIG. 8 consist of a series of spacedcylindrical rods 63 extending from side to side of the belts and a plurality of open, flattened,helix wires 64, 65 wrapped thereabout and arranged to produce a balanced construction. These open 'work belts have a plurality of holes or cavities therethrough in which segments of the yarn may rest.
One specific example of belting usable for thebelts 55, 56 when processing 210 denier polypropylene yarn consisting of 70 filaments averaging 3 denier per filament is designated. D-264-178-22-28 by the manufacturer, the Cambridge Wire Cloth Company of Cambridge, Md. The manufacturers catalog states that the first number designates turns per foot of width, the second number designates the rods per foot of width and the last two numbers designate the gauge of the wire.
Desirably a pair ofwater spray guns 57, 58 spray water on the belts and the yarn carried thereby. As will be noted from FIG. 7, the wire belts are spaced a finite distance apart. In one specific embodiment the radial gap between eachface 33, 34 and the adjacent belt was .010, the gap between the belts at their nearest approach to each other was .012 inch, the surface speed of the belts was 60 feet per minute and the yarn was fed by the godet rolls 12', 13 at a linear rate of 1,000 feet per minute. When using superheated steam at 140 p.s.i., twonozzles 57, '8 spraying room temperature water was found adequate to cool the fiber.
It has been found that the use of twobelts 55, 56 is not essential to convey the fiber, for the filaments are pressed into the cavities in the belt if one only is used, and they will cling thereto to be carried along as this belt moves. According thebelt 56, for example, could be replaced by a belt snugly girdling the complete periphery ofroll 52 only, so that no belt span extends beneathroll 52, and only belt 55 carries the yarn away from the nip.
In the embodiment of FIG. 6, rolls 51, 53 are mounted on a support pivoted some distance belowpulley 53, so thatpulleys 51, 53 andbelt 55 may be swung downwardly and to the right, as indicated by the broken lines, as a unit to permit yarn to be threaded through the texturizer.
Having thus described our invention, what we claim and desire to protect by Letters Patent is:
1. Apparatus for texturing yarn which comprises a pair of converging arcuate surfaces at least one of which has a roughened yarn contacting surface, said surfaces at their nearest approach to each other forming a nip and being spaced a finite distance apart sufficiently small to provide a resistance to the longitudinal advance of the yarn but not large enough to lose the compressive force on the yarn pack to be passed therethrough, means for advancing at least one of said converging surfaces toward the nip therebetween at a linear surface speed not more than one-fifth the linear rate of speed at which yarn is advanced to the nip, hollow means projecting into said nip close to said surfaces to form therewith a yarn packing chamber, a hollow needle through which said yarn advances, said needle extending part way into the portion of the chamber within such hollow means and pointing toward said nip, means defining a passage for hot gas about said needle and in communication with said chamber at the end of said needle, and means for directing a hot gas about said needle toward said chamber to cause said yarn to be hurled toward said nip.-
2. Apparatus for texturing yarn, comprising a pair of converging arcuate nip surfaces at least one of which has a roughened yarn contacting surface, said surfaces at their nip being spaced a finite distance apart sufficiently small to provide a resistance to the longitudinal advance of the yarn but not large enough to lose the compressive force on a yarn pack to be passed therethrough, means to rotate said roughened surface to advance said surface toward the nip therebetween at a linear surface speed not more than one-fifth the linear rate of speed at which yarn is advanced to the nip, a steam jet projecting into said nip in close proximity to said surfaces for hurling yarn toward said nip, said jet including a hollow tube-like member having an open end shaped to fit into said nip in close proximity to said surfaces and to be partially opposed to said surfaces, a hol low needle having an end projecting partially into said hollow tube-like member and toward said nip, means for advancing a yarn longitudinally through said needle, a steam chamber surrounding at least said projecting end of the needle and discharging into said tube-like member past said projecting end of the needle, whereby steam passing said projecting end of the needle may cause said yarn to be withdrawn from said projecting end of said needle and hurled toward said nip to be packed upon itself, and thereafter to be advanced through said nip by said roll.
3. Apparatus in accordance withclaim 2 in which said roughened surface is formed by a multiplicity of transversely extending gear tooth-like projections and indentation on a roll, the other of said surfaces having flanges at its edges, said roll being adapted to fit within said flanges, and said flanges having holes therethrough, to permit escape of steam.
4. Apparatus in accordance withclaim 2 in which said hollow tube-like member has a substantially cylindrical shaped chamber into which said needle projects and in which the end opening thereof has a circular projection in a plane through the axes about which said nip rolls rotate, said surfaces being spaced sufliciently far apart to prevent loss of driving force of the steam on the yarn.
5. Apparatus in accordance withclaim 4 including means to admit steam into said steam chamber at a point spaced a substantial distance from the projecting end of said needle, steam directing means within said chamber surrounding said needle and disposed between said projecting end of said needle and said steam admitting means and adapted to direct the steam advance substantially parallel to said needle through said steam chamber and toward said projecting end of said needle.
6. Apparatus in accordance withclaim 4 in which surfaces are formed by chain belts on said rolls elevated a little distance from the surface of the rolls.
7. Apparatus in accordance with claim 6 in which at least one of said belts is trained over a second roll spaced a substantial distance from the pair of nip rolls, and including means for removing the yarn from adjacent said belt after it has passed a substantial distance from said nip rolls toward second roll.
8. Apparatus in accordance with claim 7 including a second pair of nip rolls spaced a substantial distance from the first pair of nip rolls, and in which the chain belt on each of said rolls in the first pair of nip rolls passes to said second set of nip rolls along closely spaced substantially parallel paths to carry the yarn therebetween to said second pair of nip rolls, and means for removing said yarn from said chain belts after it passes through the nip of said second pair of nip rolls.
9. Apparatus in accordance with claim 8 including means for spraying water on said belts and said yarn between said two pairs of nip rolls to cool said yarn.
10. Apparatus in accordance with claim 8 including References Cited UNITED STATES PATENTS 2,216,142 10/1940 Taylor 28-1 2/1946 Getaz 1966 8 Lodge 264-282 X Oberly 2872 Keen 28' 72 Lamb 281 Weiss et a1. 2872 Baer et a1 281 LOUIS K. RIMRODT, Primary Examiner.
US643265A1964-06-091967-06-02Jet crimping and texturizing apparatusExpired - LifetimeUS3372446A (en)

Priority Applications (15)

Application NumberPriority DateFiling DateTitle
GB20903/65AGB1044697A (en)1964-06-091965-05-18Method and apparatus for texturing thermoplastic yarn
LU48764ALU48764A1 (en)1964-06-091965-06-04
NL6507239ANL6507239A (en)1964-06-091965-06-08
FR19948AFR1444344A (en)1964-06-091965-06-08 Method and apparatus for texturing thermoplastic yarns
CH818267ACH471916A (en)1964-06-091965-06-09 Apparatus for texturing thermoplastic yarns
CH804465ACH473918A (en)1964-06-091965-06-09 Process for the texturing of multifilament thermoplastic yarns
BE665175DBE665175A (en)1964-06-091965-06-09
US539215AUS3367005A (en)1964-06-091966-03-31Apparatus for crimping and texturizing yarn
GB11605/67AGB1149740A (en)1964-06-091967-03-13Improvements in apparatus for texturing yarn
NL6703882ANL6703882A (en)1964-06-091967-03-15
FR99686AFR92247E (en)1964-06-091967-03-21 Method and apparatus for texturing thermoplastic yarns
SE3937/67ASE306592B (en)1964-06-091967-03-21
BE695999DBE695999A (en)1964-06-091967-03-23
LU53292DLU53292A1 (en)1964-06-091967-03-28
US643265AUS3372446A (en)1964-06-091967-06-02Jet crimping and texturizing apparatus

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US373686AUS3363041A (en)1964-06-091964-06-09Method of jet crimping for texturing thermoplastic yarn
US539215AUS3367005A (en)1964-06-091966-03-31Apparatus for crimping and texturizing yarn
US643265AUS3372446A (en)1964-06-091967-06-02Jet crimping and texturizing apparatus

Publications (1)

Publication NumberPublication Date
US3372446Atrue US3372446A (en)1968-03-12

Family

ID=27409138

Family Applications (2)

Application NumberTitlePriority DateFiling Date
US539215AExpired - LifetimeUS3367005A (en)1964-06-091966-03-31Apparatus for crimping and texturizing yarn
US643265AExpired - LifetimeUS3372446A (en)1964-06-091967-06-02Jet crimping and texturizing apparatus

Family Applications Before (1)

Application NumberTitlePriority DateFiling Date
US539215AExpired - LifetimeUS3367005A (en)1964-06-091966-03-31Apparatus for crimping and texturizing yarn

Country Status (8)

CountryLink
US (2)US3367005A (en)
BE (2)BE665175A (en)
CH (1)CH473918A (en)
FR (2)FR1444344A (en)
GB (2)GB1044697A (en)
LU (2)LU48764A1 (en)
NL (2)NL6507239A (en)
SE (1)SE306592B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3457610A (en)*1967-12-131969-07-29Monsanto CoTreatment of filaments to develop latent bulkiness therein
US3774412A (en)*1971-01-141973-11-27Uniroyal IncJet tuft rib knitted fabric
US3964657A (en)*1973-07-041976-06-22Barmag Barmer Maschinenfabrik AktiengesellschaftYarn transporting apparatus
US4157604A (en)*1977-11-181979-06-12Allied Chemical CorporationMethod of high speed yarn texturing
DE2807490A1 (en)*1978-02-221979-08-23Bayer Ag PROCEDURE FOR COOLING A THREAD PLUG
US5575049A (en)*1995-08-291996-11-19E. I. Du Pont De Nemours And CompanyYarn texturing jet with improved assembly and disassembly features
US6088891A (en)*1996-10-252000-07-18Neumag - Neumuenstersche Maschinen - Und Anlagenbau GmbhDevice for crimping synthetic thread bundles or strips
US20160332023A1 (en)*2015-05-122016-11-17Mark Christopher TaylorAttachment Mechanisms and Methods for an Absorbent Cover

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3438101A (en)*1966-12-221969-04-15Allied ChemProcess and apparatus for texturizing yarn
US3441989A (en)*1967-04-211969-05-06Uniroyal IncMethod and apparatus for texturing yarn
JPH0726268B2 (en)*1987-10-311995-03-22株式会社竹原機械研究所 Fiber crimping device
US5118306A (en)*1991-05-291992-06-02Molex IncorporatedMulti-conductor electrical connector
DE102004029219A1 (en)*2004-06-162006-01-05Maschinenfabrik Rieter Ag Texturing device with Entwirrstreckenbremse

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2216142A (en)*1938-01-071940-10-01Celanese CorpCrimping of filaments, fibers, yarns, and the like
US2394165A (en)*1943-04-231946-02-05Getaz James LouisProcessing of synthetic fibers
US2435891A (en)*1941-06-241948-02-10American Viscose CorpMethod and apparatus for crimping textile fibrous material
US2584043A (en)*1945-06-201952-01-29American Viscose CorpMethod and apparatus for processing filamentary materials
US2669001A (en)*1949-09-291954-02-16Collins & Sikman CorpMethod and apparatus for treating yarns
US3140525A (en)*1961-07-211964-07-14Monsanto CoCrimping device
US3156028A (en)*1958-06-031964-11-10Du PontProcess for crimping textile yarn
US3204319A (en)*1963-03-251965-09-07Monsanto CoApparatus for texturizing yarn

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2216142A (en)*1938-01-071940-10-01Celanese CorpCrimping of filaments, fibers, yarns, and the like
US2435891A (en)*1941-06-241948-02-10American Viscose CorpMethod and apparatus for crimping textile fibrous material
US2394165A (en)*1943-04-231946-02-05Getaz James LouisProcessing of synthetic fibers
US2584043A (en)*1945-06-201952-01-29American Viscose CorpMethod and apparatus for processing filamentary materials
US2669001A (en)*1949-09-291954-02-16Collins & Sikman CorpMethod and apparatus for treating yarns
US3156028A (en)*1958-06-031964-11-10Du PontProcess for crimping textile yarn
US3140525A (en)*1961-07-211964-07-14Monsanto CoCrimping device
US3204319A (en)*1963-03-251965-09-07Monsanto CoApparatus for texturizing yarn

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3457610A (en)*1967-12-131969-07-29Monsanto CoTreatment of filaments to develop latent bulkiness therein
US3774412A (en)*1971-01-141973-11-27Uniroyal IncJet tuft rib knitted fabric
US3964657A (en)*1973-07-041976-06-22Barmag Barmer Maschinenfabrik AktiengesellschaftYarn transporting apparatus
US4157604A (en)*1977-11-181979-06-12Allied Chemical CorporationMethod of high speed yarn texturing
DE2807490A1 (en)*1978-02-221979-08-23Bayer Ag PROCEDURE FOR COOLING A THREAD PLUG
US4288893A (en)*1978-02-221981-09-15Bayer AktiengesellschaftMethod of cooling stuffer crimped yarn
US5575049A (en)*1995-08-291996-11-19E. I. Du Pont De Nemours And CompanyYarn texturing jet with improved assembly and disassembly features
US6088891A (en)*1996-10-252000-07-18Neumag - Neumuenstersche Maschinen - Und Anlagenbau GmbhDevice for crimping synthetic thread bundles or strips
US20160332023A1 (en)*2015-05-122016-11-17Mark Christopher TaylorAttachment Mechanisms and Methods for an Absorbent Cover

Also Published As

Publication numberPublication date
BE695999A (en)1967-09-01
LU48764A1 (en)1965-08-04
CH473918A (en)1969-07-31
CH804465A4 (en)1969-02-28
GB1044697A (en)1966-10-05
FR92247E (en)1968-10-11
BE665175A (en)1965-10-01
GB1149740A (en)1969-04-23
NL6703882A (en)1967-10-02
US3367005A (en)1968-02-06
SE306592B (en)1968-12-02
LU53292A1 (en)1967-05-28
FR1444344A (en)1966-07-01
NL6507239A (en)1965-12-10

Similar Documents

PublicationPublication DateTitle
US3372446A (en)Jet crimping and texturizing apparatus
US3009309A (en)Fluid jet twist crimping process
US3482294A (en)Apparatus for fluid treating filamentary materials
US3363041A (en)Method of jet crimping for texturing thermoplastic yarn
US3079745A (en)Fluid twiste apparatus for twisting yarn
US3783596A (en)Jet application of textile finish to moving threadlines
US3438101A (en)Process and apparatus for texturizing yarn
US6438934B1 (en)Apparatus and method for fabrication of textiles
GB941931A (en)Manufacture of bulked yarn from synthetic continuous thermoplastic filaments
US2994938A (en)Yarn-treating apparatus
USRE27717E (en)Fluid jet process for twisting yarn
US3644968A (en)Apparatus for relaxing yarns
US3389445A (en)Moving side wall crimping process and apparatus therefor
US4124924A (en)Process for making slub yarn from continuous filament yarn
US4133087A (en)Method and apparatus for texturizing continuous filaments
US3340684A (en)Yarn texturing apparatus and fluid diffuser therefor
GB1310203A (en)Bulky yarn and production thereof
EP1203114A1 (en)Processing textile materials
US5325572A (en)Yarn treating jet
US3478401A (en)Method and apparatus for treating textile yarn
US3703751A (en)Yarn treating jet
CA1059742A (en)Textile process
US3885278A (en)Apparatus for texturing yarn
JPS6120656B2 (en)
US3693222A (en)Yarn texturing apparatus

[8]ページ先頭

©2009-2025 Movatter.jp