Nov. 1, 1966 A. FERRARI ETAL. 3,282,651
SAMPLE AND REAGENT AND/OR WASH LIQUID SUPPLY APPARATUS Filed July 12, 1963 FIG. I
v INVENTORS ANDRES FERRARI JOSEPH J. wooos ATTORNEY United States Patent 3,282,651 SAMPLE AND REAGENT AND/ OR WASH LIQUID SUPPLY APPARATUS Andrs Ferrari, Scarsdale, and Joseph J. Woods, Hawthorne, N.Y., assignors to Technicon Instruments Corporation, Chauncey, N.Y., a corporation of New York Filed July 12, 1963, Ser. No. 294,587 Claims. (Cl. 23253) This invention relates to an automatic analysis apparatus or system for quantitatively analyzing a series of sample liquids in respect to a known substance therein, the samples being transmitted one after another in streamlike fashion from automatic sample supply apparatus and treated with a reagent for analysis while flowing in the system.
The primary object of the invention is to provide means for automatically interrupting the supply of reagent to the system when the flow of sample liquid from the sample supply apparatus is interrupted.
Another object is the .provision of means to automatically supply a wash or other liquid to flow through the system instead of the reagent, during the intervals between the flow of sample liquids and reagent, whereby to cleanse the tubing and other parts of the analysis apparatus or at least in some cases to inhibit an undesirable reaction or contamination.
Pursuant to another object of the invention, provision is made to automatically introduce wash liquid into the sample supply tube itself when sample flow is interrupted.
The above and other objects, features and advantages of the invention will be fully understood from the following description of the presently preferred mode of practicing the invention, reference being had to the accompanying drawings, in which:
FIG. 1 is a plan view of apparatus embodying the present invention showing a part of the sample supply apparatus and illustrating schematically a pump and tubes which constitute parts of the analysis apparatus;
FIG. 2 is a view partly in elevation and partly in section along theline 22 of FIG. 1;
FIG. 3 is a sectional view along the line 3-3 of FIG. 1; and
FIG. 4 is a sectional view along theline 44 of FIG. 3.
The sample supply apparatus, a part of which is indicated at in FIG. 1, is fully described in the United States patent of Jack Isreeli, No. 3,03 8,340, issued to and owned by the assignee of this application. As this sam ple supply apparatus is well known in the art, as well as being described in said patent, and does not in itself form part of the invention, it will be described only to the extent necessary to the understanding of its relation to the invention. Said supply apparatus, hereinafter sometimes referred to as a sampler, comprises acircular plate 12 provided with a series of openings in whichcups 14 to contain the liquids to be analyzed are supported.Plate 12 is turned intermittently by motor actuated mechanism (not shown) disposed within thehousing 16 to bring eachcup 14 to a liquid takeoff station at which a tubular member orcrook 18 forming part of a liquid intake device is positioned. Takeoff tubing 20 (FIGS. 2 and 3), usually polyethylene tubing, is threaded through the crook and has an inlet end portion which is moved by the crook into and out of thecup 14 at the takeoff station whileplate 12 is stationary. The crook is carried by arod 22 which is mounted for pivotal movement to and from the operative and retracted positions shown in full and broken lines, respectively, in FIG. 2 whileplate 12 is turned to move thecups 14 to and from the takeoff station. Alink 24 connected torod 22 is actuated by mechanism within thesampler housing 16, as described in said patent, to move thecrook tube 20 into thecup 14 at the takeoff station as soon asplate 12 comes to rest and to movecrook tube 20 out of said cup and clear of the latter at the end of the takeoff operation just beforeplate 12 is turned to advance the next cup to the takeoif station.
In accordance with the present invention, provision is made for interrupting the flow of reagent in the system when the flow of the sample liquid is interrupted, i.e., when thecrook tube 20 is withdrawn from acup 14 at the takeoff station. For this purpose valve means 26 is utilized. Said valve is carried by abracket 28 which is secured in position onhousing 16, adjacent the sample takeolf station, by clamping said bracket against a fixedblock 30 on said housing by theclamping member 32 operated by theclamping screw 34.
Valve means 26 comprises thevalve housing 36 havingfluid inlet openings 38 and 40 which'are in circumferentially spaced relation (FIG. 4) and a common fluid outlet opening 44. Acylindrical valve member 50 is mounted for turning movement in thecylindrical bore 52 ofhousing 36 and has across fluid passage 54 which is adapted to register withinlet opening 38 in one position of the valve and with inlet opening 40 by way oflateral passage 56 in another position of said valve for control of flow of various liquids as is obvious or will become apparent as the description proceeds.
Thevalve 50 is turned to its fluid-flow controlling positions by the pivotal movement ofcrook 18 whencrook supporting rod 22 is pivoted by actuation oflink 24. The valve turning means comprises amember 60 which has a forkedend 62 which receives the crook, for actuation by the latter, and anopposite end 64 which is connected to the valve stem part 66 for turning the valve about its longitudinal axis when the crook is turned.
The operation of the valve will now be described with reference to theproportioning pump 68 and tubing of the analysis apparatus. Thepump 68, which is schematically indicated in FIG. 1, is of the resiliently compressible tube type and is preferably of the construction described in United States Patent No. 2,893,324 issued to and owned by the assignee of this application. Briefly described, said pump comprises a plurality of resiliently compressible tubes, of selected internal diameters depending upon the desired liquid or other fluid proportions, and a plurality of pressure rollers which engage said tubes and move longitudinally on the tubes for compressing them progressively along their lengths for transmitting the fluids through the tubes to other modules of the analyzer. Several of the resiliently compressible tubes of the pump are shown schematically at 70, 72, 74 and 76. The outlets of said tubes are connected by a tubular coupling to a horizontally disposedhelical mixing tube 92 in which mixing of the liquids occurs during their flow through said coil.
Sample liquid to be analyzed may be supplied directly diluent, for example distilled water, is suppled to pump 'nonsampling periods.
tube 72 for diluting the sample liquid. A liquid reagent is supplied under the control ofvalve 26 to adelivery tube 78 which is connected topump tube 74. Air is introduced throughpump tube 76 for segmentizing the liquid stream whereby to aid in cleansing the Walls of the tubing, as explained in United States Skeggs Patent No. 2,797,149, owned by the assignee of this application.
As explained in detail in said Skeggs patent, the sample liquid is treated for colorimetric analysis and for this purpose a suitable reagent employed to develop the color is added to the sample liquid. In accordance with the present invention, provision is made for interrupting the flow of reagent totube 78, which is connected topump tube 74, when the inlet end of thecrook tube 20 is withdrawn from asample cup 14, and for supplying Water or other wash liquid totube 78 and from the latter to pumptube 74 instead of the reagent if so desired. The supply tube for the reagent is indicated at 80 and communicates with the inlet opening 38 andvalve passage 54 and through the latter withvalve outlet 44 to whichreagent delivery tube 78 is connected. When the inlet end of thecrook tube 20 is out of thecup 14,valve 50 is in the position illustrated by FIG. 4, closingreagent inlet 38 and openinginlet 40 so that wash water or other liquid can flow throughvalve passage 54 throughoutlet 44 totube 78 so that the wash Water or another liquid instead of the reagent is supplied topump tube 74 transmitted fromsupply tube 82.
As shown by FIG. 3 and FIG. 4,valve 26 is provided with inlet and outlet openings, in addition to those described above, for various purposes. For example, instead of connecting thecrock tube 28 directly to thepump tube 70 by which the sample liquid is delivered to the analyzer system, saidtube 20 can be connected to thevalve inlet 46 for supply to thepump tube 70 which can be connected to the'outlet 48 by a tube, a part of which is indicated at 86 in FIG. 3. Whenvalve 50 closes inlet 46 by the movement ofcrook 18 to the position in which the inlet end of tube 20is withdrawn from thesupply cup 14, thevalve passage 56 is connected to another inlet similar toinlet 82, not shown, for the flow of wash water or other liquid to theoutlet 48 and from the latter to a tube connected to thesample supply tube 86 so that substantially all of the sample tubing may be cleansed during the periods of sample-flow interruption at which time the supply of reagent is also discontinued. It will be understood thatvalve inlet 46, the other inlet, thepassage 56 andoutlet 48 are arranged in the relation described above with reference to FIG. 4.
It will be understood that the present invention does not involve and is not limited to any particular analysis or the chemistry thereof. Among the advantages of the invention is the obviously important advantage that less reagent is consumed since it is supplied only when sample liquid is supplied. Another advantage of discontinuing the introduction of the reagent is that in certain analyses the continuous flow of reagent into the system might cause improper function on a long-term operation by deposition of the reagent on the inner surfaces of the tubing and other parts of the apparatus, for example deposits from microbial substrate during a microbiological assay.
Another advantage derivable by the use of the device of the present invention resides in the provision for introducing an inhibitor liquid into the system during the An example of this last mentioned advantage is the introduction of formaldehyde or other inhibitor in enzyme determinations, in the determination of amino acid with enzymes (decarboxylase), as in the analysis of l-lysine and d-glumatic acid, as well as in antibiotic assays in microbiological systems. In these provisions for introducing an inhibitor, as distinguished from a wash liquid, theinlet 46 would be connected to a supply of the inhibitor, while theoutlet 48 would be connected topump tube 70 bytube 86 so that thepump 68 would aspirate the inhibitor liquid during nonsainpling periods.
While we have shown and described the preferred embodiment of the invention, it will be understood that the invention may be embodied otherwise than as herein specifically illustrated or described, and that certain changes in the form and arrangement of parts and in the specific manner of practicing the invention may be made Without departing from the underlying idea or principles of this invention within the scope of the appended claims.
What is claimed is:
1. Automatic analysis apparatus for analyzing a plurality of liquids comprising: a sampler including a plurality of sample containers each adapted to contain a liquid sample, off-take means having an off-take tube with an inlet end, which is adapted to enter a said container, and an outlet end, support means for supporting said sample containers, for sequentially presenting said sample containers to said oft-take means and for inserting said inlet end of said elf-take tube in a presented sample container; sample treating means including mixing means having an inlet and an outlet, pump means having a plurality of pumping conduits each having an inlet and an outlet respectively, said outlets of said conduits being coupled to said inlet of said mixing means; said outlet end of said off-take tube being coupled to the inlet of one of said pump means conduits, whereby when said inlet end of said oflf-take tube is disposed within a sample container containing a liquid sample, such sample is elf-taken and transmitted to said mixing means; valve means having an inlet for coupling to a source of treating liquid and an outlet coupled to the inlet of another one of said pump means conduits, whereby when said inlet is open to said outlet, treating liquid is transmitted to said mixing means; and actuating means for said valve means coupled to said support means for opening said inlet of said valve means in a predetermined phase relationship with the insertion of said inlet end of said off-take tube into a sample container and for closing said inlet of said valve means in a predetermined phase relationship with the removal of said inlet end of said off-take tube from such a sample container.
2. Apparatus according to claim 1 wherein said actuating means opens and closes said inlet of said valve substantially concurrently with the respective insertion into and removal from a sample container of said off-take tube inlet end.
3. Apparatus according to claim 1 wherein said valve means includes an additional inlet for coupling to a source of additional liquid; and said actuating means alternatively opens said first mentioned inlet to said outlet and closes said additional inlet, and closes said first mentioned inlet to said outlet and opens said additional inlet.
4. Apparatus according to claim 1 wherein said valve and actuator means comprise a lever operated-multiport plug valve.
5. Automatic analysis apparatus comprising a sampler including a plurality of sample containers each adapted to contain a liquid sample, off-take means having an offtake tube with an inlet end adapted to enter a said container and an outlet end, support means for supporting said sample containers, for sequentially presenting said sample containers to said off-take means and including transport means inserting said inlet end of said elf-take tube in a presented sample container; sample treating means including mixing means having an inlet and an outlet; pump means having a plurality of pumping conduits each having an inlet and an outlet respectively, said outlets of said conduits being coupled to said inlet of said mixing means; valve means having a first inlet coupled to said outlet end of said off-take tube, a second inlet for coupling to a source of cleansing liquid, and an outlet coupled to the inlet of one of said pump means conduits, whereby when said inlet end of said cit-take tube is disposed within a sample container containing a liquid sample, and said first inlet is open to said outlet, such sample is ofi-taken and transmitted to said mixing means, and when said second inlet is open to said outlet, such cleansing liquid is transmitted to said mixing means; and actuating means for said valve means coupled to said transport means for said off-take tube, for alternatively opening said first inlet of said valve means in a predetermined phase relationship with the insertion of said inlet means of said off-take tube in a sample container and closing said second inlet, and for opening said second inlet in a predetermined phase relationship with the removal of said inlet end of said off-take tube from such a sample container and closing said first inlet.
References Cited by the Examiner UNITED STATES PATENTS 1,282,650 10/1918 Studdard 137-62519 1,447,007 2/1923 Barneble 137624.15 2,256,511 9/1941 Amen 137--625.19 2,290,626 7/1942 Bosomworth 137-624.16 2,879,141 3/1959 Skeggs 23-240 3,081,158 3/1963 Winter 23---253 3,186,800 6/1965 Strickler 23253 MORRIS O. WOLK, Primary Examiner.
H. A. BIRENBAUM, Assistant Examiner.