Sept. 11, 1962 E. M. SMlTH 3,053,249
CARDIAC MASSAGE APPARATUS Filed Aug. 25, 1959 2 Sheets-Sheet 1 FIG.|
IN VEN TOR. EDWARD M. SMITH ATTORNEYS Sept. 11, 1962 E. M. SMITH 3,953,249
CARDIAC MASSAGE APPARATUS Filed Aug. 25, 1959 2 Sheets-Sheet 2 INVEN TOR. EDWARD M. SMITH ATTORNEYS United States 3,5324% Patented Sept. 11, 19ti2 3,053,249 CARDIAC MASSAGE APPARATUS Edward M. Smith, Mansfield, Ohio, assignor to German- Rupp Industries, Inc., Bellville, Ohio, a corporation of OhlO Filed Aug. 25, 1959, Ser. No. 835,924 2 Claims. (Ci. 12s-39) The invention relates generally to apparatus for mechanically massaging a human heart, and more particularly to improved means for fitting around and conforming to the heart, and adapted to be pulsated in correlation to the natural heart beat of the patient.
The practice of manually massaging a human heart which is beating weakly or has stopped entirely during an operation, or for any reason, is well known. However, this practice has met with limited success, because it is very diflicult to apply the correct amount of pressure at the correct rate to maintain a steady flow of blood to and from the heart. Further, where the manual massaging is required to be maintained for a substantial period of time,
within the chest cavity of the patient.
It is an object of the present invention to provide a novel and improved cardiac massage apparatus which is quickly and easily applied to the heart of a patient, and pulsated indefinitely at the proper pressure and rate.
Another object is to provide an improved heart massaging device which is simple and inexpensive to make, and adapted readily to be pulsated when applied to the human heart.
A further object is to provide an improved heart massaging device which can be easily applied to and removed from a human heart without danger of injury thereto.
These and other objects are accomplished by the improvements comprising the present invention, preferred embodiments of which are shown and described herein as exemplifying the best known mode of carrying out the invention. Variations and modifications of the forms disclosed herein are comprehended within the scope of the appended claims.
In one embodiment of the present invention the envelope comprises a rigid sleeve having a resilient liner forming a pocket therein, and another embodiment comprises a flexible envelope having a pocket formed around its inner periphery, the pockets in each embodiment conforming to and gently gripping the heart, and connected to means for applying a pulsating fluid pressure between the sleeve and liner in correlation to the natural heart beat of the patient.
Referring to the drawings:
FIG. 1 is a schematic view showing the improved apparatus as embodying the rigid sleeve applied to a human heart for mechanically massaging or pulsating the heart.
FIG. 2 is an enlarged sectional view of the improved rigid sleeve applicator which fit-s around and grips the heart.
FIG. 3 is a perspective view, partly broken away, of the flexible envelope embodiment applied to a schematically depicted human heart.
FIG. 4 is a plan sectional view substantially on line 4-4 of FIG. 3.
FIG. 5 is an enlarged perspective view of the envelope of FIG. 3 detached from the heart.
Referring first to FIG. 2, the envelope in this embodiment comprises arigid sleeve 10 having an axial length somewhat less than that of a human heart, and a diameter substantially greater than the greatest lateral dimension of the heart. A tubular diaphragm or liner 11 is positioned within the sleeve 11), and may be secured thereto by turning the ends of the diaphragm back over the ends of the sleeve and clamping the turned over ends thereon.
The diaphragm is preferably constructed of resilient material such as rubber, and has relatively thin, soft, flexible walls which are easily distorted so as to be readily conformable to the contour of the heart. As shown, theside wall 12 of the diaphragm is upwardly convergent or somewhat conical to provide a narrowed upper portion, which, when applied over the larger upper section of the heart, as shown in FIG. 1, tends to hold the heart H in place during the massaging action. A series of circumferential ribs orridges 13 is provided at the top of the narrowed portion, and the side wall diverges sharply therefrom, as shown at 12, to engage over the upper end of therigid sleeve 10. Theribs 13 aid materially in resiliently gripping the outer surface of a heart to hold it in place within thesleeve 10 during the massaging action, without injuring the heart.
The top and bottom ends of the diaphragm 11 are preferably formed to have inturned ribs 14 which fit intocircular grooves 15 in the outer surface of thesleeve 10, andmetal clamping rings 16 are forced over the turned back ends of the diaphragm to hold the ribs 14 in thegrooves 15. The clamped ends of the diaphragm provide fluid-tight seals for the annular chamber C formed between the sleeve and the diaphragm, and atube 17 extends through and is secured to said sleeve for supplying and exhausting fluid pressure to and from said chamber.
As shown in FIG. 1,tube 17 is connected byflexible tubing 18 to a three-way valve 19 which is actuated by thesolenoid 20 controlled by the rotary switch 21. The rotary switch 21 is actuated by acam 22 driven by avariable speed motor 23, so that the rate of pulsation can be adjusted to approximate the natural pulse of the patient, or as the attending surgeon desires.
The operation of valve 19 selectively connects thetubing 18 to avacuum reservoir 24, or to apressure reservoir 25 by means ofconduits 26 and 27, respectively. As shown, the valve 19 is connectingtubing 18 to thevacuum reservoir 24 throughconduit 26, to exhaust fluid pressure from arounddiaphragm 12, and the conduit 27 is closed off. When the high part ofcam 22 closes switch 21, the solenoid will move thevalve piston 28 down, closing offconduit 26 and opening conduit 27 to thepressure reservoir 25, to supply a pressure pulse between thediaphragm 12 andsleeve 10.
The vacuum inreservoir 24 is maintained at the desired value by means of avacuum control valve 30, and the pressure inreservoir 25 is maintained at a desired value bypressure control valve 31. Thevacuum line 32 is connected to the intake of anair pump 33, and thepressure line 34 is connected to the exhaust of said pump. The pump is driven by anelectric motor 35.
When the vacuum inline 32 andreservoir 24 drops below a predetermined minimum, the pressure differential acting ondiaphragm 36 of valve 31) will overcometension spring 37 andopen valve element 33 to atmosphere. Similarly, when the pressure inline 34 andreservoir 25 exceeds a predetermined maximum, the pressure differential acting on diaphragm 39 ofvalve 31 will overcomecompression spring 40 andopen valve element 41 to atmosphere.
In the embodiment shown in FIGS. 3, 4 and 5, the flexible envelope indicated as a whole at 45 is substantially funnel-shaped, and has an outerflexible wall 46 of a suitable plastic material such as a vinyl resin and an inner liner ordiaphragm 47 preferably of the same or 3 similar material. The inner liner is bonded along its top and bottom edges to the outer wall, as shown at 48 and 49, respectively, to form a closed pocket C extending around the inner periphery of the envelope. The bonding may be done by heat sealing or cementing, or in any suitable manner.
Atube 17 extends through and is secured to theouter wall 46, and is adapted to be connected to theflexible tubing 18 for supplying and exhausting fluid pressure to and from said pocket C in the same way as described in connection with the pocket C in the embodiment of FIGS. 1 and 2.
Theouter wall 46 is formed along its upper edge with arecess 50 to allow passage therethrough of the inferior vena cava of the heart represented at 51 in FIG. 3. On either side of the recess thewall 46 extends upwardly and one side is formed into aflap 52 which is adapted to be turned back over the upper portion of the heart and overlap theextended portion 53 on the other side of the recess. Suitable complementary attaching means are provided on the extendedportion 53 and the underside offlap 52. As shown, the attaching means may comprise asynthetic wool material 54 on the flap and asynthetic material 55 having microscopic hook elements which attach to the wool when theportions 54 and 55 are pressed together.
When theflap 52 is attached to extendedportion 53, as indicated in FIG. 3, the envelope is securely held around the heart without pinching any of the tubular arterial or venal connections, the flap passing over the heart above theinferior vena cava 51, and below thesuperior vena cava 56, theaorta 57 and thepulmonary artery 58. When pulsating pressure is introduced through tube 17', the pocket C expands and contracts to apply the pulsating pressure peripherally around the exterior of the heart.
In use, once the chest wall of the patient is opened to permit access to the heart, the surgeon can quickly apply the sleeve by forcing it upwardly over the lower end of the heart to the position shown in FIG. 1, or apply the flexible envelope and secure it in place by attaching theflap 52 to extendedportion 53. In both embodiments, the flexible inner liner conforms itself to the outer contour of the heart. Thetube 17 or 17' is connected totubing 18 and themotor 23 operated to control reversing valve 19 through the action of switch 21 andsolenoid 20. By changing the speed ofvariable speed motor 23, the pulse rate may be varied to correlate it to the pulse rate of the patient. By changing the settings of thecontrol valves 30 and 31, the pulsation pressure may be varied as desired.
It will be apparent that a novel cardiac massage apparatus has been provided by the present invention, which apparatus is inexpensive to make and easy to apply to the heart, and that the pressure and rate of pulsation of the device is accurately controllable.
What is claimed is:
1. In cardiac massage apparatus, an envelope of a size fitting about the human heart comprising a flexible substantially funnel-shaped outer wall for surrounding said human heart, a single flexible inner liner attached to said outer wall and forming therewith a peripheral closed pocket for conforming substantially to the peripheral exterior of said heart, a tube connected to said pocket through said outer wall for supplying pulsating pressure thereto, a flap extending from the upper edge of said outer wall for being turned back over the heart and attached to the outer wall on the opposite side, the upper edge of said outer wall having a recess for extending below the inferior vena cava of said heart, and means for attaching said flap to said outer wall.
2. In cardiac massage apparatus, an envelope of a size fitting about the human heart comprising a flexible substantially funnel-shaped outer wall for surrounding said human heart, a single flexible inner liner attached to said outer wall and forming therewith a peripheral closed pocket for conforming substantially to the peripheral exterior of said heart, a tube connected to said pocket through said outer wall for supplying pulsating pressure thereto, an attaching portion extending upwardly from one side of the outer wall and a flap extending upwardly from the opposite side, complementary attaching means on the attaching portion and the underside of said flap, and a recess in the upper edge of said outer wall between said attaching portion and said flap to allow passage through said wall of the inferior vena cava of said heart.
References Cited in the file of this patent UNITED STATES PATENTS 2,055,128 Herrmann Sept. 22, 1936 2,249,579 Rea July 15, 1941 2,291,785 Baudistel Aug. 4, 1942 2,694,395 Brown Nov. 16, 1954 2,826,193 Vineberg Mar. 11, 1958 FOREIGN PATENTS 608,866 Great Britain Sept. 22, 1948