Movatterモバイル変換


[0]ホーム

URL:


US2955028A - Fuel systems for compression ignition engines - Google Patents

Fuel systems for compression ignition engines
Download PDF

Info

Publication number
US2955028A
US2955028AUS540769AUS54076955AUS2955028AUS 2955028 AUS2955028 AUS 2955028AUS 540769 AUS540769 AUS 540769AUS 54076955 AUS54076955 AUS 54076955AUS 2955028 AUS2955028 AUS 2955028A
Authority
US
United States
Prior art keywords
fuel
housing
solid dispersion
basket
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US540769A
Inventor
Rowland S Bevans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ethyl Corp
Original Assignee
Ethyl Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethyl CorpfiledCriticalEthyl Corp
Priority to US540769ApriorityCriticalpatent/US2955028A/en
Application grantedgrantedCritical
Publication of US2955028ApublicationCriticalpatent/US2955028A/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Description

R. s. BEVANS 2,955,028
FUEL SYSTEMS FOR COMPRESSION IGNITION ENGINES Oct. 4, 1960 3 Sheets-Sheet 1 v wmDoE m MEDOE mmDwE R. s. BEVANS 2,955,028
FUEL SYSTEMS FOR COMPRESSION IGNITION ENGINES Oct. 4, 1960 3 Sheets-Sheet 2 Filed Oct. 1'7, 1955 mm mm mm N mmDoE w wmDOE hm Ow mm t m $59.Q6 06D6 3 Sheets-Sheet 3 O- wmDoE Oct. 4, 1960 R. s. BEVANS I FUEL SYSTEMS FOR COMPRESSION IGNITION ENGINES Filed Oct. 1?, 1955 m MEDQE Hmm Om mw mm United States Patent FUEL SYSTEMS FOR COMPRESSION IGNITION ENGINES Rowland S. Bevans, Franklin, Mich., assignor to Ethyl Corporation, New York, N.Y., a corporation of Delaware Filed Oct. 17, 1955, Ser. No. 540,769
3 Claims. (Cl. 44-2) This invention is concerned with fuel systems of compression ignition engines and in particular is directed to improved fuel systems having a means for contacting the fuel with a solid dispersion of finely divided metal.
In my co-pending continuation-in-part application, S.N. 448,160, filed August 5, 1954, now U.S. Patent 2,720,869, has been described an improved method for operating compression ignition engines wherein the fuel employed is contacted with a solid dispersion of finely divided alkali metal whereby the metal is released and suspended into the fuel prior to injection into the combustion chamber so as to increase the cetane number and combustion characteristics of the fuel. In connection with the contact of the fuel with the solid dispersion is the problem of providing a suitable means for effecting such contact efiiciently.
It is therefore an object of this invention to provide a means for contacting a solid dispersion of finely divided metal with the fuel in the fuel system of a compression ignition engine. Another object vis to provide an improved fuel system for compression ignition engines. A particular object is to provide a means for effecting the contact of the fuel with a solid dispersion of the finely divided metal. These and other objects will be apparent from the discussion hereinafter.
In its broadest aspects, the present invention comprises a fuel treating container adapted to support therein a solid dispersion of finely divided metal which has an inlet and an outlet through which the fuel employed will pass and contact the solid dispersion, and which has a means for preventing the solid dispersion from entering the outlet while still permitting the finely divided metal which is released to do so.
In general, the containers of this invention are inserted and form a part of the fuel system at some point between the fuel tank and the discharge port or ports of the injectors of compression ignition engines. That is, they can be connected to the fuel line at a point between the fuel supply pump and the injector pump, between the injector pump and the discharge ports of the injectors or between the fuel tank and the fuel supply pump by simple means such as self-sealing couplings. It is preferred, however, that the container be inserted in the fuel system at a point between the fuel supply pump and the injector pump to minimize hold-up of fuel containing the metal particles and to avoid compression of the fuel in the dispersion container which would thereby decrease the efiiciency of injection into the combustion chamber. A further criterion of choice of the location of the container in the fuel system is that the lines subsequent to the container do not have constrictions smaller than about 0.04 inch although the injector orifices themselves may be as small as 0.002 inch. Line constrictions smaller than this size should be avoided in order to eliminate plugging.
The invention is best described with reference to the attached drawings wherein:
2,955,028 Patented Oct. 4, 1960 Figure 1 is a cross section of one type container of this invention.
Figure 2 is a detail in section of the outlet portion of the container described in Figure 1, taken on lines 2-2.
Figure 3 is a detail in section of the center portion of the container depicted in Figure 1, taken on lines 3-3, showing a basket in which the solid dispersion is inserted.
Figure 4 is a detail in section of the inlet portion showing a deflector which is employed in the container of Figure 1, taken along lines 4-4.
Figure 5 is a top plan view of a second embodiment of a container of this invention.
Figure 6 is a longitudinal sectional elevation of the second type container.
Figure 7 is a cross section of the central portion of the container depicted in Figure 5, taken along the lines 7-7.
Figure 8 is a longitudinal sectional elevation of a third embodiment of this invention.
Figure 9 is a cross section of the central portion of the third container taken along thelines 99.
Figure 10 is a cutaway view looking from the top of the container depicted in Figure 8, along the lines 1010.
Figure 11 is a cutaway view of an alternate closing means for sealing off the fuel from contact with the solid dispersion when employing the container depicted in Figure 8.
Figure 12 is a cutaway view of still another alternate closing means for sealing off the fuel from contact with the solid dispersion when the dispersion protrudes into the stream of flow of the fuel.
The drawings depict three different types of containers which can be employed for contacting solid dispersions of finely divided metal with the fuel in the fuel system of a compression ignition engine.
Referring to the embodiment illustrated in Figure 1, in its simplest form it comprises ahousing 20, aconstricted inlet portion 21, aconstricted outlet portion 22, and a means for inserting the solid dispersion into thehousing 20. The container is attached and forms an integral part of the fuel system by connecting it to thefuel line 23 of the fuel system by suitable means. The means for inserting the solid dispersion into the container comprises anut 24 which bears against raisedsurface 25 oninlet portion 21 and is threaded to engage a threaded portion ofhousing 20 at one end, and at the opposite end ofhousing 20 is asecond nut 24 bearing against raisedsurface 25 onoutlet portion 22 having a threaded portion which engages with a threaded portion onhousing 20 in the opposite direction to that of previously describednut 24. Thus, mating surfaces ofhousing 20 and inlet and outlet constrictedportions 21 and 22 bear against each other when thenuts 24 and 24 are secured. Employing two diametrically opposed engaging systems such as depicted provides a means wherein, when bothnuts 24 and 24 are disengaged fromhousing 20, the housing can be removed for insertion of the solid dispersion therein.
The flow of the fuel will pass fromconstricted inlet portion 21 throughhousing 20 and constrictedoutlet portion 22. The container has inserted in constricted outlet portion 22 a foraminous orporous material 26 supported byring support 27 which will engage the inner surface of constrictedoutlet portion 22. As shown, theforaminous material 26 is positioned inconstricted outlet portion 22 by a snug fit. It can however be threaded therein. Theforaminous material 26 prevents large pieces of the solid dispersion from passing intodischarge port 22, but is of size to permit the finely divided metal particles to pass therethrough.
3 Within thehousing 20 there is provided abasket 28 constructed of foraminous material which is supported withinhousing 20 by means ofring member 29 and basket brackets 29'. Thesolid dispersion 30 is shownin position in the basket '28. The basket 28is'positioned'in thehousing 20 by meansof ring member '29 which. engages the inner surface of'housin'g'Z'O' and contacts raised support surface 31 ofhousing 20. As shown, the basket.
28 is open at the end first contacting the fuel, however, it canlhave a forarninous closing portion 'at'that end which can be pivotally attached or secured by suitable means.
In "theconstricted inlet portion 21 there is shown aconical deflector 32 supported by means ofdeflector brackets 33" and deflector ring 33.Whicl1'is threadably. engaged with the inner surface of constrictedinlet portion 21. The deflector. 32 is perforated with holes 34. Thedeflector 32 serves to disperse and agitate the stream uniformly .in thehousing 20 for uniform contact oflthe fuel with the solid dispersion. As noted, it can be positioned laterally with respect to basket 28by means of the threaded portion inhousing 20. Depending upon the control of erosion of the finely divided metal requiredand the "fuel employed, the apparatus has, as shown, .the
modification of a bypass system. This system com-- prises a 'T-joint '35 which joins thefuel line 23 to theconstricted irilet portion 21 .and connects to lby-passline 3.6, the other end of which is connected to one leg of T=joint 37 which in turn connects to constrictedv outlet portion22 and fuel line 23'. Constricted inlet portion '21andoutlet portion 22 have inserted thereinvalves 38 and 39 respectively. Likewise, by-passli'ne 36 in proximity to T-joints 35 and .37 has inserted therein valves 40' and 41' respectively. Thus, when it is not necessary to contact the fuel with the solid dispersion,valves 38 and 39 can be closed andvalves 40 and 41 opened. These valves can be operated manually or, for trucks and the like, by suitable means connecting to the cab convenient for the operator or by automaticcontrol through a suitable mechanism such as one based upon temperature of. the engine or compression. The by-pass system can be employed as a partial by-pass, that is, the valves '38, 3'9, 40 and 41 are adjusted so that a portion of the fuel flows over the solid dispersion and theremainder does not, but the two aremixed at T-joint 3'7 and passed into. fuel line '23. Such an arrangement serves the purpose of additional control of the concentration of the. finely, divided metal in the fuel going to the injectors.
Thus, :in the operation of the above described embodiment the nuts 24 and 24"are disengaged andhousing 20 is. removed. The solid dispersion '30 is placed in. thebasket 28. Thehousing 20 containing thebasket 28 is 'then reinserted into position and the nuts 24" and 24 are tightened to form a continuous flow charn'berof theinlet portion 21, "housing 20, andoutlet portion 22. Thevalves 38, 39, 40 and 41 are adjusted to the amount of contact desired and the system is then ready for operation.
Referring to Figure .2, thereis shown therein the ,posi- 'tioning and shape of theforaminous material 26 in Ehou'sing 20along withscreen support 27 and engaging nutt'24. Figure 3 shows the position ofbasket 28, housing '20 and engagingnut 24. The support forbasket 28 comprising brackets 29' and ring member '29 is shown in contact, withhousing 20. It is to be understood that more than twobrackets 29 can be employed if desired. Figure 4 depicts inmore detail deflector 32 in position .in the constrictedinlet portion 21 supported by deflector supports 33', anddeflector ring 33. Here, also, the deflector can be supported by more than two deflector supports 33.
It is to be understood that thedeflector 32,basket 28,
andforaminous material 26 need not all be used in the 7 above described container. For example, thesolid dispersion 30 can be placed into the housing 20resting on its inner surface with or withoutdeflector 32 and without the; use ofbasket 28. In such an arrangement, the
foraminous screen 26 is the only member which prevents 75 4 the solid dispersion from passing into theoutlet port 22. Likewise, it is not necessary that the second engaging means 24 be employed since the dispersion can be inserted by distorting the fuel lines when disengaging onlynut 24. It is preferred, however, to employ the apparatus including bothnuts 24 and 24' withforaminous screen 26,basket 28, anddeflector 32 included in the container as shown, since more efficient dismantling and contact'of the solid dispersion is obtained.
Referring now to Figures 5, 6, and 7, another embodiment of this invention of .a container is depicted which in this instance has a direct external means for inserting the solid dispersion without disturbing the alignment of the fuel system or requiring the removal of a whole segment of the container. Basically, it comprises aconstricted inlet portion 50, ahousing 51, aconstricted outlet portion 52 and a means for entry into thehousing 51 for inserting the solid dispersion therein. As shown the container'is inserted .in thefuel line 23 by means ofcouplings 53 and 54 which connect respectively constrictedinlet portion 50 toline 23 and constrictedoutlet portion 52 toline 23. The means for entry into thehousing 51 comprises alid 55 havingextensions 56 through which can passbolts 57, these being pivotally attached to housing. 51. Nuts '58 are provided which engagebolts 57, thus allowing sealing of thehousing 51. Referring par ticularly to Figure 6, this embodiment of the'invention is shown in more detail illustratingparticularly the. sealing means for forming a good seal of thelid 55 on thehousing 51 along'with other elements contained inhousing 51. The sealing means comprises aknife edge 59onhousing 51. which is adapted to contact gasket 60 whenwing nuts 58 are placed in tension. Within thehousing 51, in close proximity to constrictedoutlet portion 52, is a forarninous material or screen 61 supported by a retainer 62 which contacts the inner surface of thehousing 51 and is snug fit therein. There is also shown aforaminous basket 63 supported in its right hand portion bybasket brackets 64 which are attached tobasket retainer ring 65. At the left :hand ofbasket 63 there are also second basket brackets 66'whichsupport basket 63 and are attached to asecond basket retainer 67. Thebasket 63 is positioned in the housing 51- by contact against raisedsurface 68 on the inner surface ofhousing 51. Thesolid dispersion 30 is shown in position in thebasket 63.
Also shown within thehousing 51 isdeflector 69 which 'is supported by deflector brackets 70 which are attached tod'e'flector support ring 71. The ring 71 is threaded into thehousing 51. However, other means of securing the deflector can be employed. Thedeflector 69 also has a plurality ofholes 72 for further deflection and distribution of the fuel stream over the solid dispersion.
Referring to Figure 7, there is shown in more detail the relative positions of thehousing 51;lid 55; the sidesecuring device forflid 55 including thebolts 57; thelid extension 56,, and the side gasket 60 whichcontacts. raised knife-edge 59offhousing 51. This figure further demonstrates. thepositioning of'the basket 63 with the firstsup port bracket 64 andsupport ring 65 engaging raisedsurface 68 ofhousing 51. Also shown are the second support brackets 66 andsupport ring 67. It is to be .noted that the support rings 65 and 67 are segments of .aring which contact the inner surface ofhousing 51 and .fit .into the raisedsurface 68 ofhousing 51.
TheFigures, 5., 6 and 7 depict a particularly preferred embodiment of this second container of this invention. .It is to be understood, however, that thebasket 63 anddeflector 69 need not be employed and thus thesolid dispersion 30 can be merely inserted into the housing '51. Alternatively, thedeflector 69 can be employed without thebasket 63, again merely placing the solid dispersion in thehousing 51. Likewise, a bypass or partial by-pass of the fuel over the dispersion can be emplayed as "shown'in Figure l "and described previously.
A still third and more preferred embodiment of the present invention comprises the container shown in Figure 8. This container comprises as its basic elements aconstricted inlet portion 80, ahousing 81, aconstricted outlet portion 82 and a means for continuously providing a constant surface of the solid dispersion for contact with the fuel. The constrictedinlet portion 80 is connected with thefuel line 23 by asuitable coupling 83 and likewise the constrictedoutlet portion 82 is connected to thefuel line 23 by asuitable coupling 84. The means for continuously providing a constant surface for contact of the solid dispersion with the fuel comprises anextended housing 85 laterally attached tohousing 81 in which thesolid dispersion 30 is placed, and at or near the juncture or extremity in contact with the flow of the fuel, is attached aforaminous material 86 supported by aretainer 87 which is threaded and secured thereby inextended housing 85.Extended housing 85 also has lateral extension brackets 88 to which are attachedbolts 89. A lid 90 is provided which has recessed portions adapted to receive gasket 91 which, when in the closed position, contacts knife edges 92 which are formed as a part ofextended housing 85. The lid 90 is secured in position onextended housing 85 bearing on knife edges 92 by means ofextended portions 93 adapted to receivebolts 89 and which serve as a bearing surface when wing nuts 94 are tightened. In order to maintain the solid dispersion in intimate contact with theforaminous screen 86, a retaining member 95 is employed which is maintained in contact with thesolid dispersion 30 by means of resilient member 96. Resilient member 96 is attached to the inner surface of lid 90 and in compression provides a force whereby plate 95 pushes against thesolid dispersion 30 and continually moves away from lid 90 as the solid dispersion is consumed. A particular advantage of this resilient attachment is that due to the variations in pressure of the fuel, the solid dispersion is retained in contact with the foraminous material and if desired, the apparatus can be positioned on any axis, that is, so that theextended housing 85 can be horizontal, to the right or left; can be vertical, up or down; or in any intermediate direction.
To facilitate the use of this embodiment of the present invention there is provided a closingmember 97 actuated byhandle 98 which extends throughhousing 81 through ahole 99 which has recessed therein gasket 100 to prevent leakage of fuel. Closingmember 97 hasgasket 101 attached to its lower surface to facilitate sealing when in contact with the inner surface ofhousing 81 .overforaminous material 86. Employing closingmember 97 permits sealing ofi the solid dispersion from contact with the fuel in those instances where such contact is not required. The closingmember 97 actuated byhandle 98 can be operated manually or, for trucks and the like, by suitable means connecting to the cab of the vehicle for access by the operator, or automatically by temperature control of ignition quality of the fuel. Thus, the employment of closingmember 97 has the advantage of an internal mechanism for bypassing contact of the solid dispersion with the fuel thereby requiring lesser space and more efiicient control. It is to be understood however, that if further desired, a bypass line such as that employed in Figure 1 can be employed to achieve a partial bypass of the fuel over the dispersion. Closingmember 97 also permits removal of lid 90 for insertion of more solid dispersion without interrupting operation of the engine.
In operation, the lid 90 is removed and thesolid dispersion 30 is inserted into theextended housing 85. Then the lid is replaced and secured by tightening nuts 94. With the closingmember 97 in the open position, the apparatus is ready for operation.
Figure 9 is a partial cutaway of the internal portion ofhousing 81 showing in particular the shape of the housing in this'portion of the apparatus. Figure de- 6 picts the shape of the extended housing including theforaminous material 86 in position.
Referring now to Figure 11 there is depicted there an alternative form of this embodiment in which closingmember 97 is pivotally attached to actuating handle 98 by suitable means and aresilient member 102 is secured to the left extremity of closingmember 97 and onhandle member 98. Thehousing 81 is modified to include the chamber 103 as a recess in which the mechanism of the closing member will move into when in the open position. A sealing means is provided similar to that depicted in Figure 8. Attached to handle 98 is also provided astop 104 which prevents closingmember 97 from assuming more than about a 45 angle from the axis of flow of the fuel. The size of thestop 104 can be adjusted so as to provide the angle of deflection desired. Employing this mechanism provides a means whereby closingmember 97 also serves as a deflector to obtain more efficient contact of the fuel with the solid dispersion and better mixing of the released metal particles with the fuel while still providing an eflicient means of sealing oif the solid dispersion from contact with the fuel when moved downwardly. Other means of deflection of the fuel can be employed such as movable vane members inhousing 81 upstream from the point of contact of the fuel and the solid dispersion.
In Figure 12 is shown an alternative embodiment of the closing means and the foraminous material which retains the solid dispersion in contact with the fuel. Here thesolid dispersion 30 will protrude into the fuel stream by contacting foraminous member 86' which here is of cylindrical shape. The closing member 97' is of a shape to encompass the foraminous member 86' so thatgasket 101, when in the closed position will contact the inner surface ofhousing 81 in close proximity to the screen member 86'. In this instance the solid dispersion will protrude into the chamber ofhousing 81, preferably between to /2 the depth of thehousing 81.
In the employment of the apparatus depicted in Figures 1 through 4, and 5 through 7, the void cross sectional areas through which the fuel passes will be between about /2 to 3 times the cross sectional area of thefuel line 23. For best operation with regard to the flow of the fuel and time of contact of the fuel with the solid dispersion, it is preferable that the void cross sectional area be between about the cross sectional area of the fuel line and 1 /2 times thereof. As noted above foraminous materials are employed in certain elements in all embodiments of this invention. These foraminous materials can be screens, sintered metal plates, or the like which prevent large segments of the dispersion from passing into thefuel line 23 but which will permit the finely divided metal particles to pass therein. Thus these foraminous materials should have an opening at least as large as the largest diameter of the finely divided metal particles. For best operation it is preferred that the openings be between about 3 to 15 times as large as the major diameter of the largest particle of the finely divided metal. In general, the openings can be between about 3 to 20 times as large as the largest diameter of the finely divided metal.
As depicted in the drawings, the geometry of the chamber surrounded byhousing 81 is rectangular with rounded edges, andextended housing 85 is cylindrical. It is to be understood that the geometry of these enclosures can be varied, for example, to result in cubical sections or any other modified form which will serve the functions set forth hereinbefore. Similarly, the same is true for the apparatus depicted in Figure 1 and the apparatus depicted in Figures 5 and 6. It is preferred, however, that for the apparatus depicted in Figures 1, 5, and 6 the geometry be essentially circular for easier manufacture and adaptation to the fuel system of combustion ignition engines.
It is to be understood that the three basic type apparatus depicted in the figures and described above can be further modified without departing from the spirit and .scopezof the present invention.
It is intended here only to depict three particular embodiments of the apparatus. It will be evident that only minor modifications need be made to the fuel systems of commercial compression ignition engines or diesel engines in order to employ the :containers of this invention. For example, in those engines wherein an excess of the fuel is employed for cooling .the injector and this excess is recycled to the fuel tank,
the :recycle line can have a takeoff line to the dispersion container with its discharge side connecting to the fuel ,line between the fuel tank and the pump. By means of a T-valve or the like at the connectionof the recycle and .takeoiflinesrecycle to the fuel tank can be stopped when the metal is to be eroded into the fuel, thus avoiding unnecessary buildup in metal concentration. Alternatively, the recycle line can bereturned to the fuel tank and coiled therein for .heat transmission of the fuel passing therethrough .and then connecting to .the fuel line between the fuel tank and the pump. That is, the recycled fuel can be cooled by the fuel in the fuel tank instead of employing other external cooling means, and in this operation the fuelcontaining some alkali metal is not mixed with the fuel in the fuel tank to result in buildup of metal concentration .in the fuel. Inthose engines where there is no recycle the dispersion container is connected to the fuel line and forms an integral, continuous part of .the fuel system. These and other simple modifications of com- ,pression ignition fuel systems will be .evident to those skilled in the art.
Asmentioned above, the apparatus of this invention is to be employed for contacting solid dispersions of finely divided metal with the fuel in compression ignition engines. .These solid dispersions comprise a mixture of .finely divided metal uniformly distributed in a solid dispersion medium. The metals preferably employed are the alkali metals, particularly sodium. Briefly, these solid dispersions comprise the metal in concentration between about 10 to 85 percent by weight dispersed in solid materials which are essentially inert or non-reactive with the metal and substantially soluble in the fuel employed. Thesolid hydrocarbons, particularly those having a melting point above 70 C., are particularly suitable. In many instances, because of varying climatic conditions and handling of the solid dispersion, it is desirable that it meet particular physical characteristics. Among such characteristics are that it be a solid which is dimensionally stable, will not flow when subjected to a wide temperature range of about 50 to +,70 C., nor will it lose its shape by applying a slight pressure thereto. In order to meet these particular physical characteristics, these dispersions are modified by incorporating certain modifying agents such -as.liquids, semi-solids, and greases. Solids which are different from the dispersing medium employed can. also be used. The liquid hydrocarbons have .beenfound to be particularly siutable as modifiers. The
particle size of the alkali metal can be varied over wide crons in size. It is particularly preferred that particle size of the alkali metals average not greater than about 20 microns since these sizes have been shown to be most effective.
These-solid dispersions have been described more completely in my co-pending application, S.N. 448,160. Likewise, it is described therein that the shape of the solid dispersion can be modified considerably; that is, it can be cubical, cylindrical, circular, a hollow cylinder, or a solid having an irregular surface which will impart greater surface area per unit mass. Thus, in this connection it will be evident that thebaskets 28 and 63, andextended housing 85 depicted in the drawings can assume various shapes to accommodate the shape of the solid dis persion, whether it be as a single piece or in many pieces. In the particular apparatus depicted in Figures 8, 9, and
.10, it is preferred to employ a cylindrical ,solid dispersion of thefinely .divided metal.
To demonstrate the employment of the apparatus of this invention it 'will be described .in the following example.
A solid dispersion of 200 parts of sodium of particle size averaging 9 microns .with a range of between 1 .to 2.0 microns in 200parts of paraffin'wax is employed. ACFR diesel engine has inserted in the fuel line between the fuel tank and the pump the container depicted in Figure 8 which forms a part of the fuel system. The lid is.removed, and the solid dispersion is inserted in extendedhousing 85. The lid 90 is then replaced with plate holding the solid dispersion securely against the.foraminous screen '86. Closingmember 97 is maintained in the open position. A diesel fuel straight run from .Gulf Coastal petroleum having a cetane number of 33 is charged to the fuel tank, and the engine is started in the normal manner. The fuel passing over the dispersion by erosion and solution of the dispersion medium contains 0.05 percent by weight of sodium. The cetane number of this fuel by the ASTM method (D613) is raised to 75.
In similarmanner the other apparatus depicted .in Figures 1 and 6 can be employed as described above.
Many advantages are achieved employing the apparatus of the present invention. These apparatus provide simple and effective means for contacting solid dispersions of finely divided alkali metal with the'fuel where, by erosion .and solution of the dispersion medium, the finely divided alkali metal is released and suspended into the fuel thereby increasing its cetane number and com bustion characteristics. The apparatus are simple, compact, and provide ready means for insertion of the alkali metal dispersion into the fuel system. Likewise, each apparatus is provided with a means .for bypassing the solid dispersion when contact between the fuel and the dispersion is not required. Ordinarily the contact is made, depending upon the fuel employed, when the engine is first started, i.e., while cold, thereby improving ignition of the cold temperature starting due to the presence of the alkali metal. After running the engine for a short period the improved benefits of the alkali. metal may not be required and the fuel system can be cut out in order to bypass the dispersion. Likewise, contact is advantageously made during idling and low power output operations and during acceleration after an idling period and the like instances wherein the added cetane characteristic of the fuel is required. In addition, as described previously, a partial by-pa'ss system can be employed for any of the above conditions of operation.
Although the above description has been confined mainly to the employment of solid alkali metal dispersions, it is to be understood that other metals can be employed as, for example, the alkaline earth metals, particularly finely divided calcium.
Having thus described the apparatus of this invention, it is not intended that they be limited except as set forth in the appended claims.
I claim:
1. A fuel treating apparatus adapted for insertion in a fuel transmission line of a compression ignition engine between a fuel supply tank and the fuel discharge ports of the combustion chamber of said engine, said apparatus comprising a container provided with a fuel inlet and a fuel outlet, a basket constructed of foraminous material positioned within said container and adapted to support therein a solid dispersion of finely divided metal in contact with fuel passing through said chamber, and a foraminous member comprising a screen interposed .be tween said basket and said fuel outlet, both said basket and said screen having openings larger than the largest particle size of said finely divided metal thereby permitting the passage therethrough of metal particles contained in the fuel.
2. A fuel treating apparatus adapted for insertion in a fuel transmission line of a compression ignition engine between .a fuel supply tank .and the .fuel discharge ports of the combustion chamber of said engine, said apparatus comprising a container provided with a fuel inlet and a fuel outlet, a basket constructed of foraminous material positioned within said container and adapted to support therein a solid dispersion of finely divided metal in contact with the fuel passing through said chamber, a perforated deflector positioned between said basket and said fuel inlet, and a foraminous member comprising a screen interposed between said basket and said fuel outlet, both said basket and said screen having openings larger than the largest particle size of said finely divided metal thereby permitting the passage therethrough of metal particles contained in the fuel.
3. A fuel treating apparatus adapted for insertion in a fuel transmission line of a compression ignition engine between a fuel supply tank and the fuel discharge ports of the combustion chamber of said engine, said apparatus comprising a container provided with a fuel inlet and a fuel outlet, a basket constructed of foraminous mate- 10 rial positioned within said container, a solid dispersion of finely divided metal positioned within said basket so as to contact fuel passing through said chamber, and a forarninous member comprising a screen interposed between said basket and said fuel outlet, both said basket and said foraminous member having openings between about 3 to 20 times as large as the diameter of the largest particle of the finely divided metal of said dispersion thereby permitting the passage therethrough of metal particles contained in the fuel.
References Cited in the file of this patent UNITED STATES PATENTS 1,015,662 Benkendorf Jan. 23, 1912 1,398,856 Hansgirg Nov. 29, 1921 1,887,774 Meinzer Nov. 15, 1932 2,302,552 Johnson Nov. 17, 1942 2,635,041 Hansley et a1 Apr. 14, 1953

Claims (1)

1. A FUEL TREATING APPARATUS ADAPTED FOR INSERTION IN A FUEL TRANSMISSION LINE OF A COMPRESSION IGNITION ENGINE BETWEEN A FUEL SUPPLY TANK AND THE FUEL DISCHARGE PORTS OF THE COMBUSTION CHAMBER OF SAID ENGINE, SAID APPARATUS COMPRISING A CONTAINER PROVIDED WITH A FUEL INLET AND A FUEL OUTLET, A BASKET CONSTRUCTED OF FORAMINOUS MATERIAL POSITIONED WITHIN SAID CONTAINER AND ADAPTED TO SUPPORT THEREIN A SOLID DISPERSION OF FINELY DIVIDED METAL IN CONTACT WITH FUEL PASSING THROUGH SAID CHAMBER, AND A FORAMINOUS MEMBER COMPRISING A SCREEN INTERPOSED BETWEEN SAID BASKET AND SAID FUEL OUTLET, BOTH SAID BASKET AND SAID SCREEN HAVING OPENINGS LARGER THAN THE LARGEST PARTICLE SIZE OF SAID FINELY DIVIDED METAL THEREBY PERMITTING THE PASSAGE THERETHROUGH OF METAL PARTICLES CONTAINED IN THE FUEL.
US540769A1955-10-171955-10-17Fuel systems for compression ignition enginesExpired - LifetimeUS2955028A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US540769AUS2955028A (en)1955-10-171955-10-17Fuel systems for compression ignition engines

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
US540769AUS2955028A (en)1955-10-171955-10-17Fuel systems for compression ignition engines

Publications (1)

Publication NumberPublication Date
US2955028Atrue US2955028A (en)1960-10-04

Family

ID=24156856

Family Applications (1)

Application NumberTitlePriority DateFiling Date
US540769AExpired - LifetimeUS2955028A (en)1955-10-171955-10-17Fuel systems for compression ignition engines

Country Status (1)

CountryLink
US (1)US2955028A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0149688A1 (en)*1982-04-191985-07-31OPTIMIZER, LimitedDevice for improving fuel efficiency and method of use therefor
US5059217A (en)*1990-10-101991-10-22Arroyo Melvin LFluid treating device
US5573557A (en)*1993-09-281996-11-12Chemische Betriebe Pluto GmbhDevice for adding additives to liquid fuels in the fuel stream
US5695531A (en)*1994-04-061997-12-09Makino; ShinjiFuel treating device
US5718258A (en)*1996-10-221998-02-17T/F Purifiner, Inc.Releasing additives into engine oil
WO2003018726A1 (en)*2001-08-242003-03-06Dober Chemical CorporationControlled release additives in fuel systems
WO2003018727A1 (en)*2001-08-242003-03-06Dober Chemical CorporationFuel additive compositions
US20040020560A1 (en)*2002-08-012004-02-05Dehn James J.Drip feed apparatus for a fuel container
US6860241B2 (en)1999-06-162005-03-01Dober Chemical Corp.Fuel filter including slow release additive
US20050194301A1 (en)*2004-03-052005-09-08Hacker John R.Liquid filter assembly for use with treatment agent; and, methods
US7001531B2 (en)2001-08-242006-02-21Dober Chemical Corp.Sustained release coolant additive composition
US20060086738A1 (en)*2002-08-012006-04-27Briggs & Stratton CorporationCap for a fuel container
US20070235378A1 (en)*2004-03-052007-10-11Donaldson Corporation Company, Inc.Top Load Liquid Filter Assembly for Use with Treatment Agent; and, Methods
US7581558B2 (en)2001-08-242009-09-01Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7625419B2 (en)2006-05-102009-12-01Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US7740027B1 (en)*2004-11-052010-06-22Gregory CoogleRefrigeration condensate tray treatment apparatus
US7883638B2 (en)2008-05-272011-02-08Dober Chemical CorporationControlled release cooling additive compositions
US7938277B2 (en)2001-08-242011-05-10Dober Chemical CorporationControlled release of microbiocides
US8034145B2 (en)2004-06-142011-10-11Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8277532B2 (en)2004-08-062012-10-02Donaldson Company, Inc.Air filter arrangement; assembly; and methods
US8292983B2 (en)2005-01-132012-10-23Donaldson Company, Inc.Air filter cartridge and air cleaner assembly
US20120325333A1 (en)*2010-03-192012-12-27BSH Bosch und Siemens Hausgeräte GmbHMethod and device for cleaning a water line
US8425772B2 (en)2006-12-122013-04-23Cummins Filtration Ip, Inc.Filtration device with releasable additive
US8496723B2 (en)2005-01-132013-07-30Donaldson Company, Inc.Air filter arrangement
US8591747B2 (en)2008-05-272013-11-26Dober Chemical Corp.Devices and methods for controlled release of additive compositions
US8702995B2 (en)2008-05-272014-04-22Dober Chemical Corp.Controlled release of microbiocides
US9320997B2 (en)2013-06-282016-04-26Donaldson Company, Inc.Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US9555370B2 (en)2007-09-072017-01-31Donaldson Company, Inc.Air filter assembly; components thereof; and, methods
US9623351B2 (en)2009-04-092017-04-18Cummins Filtration Ip, Inc.Filtration sealing system
US10434454B2 (en)2011-06-302019-10-08Donaldson Company, Inc.Filter cartridge
US11020698B2 (en)2015-12-112021-06-01Cummins Filtration Ip, Inc.Filter with variable cross-section axial seal
US11110382B2 (en)2014-12-272021-09-07Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11141687B2 (en)2016-05-022021-10-12Cummins Filtration Ip, Inc.Filter with interlocking housing interface
US11167234B2 (en)2016-03-182021-11-09Cummins Filtration Ip, Inc.Interlocked stable filter assembly
US11198082B2 (en)2017-08-312021-12-14Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and methods
US11235275B2 (en)2017-03-162022-02-01Cummins Filtration Ip, Inc.Filtration sealing system
US11298640B2 (en)2017-01-252022-04-12Cummins Filtration Ip, Inc.Expandable threaded adaptor for threadless shell
US11724220B2 (en)2017-02-212023-08-15Cummins Filtration Ip, Inc.Undulated interlocking housing-endplate interface geometry
US11772026B2 (en)2014-09-152023-10-03Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12263428B2 (en)2018-07-232025-04-01Cummins Filtration SarlRadial seal for spin-on filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1015662A (en)*1911-05-271912-01-23Otto August BenkendorfPurifying device for hydrocarbon-fuel gasolene.
US1398856A (en)*1919-11-071921-11-29Hansgirg FritzMethod of fractionate distillation
US1887774A (en)*1930-07-301932-11-15Blakesmith LMethod of treating emulsions
US2302552A (en)*1938-04-071942-11-17Atlantic Refining CoMethod and apparatus for treating lubricating oils
US2635041A (en)*1950-06-231953-04-14Du PontAlkali metal dispersions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US1015662A (en)*1911-05-271912-01-23Otto August BenkendorfPurifying device for hydrocarbon-fuel gasolene.
US1398856A (en)*1919-11-071921-11-29Hansgirg FritzMethod of fractionate distillation
US1887774A (en)*1930-07-301932-11-15Blakesmith LMethod of treating emulsions
US2302552A (en)*1938-04-071942-11-17Atlantic Refining CoMethod and apparatus for treating lubricating oils
US2635041A (en)*1950-06-231953-04-14Du PontAlkali metal dispersions

Cited By (95)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0149688A1 (en)*1982-04-191985-07-31OPTIMIZER, LimitedDevice for improving fuel efficiency and method of use therefor
US5059217A (en)*1990-10-101991-10-22Arroyo Melvin LFluid treating device
US5573557A (en)*1993-09-281996-11-12Chemische Betriebe Pluto GmbhDevice for adding additives to liquid fuels in the fuel stream
US5695531A (en)*1994-04-061997-12-09Makino; ShinjiFuel treating device
US5718258A (en)*1996-10-221998-02-17T/F Purifiner, Inc.Releasing additives into engine oil
US6860241B2 (en)1999-06-162005-03-01Dober Chemical Corp.Fuel filter including slow release additive
US7938277B2 (en)2001-08-242011-05-10Dober Chemical CorporationControlled release of microbiocides
US7591279B2 (en)2001-08-242009-09-22Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
WO2003018726A1 (en)*2001-08-242003-03-06Dober Chemical CorporationControlled release additives in fuel systems
US6827750B2 (en)*2001-08-242004-12-07Dober Chemical CorpControlled release additives in fuel systems
US6835218B1 (en)*2001-08-242004-12-28Dober Chemical Corp.Fuel additive compositions
WO2003018727A1 (en)*2001-08-242003-03-06Dober Chemical CorporationFuel additive compositions
US8109287B2 (en)2001-08-242012-02-07Cummins Filtration Ip, Inc.Controlled release of additives in fluid systems
US7581558B2 (en)2001-08-242009-09-01Cummins Filtration Ip Inc.Controlled release of additives in fluid systems
US7001531B2 (en)2001-08-242006-02-21Dober Chemical Corp.Sustained release coolant additive composition
US6981532B2 (en)2002-08-012006-01-03Briggs & Stratton CorporationDrip feed apparatus for a fuel container
US20060086738A1 (en)*2002-08-012006-04-27Briggs & Stratton CorporationCap for a fuel container
US7159741B2 (en)2002-08-012007-01-09Briggs & Stratton CorporationCap for a fuel container
US6942124B2 (en)2002-08-012005-09-13Briggs & Stratton CorporationDrip feed apparatus for a fuel container
US20040040619A1 (en)*2002-08-012004-03-04Dehn James J.Drip feed apparatus for a fuel container
US20040020560A1 (en)*2002-08-012004-02-05Dehn James J.Drip feed apparatus for a fuel container
US20050194301A1 (en)*2004-03-052005-09-08Hacker John R.Liquid filter assembly for use with treatment agent; and, methods
US7160451B2 (en)2004-03-052007-01-09Donaldson Company, Inc.Liquid filter assembly for use with treatment agent and methods
US7238285B2 (en)2004-03-052007-07-03Donaldson Company, Inc.Liquid filter assembly for use with treatment agent; and, methods
US20070235378A1 (en)*2004-03-052007-10-11Donaldson Corporation Company, Inc.Top Load Liquid Filter Assembly for Use with Treatment Agent; and, Methods
US20060065584A1 (en)*2004-03-052006-03-30Donaldson Company, Inc.Liquid filter assembly for use with treatment agent and methods
US9120047B2 (en)2004-06-142015-09-01Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US10603618B2 (en)2004-06-142020-03-31Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8034145B2 (en)2004-06-142011-10-11Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8480779B2 (en)*2004-06-142013-07-09Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US11291943B2 (en)2004-06-142022-04-05Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US9937455B2 (en)2004-06-142018-04-10Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8906128B2 (en)2004-08-062014-12-09Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US10556201B2 (en)2004-08-062020-02-11Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8277532B2 (en)2004-08-062012-10-02Donaldson Company, Inc.Air filter arrangement; assembly; and methods
US9795911B2 (en)2004-08-062017-10-24Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US11207632B2 (en)2004-08-062021-12-28Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US11759744B2 (en)2004-08-062023-09-19Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US7740027B1 (en)*2004-11-052010-06-22Gregory CoogleRefrigeration condensate tray treatment apparatus
US9527023B2 (en)2005-01-132016-12-27Donaldson Comapny, Inc.Air filter arrangement; assembly; and, methods
US12070711B2 (en)2005-01-132024-08-27Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8709119B2 (en)2005-01-132014-04-29Donaldson Company, Inc.Air filter cartridge and air cleaner assembly
US8636820B2 (en)2005-01-132014-01-28Donaldson Company, Inc.Air filter arrangement
US11020699B2 (en)2005-01-132021-06-01Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8292983B2 (en)2005-01-132012-10-23Donaldson Company, Inc.Air filter cartridge and air cleaner assembly
US9180399B2 (en)2005-01-132015-11-10Donaldson Company, Inc.Air filter arrangement
US12138574B2 (en)2005-01-132024-11-12Donaldson Company, Inc.Air Filter Arrangement; Assembly; and, Methods
US8496723B2 (en)2005-01-132013-07-30Donaldson Company, Inc.Air filter arrangement
US10421034B2 (en)2005-01-132019-09-24Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US11826689B2 (en)2005-01-132023-11-28Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US10315144B2 (en)2005-01-132019-06-11Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US10864475B2 (en)2005-01-132020-12-15Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US10065145B2 (en)2005-01-132018-09-04Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US11951429B2 (en)2005-01-132024-04-09Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8062399B2 (en)2006-05-102011-11-22Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8328897B2 (en)2006-05-102012-12-11Donaldson Company, Inc.Air cleaner arrangement; assembly; and, methods
US7625419B2 (en)2006-05-102009-12-01Donaldson Company, Inc.Air filter arrangement; assembly; and, methods
US8425772B2 (en)2006-12-122013-04-23Cummins Filtration Ip, Inc.Filtration device with releasable additive
US9555370B2 (en)2007-09-072017-01-31Donaldson Company, Inc.Air filter assembly; components thereof; and, methods
US10422306B2 (en)2007-09-072019-09-24Donaldson Company, Inc.Air filter assembly; components thereof; and, methods
US7883638B2 (en)2008-05-272011-02-08Dober Chemical CorporationControlled release cooling additive compositions
US8702995B2 (en)2008-05-272014-04-22Dober Chemical Corp.Controlled release of microbiocides
US8591747B2 (en)2008-05-272013-11-26Dober Chemical Corp.Devices and methods for controlled release of additive compositions
US9623351B2 (en)2009-04-092017-04-18Cummins Filtration Ip, Inc.Filtration sealing system
US9782708B2 (en)2009-04-092017-10-10Cummins Filtration Ip, Inc.Filtration sealing system
US10112138B2 (en)2009-04-092018-10-30Cummins Filtration Ip, Inc.Filtration sealing system
US11833459B2 (en)2009-04-092023-12-05Cummins Filtration Ip, Inc.Filtration sealing system
US20120325333A1 (en)*2010-03-192012-12-27BSH Bosch und Siemens Hausgeräte GmbHMethod and device for cleaning a water line
US9103583B2 (en)*2010-03-192015-08-11BSH Hausgeräte GmbHApparatus and system for cleaning a water line
US10434454B2 (en)2011-06-302019-10-08Donaldson Company, Inc.Filter cartridge
US12115484B2 (en)2013-06-282024-10-15Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US10046260B2 (en)2013-06-282018-08-14Donaldson Company, Inc.Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12186694B2 (en)2013-06-282025-01-07Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11298643B2 (en)2013-06-282022-04-12Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11752460B2 (en)2013-06-282023-09-12Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US9320997B2 (en)2013-06-282016-04-26Donaldson Company, Inc.Air filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US10610816B2 (en)2013-06-282020-04-07Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11772026B2 (en)2014-09-152023-10-03Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12145093B2 (en)2014-09-152024-11-19Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11110382B2 (en)2014-12-272021-09-07Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12168194B2 (en)2014-12-272024-12-17Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11020698B2 (en)2015-12-112021-06-01Cummins Filtration Ip, Inc.Filter with variable cross-section axial seal
US11167234B2 (en)2016-03-182021-11-09Cummins Filtration Ip, Inc.Interlocked stable filter assembly
US11813559B2 (en)2016-03-182023-11-14Cummins Filtration Ip, Inc.Interlocked stable filter assembly
US11141687B2 (en)2016-05-022021-10-12Cummins Filtration Ip, Inc.Filter with interlocking housing interface
US11660560B2 (en)2016-05-022023-05-30Cummins Filtration Ip, Inc.Filter with interlocking housing interface
US11298640B2 (en)2017-01-252022-04-12Cummins Filtration Ip, Inc.Expandable threaded adaptor for threadless shell
US11724220B2 (en)2017-02-212023-08-15Cummins Filtration Ip, Inc.Undulated interlocking housing-endplate interface geometry
US12330099B2 (en)2017-02-212025-06-17Cummins Filtration Ip, Inc.Undulated interlocking housing-endplate interface geometry
US11235275B2 (en)2017-03-162022-02-01Cummins Filtration Ip, Inc.Filtration sealing system
US11198082B2 (en)2017-08-312021-12-14Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and methods
US12036499B2 (en)2017-08-312024-07-16Donaldson Company, IncFilter cartridges; air cleaner assemblies; housings; features; components; and, methods
US11801466B2 (en)2017-08-312023-10-31Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12357934B2 (en)2017-08-312025-07-15Donaldson Company, Inc.Filter cartridges; air cleaner assemblies; housings; features; components; and, methods
US12263428B2 (en)2018-07-232025-04-01Cummins Filtration SarlRadial seal for spin-on filter

Similar Documents

PublicationPublication DateTitle
US2955028A (en)Fuel systems for compression ignition engines
US4329067A (en)Fluid mixer
US3540594A (en)Oil filter adapter
US6238554B1 (en)Fuel filter including slow release additive
US3675901A (en)Method and apparatus for mixing materials
US4502450A (en)Diesel fuel control valve and system
US3304047A (en)Carburetor
US2428939A (en)Lubricating oil reclaimer
US4452213A (en)Diesel fuel control valve and system
US4506991A (en)Adjustable orifice for emulsifier
JP3081646B2 (en) Fuel injection system for large two-stroke internal combustion engine
US3557963A (en)Seal for throwaway filter
US3719281A (en)Multiple application sealing means for fluid filters
CA1087960A (en)Homogenisation method
JPH09141011A (en)Fluid filter and engine oil filtering device using the same
KR890701895A (en) Method of mixing fuel and water, apparatus for carrying out the method, fuel-water emulsion
US4630556A (en)Method for burning coal-liquid slurry fuels and apparatus therefor
JPS59154157A (en)Bitumen binder scattering apparatus
KR101681205B1 (en)Fuel activating device
TR199900206T2 (en) Stable dispersions of metal passivating agents and methods for their production.
US2973150A (en)Fuel nozzle for gas turbine engine
US2322026A (en)Gas mixer
US4188970A (en)Apparatus for controllably injecting contaminant material into a liquid flow system
AU2019202534A1 (en)Fuel system for diesel engines using carbonaceous aqueous slurry and emulsion fuels
US7172706B2 (en)Liquid separator

[8]ページ先頭

©2009-2025 Movatter.jp