Feb. 22, 1955 Filed Feb. 27, 1950 SS MOTOR-DRIVEN MEDICAL INJECTION APPARATUS AND CARTRIDGES THEREFOR GIA 3 Sheets-Sheet l Gttorneg Feb. 22, 1955 B. GLASS 2,702,547 MOTOR-DRIVEN MEDICAL INJECTON APPARATUS AND CARTRIDGES THEREFOR Filed Feb. 27, 1950 5 Sheets-Shes?l 2 Snventor G50/@Gf 5 6,/ Ass Gttorneg Feb. 22, 1955 G. B. GLAss MOTOR-DRIAXIEIDN ChA/ERDICAL INJECTION APPARATUS Flled Feb 27. 195o TRIDGES THEREFOR 3 Sheets-Sheet 3 Snnentor 650,966 @Mss Bg l (Ittorneg Unite MOTOR-DRIVEN MEDICAL INJECTION APPA- RATUS AND CARTRIDGES THEREFOR George B. Glass, New York, N. Y., assgnor to Antonina S. Glass, New York, N. Y.
This invention relates to improvements in motor driven medical injection apparatus for the controlled automatic administration to patients of therapeutic fluids, such as salines, drugs, etc.
More particularly, the invention relates to an automatic machine for discharging the therapeutic contents of a fluid container, such as of an ampule or cartridge, into the body of a patient through the agency of a hypodermic needle and a conduit connecting said needle to said container. The invention also relates to improved and disposable fluid containers or cartridges, for such automatic injection apparatus.
This application is a continuation-in-part of my application Serial No. 646,611, iiled February 9, 1946, now Patent No. 2,627,270.
Because of the limitations inherent in the use of handoperated hypodermic syringes, a need has arisen for the provision of an automatic injection apparatus in which large as well as small amounts of medicaments can be administered intravenously or subcutaneously over predetermined periods of time and at predetermined rates. There is a special need for such devices in the administration of drugs which require to be injected very slowly. At present, infusions of this kind are administered either by repeated injections by hand or by the imprecise drip method commonly used with the parenteral administration of saline, plasma, and glucose solutions. Routine medical syringes have capacities of not more than 100 cc. and it is therefore impossible with standard equipment to discharge large volumes of iluid medicaments from a single standardksyringe as well as small volumes of lluid from gravity as s.
It is an object of the present invention to provide a completely automatic injection apparatus for injecting medicaments directly from prefabricated sterile cartridges. A further object of the invention is to provide an apparatus for the controlled injection of drugs, etc., from cartridges located relatively distant from the patient, which cartridges are provided with tubular extensions connecting the hypodermic needle with the body of the cartridge proper. A further more particular object of the invention is to provide an automatic medical injection apparatus in which pre-fabricated cartridges can be readily located for use, the apparatus comprising an adapter for the rigid securing of a cartridge in operative alignment with a motor driven piston.
Another object of this invention is to provide a disposable ampule or cartridge, for direct use with motor driven injection apparatus.
Another object of this invention is to provide a cartridge provided with a tubular extension for connecting the hypodermic needle with the cartridge proper. A still further object is to provide in combination, a cartridge with a tubular extension packaged in a protecting casing which casing also serves as an adapter for the cartridge in the injection apparatus.
In accordance with this invention there is provided in a motor driven injection apparatus comprising a stationary base, a motor secured to said base and a piston operatively associated with the drive shaft of the motor and mounted on said base, a housing on said base for securing a replaceable cartridge containing a fluid medicament in operative alignment with said piston, whereby the contents of said cartridges are automatically discharged on operation of the motor.
The automatic mechanism for operating the piston to discharge the cartridge contents may take one of several States Patent O 2,702,547 Patented Feb. 22, 1955 ICC forms. Essentially however, in accordance with this invention, the motor and the piston operatively associated with it are secured to a stationary base adapted to be located at some distance from the patient and to function independently of human supervision. Manual means for operating the piston independently of the motor are provided to enable the mechanism to be hand operated if desired and to facilitate the return to inoperable position of the piston once the contents of a cartridge have been emptied or if, for any reason, the cartridge is to be replaced before being emptied. The rate of travel of the piston is controlled by suitable mechanical or electrical timing mechanisms so that the Whole or a predetermined part of the contents of a cartridge can be discharged continuously or intermittently at any predetermined rate. The piston is guided in its forward movement by suitable guide means provided in the apparatus.
The improved disposable cartridge of this invention comprises a barrel portion for containing an injectable uid, pressure-responsive fluid-tight closure means at one end of said barrel portion for discharging the contents of said barrel portion in response to externally applied pressure, a discharge opening in the other end of said barrel portion, a conduit for connection to the discrarge opening and means for connecting a hypodermic needle to the other end of said conduit. In the preferred arrangement, the conduit is a length of flexible tubing, as of rubber, adapted to communicate with the interior of the cartridge through a penetrable plug or stopper normally closing the discharge opening.
The invention will be more readily understood by reference to the accompanying drawings in which:
Fig. 1 illustrates an improved injection apparatus in accordance with this invention in partial longitudinal cross section;
Fig. 2 illustrates a modified form of the improved injection apparatus also in partial longitudinal cross section;
Fig. 3 shows in longitudinal cross section an improved cartridge in accordance with this invention;
Fig. 4 illustrates a modified form of cartridge shown in loaded position in an injection apparatus of the kind illustratedin Fig. 2;
Fig. 5 shows in partial longitudinal cross section a packaged cartridge;
Fig. 6 illustrates a modified form of cartridge loaded 1n operative position in an injection apparatus of the kind illustrated in Fig. 2;
Fig. 7 illustrates a still further modified form of packaged cartridge in accordance with this invention, and
Eig. 8 shows a detail alongline 8 8 of Fig. l.
Referring to the drawings, and especially to Figs. l and 2, the apparatus generally comprises a casing 1 mounted on asupport 2 and housing a motor-driven mechanism, to be described in detail below, for propelling apiston 3 at a controlled and predetermined rate. Externally of the motor housing 1 there is provided a receptacle orattaching means 4 or 4a arranged to contain or hold anampule 5 in operative alignment with thepiston 3.
As shown in Fig. 1, thereceptacle 4 is a sleeve member open to the rear and provided at its forward end with a wall portion 6 against which the forward end of thecartridge 5 abuts, the front wall 6 being provided with a central opening 7 through which a tubular extension orconduit 8, extends. The longitudinal barrel portion of thereceptacle 4 is divided into twosemi-cylindrical portions 9 and 10, suitably hinged at the rear (not shown) and connected by means of catch 11 enabling theupper portion 10 to be opened and a cartridge placed in the receptacle in operative alignment with thepiston 3. The lower semi-cylindrical portion 9 is supported by upright 12 and bearing 13 secured to the externalforward wall portion 14 of the motor housing 1.
As shown in Fig. 2, the means for securing thecartridge 5 in operative alignment with thepiston 3 comprises ahollow socket member 4a internally screw-threaded at 15. Alternatively, or in addition, thesocket 4a may be provided with a bayonet flange 16 for reception therein of correspondingly anged portion 17 (Fig. 7) of a cartridge casing. Thesocket member 4a in Fig. 2 can also be provided with a series of internally screw threaded portions (not shown), of different diameters for the reception of cartridges, or of packages containing cartridges, of correspondingly different diameters, to enable cartridges of different sizes to be loaded in operative position in the same device.
Referring particularly to Fig. 3, the cartridge comprises alongitudinal barrel portion 18, to the rear of which is provided an internal plug orstopper 19 adapted to slide inwardly of the cartridge in response to externally applied pressure. Theplug 19 is preferably formed of flexible material such as rubber, cork or suitable plastic, and it engages the inner wall of the barrel portion in a fluid-tight relationship. Theplug 19 is provided with one or more annular recesses 20a forming sealing rings for preventing the back discharge of liquid around the rim of the plug during its forward movement. These annular recesses become filled with the uid in case of any flaw in the forward peripheral surface of theplug 19 and function to seal the rim of the plug to the rear of any such flaw. The rear end of the cartridge is otherwise open. The front end has anintegral wall portion 20 with a centrally located opening 21 opening into a tubular extension orconduit 8, the other end of which is normally closed by a removable orpenetrable closure member 22.
Thetubular member 8 is of any suitable length for connecting the cartridge with a hypodermic needle to be inserted in the body of the patient. Thehypodermic needle 23 may be secured to the end of thetubular xtengion 8 through closure means 22, as illustrated in Thetubular extension 8 is an integral extension of theampule 5 as shown in Fig. 3. In the modifications shown in Figs. 4, 5 and 7, theopening 21 is provided with a plug orclosure member 25, adapted to be penetrated by a perforator 26 (Figs. 4 and 5) secured to the rear end of thetubular extension 8. In the modication illustrated in Fig. 6 theforward wall 28 of thecartridge 5 is provided with anintegral neck portion 27 around which the end of thetubular extension 8 is attached. In the modification illustrated in Fig. 4, the rear end portion of thecartridge 5 is externally screw threaded to enable it to be directly loaded in the correspondingly screw threaded portion ofsocket 4a of the injection apparatus.
Thepiston 3 in each instance is arranged in operation in alignment with the central rear wall of theplug 19. This rear wall is preferably reinforced by a metal orhard rubber coating 28 and is formed with a centrally located sphericaldetent portion 29 corresponding to and for reception of theforward end 30 of thepiston 3.
The body of the cartridge is made of glass or of other suitable material. Theconduit 8 is formed of rubber or of other suitable flexible material.
The embodiment of the invention illustrated in Figs. 2 and S through 7shows cartridge 5 encased in acasing 31 formed of relatively strong material, such as corrugated paper, metal, etc., enabling the cartridge to be shipped and handled without danger of fracturing. Thecasing 31 thus forms a transportable cartridge receptacle. It is open at itsrear end 32, which end is externally screwthreaded at 33 (Fig. 5) or bayonet slotted at 17 (Fig. 7) for reception in the correspondingly formedsocket 4a. Over therear end 32 of the casing 31 acap member 34 is attached for protection during storage and shipment. Thecap member 34 is arranged to cooperate with screw threadedportion 33 orbayonet slot 17 through corresponding internal screw-threaded or flange portions.
The forward end of thecasing 31 is provided with acover member 35 adapted to fit tightly over the forward end 36 of thecasing 31. The forward end 36 covers theforward wall portion 28 of thecartridge 5 and has abore 37 for reception therein of theplug 25. In general, thecasing 31 conforms to the external shape of the cartridge, is open at the rear and comprises rearwardly arranged attaching means for locating the cartridge in operative alignment with thepiston 3 of the injection apparatus.
As shown in Fig. 5, theforward cap member 35 may be of such size as to provide anexternal chamber 38 for location therein, externally of the cartridge casing, of thetubular extension 8 andhypodermic needle 23 carried inprotective casing 24.
Referring again to Fig. l,hollow piston 3 is slidably mounted in bearing 39 carried byupright 40 located internally of casing 1. To the rear,piston 3 is secured to or integral with connectingmember 41. Internally ofpiston 3, rides guiderod 42 rearwardly mounted in bearing 43 onrear upright 44. Thehollow piston 3 is thus adapted to reciprocate onguide rod 42. Opening 80 is provided in theforward wall 14 of casing 1 to allowpiston 3 to pass into operative contact withplug 19 ofampule 5.
The connectingmember 41 comprises aneck portion 45 terminating inknob 46 extending through theupper plate 47 of the housing 1. Theplate 47 is slotted as at 48 to enable theneck portion 45 to travel forwardly on forward movement of thepiston 3. Theneck portion 45 is constrained upwardly bycoil spring 49 located beneathshoulder portion 50 of the connectingmember 41. Theneck portion 45 is bifurcated (Fig. 8) to overlie thebearing 41 to distend into twoparallel arms 51 down each side ofmember 41 to terminate in semi-circular internally screw-threadedsplit nut 52 adapted to mesh with screwthreaded drive shaft orlead screw 53. The normal pressure ofspring 49 maintains splitnut 52 in meshing alignment withshaft 53.
The screw-threadeddrive shaft 53 is mounted inbearings 54 and 55 supported inuprights 40 and 44 respectively.Gears 56 and 57 operatively connect thedrive shaft 53 through to an electric motor generally indicated at 61. Thus,gear 56 is secured to the rear end ofdrive shaft 53 and is mounted for cooperative action withgear 57 mounted onshaft 62 associated with variable gearing generally indicated at 58, which in turn is driven byspindle 63,gear 59, gear 60, spindle 64 andmotor 61. Theuprights 40 and 44,motor 61 andgear box 58 are all mounted onbase 2 within casing 1.
In Fig. 2 thehollow piston 3 is forwardly mounted in bearing 39 and rides on guidingrod 42 which is rearwardly mounted inbearing 43. In this case the connecting member 41a is directly connected with internally screw-threaded travellingnut 65 meshing withscrewthreaded drive shaft 53. Screw-threadeddrive shaft 53 meshes throughgears 56 and 66 and pinion 66a with differential gearing generally indicated at 57. The differential 57 is also adapted to be operated manually by spindle 68 and hand-operated wheel 69 carrying handle 70. The spindle 68, mounting wheel 69, passes externally of the casing 1 through bearing 71. Thedifferential gearing 57 is connected by spindle 72 togears 73 and 74, through spindle mounted on bearing 76 to an electric motor generally indicated at 77. The electric motor in this instance is adapted to be controlled by a relay, generally indicated at 78, controlled by a timing motor generally indicated at 79 and provided with power inlet 81 leading to a suitably located switch (not shown).
In the modification shown in Fig. 2, theforward upright 40 is eliminated and instead theforward wall portion 14 of the casing 1 functions to carry thebearings 39 and 54 supporting thepiston 3 and the screw-threadeddrive shaft 53 respectively. The bearing 39 in Fig. 2 permits thehollow piston 3 to reciprocate through it.
It is contemplated that pre-formed sterile cartridges with their tubular conduits also in sterile condition, and loaded with selected medicament, will be prepared and supplied by manufacturers of medicaments. When not integral or permanently secured to thecartridge 5, thetubular extension member 8 is secured to the forward end of thecartridge 5. Prior to actual use, the perforator 26 (Fig. 4) of thetubular extension 8 is located part way throughplug 25. In the modification illustrated in Figs. 5 to 7, the cartridge is then assembled in supportingcasing 31 and capped byend members 34 and 35. The package is then transmitted to the physician or hospital and stored ready for use.
When it is desired to effect an injection by this improved apparatus, it is suitably located on a table or shelf at an appropriate distance from the patient and connected to a source of electric power. The cartridge is then placed in the receptacle 4 (Fig. l), or, if of the type illustrated in Figs. 4 to 7, the rear end portion of thecasing 31 or of the cartridge is screwed or slotted into place in theannular socket member 4a of the apparatus shown in Fig. 2.
The hypodermic needle, if not already provided as illustrated in Fig. 5, is then attached in the forward end of thetubular extension 8 and inserted in the body of the patient by the physician. In the proximity of the point of insertion, thetubular extension 8 is secured in place by strips of adhesive tape attached to the patient.
If thetubular extension 8 forms an integral extension of the cartridge as illustrated in Figs. 3 and 6, the therapeutic uid lls the tubular portion, and the arrangement is ready for immediate use. When the tubular portion is not immediately in communication with the interior of the cartridge, the attending physician has, prior to the insertion of the needle, to operate the piston for a short spell, preferably by hand, to eject the air from the tubular portion and the attached needle before inserting it into the patient.
Hand operation of the apparatus for this purpose may be effected in the arrangement shown in Fig. 1 by pushing theknob 46 downwardly and then forwardly to a slight extent. The downward pressure onknob 46 disengages screw-threadedsplit nut 52 from thedrive shaft 53 and enables the connectingmember 41 with associatedpiston 3 to be propelled forwardly. In the arrangement shown in Fig. 2, a similar effect is secured by a slight rotation of wheel 69 by handle 70 which throughdifferential gearing 57, pinion 66a andgear train 66 and 56 propels thedrive shaft 53 and causes connecting member 41a throughnut 65 to propelpiston 3 forwardly.
After all the air has been expelled from the tubular portion and the needle itself and the needle inserted, the motor is set for operation at a predetermined rate of speed. In the arrangement shown in Fig. 2, this is done by settingtiming motor 79 to operate thetimer 78 which in turn controls the action of themotor 77.
The motor propels the screw-threadeddrive shaft 53 through the appropriate gearing described above. In turn the connectingmember 41 or 41a driven by thelead screw 53 propels thepiston 3 to the left (in the drawings) and this in turn pushes plug 19 ofcartridge 5 to the left to expel the fluid contents ofcartridge 5 through thetubular portion 8 andneedle 23 into the patient. Thepiston 3 therefore is propelled forwardly but not rotatably by the drive-shaft orlead screw 53.
By suitably selecting the speed of rotation of thelead screw 53 and controlling it by the mechanisms referred to, the contents of a cartridge may be discharged at any predetermined rate in a continuous or intermittent fashion.
At the completion of an injection thepiston 3 is returned to its inoperative position to the right by simple hand manipulation of the connectingmember 41 in the device shown in Fig. l, or by reverse rotation of the wheel 69 in the device shown in Fig. 2. The casing, or the cartridge, as the case may be, is then taken out of thereceptacle 4 orsocket 4a and discarded.
Both large and minute amounts of medicaments may thus be injected over long or short periods of time as required. The contents of a single cartridge may also be employed for multiple injections since after a part of the contents of the cartridge has been injected, the needle can be removed and replaced by a new needle which may then be inserted to administer another quantity of the same drug to another patient.
This arrangement thus permits mass injections to be effected eiciently where large numbers are to be treated substantially simultaneously, as in the Army or in connection with means for combatting threatened epidemics in city populations, among cattle, etc.
Insofar as normal hospital use is concerned, the device provides an efficient means for injecting variable quantities of therapeutic agents over extended periods of time. This is important in the treatment of many diseases where in some instances injections of small volumes of drugs continuing over several days time are desirable but have heretofore been difficult or impossible. The apparatus, therefore, not only facilitates the known administration of certain drugs over extended periods of time, but it also permits the principles of prolonged injections to be extended over a wide range of drugs, etc., which heretofore have not been so applied.
Numerous modifications may be made within the spirit and scope of this invention. Particularly the attaching means for locating the cartridge in operative alignment with the piston, the specific means for propelling the piston, and the particular nature of the material of which the cartridge and its tubular extension may be formed, may be varied in accordance with the skill and knowledge of the expert.
The cartridge forming part of this invention is adapted for immediate use and for disposal after use. The contemplated prefabrication, loading, sterilization and packaging of the cartridges, and their tubular extensions, by manufacturers of medicinals, facilitates their use in hospitals, etc.
The employment of electric controls permits the amount of drug, etc., injected over a given time to be precisely measured and, if desired, as precisely repeated, and the mechanism provided enables drugs to be administered under hand control as well as mechanically, as the situation demands.
I claim:
l. ln a motor driven injection apparatus, a stationary support, a motor secured to said support, a piston on said support operatively associated with the drive shaft of said motor, a hollow socket member on the stationary part of the apparatus disposed in alignment with the path of travel of said piston for reception therein of a cartridge containing medicament, and means for releasably securing said cartridge in said socket member in operative alignment with said piston, whereby the contents of said cartridge are discharged on operation of said motor.
2. In a motor driven injection apparatus as claimed in claim l, wherein said means for releasably securing said cartridge in said socket member comprise cooperatively screw-threaded portions on said cartridge and said socket member.
3. In a motor driven injection apparatus as claimed in claim l, wherein said means for releasably securing said cartridge in said socket member comprise a casing embracing the front and side walls of said cartridge, but open to the rear and having a forward outlet port, and cooperative attaching means on the rear portion of said casing and within said socket member.
4. In a motor driven injection apparatus as claimed inclaim 3, wherein said cooperative means for releasably securing said cartridge to said injection apparatus comprise cooperatively screw-threaded portions on said casing and said socket member.
5. In a motor driven injection apparatus as claimed in claim l, the provision of manually operating means for effecting the reverse operation of said piston.
6. An ampule-cartridge for a motor driven injection apparatus comprising a body portion, an outlet port at the front of said body portion, penetrable fluid-tight closure means for sealing said outlet port, an injectable fluid sealed within said ampule-cartridge, a exible and sealed conduit having one end adapted for attaching a needle, closure means at said end of said conduit for sealing the latter, means connected with the other end of said conduit and with said penetrable closure means for establishing communication of injectable uid between said body portion and said conduit through said penetrable closure means, displaceable piston means mounted at the rear end of said body portion for discharging said injectable fluid from the ampule-cartridge and said conduit in response to externally applied pressure, said piston means being adapted to engage the plunger of said motor driven injection apparatus, and securing means mounted on said ampule-cartridge for releasably engaging corresponding securing means on said injection apparatus and for holding said ampule-cartridge in operative alignment with the plunger of said apparatus.
7. An ampule-cartridge for a motor driven injection apparatus as claimed in claim 6, wherein said securing means on the ampule-cartridge comprise a screw-threaded portion on the rear end of said ampule-cartridge for operative association with cooperating screw-threaded securing means on said injection apparatus.
8. An ampule-cartridge for a motor driven injection apparatus as claimed in claim 6, wherein said securing means on the ampule-cartridge comprise a casing encasing the front and side walls of said ampule-cartridge and having front and rear opening for reception therethrough of said conduit and plunger of the injection apparatus respectively, and an externally screw-threaded portion at the rear end of said casing for operative association with cooperating screw threaded securing means on said injection apparatus.
9. An ampule-cartridge for a motor driven injection apparatus as claimed inclaim 8, wherein said casing comprises removable front and rear cap members for closing the front and rear openings on the latter.
10. An ampule-cartridge for a motor driven injection apparatus as claimed in claim 6, wherein said securing means on the ampule-cartridge comprise a casing encasing the front and side Walls of said ampule-cartridge and having front and rear opening for reception therethrough of said conduit and plunger of the injection apparatus respectively, and a bayonebanged portion mounted at the rear end of said casing for operative association with cooperating securing means on said injection apparatus.
References Cited in the le of this patentUNITED STATES PATENTS 8 Pncock Oct. 25, Pittenger Oct. 10, Swabacker Oct. 14, Cookson Jan. 4,
Kollsman Aug.. 5,
FOREIGN PATENTS France May 5,