1940' w. F. COURT I HYDRAULIC DISRUP'lI-ON 0F somns Filed June 14, 1938 2 Sheets-Sheet l lnvenforzwilliam F erick Cour? F Z 5g his Arrorneg Patented Oct. 15, 1940 1 William Frederick Court, Webster Groves, 110., as-
signor to Shell Development Company, San Francisco, Calif., a corporation of Delaware Application June 14, 1938, Serial No. 213,607
2 5 Claims.
This invention relates to the hydraulic disruption of solid masses by means of water jets which are directed substantially radially outwardly from a well in the mass, and is particu- 5 larly concerned with an improved nozzle head which is suitable for that purpose. Such a nozzle head is useful in the removal of solids, like coke,
from vessels, but may be employed for other purposes.
In my copending application, Serial No. 191,685,
filed February 21, 1938, of which this is a continuation-in-part, I have described particularly a process for cleaning vessels which contain solids, like carbonaceous material, particularly deposits of coke produced by the carbonization of hydrocarbon oils, such as reaction and coking chambers employed in petroleum cracking plants and the like, and asphaltic material, especially the solid, brittle kind, by means of water jets. Ac-
cording to one embodiment of the process the body of material to be removed, such as coke in a vertical cylindrical coking chamber, is acted upon in three operations:
In the first step, after opening the top and bottom manholes and cooling the coke by means of steam followed by water, the body of coke is cannulated vertically, either by drilling or by means of a vertically, preferably downwardly, directed jet of water, such as, for example, a jet discharged from a spear nozzle with a or one inch diameter orifice, supported by and supplied through a vertical water feed pipe, and discharging water at between 400 and 750 gallons per minute. When water is used, the fine particles of coke displaced are diffused into the body of the coke bed, and the water drains through the coke, discharging through the lower manhole. In this step a vertical hole from one to several inches in diameter is formed through the coke bed at the 40 axis of the chamber. The purpose of this step is to provide a tubular opening or well to permit a water feed pipe, which is suspended and supplied with water at its upper end, and supports the nozzle head employed in the subsequent steps, to be lowered through the body of the coke.
In the second step the opening is reamed to lncrease the size of the initial opening to about 18 to 24 inches in diameter so that the nozzle head employed in the last step may be used without fouling the coke bed. For this purpose the water feed pipe, which after the jetting in the first step is suspended within the coke bed, is lowered to extend through the lower manhole, and a. reaming nozzle head is attached to the lower end in place oi the spear nozzle. The assembly is then raised gradually or step-wise with the water pressure turned on. The reaming nozzle head comprises a rotor, rotatable about the axis of the water feed pipe and is a relatively small radial dimension, having about twice to three times thediameter 5 of the initial hole. It is provided with a plurality of reaction nozzles, which impart a relatively high rotary speed, such as about 1000 revolutions per minute to the head, and with a scraper on top. The nozzles discharge jets of water tending up- 10 wardly which cut an enlarged well into the solid material. The second step is completed when the nozzle head has reached the top of the coke bed. Coke which is cut away or loosened by the' nozzle head drops down through the opening into 16 dump cars located beneath the coke chamber, and water is collected by means of a pair of inclined aprons, which direct it into a trough, from which it flows into a settling basin, for recirculation through the water feed pipe. 20
In the third step (which may be begun befor the completion of the second step), the main body of the coke is disrupted and completely removed from the chamber. The water feed pipe is again lowered to extend beneath the coking 25 chamber, the reaming nozzle head is disconheated, and the main nozzle head is attached in its stead. Alternatively, the main nozzle head may be coupled beneath the reaming nozzle head.
The main nozzle head is nonrotatably connected to the water feed pipe, and is provided with a plurality of upwardly and. with a plurality of downwardly directed nozzles which direct jets of water radially outwardly to disrupt and completely remove the coke from the chamber when 35 the water supply is turned on and the nozzle head 1 is raised into the enlarged well. Some of the nozzles on the main nozzle head are arrangedto impart a rotary motion to the nozzle head, whereby the nozzles assume a plurality of successive 40 orientations, the rate of rotation being usually regulated by means of a brake operating on the water vfeed pipe so as not to exceed 2 to 4 revolutions per minute. If desired, the rotation may be effected by applying an external rotating force on 1 the feed pipe, it being in this case unnecessary to arrange the cutting nozzles to impart a turning moment to the nozzle head.
An object of the present invention is to provide a nozzle head which may be employed to efiect simultaneously the first and second steps of the process as outlined above. While the nozzle head described in the present application is particularly adapted for the removal of carbonaceous material by the process 01' the said parent application, it may be employed for any operation in which it is desired to form an opening through a mass of solid material, either continuous or packed, and irrespective of whether the operation results in the complete removal of solid material from the container. Thus, in the case of containers of relatively small diameters, a single passage of the nozzle head according to the present invention may completely remove the solids; when containers of greater diameters are encountered, a tubular opening is cut therethrough. A further object of the invention is to provide a nozzle head which will cut a hole of a relatively small diameter through a body of solid material,
' by the action of a mechanical cutting tool, either alone, or aided by an axial jet, and which will enlarge the hole by the cutting action of water jets.
While it is preferred, for purposes of convenience in connection particularly with the cleaning of coke chambers, and to simplify the mechanical arrangement for guiding and supporting the water feed pipe, to move the nozzle head down- Wardly in the position shown in the drawings, it should be noted that it is possible to invert it and move it upwardly, or in any other desired direction, depending upon the material being worked upon or the shape of the container. For convenience, the notations above and below, etc., have been used consistently in this specification and claims to describe the device positioned as shown in the drawings, it being understood that these terms are relative, and impose no restriction upon the use of the nozzle head.
With the above and other objects in view, which will become apparent from the following detailed description, the invention resides in the construction and combination of parts described and claimed herein, considered together with the accompanying drawings, in which:
Figure 1 is a" vertical sectional view, partly in elevation, of the nozzle head;
Figure 2 is a bottom plan view of the device shown in Figure 1;
Figure 3 is a schematic vertical sectional view, partly in elevation, illustrating onemethod of using the nozzle head;
Figure 4 is an elevation view, partly in section, of the lower rotating portion of a modified form of the nozzle head;
Figure 5 is a bottom plan view of the device shown in Figure 4;
Figure 6 is an enlarged detail view of the edge of the cutting plate taken on line 6-6 of Figure 1; and
Figure 7' is a longitudinal sectional view of a nozzle suitable for the devices shown in Figures 1 to 4.
Referring to Figures 1, 2, and 3, a supporting pipe I is provided with external drill pipe threads at its upper end, adapted for connection with a vertical water feed pipe 2 (see Figure 3) and with an out-turned flange 3 at its lower end. A
.pair of ball bearing nests, 4', 5, are mounted on the pipe I with their inner races in engagement with the exterior of the pipe I, the inner race of thelower nest 4 resting on the flange 3, and the inner race of theupper nest 5 being spaced therefrom by aninner spacing sleeve 6. A threaded retaining ring I, secured against rotation by aset screw 8, retains the upper inner race in position. An annular head is provided on the upper face of the retaining ring.
The rotor comprises a housing 9 which may he slid downwardly over the bearing nests and over an outer spacing sleeve I II, which separated the outer races of the bearing nests. The housing is provided with a hole II for the introduction of a lubricant, which reaches the bearing nests by way of an annular groove I2 on the outer face of the spacing sleeve III and one or more holes I3 passing through the sleeve. A rotating ring I4, which may be mounted on the pipe I prior to the bearing nests, supports the outer race of thelower bearing nest 4, being itself supported by the flange plate I5, which'is secured to the outturned flange I6 of the housing 9 by means of studs IT. The inner face of the top of the housing 9 is chamfered at I8 to receive the annular bead on the retaining ring to prevent the escape of bearing grease. A gasket l9 may be interposed between the bottom of the housing 9 and the flange plate [5, sealing the rotating ring I4 against the flange plate IS.
The flange plate I5 has a central hole, in which acup 20, (which may be constructed of a short piece of seamless pipe closed by a welding head) forming a conduit means in communication with the pipe I is secured, as by welding. The upper edge of the cup ll is provided with an annular bead, fitting into a groove 2I in the lower face of the flange 3. The ring I4 is also chamfered as shown. The construction of the ring and the head on the cup prevent the flow of water into the bearing nests, and the escape of hearing grease therefrom. The outer edges of the flange I 6 and the flange plate I5 are similarly chamfered, as shown at I511.
Four cutting plates orblades 22 are welded to the lower face of the flange plate I5 and to thecup 20. These plates are approximately in the shape of sectors of a circle, as shown, extending radially beyond the flange plate I5. The outer edges 23 are shaped as cutting edges, bevelled to approximately 15 (see Figures 2 and 6) and are hardened. They may, for example, be made of stellite alloy and ground.
Aspear nozzle 24 with a smooth, gradually tapering bore 25 is threadedly mounted at the bottom of thecup 28, and is shaped to direct a substantially confined jet of water downwardly. It is preferably, but not necessarily, located coaxially with the axes of the pipe I, and preferably located entirely above the lower edge of the cutting blades, so as to be protected thereby.
Fourcurved conduits 26 are mounted in communication with the interior ofcup 20, as shown in Figure 2, shaped to supply water to stubnozzles 21, mounted in theblades 22, disposed to discharge substantially confined jets of water horizontally, in a direction perpendicular to the face of the blades. Thesenozzles 21 may be con structed as shown in Figure 7, with a smooth, gradually taperingbore 28. While thenozzles 21 have been shown to be mounted to discharge horizontal streams, tangential with respect to the axis of the nozzle head, so as to impart the maximum turning force to the rotor, some or all of them may be inclined downwardly, as shown in Figures 4 and 5, or even upwardly. It is desirable to locate thenozzles 21 andconduits 26 wholly within and above the cup-shaped surface of revolution described by the cutting edges upon the rotation of the rotor, whereby the nozzles and conduits are protected against impact with coke.
A plurality ofconical tips 29, constructed of heat treated tool steel, and provided'with threadedshanks 30, are mounted on the flange Iii, to
prevent coke which may become loosened and cut'into the outer edge of the flange plate l l and the flange I6. These indentations are bevelled at the trailing edges 3Ia so as to permit water to rise through the indentation when the rotor is in operation.
Operation (Figure 3) Although the nozzle head may be used for other purposes, its use will be described in connection with the cleaning of a coke or reaction chamber. Referring to Figure 3, 32 represents a vertical cylindrical coke chamber of the usual cracking installation which may, for example, be 40 feet in height and feet in diameter. 33 represents a .body of coke which has been deposited therein. To cannulate the coke bed and ream the opening (these operations corresponding to the first two steps of the process described above), after the removal of the top and bottom manhole covers and at least partially cooling the coke, the noz zle head is attached to the water feed pipe 2, suitably supported from the top, and lowered into the chamber from a point above the coke chamber, full water pressure being turned on when thenozzles 21 have entered the chamber.
The water discharging from thespear nozzle 24 pierces ahole 34 several feet ahead of the cutter blades. The reaction of the water discharging through thenozzles 27 causes the rotor to revolve at a high speed, such as, 1000 revolutions per minute. The nozzle head is gradually lowered bringing the cutting edges 23 of the cuttingplates 22 into engagement with the coke, whereby they will cut a tubular opening through the coke. At the level of thenozzles 21 this opening will be enlarged as shown at 35 by the cutting action of the tangential water jets.
The diameter of the opening formed by the action of the tangential water jets will usually be from 1 to 2 /2 times the diametric distance between the upper portions of the cutting edges 23. The assembly is gradually lowered until the nozzle head extends throughthe'bottom manhole 38. During the downward passage of the nozzle head the fine particles of coke and the water are diffused through the coke bed, the water discharging through the-lower manhole as. The action of the jet from the nozzle 24' provides a substantial area for the seepage of water into the coke bed in view of the fact that the bottom of the hole 3t will be several feet below thecutters 22. If the rate of water flow into the coke bed below the nozzle head is insuflicient, the excess water andRat times, coke will flow upwards around the flange plate l5 and through the indentation 3| entering the body of the coke at points above the nozzle head. At-times small quantities of the disintegrated coke will build up above the nozzle head but these quantities were found to be insufiicient'to retard the speed of rotation appreciably and to interfere with the cutting operation.
In the modifications illustrated in Figures 4 and 5, the pipe I, housing 9, and the bearing and lubrication arrangements are the same as illustrated in Figure 1. The lowerportion of the rotor comprises the flange plate I5 with indentations 3!, 31a, supporting acup 20, cutting plates 22', with cutting edges 23', all as in Figure 1. Instead of a spear nozzle, the modified assembly comprises a star shapeddrill 31, provided with a plurality, such as 5, cutting edges. Theshank 38 of the drill is welded to a square plate having a central hole housing the shank II. Theplate 39 is secured to the cutting plates 22' by welding as shown in Figure 5. V
The curved conduits 26' are in communication with the cup 20' and with the nozzles 21', mounted in the cutting plates 22', the only difierence between this construction and that previously described being that the axes of the nozzles 21' are inclined downwardly at an angle of about 30 below the horizontal. This arrangement causes the water jets from the tangential nozzle 21' to cut the hole in advance of the upper portions of the cuttingplates 22", thereby reducing the load placed upon the latter.
The nozzle head of Figures 4 and 5 may be employed in the manner described above.
The sizes of the nozzles and rates of discharge may be varied. with the size of the installation and the particular purpose to be effected. By way of example, it may be-stated that for cutting a tubular opening through a coke chamber of the type and size described above, the diametric distance between the upper outer portions of the cutting plates'22 or 22' may be 12% inches; the diameter of the orifice of thespear nozzle 24 may be inch; and that of thetangential nozzles 21 and 21' may be 1''; inch, although, for the installation described, spear nozzle orifices of from about to inch diameters, and tangential nozzles of from A to inch diameter may usually be employed. Suflioient water pressure is applied tothe water feed pipe 2 to cause the total rate of discharge to be between about 400 and 900 gallons per minute.
Such rates ofdischarge will cause the water jets to have velocities of between about 100 and 500 feet per second, preferably above 250 feet per second. It is desirable to employ orifices having smooth bores so that the jets will not substantially break up or spread prior to impact, whereby erosion is minimized and cutting of the jet is materially increased.
While I have given particular dimensions suitable for a particular installation, it is understood that this invention is not limited thereto, but
may be employed in connection with other rates of water fiow and sizes of orifices without departing from the spirit and scope of the invention.
I claim as' my invention:
1. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, one or more cutters having cutting edges extending beneath the conduit and radially outwards from the axis thereof, reaction nozzle means on said rotor in flow communication with said conduit arranged to impart a turning motion to said rotor, and a substantially downwardly directed spear nozzle located entirely above the lower edge of the cutter, disposed to cut a well into said solid material beneath said cutting edge, wherebyv the downwardly directed nozzle is protected by said cutter.
2. In a nozzle head for cutting into abcdy of solid material, the combination of a .vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a conduit means on said rotor in flow communication with said conduit, 2. plurality of cutting blades on said rotor extending substantially radially outwardly and beneath said conduit member having cutting edges facing outwardly and downwardly, a plurality of reaction nozzles supported by said cutting blades, arranged to impart a turning motion to said rotor, means for supplying liquid from said conduit means to said reaction nozzles, the reaction nozzles and the means for supplying liquid thereto lying within and above the surface of revolution described by the cutting edges upon the rotation of the rotor, and means for cutting a well into said 'solid material beneath said cutting edges.
3. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source -of liquid under pressure, a rotor rotatably mounted on said conduit, a conduit means on said rotor in flow communication with said conduit, a plurality of cutting blades on said rotor extending substantially radially outwardly and beneath said conduit member having cutting edges facing outwardly and downwardly, a plurality of reaction nozzles supported by said cutting blades, arranged to impart a turning motion to said rotor, means for supplying liquid from said conduit means to said reaction nozzles, and a substantially downwardly directed spear nozzle in communication with said conduit means arranged to cut a well into said solid material beneath said cutting edge, said reaction nozzles, said means for supplying liquid thereto, and said spear nozzle all lying within and above the surface of revolution described by the cutting edges upon the rotation of the rotor.
solid material, the combination of a vertical conduit means adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a plurality of cutting blades on said rotor extending beneath the conduit and substantially radially outwards from the axis thereof, a plurality of reaction nozzles supported by said cutting blades and means for supplying liquid from said conduit means to said reaction nozzles.
5. In a nozzle head for cutting into a body of solid material, the combination of a vertical conduit adapted for connection with a source of liquid under pressure, a rotor rotatably mounted on said conduit, a. plurality of cutting blades on said rotor extending beneath the conduit and substantially radially outwards from the axis thereof, a plurality of reaction nozzles supported by said cutting blades and arranged and disposed to discharge liquid jets substantially outwardly and downwardly, means for supplying liquid from said conduit means to said reaction nozzles and means for cutting a well into said solid material beneath said cutting blades.
WILLIAM FREDERICK COURT.