Movatterモバイル変換


[0]ホーム

URL:


US20230114192A1 - Non-interferometric photoacoustic remote sensing (ni-pars) - Google Patents

Non-interferometric photoacoustic remote sensing (ni-pars)
Download PDF

Info

Publication number
US20230114192A1
US20230114192A1US18/052,823US202218052823AUS2023114192A1US 20230114192 A1US20230114192 A1US 20230114192A1US 202218052823 AUS202218052823 AUS 202218052823AUS 2023114192 A1US2023114192 A1US 2023114192A1
Authority
US
United States
Prior art keywords
imaging
sample
excitation
interrogation
interrogation beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US18/052,823
Inventor
Parsin Haji Reza
Roger Zemp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illumisonics Inc
Original Assignee
Illumisonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illumisonics IncfiledCriticalIllumisonics Inc
Priority to US18/052,823priorityCriticalpatent/US20230114192A1/en
Assigned to ILLUMISONICS INC.reassignmentILLUMISONICS INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: HAJI REZA, PARSIN, ZEMP, ROGER
Publication of US20230114192A1publicationCriticalpatent/US20230114192A1/en
Abandonedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

A photoacoustic remote sensing system (NI-PARS) for imaging a subsurface structure in a sample, has an excitation beam configured to generate ultrasonic signals in the sample at an excitation location; an interrogation beam incident on the sample at the excitation location, a portion of the interrogation beam returning from the sample that is indicative of the generated ultrasonic signals; an optical system that focuses at least one of the excitation beam and the interrogation beam with a focal point that is below the surface of the sample; and a detector that detects the returning portion of the interrogation beam.

Description

Claims (21)

17. A method of imaging a sample, comprising:
receiving, at one or more processors, information relating to a non-interferometrically detected portion of an interrogation beam, wherein the detected portion of the interrogation beam was detected using a non-interferometric detector, wherein the detected portion of the beam returned from a sample interrogated with the interrogation beam and excited with an excitation beam to generate signals in the sample at an excitation location, wherein the interrogation beam was directed to the sample at or adjacent to the excitation location, and wherein at least one of the excitation beam or the interrogation beam were focused below a surface of the sample; and
generating or calculating, by the one or more processors, an image of the sample based on the received information.
31. The method ofclaim 17, wherein the method is used in one or more of the following applications:
imaging angiogenesis for pre-clinical tumor models;
estimating oxygen saturation using multi-wavelength photoacoustic excitation;
estimating venous oxygen saturation where pulse oximetry cannot be used;
estimating cerebrovenous oxygen saturation and/or central venous oxygen saturation;
estimating oxygen flux and/or oxygen consumption;
clinical imaging of micro- and macro-circulation and pigmented cells;
imaging of the eye;
augmenting or replacing fluorescein angiography;
imaging dermatological lesions;
imaging melanoma;
imaging basal cell carcinoma;
imaging hemangioma;
imaging psoriasis;
imaging eczema;
imaging dermatitis;
imaging Mohs surgery;
imaging to verify tumor margin resections;
imaging peripheral vascular disease;
imaging diabetic and/or pressure ulcers
burn imaging;
plastic surgery;
microsurgery;
imaging of circulating tumor cells;
imaging melanoma cells;
imaging lymph node angiogenesis;
imaging response to photodynamic therapies;
imaging response to photodynamic therapies having vascular ablative mechanisms;
imaging response to chemotherapeutics;
imaging response to anti-angiogenic drugs;
imaging response to radiotherapy;
imaging histology;
imaging pathology specimen;
imaging vascular beds and depth of invasion in Barrett’s esophagus and/or colorectal cancers;
functional imaging during brain surgery;
assessment of internal bleeding and/or cauterization verification;
imaging perfusion sufficiency of organs and/or organ transplants;
imaging angiogenesis around islet transplants;
imaging of skin-grafts;
imaging of tissue scaffolds and/or biomaterials to evaluate vascularization and/or immune rejection;
imaging to aid microsurgery;
guidance to avoid cutting blood vessels and/or nerves;
imaging of contrast agents in clinical or pre-clinical applications;
identification of sentinel lymph nodes;
non- or minimally-invasive identification of tumors in lymph nodes;
imaging of genetically-encoded reporters, wherein the genetically-encoded reporters include tyrosinase, chromoproteins, and/or fluorescent proteins for pre-clinical or clinical molecular imaging applications;
imaging actively or passively targeted optically absorbing nanoparticles for molecular imaging;
imaging of blood clots; or
staging an age of blood clots.
35. A non-interferometric photoacoustic remote sensing system (NI-PARS) for imaging a subsurface structure in a sample, comprising:
a processor configured to calculate an image of a sample based on a detected intensity modulation of a returning portion of an interrogation beam from below a surface of the sample, wherein:
the sample was excited using an excitation beam configured to generate signals in the sample at an excitation location;
the sample was interrogated using the interrogation beam incident on the sample at the excitation location, wherein the returning portion of the interrogation beam is indicative of the generated signals;
the excitation beam and the interrogation beam were focused below a surface of the sample; and
the returning portion of the interrogation beam was detected using a non-interferometric detector configured for non-interferometric .
US18/052,8232016-02-022022-11-04Non-interferometric photoacoustic remote sensing (ni-pars)AbandonedUS20230114192A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US18/052,823US20230114192A1 (en)2016-02-022022-11-04Non-interferometric photoacoustic remote sensing (ni-pars)

Applications Claiming Priority (5)

Application NumberPriority DateFiling DateTitle
US201662290275P2016-02-022016-02-02
US15/418,447US10327646B2 (en)2016-02-022017-01-27Non-interferometric photoacoustic remote sensing (NI-PARS)
US16/402,972US20190320908A1 (en)2016-02-022019-05-03Non-interferometric photoacoustic remote sensing (ni-pars)
US17/091,856US11517202B2 (en)2016-02-022020-11-06Non-interferometric photoacoustic remote sensing (NI-PARS)
US18/052,823US20230114192A1 (en)2016-02-022022-11-04Non-interferometric photoacoustic remote sensing (ni-pars)

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
US17/091,856ContinuationUS11517202B2 (en)2016-02-022020-11-06Non-interferometric photoacoustic remote sensing (NI-PARS)

Publications (1)

Publication NumberPublication Date
US20230114192A1true US20230114192A1 (en)2023-04-13

Family

ID=59385840

Family Applications (4)

Application NumberTitlePriority DateFiling Date
US15/418,447ActiveUS10327646B2 (en)2016-02-022017-01-27Non-interferometric photoacoustic remote sensing (NI-PARS)
US16/402,972AbandonedUS20190320908A1 (en)2016-02-022019-05-03Non-interferometric photoacoustic remote sensing (ni-pars)
US17/091,856Active2037-04-08US11517202B2 (en)2016-02-022020-11-06Non-interferometric photoacoustic remote sensing (NI-PARS)
US18/052,823AbandonedUS20230114192A1 (en)2016-02-022022-11-04Non-interferometric photoacoustic remote sensing (ni-pars)

Family Applications Before (3)

Application NumberTitlePriority DateFiling Date
US15/418,447ActiveUS10327646B2 (en)2016-02-022017-01-27Non-interferometric photoacoustic remote sensing (NI-PARS)
US16/402,972AbandonedUS20190320908A1 (en)2016-02-022019-05-03Non-interferometric photoacoustic remote sensing (ni-pars)
US17/091,856Active2037-04-08US11517202B2 (en)2016-02-022020-11-06Non-interferometric photoacoustic remote sensing (NI-PARS)

Country Status (1)

CountryLink
US (4)US10327646B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2908992A1 (en)2014-10-222016-04-22Parsin Haji RezaPhotoacoustic remote sensing (pars)
US10327646B2 (en)*2016-02-022019-06-25Illumisonics Inc.Non-interferometric photoacoustic remote sensing (NI-PARS)
US10228323B1 (en)*2017-03-142019-03-12Michael HartSystems and methods for optically determining an acoustic signature of an object
US10677716B1 (en)*2017-03-142020-06-09Hart Scientific Consulting International LlcSystems and methods for optically determining an acoustic signature of an object
US10976239B1 (en)2017-03-142021-04-13Hart Scientific Consulting International LlcSystems and methods for determining polarization properties with high temporal bandwidth
US10627338B2 (en)2017-03-232020-04-21Illumisonics Inc.Camera-based photoacoustic remote sensing (C-PARS)
US20200359903A1 (en)*2018-01-262020-11-19Illumisonics Inc.Coherence gated photoacoustic remote sensing (cg-pars)
JP7320221B2 (en)*2018-08-212023-08-03キヤノン株式会社 Image processing device, image processing method, image display method, and program
WO2020188386A1 (en)*2019-03-152020-09-24Illumisonics Inc.Single source photoacoustic remote sensing (ss-pars)
CN109864716A (en)*2019-05-062019-06-11南昌洋深电子科技有限公司A kind of miniature opto-acoustic microscopic imaging system and method for low-frequency range
US11841315B2 (en)2019-12-192023-12-12Illumisonics Inc.Photoacoustic remote sensing (PARS), and related methods of use
CN111220624A (en)*2020-01-182020-06-02哈尔滨工业大学Surface and sub-surface integrated confocal microscopic measurement device and method
US11786128B2 (en)*2020-06-182023-10-17Illumisonics Inc.PARS imaging methods
US11122978B1 (en)2020-06-182021-09-21Illumisonics Inc.PARS imaging methods
AU2021294014A1 (en)2020-06-182023-02-02Illumisonics Inc.PARS imaging methods
CN112535531B (en)*2020-11-272022-08-19广东省医疗器械研究所Biological tissue welding effect detection device
US12100153B2 (en)2023-02-082024-09-24illumiSonics, Inc.Photon absorption remote sensing system for histological assessment of tissues
US20250268477A1 (en)*2024-02-222025-08-28Qualcomm IncorporatedDetermining a physiological parameter using optical signals

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5991479A (en)*1984-05-141999-11-23Kleinerman; Marcos Y.Distributed fiber optic sensors and systems
JPH0827264B2 (en)1988-09-211996-03-21工業技術院長 Photoacoustic imaging method with multiple modulation frequencies
US5479259A (en)1991-05-201995-12-26Hitachi, Ltd.Method and apparatus for detecting photoacoustic signal
US5615675A (en)*1996-04-191997-04-01Regents Of The University Of MichiganMethod and system for 3-D acoustic microscopy using short pulse excitation and 3-D acoustic microscope for use therein
US6016202A (en)*1997-06-302000-01-18U.S. Philips CorporationMethod and apparatus for measuring material properties using transient-grating spectroscopy
US6256100B1 (en)*1998-04-272001-07-03Active Impulse Systems, Inc.Method and device for measuring the thickness of thin films near a sample's edge and in a damascene-type structure
US6078397A (en)1999-04-202000-06-20National Research CouncilMethod and apparatus for mapping the wall thickness of tubes during production
US6678413B1 (en)2000-11-242004-01-13Yiqing LiangSystem and method for object identification and behavior characterization using video analysis
GB0123640D0 (en)2001-09-192003-04-09Matra Bae Dynamics Uk LtdMultiple pulse generation
DE10333770A1 (en)2003-07-222005-02-17Carl Zeiss Meditec Ag Method for material processing with laser pulses of large spectral bandwidth and apparatus for carrying out the method
US7089796B2 (en)2004-03-242006-08-15Hrl Laboratories, LlcTime-reversed photoacoustic system and uses thereof
US20060184042A1 (en)2005-01-222006-08-17The Texas A&M University SystemMethod, system and apparatus for dark-field reflection-mode photoacoustic tomography
US20060262316A1 (en)2005-05-202006-11-23Baney Douglas MSystem and method for interferometric laser photoacoustic spectroscopy
CA2651341C (en)*2006-05-102017-01-24National Research Council Of CanadaMethod of assessing bond integrity in bonded structures
US8501099B2 (en)2006-07-112013-08-06The Curators Of The University Of MissouriPhoto-acoustic detection device and method
AU2007300310B2 (en)2006-09-262011-12-08Oregon Health & Science UniversityIn vivo structural and flow imaging
EP3229010A3 (en)*2007-10-252018-01-10Washington University in St. LouisConfocal photoacoustic microscopy with optical lateral resolution
IL189352A0 (en)*2008-02-072008-11-03Shmuel SternklarMeans of measuring the electromagnetic spectral response of materials and imaging through media
CN101526483A (en)2009-04-132009-09-09电子科技大学Method for nondestructive examination by photoacoustic interference imaging
US9335605B2 (en)2010-01-252016-05-10Washington UniversityIteration of optical time reversal by ultrasonic encoding in biological tissue
DE102010012809A1 (en)2010-03-232011-09-29Carl Zeiss Meditec AgDevice for determining e.g. three-dimensional temperature distribution within e.g. water-containing tissue, has evaluation unit determining temperature-dependent opto-acoustic effect by analyzing optical coherence tomography signal
US9999354B2 (en)*2011-01-212018-06-19National Research Council Of CanadaBiological tissue inspection method and system
US8997572B2 (en)2011-02-112015-04-07Washington UniversityMulti-focus optical-resolution photoacoustic microscopy with ultrasonic array detection
WO2012174413A1 (en)2011-06-152012-12-20University Of Southern CaliforniaOptical coherence photoacoustic microscopy
JP5832182B2 (en)2011-07-192015-12-16キヤノン株式会社 Acoustic signal receiving apparatus and imaging apparatus
WO2013023210A1 (en)2011-08-112013-02-14University Of Washington Through Its Center For CommercializationMethods and systems for integrated imaging using optical coherence tomography and photoacoustic imaging
JP2013089680A (en)2011-10-142013-05-13Canon IncLaser device, and method of controlling the same
US8885155B2 (en)2012-04-302014-11-11Covidien LpCombined light source photoacoustic system
KR101352769B1 (en)2012-05-092014-01-22서강대학교산학협력단Method and apparatus of differentiating between a background and a region of interest
CN105050485B (en)2012-08-142017-08-18皇家飞利浦有限公司 Compact lasers and efficient pulse delivery for photoacoustic imaging
JP5840181B2 (en)2012-08-172016-01-06富士フイルム株式会社 Photoacoustic image generation apparatus and method
WO2014036405A2 (en)2012-08-302014-03-06The Board Of Regents Of The University Of Texas SystemMethod and apparatus for ultrafast multi-wavelength photothermal optical coherence tomography (oct)
US9219905B1 (en)*2012-08-312015-12-22Integrity Applications IncorporatedSystems and methodologies related to formatting data for 3-D viewing
US9213313B2 (en)2012-09-252015-12-15Asociación Centre De Investigación Cooperativa en Nanociencias, CIC NanoguneSynthetic optical holography
US20150233701A1 (en)2012-10-152015-08-20Josh HoganEnhanced OCT Measurement and Imaging Apparatus and Method
CN103048271A (en)2012-12-212013-04-17江西科技师范大学Portable type bi-modal imaging method employing combined photoacoustic imaging and optical coherence tomography and system of method
WO2014132726A1 (en)*2013-02-282014-09-04Nsマテリアルズ株式会社Liquid crystal display device
EP2774530B1 (en)2013-03-042019-07-10Medizinisches Laserzentrum Lübeck GmbHMethod for photoacoustic tomography
US20150371401A1 (en)2013-03-132015-12-24University Of WashingtonMethods and Systems for Imaging Tissue Motion Using Optical Coherence Tomography
US20160066798A1 (en)2013-04-092016-03-10University Of Washington Through Its Center For CommercializationMethods and Systems for Determining Hemodynamic Properties of a Tissue
GB201311314D0 (en)*2013-06-262013-08-14Ucl Business PlcApparatus and method for performing photoacoustic tomography
US10456044B2 (en)2013-11-222019-10-29Massachusetts Institute Of TechnologySystems and methods for generating non-contact ultrasound images using photoacoustic energy
JP2015104476A (en)2013-11-292015-06-08船井電機株式会社Photoacoustic imaging apparatus
KR102270798B1 (en)2013-12-162021-06-30삼성메디슨 주식회사Photoacoustic probe and photoacoustic diagnostic apparatus
JP6327900B2 (en)2014-03-242018-05-23キヤノン株式会社 Subject information acquisition apparatus, breast examination apparatus and apparatus
CA2908992A1 (en)2014-10-222016-04-22Parsin Haji RezaPhotoacoustic remote sensing (pars)
US10327646B2 (en)*2016-02-022019-06-25Illumisonics Inc.Non-interferometric photoacoustic remote sensing (NI-PARS)
CN109363639A (en)2018-11-132019-02-22东北大学秦皇岛分校 A high-speed non-contact photoacoustic imaging system based on optical path modulation combined with sensitivity compensation

Also Published As

Publication numberPublication date
US20210121070A1 (en)2021-04-29
US10327646B2 (en)2019-06-25
US20190320908A1 (en)2019-10-24
US20170215738A1 (en)2017-08-03
US11517202B2 (en)2022-12-06

Similar Documents

PublicationPublication DateTitle
US20230114192A1 (en)Non-interferometric photoacoustic remote sensing (ni-pars)
US12207902B2 (en)Photoacoustic remote sensing (PARS)
US11022540B2 (en)Camera-based photoacoustic remote sensing (C-PARS)
US20240044777A1 (en)Photoacoustic remote sensing (pars), and related methods of use
US11950882B2 (en)Single source photoacoustic remote sensing (SS-PARS)
JP7434182B2 (en) Coherence gated photoacoustic remote sensing (CG-PARS)
US11786128B2 (en)PARS imaging methods
JP2023534388A (en) PARS imaging method

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:ILLUMISONICS INC., CANADA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAJI REZA, PARSIN;ZEMP, ROGER;REEL/FRAME:061936/0990

Effective date:20180320

STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:FINAL REJECTION MAILED

STCBInformation on status: application discontinuation

Free format text:ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION


[8]ページ先頭

©2009-2025 Movatter.jp