TECHNICAL FIELDThe present invention relates to improved sporting articles, including clubs, rackets, bats and sticks, and helmets, such as motorcycle and bicycle helmets. In particular, although not exclusively, the present invention relates to an improved golf club.
BACKGROUND ARTWhen swinging a golf club, the head of the club travels through the air at significant speed, and as a result, is subject to significant wind resistance. In particular, drag acts in a direction opposite to a motion of the golf club head, and ultimately reduces the speed of the swing.
For an average male golfer, the head of a driver may be travelling at up to 95 mph/152 km/h, and for a long-drive professional the head may be travelling at up to 150 mph/241 km/h. At these speeds, the wind resistance causes significant resistance on a body of the golfer, which may cause injury. Furthermore, the drag reduces the speed of the club head, which equates to reduced distance ball travel.
Many attempts have been made to improve the flow of air around a golf club head, and thereby reduce the drag on the head during a swing. Initially, golf club heads were given an aerodynamic shape, often teardrop-shaped in cross section. A problem with such golf club heads is that they still generated significant wind resistance.
More recently, cavities (cutouts) were used to break vortices generated behind the golf club head to reduce the drag. The cavities (cutouts) are generally several centimetres in size and may take various shapes. A problem with the use of such cavities (cutouts) is that due to their size, they significantly change the characteristics of the golf club head, including changing the shape and overall volume of the club head, and reduce the visual appeal of the golf club.
A further problem with the use of such cavities (cutouts) is that the United States Golf Association (USGA) is very strict regarding the presence of cavities (cutouts) in golf club heads. As such, it is not possible to position cavities (cut outs) in their desired positions from a drag perspective while maintaining compliance with USGA standards.
A further problem with golf clubs is that the drag of the head during a swing causes the club to flex, which is beneficial when hitting a ball. Significantly reducing the drag of a golf club head changes the characteristics of the golf club, including the way the club flexes, which in turn influences how the head hits the ball. As such, changing the aerodynamics of a golf club head is a complex, and influences the golf club in its entirety.
Yet another problem with golf clubs of the prior art is that they generally have a fixed structure, and are not readily adaptable. As a result, fitting clinics are provided where a professional assists a golfer in choosing and fitting a set of clubs to his or her needs. While fitting clinics are good at helping a golfer choose a set of clubs, the clubs generally remain static after fitting, even when the golfer's skill, swing speed and needs change.
Many attempts have been made to change aerodynamics of other types of sporting articles, such as clubs, rackets, bats and sticks. For example, tennis, squash and badminton rackets, baseball bats, hockey sticks and the like are swung through the air at great speeds, and face similar problems to that of golf clubs mentioned above.
Similarly, helmets often travel through the air at great speeds and thus face similar problems. A further problem with helmets is that the desire to have a cool, comfortable helmet is in direct conflict with aerodynamics. Furthermore, helmets that have good airflow through them (e.g. bicycle helmets with large holes), in addition to being poorly aerodynamic, are not well suited to use in rain as the rider's head gets wet. Helmets that are generally closed, such as motorcycle helmets, may be better at keeping rain out, but often have problems with ventilation in the helmet and fogging of the visor, creating a dangerous situation for the rider.
As such, there is clearly a need for improved sporting articles, such as clubs, rackets, bats, sticks, helmets and the like.
It will be clearly understood that, if a prior art publication is referred to herein, this reference does not constitute an admission that the publication forms part of the common general knowledge in the art in Australia or in any other country.
SUMMARY OF INVENTIONThe present invention is directed to sporting articles, such as clubs, rackets, bats, sticks and helmets, which may at least partially overcome at least one of the abovementioned disadvantages or provide the consumer with a useful or commercial choice.
With the foregoing in view, the present invention in one form, resides broadly in a golf club including a head, the head including
a plurality of dimples, configured to decrease drag of the head when swung by the user; and
a chamber defined in the head, the chamber including one or more weights movable within the chamber to adjust a balance of the golf club head.
Advantageously, the use of dimples greatly increases aerodynamic efficiency of the golf club head and thereby the golf club. The movable weights enable adjustments to be made to compensate for changes in characteristics of the golf club associated with the increased aerodynamic efficiency.
Preferably, the dimples comprise spherical dimples. Alternatively, the dimples comprise hexagonal dimples.
The dimples may be between about 0.01 mm and 1.5 mm in depth and about 0.5 mm and 3 mm in diameter.
Preferably, the dimples do not include gripping edges at a junction between a surface of the body and the dimples. The dimples may extend into the body at an angle of less than about 45 degrees.
The one or more of the dimples may be located, at least partially, on a striking face of the golf club head, but be configured to not influence a golf ball struck with the striking face.
The striking face may include a plurality of elongate grooves, and at least some of the dimples are positioned between adjacent grooves.
The dimples may include first dimples and second dimples, the first dimples substantially uniform in size and shape, the second dimples substantially uniform in size and shape, and the first dimples different to the second dimples in at least one of size and shape.
At least some of the dimples may be arranged in rows, the rows parallel or perpendicular to an edge of the golf club.
At least 50% of a surface of the head may be covered with dimples.
The weights may be adjustable in position from an outside of the head of the golf club.
The chamber may be elongate, substantially in a direction perpendicular to a striking face of the golf club. The chamber is substantially uniform in cross-section.
The golf club head may include one or more weights biased against a front face of the club with a biasing member, such as a spring.
The one or more weights may be able to move fractionally within the chamber as the golf club hits a ball, to generate a pinging sound when the club hits a ball.
The golf club head may include a threaded rod, configured to engage with a weight in the chamber, to enable the weight to be moved along a length of the chamber through rotation of the threaded rod.
The chamber may comprise a cylindrical chamber and the one or more weights may be disc-shaped.
The chamber may be centrally located in the golf club head. The chamber may be supported by one or more arms and an inside surface of the golf club head.
The golf club head may include a channel defined in a surface of the golf club head, wherein at least a subset of the dimples are defined in the channel.
The channel may be defined on a crown of the golf club head.
The channel may be tapered.
The channel may comprise a plurality of channels. The channels may be parallel.
The dimples may create a boundary layer of air that is turbulent and allows smoothly flowing air to travel thereover. The dimples may also result in a decrease in the size of a wake region behind the body when swung, thereby reducing overall drag.
The dimples may be located on one or more of a sole, a heel, a face, a hosel, a crown, a toe, a top, and a back of a golf club or golf club head.
In another form, the invention resides broadly in a helmet, comprising one or more air flow pathways from an inside of the helmet to an outside of the helmet, and a channel, the channel configured to guide a flow of air to create a low pressure in proximity to the air flow pathways to thereby draw air out from the helmet through the air flow pathways.
Advantageously, the use of the channel to draw air out of the helmet enables ventilation to be provided while providing aerodynamic efficiency.
The channel may include an opening at a front of the helmet, and at outlet at the rear of the helmet.
The channel may include a plurality of dimples at the opening. The channel may include a plurality of dimples along a length of the channel.
The channel may be at least partially enclosed. The channel may extend across a top of the helmet.
The channel may include a narrow central portion, configured to create the low pressure region. The channel may be configured to generate a venturi effect to thereby draw air from the helmet.
The channel may include a plurality of covers, configured to partially cover the air flow pathways. The covers may comprise reverse-cowl shaped covers. The covers may be adapted to prevent rain from entering the air flow pathways. The covers may sit above openings of the air flow pathways.
The air flow pathways may be arranged in rows.
The air flow pathways may include tube-shaped pathways. The air flow pathways may include grooves, open to an inside of the helmet.
The airflow pathways may be configured to extract air from around a visor of the helmet. This may in turn cause air to circulate over the internal surface of the visor, thereby decreasing fogging of the visor.
The channel may include an adjustable cover, configured to enable an amount of airflow into the channel to be adjusted.
In yet another form, the invention resides broadly in a sporting article adapted to be swung by a user, the sporting article including a body including one or more channels, and a plurality of dimples defined in the channels, the dimples and channels configured to decrease drag of the body when swung by the user.
Advantageously, the dimples and channels decrease drag without substantially altering the shape of the sporting article. As a result, less resistance is provided on a body of the player at a particular swing speed, thereby reducing the risk of injury. Alternatively, swing speeds may be increased.
The channels may extend in a direction of airflow in use. The channels may include a central channel extending in a direction of airflow in use, and one or more others channels, not extending in a direction of airflow in use.
Preferably, the sporting article includes a handle. Preferably, the sporting article includes a striking face, configured to strike a ball or other item (e.g. a puck).
Preferably, the sporting article comprises a golf club. The body may comprise a head of the golf club.
The dimples may be located on a striking face of the sporting article. The dimples may be configured to not influence an item (e.g. a ball or puck) struck with the striking face. In the case of a golf club, dimples on the striking face may be configured to not influence a golf ball (e.g. do not impart any significant additional spin on the golf ball).
In the case of a golf club, the striking face may include a plurality of elongate grooves, and at least some of the dimples may be positioned between adjacent grooves. The grooves may be parallel, and at least some of the dimples may form rows that are parallel with the grooves.
The sporting article may include a chamber including one or more weights movable within the chamber to adjust a balance of the sporting article. The chamber may comprise an internal chamber. The chamber may be defined in a handle of the sporting article.
The dimples may include first dimples and second dimples, the first dimples substantially uniform in size and shape, the second dimples substantially uniform in size and shape, and the first dimples different to the second dimples in at least one of size and shape.
The first dimples may be located on a first surface of the sporting article, and the second dimples may be located on a second surface of the sporting article. The first surface may comprise a striking face of the sporting article, and the second surface may be a non-striking face of the sporting article.
The body of the sporting article, or part thereof, may be formed of metal. The dimples may be cast into the body. The dimples may be machined, pressed, or stamped into the body. The body may be 3D printed.
The body of the sporting article, or part thereof, may be formed of resin, polycarbonate, composite material, or any other suitable material.
The body may be unitarily formed. Alternatively, the body may be formed of two or more components. For example, the body may be formed of metal, having a thin polycarbonate sleeve covering a portion thereof, at least some of the surface features defined in the polycarbonate sleeve.
In yet another form, the invention resides broadly in a covering, for attaching to and covering at least part of a head of a golf club, the covering including dimples defined in an outer surface thereof, for increasing aerodynamic efficiency of the golf club.
The covering may be adapted to cover at least a face of the golf club.
The covering may be clipped onto the golf club. The covering may be adhered to the golf club using adhesive.
Any of the features described herein can be combined in any combination with any one or more of the other features described herein within the scope of the invention.
The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the prior art forms part of the common general knowledge.
BRIEF DESCRIPTION OF DRAWINGSVarious embodiments of the invention will be described with reference to the following drawings, in which:
FIG. 1 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 2 illustrates a front view of the head of the golf club ofFIG. 1.
FIG. 3 illustrates a bottom cut-away view of the golf club head of the golf club ofFIG. 1, according to an embodiment of the present invention.
FIG. 4 illustrates a side cut-away view of the golf club head ofFIG. 1.
FIG. 5 illustrates a bottom cut-away view of a golf club head of a golf club, according to an alternative embodiment of the present invention.
FIG. 6 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 7 illustrates a front view of the head of the golf club ofFIG. 6, according to an embodiment of the present invention.
FIG. 8 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 9 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 10 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 11 illustrates a front view of the head ofFIG. 10.
FIG. 12 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 13 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 14 illustrates a bottom view of the head ofFIG. 13.
FIG. 15 illustrates a top view of a head of a golf club, according to an embodiment of the present invention.
FIG. 16 illustrates a bottom view of the head ofFIG. 15, illustrating a weight in a forward position.
FIG. 17 illustrates a bottom view of the head ofFIG. 15, illustrating a weight in a rearward position.
FIG. 18 illustrates a cut-away perspective view of a head of a golf club, according to an embodiment of the present invention.
FIG. 19 illustrates a cut-away perspective view of a head of a golf club, according to an embodiment of the present invention.
FIG. 20 illustrates a golf club head including dimples on its entire surface, to illustrate how the dimples improve aerodynamics of golf clubs.
FIG. 21 illustrates an exploded side view of a golf club head including a head portion and a dimpled cover, according to an embodiment of the present invention.
FIG. 22 illustrates a cross sectional view of the dimpled cover ofFIG. 21.
FIG. 23 illustrates a front view of the golf club head ofFIG. 21 with the cover installed.
FIG. 24 illustrates a partially exploded side view of a golf club head including a head portion and a dimpled cover separated, according to an embodiment of the present invention.
FIG. 25 illustrates a front view of motorcycle helmet, according to an embodiment of the present invention.
FIG. 26 illustrates a side view of the motorcycle helmet ofFIG. 25.
FIG. 27 illustrates a rear view of the motorcycle helmet ofFIG. 25.
FIG. 28 illustrates a top view of the helmet ofFIG. 25.
FIG. 29 illustrates a side cross-sectional view of the helmet through A-A ofFIG. 28.
FIG. 30 illustrates a front cross-sectional view of the helmet ofFIG. 25, illustrating two different types of air flow pathways through the helmet.
FIG. 31 illustrates a side cross-sectional view of the helmet ofFIG. 25, illustrating area B ofFIG. 29.
FIG. 32 illustrates a side cross-sectional view of the helmet ofFIG. 25, illustrating area C ofFIG. 31.
FIG. 33 illustrates a side cross-sectional view of the helmet ofFIG. 25, illustrating the use, according to an embodiment of the present invention.
FIG. 34 illustrates a side view of a helmet, with a shutter in a closed position, according to an embodiment of the present invention.
FIG. 35 illustrates a side view of the helmet, with the shutter in an open position.
FIG. 36 illustrates a tennis racket, according to an embodiment of the present invention.
FIG. 37 illustrates an inside view of area D of the tennis racket ofFIG. 36.
FIG. 38 illustrates a front view of area D of the tennis racket ofFIG. 36.
FIG. 39 illustrates an outside view of area D of the tennis racket ofFIG. 36.
FIG. 40 illustrates a front view of a tennis racket, according to an embodiment of the present invention.
FIG. 41 illustrates area E of the tennis racket ofFIG. 40.
FIG. 42 illustrates an end view of a handle of the racket ofFIG. 40.
FIG. 43 illustrates a cross sectional view of the handle of the racket ofFIG. 40 through F-F ofFIG. 41.
FIG. 44 illustrates a front view of a tennis racket, with a weight assembly, according to an embodiment of the present invention
Preferred features, embodiments and variations of the invention may be discerned from the following Detailed Description which provides sufficient information for those skilled in the art to perform the invention. The Detailed Description is not to be regarded as limiting the scope of the preceding Summary of the Invention in any way.
DESCRIPTION OF EMBODIMENTSFIG. 1 illustrates a top view of ahead100 of a golf club, according to an embodiment of the present invention.FIG. 2 illustrates a front view of thehead100 of the golf club. Thehead100 includes a plurality ofdimples105, as outlined in further detail below, which are configured to generating a boundary layer of air to thereby decrease drag of thehead100 when swung.
Advantageously, thedimples105 decrease drag of thehead100 without substantially altering the shape of thehead100. This enables improved aerodynamics to be achieved while maintaining compliance with USGA rules and the R&A Rules of Golf. With improved aerodynamics, less exertion may be required to swing the club at a desired speed, which in turn may be associated with a reduced risk of injury. Alternatively, the improved aerodynamics may be used to increased swing speeds. In order to compensate for the decreased drag, thehead100 is adjustable, as outlined below.
The golf club comprises a driver, and thehead100 includes astriking face110, a sole115, acrown120, atoe125, aheel130 and ahosel135. Thedimples105 are spherical dimples that are substantially uniform in size and shape, and extend substantially over an entirety of thestriking face110, and onto leading portions of the sole115,crown120,toe125 andheel130. These portions correspond to the high drag portions of thehead100 when swung.
Thedimples105 on thestriking face110 are configured to not influence a golf ball that is hit by the club. In particular, thedimples105 on theface110 are sized, shaped and positioned to not impart any significant additional spin on the golf ball with reference to a club that does not includesuch dimples105. Such configuration enables thedimples105 on theface110 to have minimal effect on function of thestriking face110, while improving aerodynamics. This is particularly useful in maintaining compliance with standards, such as USGA standards.
FIG. 3 illustrates a bottom cut-away view of thegolf club head100 of a golf club, according to an embodiment of the present invention, andFIG. 4 illustrates a side cut-away view of thegolf club head100. Thegolf club head100 is adjustable and enables a golfer to adjust a weight and balance of the golf club head.
As thedimples105 significantly reduce drag on thegolf club head100, flex in the shaft of the golf club is significantly reduced. This in turn changes the angle of attack of thegolf club head100, which in turn influences the trajectory of the golf ball.
The level of flex in a traditional golf club changes depending on swing speed, and as such, the change in flex caused by the reduction in drag depends on the swing speed and thus the golfer. As such, anadjustable weight140 is provided in theclub head110, to allow golfers to compensate for such changes, and according to their particular situation.
Thegolf club head100 includes an elongatecylindrical chamber145, which extends in a direction from a front to a rear of thegolf club head100, behind and perpendicular to aface110 of theclub head100, and in particular a central striking portion thereof (commonly referred to as the “sweet spot”).
Thecylindrical chamber145 includes a threadedrod150, which extends along a length of thecylindrical chamber145, through themoveable weight140. Themovable weight140 includes an internal thread which engages with a thread of the threadedrod150. As such, when the threadedrod150 is rotated, themovable weight140 moves backwards or forwards in thecylindrical chamber140, thereby changing a balance of the golf club without changing a weight of the golf club.
An outer end of the threadedrod150 includes ahexagonal head155, which enables rotation of therod150 using a tool. Thehead155 may include a thin rubber seal to protect it, prevent ingress of water, and/or to conceal thehead155.
When swung, centrifugal force at the head causes the shaft to flex depending on a position of theweight140. When theweight140 is at a rear of the club, the centrifugal force pushes outwardly (downwardly) on a rear of theclub head100, thereby increasing an angle of theface110 in an upward direction. When theweight140 is near a front of thehead100, such effect is minimised, as the weight is near the lower end of the shaft. The angle of the face influences the trajectory of the golf ball.
Anon-adjustable weight160 is located immediately behind the central striking portion of theface110, and held against a rear of theface110 by a biasing member in the form of aspring165.
Theweight160 is slightly smaller than thecylindrical chamber145, and is able to move backwards and forwards slightly within thechamber145. Theweight160 provides an additional force to the back of theface110, and also creates a “ping” sound, which is useful for golfers in identifying that the ball has hit theface110 at the sweet spot. In particular, a micro-second recoil creates a greater force to the back of theface110, and creates a noise at the same time. The rebound effect of theweight160 may provide extra force to the ball, resulting in extra distance.
Theweight160 may be able move anywhere from between a fraction of a millimetre within thechamber145, up to several millimetres (e.g. up to 5 mm).
Theweights140,160 are cylindrical to match an inner shape of thecylindrical chamber145. While theweights140,160 are illustrated as substantially solid discs, in other embodiments the front of theweight160 may be hollowed out, and theweights140,160 may include hollows or apertures.
In other embodiments, thechamber145 andweights140,160 may be elliptical in cross section, to provide a weight that extends either side of the central striking portion (sweet spot), which is particularly useful for golfers that do not hit the with the sweet spot all of the time.
In some embodiments, the weights may comprise a central cylinder, with adjacent side cylinders adjoined thereto. The central cylinder may be larger than the side cylinders and aligned with the central striking portion, whereas the side cylinders provided on either side of the striking portion. The use of central cylinder, with adjacent side cylinders may comprise less weight than a correspondingly sized elliptical weight.
In an alternative embodiment, the golf club head may include a plurality of elongate chambers, each with a moveable weight and a threaded rod, similar or identical to thechamber145. The chambers may be arranged in different directions. For example, one or more chambers may extend in a direction transverse to thechamber145. In particular, first and second chambers may be located on either side of thechamber145.
FIG. 5 illustrates a bottom cut-away view of agolf club head500 of a golf club, according to an alternative embodiment of the present invention. Thegolf club head100 is adjustable in two directions and enables a golfer to adjust a weight and balance of the golf club head in both front to rear and side directions.
In addition to thecylindrical chamber145 andmovable weight140, thehead500 includes first and secondlateral chambers545, extending from a central portion of thehead500 to thetoe125 andheel130 respectively. Each of the first and secondlateral chambers545 includes a threadedrod550 and aweight540, which functions much like theweight140 in thechamber145, but wherein theweights540 instead move laterally.
When heads555 are rotated, the threadedrods550 rotate, thereby causingmovable weights540 to move laterally in thecylindrical chambers545, thereby changing a balance of the golf club without changing a weight of the golf club. Each of theweights540 may be adjusted independently, thereby enabling the club to be balanced in multiple directions.
The chambers may be formed together as a single unit, for positioning inside a shell defining the golf club. Such configuration may simplify the manufacturing process of thegolf club head500, as it enables such adjustment to be incorporated relatively easily into existing manufacturing systems.
While the above embodiments illustrate dimples on large portions of theclub face110 andhead100, in other embodiments, channels are defined in the club head, which direct air. The channels include dimples, which create regions of low drag, which assist in directing the club.
FIG. 6 illustrates a top view of ahead600 of a golf club, andFIG. 7 illustrates a front view of thehead600 of the golf club, according to an embodiment of the present invention.
Thehead600 includes a plurality ofchannels605 that extend in a direction from a front to a rear of thegolf club head600, behind and perpendicular to aface610 of theclub head600. Thechannels605 each includedimples105 extending along a length of thechannels605, creating regions of low drag, which assist in directing the club. The dimpled channel may give a more controlled movement through the air and helps control the direction of the club head.
In particular, thechannels605 guide air with low drag from a front to a rear of the club. When the club is swung on an angle, the channels help guide theclub head600 back “straight”, thereby assisting the golfer in improving their swing.
Thechannels605 are between about 0.5 mm and 5 mm deep, and include dimples along a length thereof, that have a depth that is a fraction of that of the depth of thechannel605.
Thestriking face610 includes a plurality ofparallel grooves615 machined or cast into thestriking face610.Dimples105 may be positioned betweenadjacent grooves605, and form rows of dimples that are parallel with the grooves, to further assist with aerodynamics of theclub head600.
Theclub head600 may include internal weights similar or identical to the weights of thehead100 or thehead500. A centrally located internal weight and a central channel with dimples (on the crown or sole) helps control a direction of the club head (i.e. provide a more controlled swing). Furthermore, the centrally located weight, being directly behind the sweet spot, in combination with the decreased drag of the head, results in greater power and greater ball distance.
In other embodiments, channels including dimples may be defined in the club head having different shapes.
FIG. 8 illustrates a top view of ahead800 of a golf club, according to an embodiment of the present invention.
Thehead800 is similar to thehead600, but whereinchannels805 are all directed towards a point at or near the rear of theclub head800. Such configuration may be useful at guiding air towards a point at the rear of the club, to thereby reduce overall drag associated with theclub head800.
FIG. 9 illustrates a top view of ahead900 of a golf club, according to an embodiment of the present invention.
Thehead900 is similar to thehead800, but wherein asingle channels905, which is tapered, directs air towards a point at or near the rear of theclub head900.
FIG. 10 illustrates a top view of ahead1000 of a golf club, according to an embodiment of the present invention.FIG. 11 illustrates a front view of thehead1000.
Thehead1000 is similar to thehead900, but wherein asingle channel1005 extends over much of the crown of theclub head1000. Thechannel1005 has a base that is curved in shape.
FIG. 12 illustrates a top view of ahead1200 of a golf club, according to an embodiment of the present invention.
Thehead1200 is similar to thehead900, but wherein achannel1205 is substantially uniform in width initially, but is tapered at a rear of theclub head1200.
FIG. 13 illustrates a top view of ahead1300 of a golf club, according to an embodiment of the present invention.FIG. 14 illustrates a bottom view of thehead1300.
Thehead1300 is similar to thehead600 but include fiveparallel channels1305 on a crown of the head. Fiveparallel channels1405 are also provided on a sole of thehead1300.
FIG. 15 illustrates a top view of ahead1500 of a golf club, according to an embodiment of the present invention.FIG. 16 illustrates a bottom view of thehead1500.
Thehead1500 includes taperedchannels1505,1510 on a crown and sole of the club head, and the internal weight mechanism of thehead100. Thehead1500 includes a removeable cover1515 (removed inFIG. 16), which provides access to the internal weight mechanism. Such configuration may enable theweight140 to be removed and replaced by a smaller or larger weight, for example.
As shown inFIG. 16, when fully forward, theweight140 is forward of the balance line of theclub head1500. When moved to a rear of theclub head1500, as illustrated inFIG. 17, theweight140 is fully behind (to a rear of) the balance line.
As such, the balance of theclub head1500 can be changed significantly by moving theweight140, and thereby the angle of attack of the golf club when swung. This in turn change the angle of the face of the club when it hits the golf ball, thereby influencing the shot.
Various methods of attaching the weight and cylinder to the inside of the club head may be used. In some embodiments, the weight assembly may be inserted into the head through an open face thereof. Preferably, the internal weight mechanism is configured to not significantly alter the expansion characteristics of the club head when hitting the ball. In particular, a golf club head will generally expand laterally when hitting a golf ball, which in turn will add additional speed to the golf ball when re-shaping.
FIG. 18 illustrates a cut-away perspective view of ahead1800 of a golf club, according to an embodiment of the present invention.
Thegolf club head1800 includes an elongatecylindrical chamber1805, which extends in a direction from a front to a rear of thegolf club head1800, behind and perpendicular to a face of theclub head1800, and in particular the “sweet spot”.
Thechamber1805 houses a weight, similar or identical to theweight140, which may move back and forwards within the chamber to adjust a balance of thehead1800.
Thechamber1805 is supported by a plurality oflegs1810, which extend outwardly from thechamber1805, perpendicular to an axis of thechamber1805, and engage with an inner wall of theclub head1800.
FIG. 19 illustrates a cut-away perspective view of ahead1900 of a golf club, according to an embodiment of the present invention. Thehead1900 is similar to thehead1800, but wherein thechamber1805 is supported by aframework1910, which includes an inner portion, that encases thechamber1805, an outer portion, which is supported against an inner wall of theclub head1800, and arms extending therebetween.
The internal weight mechanisms described above may be used together with any of the dimpled and/or channel arrangements described above.
As outlined above, thedimples105 improve aerodynamics of the golf club head.FIG. 20 illustrates agolf club head2000 includingdimples105 on its entire surface, to illustrate how the dimples improve aerodynamics of golf clubs. While thehead2000 has dimples on its entire surface, the aerodynamic features may be applied to the case where dimples are only on part of the club head.
Thedimples105 create a boundary layer of turbulent air immediately adjacent to thedimples105, as illustrated byarrows2005, above which smoothly flowing air may travel, as illustrated byarrow2010. Such configuration decreases the size of a wake region behind thegolf club head100 when swung, thereby reducing drag.
In other configurations and/or situations, the air may roll across the dimples, such that the air flows in a smooth undulating pattern. In such case, the speed may exit the dimples at a greater speed (up to twice the speed) as when entering the dimple.
In addition to providing golf club heads including dimples, embodiments of the present invention provide covers which may be used to add dimples to golf club heads post manufacture.
FIG. 21 illustrates a partially exploded side view of agolf club head2100 including ahead portion2105 and a dimpled cover2110 (illustrated being separated).FIG. 22 illustrates a cross sectional view of thedimpled cover2110, andFIG. 23 illustrates a front view of thegolf club head2100 with thecover2110 installed.
Thehead portion2105 may comprise a traditional golf club head, and thedimpled cover2110 may be selectively attached to the front of the golf club head to improve aerodynamics thereof.
Thedimpled cover2110 is thin and conforms to the front of thehead2105, and may be attached by any suitable means including a clip-on means, or by use of adhesives.
As can be seen fromFIG. 23, the dimples are not only on the striking face, but extend onto the crown, sole heel and toe of theclub head2100.
FIG. 24 illustrates a partially exploded side view of agolf club head2400 including ahead portion2405 and a dimpled cover2410 (illustrated being separated). Thegolf club head2400 is similar to theclub head2100, but thecover2410 extends further onto the head. This configuration is useful in providing further aerodynamics to thehead2400.
The golf club heads described above may include first andsecond dimples105, which are different in size and/or shape to each other. As an illustrative example, dimples105 on thestriking face110 may be smaller in depth or diameter thandimples105 not on theface110. The dimples on theface110 may be about 0.04 mm in depth, and the dimples not on theface110 may be about 0.1 mm in depth.
Thedimples105 may be arranged in rows on the head, the rows being parallel to a sole (or ground line) of the head. The second dimples may be arranged in rows perpendicular to the sole (or ground line), and thus form a matrix of dimples.
In alternative embodiments, the dimples may be integrated in a honeycomb like arrangement, where the dimples are tightly packed onto a surface of the club head, with little or no gaps therebetween. In some cases, the dimples (or edges thereof) may be touching each other.
Thedimples105 are spherical dimples and are configured such that an edge between the face (of the club head) on which thedimple105 is provided and thedimple105 itself is about 45 degrees or less.
Various other types of dimple shapes may be used. In some embodiments, the dimples may be configured such that they are directional, rather than axially symmetrical, to encourage the flow of air in a direction corresponding to a swing of the golf club (i.e. from front to rear as the golf club is swung).
The dimples may be sinusoidal in cross section in a plane perpendicular to the face (of the club head). Such configuration removes an edge between the face and the dimple. As such, the dimples do not include any gripping edges, which may reduce the interaction with a golf ball, if provided on the striking face, or alter the characteristics of the boundary layer of turbulent air.
In yet an alternative embodiment, the dimples may be hexagonal dimples.
In some embodiments, hexagonal dimples may be combined with spherical dimples, or dimples of another shape. For example, spherical dimples (or dimples having a circular cross section) may be located on a striking face of the golf club head, whereas hexagonal dimples are located on one or more other surfaces of the head.
The hexagonal dimples may be arranged such that adjacent dimples abut each other in a honeycomb-like arrangement. However, hexagonal dimples may also be spaced, in a similar manner to thespherical dimples105 outlined above. Similarly, spherical dimples may be arranged in groups of dimples, where smaller and larger dimples are grouped together in triangular sections. In short, any suitable shape and arrangement of dimples may be used.
At least 10% of a surface of the head of the golf club may be covered with dimples. In some embodiments, at least 50% of the surface of the head may be covered with dimples. Substantially an entire surface of the body may be covered with dimples.
While a driver has been explicitly illustrated, the dimples may be provided on any suitable type of golf club.
The golf club heads described above may be formed of metal. The surface features (i.e. dimples or beads) may be cast into the head. Alternatively, the surface features may be machined, pressed, or stamped into the head.
In one embodiment, the golf club head may be formed of multiple pieces of pressed metal. In the case of a driver, each piece may be pressed with dimples and into shape, and micro-welded to form the club head. During such procedure, weights or other components may be added to an inside of the club head. Finally, a small breather hole may be provided to allow hot air to escape during manufacturing. The breather hole may be sealed off post manufacture.
In another embodiment, the golf club head may be 3D printed of metal, a metal alloy, a combination of metal and another material (e.g. polycarbonate), carbon fibre, nylon, or any other suitable material. In such case, the golf club head may be custom printed for a single user, or be mass produced by such 3D printing.
Alternatively, the heads may be formed entirely or in part of other materials. For example, the head may be formed of resin, polycarbonate, composite material, or any other suitable material.
The heads may be unitarily formed. Alternatively, the head may be formed of two or more components. For example, the heads may be formed of metal, having a thin polycarbonate sleeve covering a portion thereof, where at least some of the surface features (e.g. dimples or beads) are located on the polycarbonate sleeve.
The exact number, size, shape and placement of the dimples may vary according to the size and shape of the golf club head, and/or one or more desired characteristics of the golf club. Similarly, the number, size, shape and placement of the dimples or beads may be balanced according to aesthetics of the golf club head. Regardless of number, size, shape and placement, the dimples may be smooth to the touch.
The golf clubs may be USGA compliant. In such case, the dimples may be arranged such that they do not engage with the ball in any significant way. Unlike grooves, punch marks, and the like that are designed to impart spin on the ball, the dimples may be arranged such that they do not grip the ball, and thus do not alter a motion of the ball. As outlined above, this may be achieved by having dimples forming an edge having an angle less than 45 degrees, or by not having any significant edge at all. Similarly, dimples may be positioned parts of the face of the golf club that are generally not in contact with the golf ball in use. As an illustrative example, the sweet spot (or an area around the sweet spot) may be free of dimples.
While golf clubs have been illustrated, the teachings of the present invention may be applied to a number of sporting articles adapted to be swung by a user. Such sporting articles may include a handle and a striking face, configured to strike a ball or other item, and may include improve aerodynamics and/or balance.
As illustrative examples, the sporting articles may comprise a club (e.g. a golf club), a racket (e.g. a tennis squash or badminton racket), a bat (e.g. a baseball bat) or a stick (e.g. a hockey stick). Embodiments of the present invention also include helmets, where dimples are provided on an outer surface of the helmet to improve aerodynamics of the helmet and thereby to reduce drag, while increasing ventilation in the helmet.
FIG. 25 illustrates a front view ofmotorcycle helmet2500, according to an embodiment of the present invention.FIG. 26 illustrates a side view of themotorcycle helmet2500, andFIG. 27 illustrates a rear view of themotorcycle helmet2500. Themotorcycle helmet2500 is shaped much like a conventional motorcycle helmet, but includes a vent mechanism, for ventilating the helmet.
In particular, thehelmet2500 includes achannel2505 which extends from anopening2510 at a front of thehelmet2500 to anexit2515 at a rear of thehelmet2500. Thechannel2505 includes a plurality ofdimples2520 on an outer surface of theopening2510, and through thechannel2505. Thedimples2520 increase airflow through thechannel2505, and thereby increase ventilation through thehelmet2500.
FIG. 28 illustrates a top view of thehelmet2500, andFIG. 29 illustrates a side cross-sectional view of the helmet through A-A ofFIG. 28. As best illustrated inFIGS. 28 and 29,air flow pathways2525 are provided between an inside of thehelmet2500 to thechannel2505. As theexit2515 is larger than the central portion of thechannel2505, a venturi effect is provided in thechannel2505, which thereby causes low pressure in the channel at theair flow pathways2525. This low pressure causes air to flow through theair flow pathways2525 thereby ventilating the helmet.
As illustrated inFIG. 29, raisedcovers2530 are provided above eachair flow pathway2525, in a reverse cowl like arrangement, to stop water leaking in helmet when raining. In particular, as air flows through thechannel2505, any water with the air will also flow through thechannel2505. Eachair flow pathway2525 is protected by thecovers2530 which overhang the openings of theair flow pathways2525, and any water in the channel will travel along the tops of eachcover2530, out of thechannel2505.
Thecovers2530 are arranged in rows, corresponding to tow of theair flow pathway2525. Groove-like valleys2535 are defined between adjacent rows, which are also useful for transporting any water that makes its way into thechannel2505 out of thechannel2505 again.
FIG. 30 illustrates a front cross-sectional view of thehelmet2500, illustrating two different types ofair flow pathways2525 through thehelmet2500.
Theair flow pathways2525 includeair grooves2525a, defined in an inner surface (foam) of thehelmet2500. Thegrooves2525aextend vertically along a height of thehelmet2500, and thus allows air to flow from an inside of thehelmet2500 from any point. The grooves allow air that enters at the bottom of thehelmet2500 to flow along an entire inside of thehelmet2500, adjacent to the rider's head, to thereby cool thehelmet2500 and thus the rider's head.
Theair flow pathways2525 also include hose-like channels2525b, defined in the inner surface of thehelmet2500. Thechannels2525bextend from an opening at the lower end of thehelmet2500, to an exit in thechannel2505. Thechannels2525bwould generally extend from different parts of thehelmet2500 to thechannel2505, to thereby ventilate thehelmet2500. Theair flow pathways2525 may include dimples therein to improve airflow through thepathways2525.
Whilegrooves2525aandchannels2525bare illustrated on respective sides of the helmet, in a typical scenarioonly grooves2525aorchannels2525bwould be used on sides of the helmets, and the presence of both in the single helmet is simply to illustrate different options in a simple manner.
FIG. 31 illustrates a side cross-sectional view of thehelmet2500, illustrating area B ofFIG. 29.FIG. 32 illustrates a side cross-sectional view of thehelmet2500, illustrating area C ofFIG. 31.
Thecovers2530 comprise a base2530b, attached to a lower edge of thechannel2505, and anupper cover portion2530a, positioned directly above, and overhanging theair flow pathways2525. Thecovers2530 are arranged end-to-end in their respective rows such that theupper cover portion2530 of onecover2530 overlaps/overhangs thebase2530bof anadjacent cover2530.
An edge of the base2530aincludes alip2530c, which prevents any water which drips over from one cover from entering theair flow pathways2525.
As outlined above,dimples2520 are provided at the outer surface of theopening2510, and through thechannel2505. In particular, dimples are provided oncover2530, to increase airflow through thechannel2505.
FIG. 33 illustrates a side cross-sectional view of thehelmet2500, illustrating the use, according to an embodiment of the present invention.
When air travels over the smooth surface of the helmet sides and top air becomes detached from the surface creating a lower air pressure behind the helmet as shown byarrows3305.
The vent at the front of thechannel2505 coupled with thedimples2520 creates turbulence as shown byarrows3310, thereby reducing resistance to air flowing inside the helmet.
Thechannel2505 tapers to a greater size opening at the rear of the helmet creating a venturi effect and low pressure at thecircle3315.
The venturi effect draws air from inside the helmet, through the air flow pathways2525 (which function as ducts) and into thechannel2505 and then out through the rear of the helmet, as illustrated byarrows3320.
While not illustrated, thehelmet2500 will generally include a visor, and theair flow pathways2525 at the front of the helmet are configured to ventilate the visor and thereby avoid fogging of the visor.
While the above description illustrates several independentair flow pathways2525, the skilled addressee will readily appreciate that multiple air flow pathways may be joined. For example, air flow pathways may be joined in a branched manner, and/or forming a network of air flow pathways. As an illustrative example, a single (or small number of) openings may be coupled to air flow pathways that branch into multiple parts of the helmet.
In some embodiments, thechannel2505 may include a shutter, to enable the wearer to adjust a level of flow though thechannel2505, and thus a level of ventilation in thehelmet2500.
FIG. 34 illustrates a side view of ahelmet3400, with ashutter3405 in a closed position, according to an embodiment of the present invention.FIG. 35 illustrates a side view of thehelmet3400, with theshutter3405 in an open position.
Theshutter3405 slides up and down, opening and closing theopening2510 and thereby the channel. This enables the wearer of the helmet to adjust a level of air flow through thechannel2505 and thereby the level of ventilation in the helmet.
While not illustrated, thehelmets2500,3400 may include dimples on an outer surface thereof. In such case, the dimples may be arranged in rows from a front to a rear of the helmet, to thereby direct airflow from a front to a rear of the helmet.
Thehelmets2500,3400 may further include moulded channels, which channel airflow across the helmet. The moulded channels may taper towards a rear of the helmet and a plurality of dimples may extend along a length of the channels. The inventor believes that the use of dimples in channels improves aerodynamics over one of channels or dimples alone.
As outlined above, thehelmets2500,3400 may include a visor. Dimples may be provided on a surface of the visor to optimise airflow without impeding vision. The visor may be partly or fully dimpled. In a partly dimpled configuration, the dimples may leave a clear visual strip (i.e. clear from dimples). In a fully dimpled configuration, the dimples may be sized so that they do not significantly impact vision through the visor.
The dimples may be uniform in shape and/or size, or include multiple shapes and/or sizes. Any suitable shape or combination of shapes that is within regulations for that helmet.
While the above embodiment illustrates a motorcycle helmet, the skilled addressee will readily appreciate that the present invention may be used on any type of helmet including sporting helmets (e.g. bicycle helmets), and for helmets designed to be used on land and sea.
Advantageously, the helmets may reduce drag, which in turn may increase performance, and/or decrease stress on the user's head.
As outlined above, other types of sporting articles may incorporate the above teachings.
FIG. 36 illustrates atennis racket3600, according to an embodiment of the present invention.FIG. 37 illustrates an inside view of area D ofFIG. 36,FIG. 38 illustrates a front view of area D, andFIG. 39 illustrates an outside view of area D.
Thetennis racket3600 includes a body in the form of aframe3600a, ahandle3600b, and a plurality of strings (not illustrated for the sake of clarity) provided in an opening defined by theframe3600a.
Theframe3600aincludes a plurality ofdimples3605 arranges inchannels3610, to decrease drag of theframe3600a(and thus racket3600) when swung by the user by generating a boundary layer of air immediately adjacent to theframe3600a.
Thedimples3605 may be similar or identical to the dimples described above in the context of golf clubs and helmets.
Thedimples3605 extend around theframe3600ain thechannels3610, and are thus located on both an inside, side, and outside of theracket3600. This maintains symmetry, enabling theracket3600 to function in both directions.
Much like the golf clubs described above, theracket3600 has reduced wind resistance, which may decrease the risk of injury, or increase swing speeds.
In alternative embodiments, the racket may include weights, similar to the weights described above, to adjust a balance of the tennis racket.
FIG. 40 illustrates a front view of atennis racket4000, according to an embodiment of the present invention.FIG. 41 illustrates area E ofFIG. 40,FIG. 42 illustrates an end view of ahandle4000bof theracket4000, andFIG. 43 illustrates a cross sectional view of thehandle4000bthrough F-F ofFIG. 41.
Thetennis racket3600 includes a body in the form of aframe4000a, which is similar to thebody3600a, and includes dimples. Strings (not illustrated for the sake of clarity) are provided in an opening defined by theframe4000a.
Theframe4000aincludes a plurality of dimples arranged in channels, to decrease drag of theframe4000a(and thus racket4000) when swung by the user by generating a boundary layer of air immediately adjacent to theframe4000a, as outlined above in relation to theracket3600.
Thehandle4000bincludes aweight4005 movable along a length of thehandle4000bto change a balance of the handle andracket4000. In particular, the handle includes acylindrical chamber4010 along which theweight4005 may be moved. Theweight4005 fits snugly in thechamber4010, and therefor does not move or rattle in use.
Aknob4015 is provided in theweight4005, which enables the position of theweight4005 to be adjusted within thechamber4010. Theknob4015 extends through anelongate channel4020, which enables access to theknob4015 from an outside of thehandle4000b, while also providing a visual indicator of a location of theweight4005 with reference to thehandle4000b.
By moving theweight4005 up towards the strings, a more powerful serve may be achieved. By moving theweight4005 towards a lower portion of the handle, amore balance racket4000 may be provided.
Thehandle4000bfurther includes aremovable end cap4025, which enables access to thechamber4010 to be provided. This enables theweight4005 to be replaced or removed, for example.
While the chamber is illustrated as being cylindrical, the skilled addressee will readily appreciate that it may take any suitable shape, but is preferably uniform in cross section along its length.
Handle may be formed of two parts, and the cylindrical chamber may be defined in one part. This is particularly useful in case a frame is defined continuously from one side of the handle, around the opening, and back to the other side of the handle, such as the case for a bent tube tennis racket.
In alternative embodiments, a lower end of the handle may rotate, thereby moving a weight up and down in the handle, e.g. using a threaded shaft and cylindrical chamber, much like in the golf club, but sized and shaped for the handle.
The handle may be extended in length, compared to a typical handle, thereby enabling the weight to move a greater distance with reference to the user's hand. This in turn enables the weight to be positioned higher, and therefore a greater force be applied to the tennis ball.
FIG. 44 illustrates a front view of atennis racket4400, with a weight assembly, according to an embodiment of the present invention. Certain parts of the weight assembly are illustrated, despite generally being hidden by the handle, to clearly illustrate the weight assembly.
Thetennis racket4400 is similar to theracket4000 and includes aframe4400a, which includes dimples, and strings (not illustrated for the sake of clarity) are provided in an opening defined by theframe4400a.
Theracket4400 includes ahandle4400b, and aweight4405 movable along a length of theracket4400 along an axis of thehandle4400bto change a balance of the handle andracket4400. In particular, acylindrical chamber4410 extends outwardly from an end of thehandle4400b, towards the opening, and along which theweight4405 may be moved. Theweight4405 fits snugly in thechamber4410, and therefor does not move or rattle in use.
Ashaft4415 extends along a length of thehandle4400band engages with the weight to enable a position of theweight4405 to be adjusted within thechamber4410. The shaft may be threaded, or at least partly threaded, whereby adjustment of theweight4405 is performed by rotation of the shaft (similar to adjustment of the weight in the golf club head, as described above). Alternatively, theshaft4415 may move lengthwise in the handle, thereby causing theweight4405 to move lengthwise in thechamber4410.
By moving theweight4405 up towards the strings, a more powerful serve may be achieved. By moving theweight4405 towards a lower portion of the handle, amore balance racket4400 may be provided.
By changing the aerodynamics of sporting articles, as described above, stress and tension is taken off the user's body, including the pelvis and hips, back, elbows, shoulders, neck, wrist and soft tissue areas of the body.
The surface features decrease drag of the sporting article without substantially altering the shape of the sporting article. This enables improved aerodynamics to be achieved while maintaining compliance with rules and standards, such as USGA and R&A rules in the case of golf clubs. With improved aerodynamics, less exertion may be required to swing the sporting article at a desired speed, which in turn may be associated with a reduced risk of injury. Alternatively, the improved aerodynamics may be used to increased swing speeds.
The above embodiments are illustrative only, and the skilled addressee will readily appreciate that the any suitable pattern or configuration of dimples or impressions may be used on any part of the golf club, sporting implement or helmet, including the use of multiple patterns or configurations on different parts of the golf club, sporting implement or helmet.
The dimples or impressions described above may have any suitable depth, and may include a depth that is proportional to the diameter of the dimple or impression. Furthermore, the depth of the dimple or impression, or the depth relative to the diameter, may be chosen such that it provides maximum (or near maximum) efficiency in use.
Such maximum efficiency may include reference to the speed in which air travels over parts of the golf club, sporting implement or helmet and in which direction and take into account the aerodynamic properties and efficiency of the golf club, sporting implement or helmet. As an illustrative example, if the golf club, sporting implement or helmet is designed to travel in a particular direction, the dimples or impressions may be configured to increase the aerodynamic properties and efficiency of the golf club, sporting implement or helmet when travelling in such direction.
In the present specification and claims (if any), the word ‘comprising’ and its derivatives including ‘comprises’ and ‘comprise’ include each of the stated integers but does not exclude the inclusion of one or more further integers.
Reference throughout this specification to ‘one embodiment’ or ‘an embodiment’ means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases ‘in one embodiment’ or ‘in an embodiment’ in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more combinations.
In compliance with the statute, the invention has been described in language more or less specific to structural or methodical features. It is to be understood that the invention is not limited to specific features shown or described since the means herein described comprises preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims (if any) appropriately interpreted by those skilled in the art.