CROSS-REFERENCE TO RELATED APPLICATIONThis application is a continuation of U.S. patent application Ser. No. 17/264,441, filed Jan. 29, 2021, which is a National Stage Entry of International Patent Application No. PCT/EP2019/060106, filed Apr. 18, 2019, the details of which are incorporated by reference herein in their entirety.
TECHNICAL FIELDThe present disclosure generally relates to embolization devices for promoting clot formation in a bodily lumen. The present disclosure also generally relates to methods of manufacturing embolization devices for promoting clot formation in a bodily lumen.
BACKGROUND OF THE DISCLOSUREAn embolization device is a permanent or semi-permanent implantable device which may be received within a bodily lumen so as to promote clot formation therein. Such embolization devices may have a contracted delivery configuration and an expanded deployed configuration. The contracted delivery configuration may be such that the device may be loaded into a delivery device, such as a delivery catheter. Various embolization devices are disclosed in WO2014/140325 and WO2016/041961, both of which are incorporated herein by reference in their entirety.
Embolization devices may be deployed in the vasculature at a particular location by a medical practitioner so as to promote clot formation and ultimately occlude the blood vessel. However, typical embolization devices may be prone to migration within the vasculature which may cause serious adverse effects.
To reduce migration, some known embolization devices comprise a number of bristles or fibers extending radially outwardly from a central core. The bristles are configured to contact the bodily lumen and anchor the embolization device in the lumen due to friction between the bristles and the wall of the bodily lumen.
However, in these known embolization devices, the bristles may become disconnected from the central core which results in a reduction in the anchoring force and therefore increases the chances of migration of the device.
In addition to bristles, certain embolization devices further include a flow restrictor which acts to restrict flow in the bodily lumen and may further act to provide an additional anchoring force. In these devices, the flow restrictor is typically a separate membrane which is disposed over the central core of the embolization device. During assembly of the device, the flow restrictor must therefore be manipulated such that it is attached to the central core. However, this may result in an unreliable attachment and deformations or irregularities in the attached flow restrictor.
Accordingly, such flow restrictors may not reliably expand to their expanded deployed configuration in the bodily lumen, and, therefore, the additional anchoring force provided by the flow restrictor may not reliably come about when the device is deployed. Again, this increases the chances of migration of the device.
In view of the above, there is a need for an improved embolization device which is capable of achieving and maintaining an anchoring force more reliably. There is also a need for an improved method of manufacturing an embolization device which is capable of achieving and maintaining an anchoring force more reliably.
BRIEF DESCRIPTION OF THE DRAWINGSFor a better understanding of the present disclosure, and to show how the same may be carried into effect, reference will be made, by way of example only, to the following drawings, in which:
FIG. 1 shows an embolization device in an unconstrained configuration;
FIG. 2 shows the embolization device ofFIG. 1 in a contracted delivery configuration within a delivery catheter;
FIG. 3 shows the embolization device ofFIGS. 1 and 2 in an expanded deployed configuration in a bodily lumen;
FIGS. 4 to 8 each show a cross-section along part of the length of various embodiments of the embolization device;
FIGS. 9 and 10 each show a transverse cross-section along the length of certain embodiments of the embolization device;
FIGS. 11 to 13 each show a cross-section along part of the length of various embodiments of the embolization device;
FIGS. 14 to 16 each show a cross-section along part of the length of various embodiments of the embolization device which comprise a flow restricting membrane; and
FIGS. 17 and 18 each show a transverse cross-section along the length of certain embodiments of the embolization device which comprise a flow restricting membrane.
DETAILED DESCRIPTIONThere is provided an embolization device for promoting clot formation in a lumen. The embolization device may have a contracted delivery configuration and an expanded deployed configuration. The embolization device may comprise a stem comprising a tube having a tube wall. The embolization device may comprise a plurality of flexible bristles extending radially outwardly from the tube. At least one of the plurality of flexible bristles may penetrate through the tube wall.
Throughout this disclosure, the term ‘embolization device’ may refer to a device which may be permanently or semi-permanently implanted in a bodily lumen. Accordingly, the ‘embolization device’ may be configured to be disposed within the bodily lumen for a period of time, such as a number of days, or disposed in the bodily lumen indefinitely. To this end, the ‘embolization device’ may be configured to be selectively detached from a delivery element so that it may be implanted in the bodily lumen in isolation.
Throughout this disclosure, a ‘contracted delivery configuration’ of an element may refer to a configuration of the element which has a smaller radial extent than an ‘expanded deployed configuration’ of the element.
Throughout this disclosure, the term ‘tube wall’ may refer to the wall of a tube which extends along the longitudinal axis of the tube. The tube wall may be continuous or discontinuous.
Throughout this disclosure, the term ‘tube’ may refer to any element which has a tube wall in which different portions of the tube wall oppose each other across a longitudinal axis. For example, the tube wall may be curved (e.g. having a circular cross-section) around the longitudinal axis of the tube such that opposite sides of the tube wall oppose each other. The tube may or may not have a lumen extending along any portion of its longitudinal axis.
The tube wall may have one or more slits extending along part or all of the longitudinal length of the tube.
The tube may be an elongate tube.
The tube may not comprise a coil.
The tube may have a lumen extending along its longitudinal axis. A portion of the at least one of the plurality of flexible bristles that penetrates through the tube wall is disposed in the lumen.
The tube may have two or more lumens extending along its longitudinal axis. At least some of the two or more lumens are substantially isolated from one another. At least some of the two or more lumens are spaced apart along the longitudinal axis of the tube. A portion of the at least one of the plurality of flexible bristles is disposed in one of the two or more lumens.
The tube may have a smaller radial extent in a portion adjacent to at least one of the two or more lumens than the radial extent of the tube at a portion corresponding to the at least one of the two or more lumens. The portion adjacent to at least one of the two or more lumens may be disposed between two portions of the tube corresponding to two lumens.
The portion of the at least one of the plurality of flexible bristles that penetrates through the tube wall substantially fills a lumen of the tube.
Throughout this disclosure, as would be understood by the skilled person, the term ‘stem’ refers to an elongate element which extends longitudinally along the length of the embolization device to act as a backbone for the device, and has a significantly smaller radial extent than the further elements of the embolization device (for example, the plurality of flexible bristles). The stem may extend along substantially the whole longitudinal extent of the plurality of flexible bristles (e.g. when the embolization device is in an unrestrained configuration, contracted delivery configuration and/or expanded deployed configuration). The stem may extend along substantially the whole length of the embolization device.
In any of the embodiments described herein, as would be understood by the skilled person, the term ‘bristle’ may refer to an elongate strand of material formed substantially a single piece. The ‘bristle’ may be a resilient bristle. The resilient bristle may be biased towards a particular curvature.
Throughout this disclosure, the term ‘radially outwardly’ does not exclude the element additionally extending in the longitudinal direction of the device. For example, the plurality of flexible bristles may extend radially outwardly and longitudinally from the tube.
The plurality of flexible bristles may have a contracted configuration in the contracted delivery configuration. The plurality of flexible bristles may have an expanded configuration in the expanded deployed configuration.
In the expanded configuration, the plurality of flexible bristles may be configured to anchor the device in the bodily lumen. The plurality of flexible bristles may be configured to provide substantially all of the anchoring force for the embolization device in the bodily lumen.
In the expanded configuration, the plurality of flexible bristles may be configured to contact the bodily lumen.
Throughout this disclosure, the term “penetrates through’ refers to an object passing into and through another object.
A portion of the at least one of the plurality of flexible bristles is clamped between two opposing sides of the tube wall.
Throughout this disclosure, an element referred to as being ‘clamped between’ two clamping elements, refers to the two clamping elements directly or indirectly providing forces (for example, opposing forces) on the element so as to restrain the element. The clamping elements may directly or indirectly contact the clamped element.
The tube may be formed from a shrinkable material. The tube may be formed from a heat shrinkable material. The tube may be formed of a chemically shrinkable material.
Throughout this disclosure, a ‘shrinkable material’ may refer to a material which shrinks in a particular direction upon a particular treatment. Such a treatment may be a heat and/or or chemical treatment. As would be understood by the skilled person, the shrinkable materials themselves shrink without an external force being applied to them, for example, by crimping.
The tube may be shrunk such that a portion of the at least one of the plurality of flexible bristles is clamped between two opposing sides of the tube wall.
The tube may be shrunk in a radial direction of the tube. Additionally or alternatively, the tube may be shrunk in an axial direction of the tube.
The tube may be mechanically compressed in a radial direction such that a portion of the at least one of the plurality of flexible bristles is clamped between two opposing sides of the tube wall. The tube may be mechanically compressed by crimping.
Throughout this disclosure, the term ‘mechanically compressing’ an element refers to a compression which is caused by a mechanical interaction between an external device and the element.
The tube may be formed from a meltable or melted material.
At least a portion of the tube or substantially the whole tube may have been melted such that a portion of the at least one of the plurality of flexible bristles is secured to the tube.
At least a portion of the tube or substantially the whole tube may have been melted to allow the melted material of the tube to surround a portion of the flexible bristle(s). Thereafter, the melted material may have been allowed to solidify such that the portion is secured.
A filler material may be disposed within a lumen of the tube to secure the at least one of the plurality of flexible bristles to the tube.
The filler material may be an adhesive.
The filler material may be a curable material or a settable material. The filler material may be curable or settable upon heating, solvent flashing and/or irradiating.
The filler material may adhere or bond to the at least one of the plurality of flexible bristles. Additionally or alternatively, the filler material may mechanically anchor the at least one of the plurality of flexible bristles.
Throughout this disclosure, the term ‘mechanically anchor’ refers to the anchoring of an element substantially by mechanical forces caused by the macroscopic properties of the anchoring element, rather than intermolecular forces and/or chemical bonds between the anchoring element and the anchored element which are responsible for adhering/bonding.
The filler material may substantially fill the lumen of the tube.
The embolization device may further comprise a securing piece disposed within a lumen of the tube. The securing piece may be configured to secure the at least one of the plurality of flexible bristles to the tube.
A portion of the at least one of the plurality of flexible bristles may be clamped between the securing piece and an inner surface of the tube wall.
The securing piece may be an inner mandrel.
The securing piece may be an inner mandrel, where a portion of the at least one of the plurality of flexible bristles may be clamped between an outer surface of the inner mandrel and an inner surface of the tube wall.
A portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall may have a greater radius than a hole in the tube wall through which the bristle penetrates the tube wall.
The portion of the at least one of the plurality of flexible bristles that penetrates through the tube wall may be a portion which is disposed within a lumen of the tube.
The portion of the least one of the plurality of flexible bristles disposed within a lumen of the tube may have a greater radius than a hole in the tube wall through which the bristle penetrates the tube wall.
A portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall may comprise and anchoring section.
A portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall may comprise a rough portion.
The rough portion may be rougher than another portion of the flexible bristle. The another portion may be a portion of the flexible bristle which extends radially outwardly from the tube wall.
The tube wall may have one or more holes defined therein. Each of the one or more holes may be configured to receive one or more of the plurality of flexible bristles.
The tube wall may have one or more pre-machined holes. The pre-machined hole(s) may be configured to receive one or more of the plurality of flexible bristles.
Throughout this disclosure, a ‘pre-machined hole’ refers to a hole which is created in a piece of material. For example, a pre-machined hole may be a hole which is machined in a continuous wall of the tube. The ‘machining’ may be carried out in various ways, for example, drilling or lasering.
The hole or pre-machined hole may receive only one of the at least one of the plurality of flexible bristles. The hole or pre-machined hole receives only two, three or four of the at least one of the plurality of flexible bristles.
The hole(s) or pre-machined hole(s) may have substantially the same diameter as the flexible bristle which passes therethrough.
The holes in the tube wall described anywhere herein may be arranged so as to arrange the flexible bristles in a prescribed manner. For example, the holes may be oriented such that the flexible bristles are distributed substantially evenly around the circumference of the stem. Additionally or alternatively, the plurality of holes may be arranged in spaced-apart segments. Optionally, a space between two spaced-apart segments may accommodate a flow restrictor.
The at least one of the plurality of flexible bristles may penetrate through the tube wall at a first location and penetrate through the tube wall at a second location.
The first location is different from the second location.
The first location and the second location may be on substantially opposite sides of the circumference of the tube.
The first location and the second location may be on the same half, third, quarter, fifth or sixth of the circumference of the tube.
The first location and the second location may be substantially axially aligned.
There is provided a method of manufacturing an embolization device for promoting clot formation in a lumen having a contracted delivery configuration and an expanded deployed configuration. The method may comprise providing a stem comprising a tube having a tube wall. The method may comprise providing a plurality of flexible bristles such that they extend radially outwardly from the tube. At least one of the plurality of flexible bristles may penetrate through the tube wall.
The method may comprise clamping the at least one of the plurality of flexible bristles between two opposing sides of the tube wall.
The method may comprise shrinking or mechanically compressing the tube such that a portion of the at least one of the plurality of flexible bristles is clamped between two opposing sides of the tube wall.
The tube may be shrunk or compressed in a radial direction of the tube. Additionally or alternatively, the tube may be shrunk or compressed in an axial direction of the tube.
The method may comprise melting at least a portion of the tube or substantially the whole of the tube such that a portion of the at least one of the plurality of flexible bristles is secured to the tube.
At least a portion of the tube or substantially the whole tube may be melted to allow the melted material of the tube to surround a portion of the flexible bristle(s). Thereafter, the melted material may be allowed to solidify such that the portion is secured.
The method may comprise disposing a filler material within a lumen of the tube to secure the at least one of the plurality of flexible bristles to the tube. The filler material may be disposed within the lumen before or after penetrating the at least one of the plurality of flexible bristles through the tube wall.
The filler material may be an adhesive.
The filler material may be cured or set. The filler material may be cured or set upon heating, solvent flashing and/or irradiating.
The filler material may adhere or bond to the at least one of the plurality of flexible bristles. Additionally or alternatively, the filler material may mechanically anchor the at least one of the plurality of flexible bristles.
The filler material may substantially fill the lumen of the tube.
The method may comprise disposing a securing piece within a lumen of the tube so as to secure the at least one of the plurality of flexible bristles to the tube.
A portion of the at least one of the plurality of flexible bristles may be clamped between the securing piece and an inner surface of the tube wall.
The securing piece may be an inner mandrel. A portion of the at least one of the plurality of flexible bristles may be clamped between an outer surface of the inner mandrel and an inner surface of the tube wall.
The tube may be shrunk or mechanically compressed. Additionally or alternatively, the securing piece may be radially expanded once the securing piece is disposed within the lumen such that the portion of the at least one of the plurality of flexible bristles is clamped between the securing piece and an inner surface of the tube wall.
The method may comprise machining a hole in the tube wall and receiving one or more of the at least one of the plurality of flexible bristles in the hole.
A portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall has a greater radius than a hole in the tube wall through which the bristle penetrates the tube wall.
The method may comprise penetrating the at least one of the plurality of flexible bristles through the tube wall at a first location and penetrating the flexible bristle through the tube wall at a second location.
The method may comprise inserting a guide into a lumen of the tube such that a portion of the flexible bristle may be guided from the inside of the lumen through a hole to the outside of the tube.
There is provided an embolization device for promoting clot formation in a lumen and having a contracted delivery configuration and an expanded deployed configuration. The embolization device may comprise a stem formed from a material. The embolization device may comprise a plurality of flexible bristles extending radially outwardly from the stem. A portion of at least one of the plurality of flexible bristles may be disposed within a volume of the material of the stem such that the material surrounds and secures the portion of the flexible bristle.
Throughout this disclosure, reference to the ‘volume of the material’ may refer to a bulk or homogenous volume of the material. The volume of material is formed from a continuous portion of the material rather than two substantially individual elements (such as two opposing individual wires).
A portion of the flexible bristle is disposed within this ‘volume of material’. Accordingly, the portion is disposed within a bulk or homogenous volume of the material rather than between two substantially individual elements (for example, a flexible bristle held between two opposing individual wires).
Throughout this disclosure, as would be understood by the skilled person, a ‘stem being formed from a material’ refers to a stem where a significant portion of the stem's volume along which the bristles are attached is formed of the material. The stem's structural properties may be largely dictated by the material and its form rather than any other components of the stem. Accordingly, the stem may be formed substantially of the material.
The material need not be uniform. The material may have different properties and/or compositions in different portions of the stem. For example, the composition of the stem may change gradually from one part of the stem to another.
The material may adhere or bond to the portion of the at least one of the plurality of flexible bristles.
The material may mechanically anchor the portion of the at least one of the plurality of flexible bristles.
The material may be a curable material or settable material. The material may be curable or settable upon heating, solvent flashing and/or irradiating.
The material may be cured or set such that the material surrounds and secures the portion of the flexible bristle.
As used throughout herein, the ‘material’ may refer to the ‘filler material’ which is described herein.
The portion may comprise a rough portion.
The rough portion may be rougher than some or all other portions of the flexible bristle, and, in particular, the free portion which extends radially outwardly.
The portion may comprise a thick portion or anchoring portion.
The thick portion may be thicker than some or all other portions of the flexible bristle, and, in particular, the free portion which extends radially outwardly.
The stem may further comprise a covering element disposed on at least a portion of an outer surface of the material.
The covering element may be a tube. The material may be disposed within the tube.
The covering element may be in the form of a sheet. The sheet may be a curved sheet.
The stem may further comprise an inner element. The inner element may be disposed at last partially within the material. The inner element may extend along at least a portion of the length of the material.
The inner element may be elongated. The inner element may be rod-shaped.
The embolization device may further comprise a flow restrictor integral to the material of the stem. The flow restrictor may be formed from the material.
The flow restrictor may be a flow restricting membrane.
Any of the ‘flow restrictors’ or ‘flow restricting membranes’ disclosed herein may have a contracted configuration in the contracted delivery configuration. Any of the ‘flow restrictors’ or ‘flow restricting membranes’ disclosed herein may have an expanded configuration in the expanded deployed configuration.
In the expanded configuration, any of the ‘flow restrictors’ or ‘flow restricting membranes’ disclosed herein may be configured to anchor the device in the bodily lumen. The ‘flow restrictor’ or ‘flow restricting membrane’ may be configured to provide substantially all of the anchoring force for the embolization device in the bodily lumen.
In the expanded configuration, any of the ‘flow restrictors’ or ‘flow restricting membranes’ disclosed herein may be configured to contact the bodily lumen.
The material may be a polymer. The material may be a nylon. The material may be a resin. The material may be a metal and/or an alloy.
The portion of the at least one of the plurality of flexible bristles disposed within the material of the stem may extend substantially in a radially outward direction.
The portion of the at least one of the plurality of flexible bristles disposed within the material of the stem may extend substantially transversely to the longitudinal axis of the stem.
The at least one of the plurality of flexible bristles may substantially perpendicularly intersect the stem, preferably, at least in the unconstrained configuration of the embolisation device.
There is provided a method of manufacturing an embolization device for promoting clot formation in a lumen and having a contracted delivery configuration and an expanded deployed configuration. The method may comprise providing a stem formed from a material. The method may comprise providing a plurality of flexible bristles extending radially outwardly from the stem. A portion of at least one of the plurality of flexible bristles may be disposed within a volume of the material of the stem such that the material surrounds and secures the portion of the flexible bristle.
The method may comprise adhering or bonding the material to the portion of the at least one of the plurality of flexible bristles.
The method may comprise mechanically anchoring the portion of the at least one of the plurality of flexible bristles to the material.
The method may comprise curing or setting the material such that it surrounds and secures the portion of the flexible bristle. The curing or setting may be upon heating, solvent flashing and/or irradiating.
The method may comprise molding the material in a mold.
The method may comprise disposing the portion of the flexible bristle inside the mold such that the flexible bristle penetrates through a wall of the mold.
The step of disposing the portion of the flexible bristle inside the mold may occur before or after molding the material in a mold.
At least a portion of the mold may be a tube having a tube wall.
The tube may not be removed such that it forms a part of the final embolization device.
The embolization device may comprise the tube forming at least part of the mold.
The method may comprise shaping the material into the stem.
The method may comprise inserting the portion into the shaped stem. The method may comprise curing or setting the material.
The method may further comprise providing an inner element disposed at last partially within the material.
The inner element may be disposed within the material before the material is cured or set.
The inner element may be disposed within the material after the material is cured or set. The inner element may be inserted into a hole within the material. The hole may be created by the inner element itself and/or another device, such as a drill.
There is provided an embolization device for promoting clot formation in a lumen and having a contracted delivery configuration and an expanded deployed configuration. The embolization device may comprise a stem formed from a material. The embolization device may comprise a plurality of flexible bristles extending radially outwardly from the stem. The embolization device may comprise a flow restrictor extending radially outwardly from the stem. The flow restrictor may be formed from the material. The flow restrictor may be integrally formed with the material of the stem.
Throughout this disclosure, as would be understood by the skilled person, an element referred to as being ‘integrally formed with the material’ of another element means that the two elements are formed in such a way that there is no distinct, identifiable connection between the two elements.
The two elements may be formed form the same material. The two elements may be considered as one and the same.
The material may be a curable material or settable material. The material may be a curable material or settable material which is curable or settable upon heating, solvent flashing and/or irradiating.
The material may be a moldable material.
The material may be molded to integrally form the flow restrictor and the stem.
At least a portion of at least one of the plurality of flexible bristles may be disposed within a volume of the material of the flow restrictor and/or stem.
The at least a portion may be disposed within the volume of the material of the flow restrictor and/or stem such that the material surrounds and secures the portion of the flexible bristle.
The entirety of the at least one of the plurality of flexible bristles may be disposed within a volume of the material of the flow restrictor and/or stem.
The flow restrictor may be resilient and/or pre-curved.
The flow restrictor may be a flow restricting membrane.
The flow restrictor may comprise two or more individual segments.
The two or more individual segments may not be directly connected. Each of the two or more individual segments may be directly connected to the stem.
The stem may further comprise a covering element disposed on at least a portion of an outer surface of the material of the stem. The covering element may be a tube. The material may be disposed within the tube.
The covering element may be in the form of a sheet. The covering element may be a curved sheet.
The flow restrictor may further comprise a covering element disposed on at least a portion of an outer surface of the material of the flow restrictor.
The covering element may comprise two membranes. The material may be disposed between the two membranes. Each of the two membranes may extend radially outwardly from the stem.
The covering element may additionally or alternatively cover at least partially a surface of the material of the flow restrictor which extends substantially longitudinally.
There is provided a method of manufacturing an embolization device for promoting clot formation in a lumen and having a contracted delivery configuration and an expanded deployed configuration. The method may comprise providing a stem formed from a material. The method may comprise providing a plurality of flexible bristles extending radially outwardly from the stem. The method may comprise providing a flow restrictor extending radially outwardly from the stem. The flow restrictor may be formed from the material. The flow restrictor may be integrally formed with the material of the stem.
The stem and the flow restrictor may be molded in a mold.
The mold may be a single mold. The mold may define a single, continuous mold cavity.
The method may comprise disposing a portion of at least one of the flexible bristle inside the mold such that the at least one of the flexible bristles penetrates through a wall of the mold.
At least a portion of the mold may be a tube having a tube wall.
The embolization device may comprise the tube.
The tube may not be removed such that it forms a part of the final embolization device.
The embolization device may comprise the tube forming at least part of the mold.
A portion of the mold cavity defining the flow restrictor may be curved.
The method may comprise shaping the material into the stem and the flow restrictor.
Throughout this disclosure, the exemplary materials disclosed in relation to the ‘filler material’ are also exemplary materials for the ‘material’ referred to herein, and vice versa.
In any of the embodiments disclosed herein in which a flexible bristle penetrates through the tube wall, the tube wall may surround substantially the entire cross-sectional perimeter of the flexible bristle.
In any of the embodiments disclosed herein, the filler material may comprise or consist of: medical grade 2 part epoxy resin, polyurethane, nylon 12, Pebax 4033, liquid crystal polymer, polyether ether ketone, polycarbonate, neoprene, acrylate polymers or any combination thereof.
In any of the embodiments disclosed herein, the heat shrinkable material may comprise or consist of: polyolefin, Pebax, FEP, PTFE, PFA, ETFE, PET, polyether ether ketone or any combination thereof.
FIG. 1 shows anembolization device100. Theembolization device100 is configured for deployment in a bodily lumen so as to promote clot formation therein. Theembolization device100 inFIG. 1 is shown in an unconstrained configuration.
Theembolization device100 comprises astem110, a plurality offlexible bristles120a,120band aflow restricting membrane130. In any of the embodiments described herein, theflow restricting membrane130 is optional.
Thestem110 extends along the longitudinal length of theembolization device100. Thestem110 may extend along substantially the whole longitudinal length of theembolization device100 when theembolization device100 is in the unconstrained configuration.
Thestem110 may be flexible, for example, flexible along substantially its entire length. Thestem110 may be flexible such that theembolization device100 when deployed in a bodily lumen conforms to the shape of the bodily lumen. Thestem110 may have flexible sections, hinges and/or connectors (not shown) disposed along its length. Additionally or alternatively, thestem110 may have a pre-curved shape.
A portion of thestem110, for example, a proximal portion, may have a detachment mechanism (not shown) configured to be removably attachable to a delivery element, such as a delivery wire. For example, the detachment mechanism may be female screw hole.
FIG. 1 shows the plurality offlexible bristles120a,120bas two spaced-apart segments of bristles in the form of aproximal bristle segment120aand adistal bristle segment120bwhich are spaced apart along the longitudinal length of thestem110. However, as would be understood by the skilled person, various arrangements of the plurality offlexible bristles120a,120bis possible, for example, in any number of segments, including a single segment. Furthermore, the plurality offlexible bristles120a,120bneed not be identical and may have, for example, different lengths, materials, flexibilities and/or thickness.
Each of the plurality offlexible bristles120a,120bis secured to thestem110 and extends radially outwardly from thestem110.
Each of the plurality offlexible bristles120a,120bmay be spaced apart along the longitudinal length of thestem110. In certain embodiments, at least some of the plurality offlexible bristles120a,120bmay be disposed at the same axial location along thestem110.
Theflow restricting membrane130 may be attached to thestem110. Theflow restricting membrane130 may have a hole therein through which thestem110 passes, however, other arrangements are contemplated herein.
Theflow restricting membrane130 may extend radially outwardly from thestem110. The flow restricting membrane130 may be of any shape, for example, generally circular. Theflow restricting membrane130 may be flexible, resilient and/or pre-curved. In alternative embodiments, theflow restricting membrane130 may be any kind of flow restrictor.
Theflow restricting membrane130 may be disposed between some of the plurality offlexible bristles120a,120b.In certain embodiments, theflow restricting membrane130 may be disposed between the proximal bristlesegment120aand thedistal bristle segment120b,as shown inFIG. 1.
FIG. 2 shows theembolization device100 in a contracted delivery configuration within a delivery catheter C.
As can be seen fromFIG. 2, in the contracted delivery configuration of theembolization device100, the plurality offlexible bristles120a,120bhave been collapsed into a contracted configuration.
As also can be seen fromFIG. 2, in the contracted delivery configuration of theembolization device100, theflow restricting membrane130 has been collapsed into a contracted configuration.
InFIG. 2, both the proximal bristlesegment120aand thedistal bristle segment120bpoint proximally. However, as will be evident to the person skilled in the art, any arrangement in this regard is possible. In particular, the proximal bristlesegment120aand thedistal bristle segment120bmay point distally. The proximal bristlesegment120amay point proximally and thedistal bristle segment120bmay point distally. The proximal bristlesegment120amay point distally and thedistal bristle segment120bmay point proximally.
FIG. 3 shows theembolization device100 in an expanded deployed configuration in a bodily lumen L. Theembolization device100 may be disposed within the bodily lumen Lin the expanded deployed configuration by removing the delivery catheter C whilst inserted in the bodily lumen L such that theembolization device100 is allowed to expand in the bodily lumen L.
The expanded deployed configuration of theembolization device100 has a greater radial extent than the contracted delivery configuration shown inFIG. 2. In the expanded deployed configuration shown inFIG. 3, the plurality offlexible bristles120a,120band theflow restricting membrane130 contact the bodily lumen L so as to anchor theembolization device100 within the bodily lumen L. The anchoring force provided by the plurality offlexible bristles120a,120band theflow restricting membrane130 may be sufficient to resist migration of theembolization device100 in the bodily lumen L.
In the expanded deployed configuration shown inFIG. 3, theembolization device100 may occlude the bodily lumen L and promote clot formation therein.
FIGS. 1 to 3 show a purely exemplary particular form of embolization device, however, aspects of the present disclosure need not be applied specifically to the form of embolization described in reference to these figures. Accordingly, various modifications may be made to the overall structure/arrangement of the described embolization device, such as a different number/arrangement of bristle segments, number of bristles in each bristle segment, types of bristles within each bristle segment. Furthermore, connections/hinges may be present along the length of the stem, for example, between some or all of the bristle segments.
In this regard, reference is made to the embolization devices disclosed in each of WO 2014/140325 and WO 2016/041961, both of which are incorporated herein by reference in their entirety.
FIG. 4 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem210 andflexible bristles220.
Thestem210 comprises a tube having atube wall211. The tube may be generally cylindrical. The tube may define a lumen along the longitudinal axis of the tube.
The plurality offlexible bristles220 extend radially outwardly from the tube, and, in particular, the tube wall211.The plurality offlexible bristles220 each penetrate through thetube wall211.
As shown inFIG. 4, the plurality offlexible bristles220 each penetrate through thetube wall211 such that a portion of each of theflexible bristles220 is disposed within the lumen of the tube.
Thetube wall211 may have a plurality of holes therein (not shown) through which, for example, a single one or some of the plurality offlexible bristles220 passes therethrough. The holes may each have substantially the same diameter as the flexible bristle which passes therethrough.
The plurality of holes in thetube wall211 may be arranged so as to arrange theflexible bristles220 in a prescribed manner. For example, the plurality of holes may be oriented such that theflexible bristles220 are distributed substantially evenly around the circumference of thestem210. Additionally or alternatively, the plurality of holes may be arranged in spaced-apart segments. Optionally, a space between two spaced-apart segments may accommodate a flow restricting membrane.
Thestem210 further comprisesfiller material212 disposed within the lumen of the tube. As shown inFIG. 4, thefiller material212 may substantially fill the lumen of the tube.
Thefiller material212 disposed within the lumen of the tube may engage the portions of theflexible bristles220 which are disposed within the lumen of the tube. Thefiller material212 may act to secure the plurality offlexible bristles220 to thestem210.
Thefiller material212 may be an adhesive. In such embodiments, thefiller material212 may engage theflexible bristles210 by adhering or bonding to theflexible bristles210.
The filler material may be a curable material or settable material, which is curable or settable upon heating, solvent flashing and/or irradiating. Upon curing or setting, the material may harden so as to secure theflexible bristles220 to thestem210.
Thefiller material212 may engage theflexible bristles220 by mechanically anchoring theflexible bristles220 to thestem210.
As one (or a sub-set) of the plurality offlexible bristles220 passes through each hole in thetube wall211, theflexible bristles220 are attached to the stem individually or in a (small) sub-set. Accordingly, if the integrity of the attachment of one of the flexible bristles becomes compromised, the integrity of the attachments of the other flexible bristles may not be compromised. For example, if one of the plurality offlexible bristles220 is dislodged from thestem210, the attachment of the remaining flexible bristles may remain uncompromised, which is not the case when the majority of the attachment force for a particular bristle is provided for by surrounding/neighbouring bristles.
Thestem210 andflexible bristles220 of the embolization device may be manufactured by creating, for example, by machining, a plurality of holes in thetube wall211 of the tube. One of the plurality offlexible bristles220 may be inserted through each of the plurality of holes in thetube wall211 such that a portion of each of theflexible bristles220 extends into the lumen of the tube and a free portion of each of theflexible bristles220 extends radially outwardly from thetube wall211.
Thefiller material212 may be disposed in the lumen of the tube. Thefiller material212 may be disposed in the lumen of the tube before or after inserting theflexible bristles220.
In certain embodiments, thefiller material212 may be a curable of settable material such that after disposing thefiller material212 in the lumen of the tube, thefiller material212 is cured or set such that it hardens so as to secure the plurality offlexible bristles220 to thestem210.
FIG. 5 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem310 andflexible bristles320.
Thestem310 of the embolization device comprises a tube having atube wall311.
As can be seen fromFIG. 5, each of the plurality offlexible bristles320 penetrate through thetube wall311. Afree portion321aof each of the plurality offlexible bristles220 extends radially outwardly from the tube, and, in particular, thetube wall311.
A clampedportion321bof each of the plurality offlexible bristles320 is clamped between two opposing sides of thetube wall311. The opposing sides of thetube wall311 provide a clamping force on each of the clampedportions321bsuch that theflexible bristles320 are secured to thestem310.
In the embodiment shown inFIG. 5, the tube of thestem310 has alumen313 extending along substantially the entire length of the tube. In this embodiment, thelumen313 is a continuous lumen in which the clampedportions321bof theflexible bristles320 are disposed within thelumen313. The opposing sides of thetube wall311 may not contact each other at regions between the clampedportions321bsuch that a continuous lumen is defined.
One portion of thelumen313 may not be in fluid communication with another portion of thelumen313, for example, due to a clampedportion321bentirely filling a section of thelumen313.
In certain embodiments, the portions of thetube wall311 between some of all of the clampedportions321bmay be configured such that the opposing sides of thetube wall311 contact each other (not shown inFIG. 5).
Optionally, the portions of thetube wall311 of the tube between each of the clampedportions321bmay be configured such that the opposing sides of thetube wall311 contact each other such that the tube may comprise a number of distinct, isolated lumens disposed along the length of the tube. The lumens of the tube may be substantially filled by the clampedportions321bof the plurality offlexible bristles320.
The lumen(s)313 of the tube may be filled with any filler material disclosed herein, such as thefiller material212 ofFIG. 4.
Thestem310 andflexible bristles320 of the embolization device may be manufactured by creating, for example, by machining, a plurality of holes in thetube wall311 of the tube. One or some of the plurality offlexible bristles320 may be inserted through each of the plurality of holes in thetube wall311 such that aportion321bof each of theflexible bristles320 extends into thelumen313 of the tube.
Theportions321bof each of theflexible bristles320 may be clamped between two opposing sides of thetube wall311.
In this regard, at least portions of the tube may be shrunk, for example, heat shrunk or chemically shrunk, in a radial direction such that theportions321bof each of theflexible bristles320 are clamped between two opposing sides of thetube wall311.
Additionally or alternatively, at least portions of the tube may be compressed (e.g. mechanically compressed), for example, by crimping, in a radial direction such that theportions321bof each of theflexible bristles320 are clamped between two opposing sides of thetube wall311.
FIG. 6 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem410 andflexible bristles420.
Thestem410 of the embolization device comprises a tube having atube wall411.
As can be seen fromFIG. 6, each of the plurality offlexible bristles420 penetrates through thetube wall411. Afree portion421aof each of the plurality offlexible bristles420 extends radially outwardly from the tube, and, in particular, thetube wall411.
A clampedportion421bof each of the plurality offlexible bristles420 is clamped between aninner mandrel414 disposed within the lumen of the tube and thetube wall411.
The clampedportions421bof each of theflexible bristles420 may be disposed within anannulus415 defined between theinner mandrel414 and thetube wall411.
The outer surface of theinner mandrel414 and the inner surface of thetube wall411 provide a clamping force on each of the clampedportions421bsuch that theflexible bristles420 are secured to thestem410.
The portions of thetube wall411 between some or all of the clampedportions421bmay be configured such that the outer surface of theinner mandrel414 and the inner surface of thetube wall411 contact each other (not shown inFIG. 6).
Optionally, the portions of thetube wall411 between some or all of the clampedportions421bmay be configured such that the outer surface of theinner mandrel414 and the inner surface of thetube wall411 contact each other such that thestem410 defines a number of distinct, isolated annuluses disposed along the length of the tube. The annuluses of thestem410 may be substantially filled by the clampedportions421b.
Theannulus313 or annuluses of thestem410 may be filled with any filler material disclosed herein, such as thefiller material212 ofFIG. 4.
Thestem410 andflexible bristles420 of the embolization device may be manufactured by creating, for example, by machining, a plurality of holes in thetube wall411 of the tube. One of the plurality offlexible bristles420 may be inserted through each of the plurality of holes in thetube wall411 such that aportion421bof each of theflexible bristles420 extends into the lumen of the tube.
Aninner mandrel414 may be inserted into the lumen of the tube such that theportions321bare clamped between theinner mandrel414 and thetube wall411. Optionally, thetube wall411 of the tube may be shrunk or mechanically compressed and/or theinner mandrel414 may be radially expanded once it has been inserted into the lumen of the tube.
FIG. 7 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem510 andflexible bristles520.
Thestem510 of the embolization device comprises a tube having atube wall511.
Each of the plurality offlexible bristles520 penetrates through thetube wall511 such that aportion521bis disposed within thelumen513 of the tube. A free portion521aof each of the plurality offlexible bristles520 extends radially outwardly from the tube, and, in particular, thetube wall511.
As shown inFIG. 7, theportion521bdisposed within thelumen513 of the tube is thicker than the free portion521a.Theportion521bmay be configured such that the flexible bristle is secured to the tube. Specifically, theportion521bmay have a larger radius than the radius of a hole in thetube wall511 through which the flexible bristle passes.
Additionally or alternatively, theportion521bdisposed within thelumen513 of the tube may comprise a rough portion. The rough portion may be rougher than some or all portions of the free portion521a.
Thelumen513 of thestem510 may be filled with any filler material disclosed herein, such as thefiller material212 ofFIG. 4.
Additionally or alternatively, some or all of theportions521bmay be clamped between two opposing sides of thetube wall511, in a similar manner as described in relation toFIG. 5.
Additionally or alternatively, some or all of theportions521bmay be clamped between an inner mandrel (not shown) disposed within thelumen513 of the tube and thetube wall511, in a similar manner as described in relation toFIG. 6.
Thestem510 andflexible bristles520 of the embolization device may be manufactured by creating, for example, by machining, a plurality of holes in thetube wall511 of the tube. One of the plurality offlexible bristles520 may be inserted through each of the plurality of holes in thetube wall511 such that aportion521bof each of theflexible bristles520 extends into thelumen513 of the tube.
For example, a guide may be inserted into thelumen513 of the tube such that the free portion521amay be guided from the inside of thelumen513 through the hole to the outside of the tube.
Additionally or alternatively, the tube may have a thin slit along at least a portion of its length so as to facilitate insertion of theflexible bristles520 through their respective holes from the inside of the lumen.
In the embodiments described with reference toFIGS. 4 to 7, an end of the flexible bristles terminates within the tube of the stem. However, some or all of the flexible bristles of the embodiments described with reference toFIGS. 4 to 7 may extend through the stem such that both ends of the flexible bristles are exterior to the stem. The means and methods described in relation toFIGS. 4 to 7 are equally applicable to such embodiments.
For example,FIG. 8 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem610 andflexible bristles620.
As in the previous embodiments, the embolization device comprises a tube having atube wall611. The plurality offlexible bristles620 each penetrate through thetube wall611 at a first location and at a second location. Both of the ends of theflexible bristles620 are disposed outside the tube of the stem. Both ends extend radially outwardly from the tube, and, in particular, thetube wall611.
In the embodiment shown inFIG. 8, thestem610 further comprisesfiller material612 disposed within the lumen of the tube in a similar manner to that described in relation toFIG. 4. However, as noted above, any means or methods described herein are suitable for securing theflexible bristles620 to the stem.
The above-noted first location and second location may be chosen in various manners.
In this regard, reference is made toFIG. 9 which shows a transverse cross-section along the length of an embodiment of the embolization device, and, in particular, thestem710 andflexible bristles720.
As can be seen fromFIG. 9, each of theflexible bristles720 passes throughholes713 at first and second locations in thetube wall711. In a similar manner as above, purely as an example, thestem710 further comprisesfiller material712 disposed within the lumen of the tube to secure theflexible bristles720 to thestem710.
The first and second locations of theholes713 are on substantially opposite sides of the circumference of the tube.
FIG. 10 shows a transverse cross-section along the length of another embodiment of the embolization device, and, in particular, thestem810 andflexible bristles820.
Each of theflexible bristles820 passes throughholes813 at first and second locations in thetube wall811. In a similar manner as above, purely as an example, thestem810 further comprisesfiller material812 disposed within the lumen of the tube to secure theflexible bristles820 to thestem810.
As can be seen fromFIG. 10, the first and second locations of theholes813 are in the same quarter of the circumference of the stem. In other embodiments, the first and second locations of theholes813 are in the same half, third, fifth or sixth of the circumference of the stem.
Optionally, the first and second locations of theholes713 are substantially axially aligned.
The flexible bristles720,820 may be inserted through the holes at the first and second locations using a guide disposed within the lumen of the tube.
Additionally or alternatively, the tube may have a thin slit along at least a portion of its length so as to facilitate insertion of theflexible bristles720,820 through their respective holes at the first and second locations.
FIG. 11 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem910 andflexible bristles920.
The plurality offlexible bristles920 extend radially outwardly from thestem910. In particular, afree portion921aof each of the plurality offlexible bristles920 extends radially outwardly from thestem910.
Thestem910 is formed from amaterial912. Aportion921bof each of theflexible bristles920 is disposed within a volume of thematerial912 of thestem910. The material912 surrounds theportion921band secures theportion921bto thestem910.
As shown inFIG. 11, thematerial912 substantially entirely surrounds and contacts anend portion921bof each of theflexible bristles920. Specifically, thematerial912 may contact substantially an entire transversely extending edge surface of each of theflexible bristles920.
Referring toFIG. 11, the volume of thematerial912 is a bulk or homogenous volume of thestem910 formed from a continuous volume of thematerial912.
Thematerial912 of thestem910 engages theportions921bof theflexible bristles920. The material912 acts to secure the plurality offlexible bristles920 to thestem910.
Thematerial912 may be an adhesive. In such embodiments, thematerial912 may engage theportions921bof theflexible bristles910 by adhering or bonding to theportions921b.
Thematerial912 may be a curable material or settable material, which is curable or settable upon heating, solvent flashing and/or irradiating. Upon curing or setting, the material may harden so as to secure theflexible bristles920 to thestem910.
Thematerial912 may engage theportions921bof theflexible bristles920 to mechanically anchor theflexible bristles920 to thestem910.
As one (or a sub-set) of the plurality offlexible bristles920 passes into the material of thestem910, theflexible bristles920 are attached to the stem individually or in a (small) sub-set. Accordingly, if the integrity of the attachment of one of the flexible bristles becomes compromised, the integrity of the attachments of the other flexible bristles may not be compromised. For example, if one of the plurality offlexible bristles920 is dislodged from thestem910, the attachment of the remaining flexible bristles may remain uncompromised, which is not the case when the majority of the attachment force for a particular bristle is provided for by surrounding/neighbouring bristles.
Furthermore, thematerial912 may be chosen so as to influence the structural properties of thestem910, for example, flexibility.
Thestem910 andflexible bristles920 of the embolization device may be manufactured by providing astem910 formed from amaterial912 and providing a plurality offlexible bristles920 such that aportion921bof each of theflexible bristles920 is disposed within a volume of thematerial912.
For example, theportions921bof theflexible bristles920 may be inserted into thematerial912. Thereafter, thematerial912 may be cured or set such that the material912 surrounds theportions921band secures theportions921bto thestem910, for example, by the hardening and/or contraction of thematerial912.
In certain embodiments, thestem910 may be formed by molding thematerial912. For example, theportions921bof theflexible bristles920 may be inserted into a mold cavity defined by a mold. A material to be molded may be inserted into the mold cavity. The material may be allowed to set such that the material912 surrounds and secures theflexible bristles920. The mold may then be removed to leave thestem910 andflexible bristles920 secured thereto.
In certain embodiments, a mold is not required. For example, thematerial912 may be shaped into thestem910. Thereafter, the plurality offlexible bristles920 may be inserted into the shapedmaterial912 such that theportions921bare disposed within a volume of thematerial912. Thereafter, thematerial912 may optionally be cured or set such that the material912 surrounds theportions921band secures theportions921bto thestem910, for example, by the hardening and/or contraction of thematerial912.
FIG. 12 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem1010 andflexible bristles1020.
The embodiment shown inFIG. 12 is similar to the embodiment ofFIG. 11 in that the embolization device has astem1010 formed from amaterial1012, and where aportion1021bof each of theflexible bristles1020 is disposed within a volume of thematerial1012 and afree portion1021aextends radially outwardly.
However, in the embodiment shown inFIG. 12, theportion1021bis thicker than thefree portion1021a.For example, theportion1021bmay include a spherical anchoring section. Additionally or alternatively to the thickened region, theportion1021bmay comprise a rough region (not shown). The rough region may be rougher than some or all portions of thefree portion1021a.
The forms of theflexible bristles1020 are generally applicable to all embodiments described herein.
FIG. 13 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular thestem1110 andflexible bristles1120.
The embodiment shown inFIG. 13 is similar to the embodiment ofFIG. 11 in that the embolization device has astem1110 formed from amaterial1112, and where a portion of each of theflexible bristles1120 is disposed within a volume of thematerial1112 and a free portion extends radially outwardly.
However, in the embodiment shown inFIG. 13, thestem1110 further comprises astructural member1113. Thestructural member1113 may be disposed at least partially or entirely within thematerial1112 of thestem1110.
Thestructural member1113 may extend longitudinally along the length of thestem1110. Thestructural member1113 may be elongated or rod-shaped.
Thestructural member1113 may be disposed within thematerial1112 before thematerial1112 is cured or set so as to secure thestructural member1113 within thematerial1112 of the stem. Alternatively, thestructural member1113 may be disposed within thematerial1112 by inserting it into the material112 after it has been cured or set, for example, by boring a hole within thematerial1112 using thestructural member1113 itself and/or another device, such as a drill.
FIG. 14 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem1210,flexible bristles1220 andflow restricting membrane1230.
The embodiment shown inFIG. 14 is similar to the embodiment ofFIG. 11 in that the embolization device has astem1210 formed from amaterial1212, and where a portion of each of theflexible bristles1220 is disposed within a volume of thematerial1212 and a free portion extends radially outwardly.
However, as can be seen fromFIG. 14, the embolization device further comprises aflow restricting membrane1230. The flow restricting membrane may extend radially outwardly from thestem1210.
Theflow restricting membrane1230 is formed from thesame material1212 as thestem1210. Theflow restricting membrane1230 is integrally formed with thematerial1212 of the stem. As thestem1210 and theflow restricting membrane1230 are formed integrally, the above-noted issues relating to the attachment of a separate membrane to a core may be avoided.
Thestem1210,flexible bristles1220 andflow restricting membrane1230 may be manufactured by providing astem1210 andflow restricting membrane1230 formed integrally from thematerial1212, and providing a plurality offlexible bristles1220 such that a portion1221bof each of theflexible bristles1220 is disposed within a volume of thematerial1212.
For example, thestem1210 andflow restricting membrane1230 may be formed by molding thematerial1212. In this regard, a continuous mold cavity defined in a single mold may have a shape which defines thestem1210 and theflow restricting membrane1230 connected thereto. The portions1221bof theflexible bristles1220 may be inserted into the mold cavity by inserting them through holes defined in the mold. A moldable material may be disposed in the mold cavity and allowed to set such that thematerial1212 take the form of thestem1210 and theflow restricting membrane1230 connected thereto. Thematerial1212 also sets to surround and secure theflexible bristles1220. The mold may then be removed to leave thestem1210, theflexible bristles1220 secured thereto, and theflow restricting membrane1230.
In certain embodiments, a mold is not required. For example, thematerial1212 may be shaped into thestem1210 andflow restricting membrane1230. Thereafter, as described above, the plurality offlexible bristles1220 may be inserted into the shapedmaterial1212. Thereafter, thematerial912 may optionally be cured or set.
FIG. 15 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem1310,flexible bristles1320 andflow restricting membrane1330.
The embodiment shown inFIG. 15 is similar to the embodiment ofFIG. 14 in that the embolization device has astem1310 andflow restricting membrane1330 formed integrally from amaterial1312, and where a portion of each of theflexible bristles1320 is disposed within a volume of thematerial1312 and a free portion extends radially outwardly.
However, as can be seen fromFIG. 15, thestem1310 further comprises two tubes each havingtube walls1311a,1311b,in a similar manner to the tube withtube wall211 described in relation toFIG. 4. As can be seen fromFIG. 15, the plurality offlexible bristles1320 extend radially outwardly from the tubes, and, in particular, thetube walls1311a,1311b.The plurality offlexible bristles1320 each penetrate through therespective tube walls1311a,1311bas detailed herein.
The tubes may be disposed on either side of theflow restricting membrane1330.
Thestem1310,flexible bristles1320 andflow restricting membrane1330 may be manufactured in a similar manner to that described in relation toFIG. 14.
However, two tubes havingtube walls1311a,1311bare disposed over thematerial1312. In this regard, the tubes may form part of a mold used to mold thematerial1312 which is not removed after molding.
In other embodiments, the tubes may be placed over thematerial1312 of thestem1310 once the material1312 has been shaped by any means into the form of thestem1310.
FIG. 16 shows a cross-section along part of the length of an embodiment of the embolization device, and, in particular, thestem1410,flexible bristles1420 andflow restricting membrane1430.
The embodiment shown inFIG. 16 is similar to the embodiment ofFIG. 14 in that the embolization device has astem1410 andflow restricting membrane1430 formed integrally of amaterial1412, and where a portion of each of theflexible bristles1420 is disposed within a volume of thematerial1412 and a free portion extends radially outwardly.
However, as can be seen fromFIG. 16, aportion1421bof at least one of the plurality offlexible bristles1420 is disposed within a volume of thematerial1412 of theflow restricting membrane1430. Thematerial1412 of theflow restricting membrane1430 may surround and secure theportion1421b.
Afree portion1421aof the at least one of the plurality offlexible bristles1420 extends freely radially outwardly from theflow restricting membrane1430.
In certain embodiments, the entirety of the at least one of the plurality offlexible bristles1420 is disposed within the within a volume of thematerial1412 of theflow restricting membrane1430. In such embodiments, no free portion extends radially outwardly from theflow restricting membrane1430.
The bristles may provide certain structural characteristics (such as rigidity/flexibility) to theflow restricting membrane1430, and may improve the integrity of theflow restricting membrane1430 relative to thestem1410.
Thestem1410,flexible bristles1420 andflow restricting membrane1430 may be manufactured in a similar manner to that described in relation toFIG. 14.
However, the at least one of theflexible bristles1420 is received within a volume of thematerial1412 of theflow restricting membrane1430. In this regard, the at least one of theflexible bristles1420 may be inserted into the mold through a hole formed in the mold such that it penetrates into the part of the cavity which defines theflow restricting membrane1430. In other embodiments, the at least one of theflexible bristles1420 may be inserted into the material of the flow restricting membrane after it has been formed.
In the embodiments described with reference toFIGS. 11 to 16, an end of the flexible bristles terminates within the stem and/or flow restricting membrane.
In this regard, reference is made toFIG. 17 which shows a transverse cross-section along the length of an embodiment of the embolization device, and, in particular, thestem1510, plurality offlexible bristles1520 andflow restricting membrane1530. As can be seen from this figure, each of theflexible bristles1520 has an end section which is disposed within thestem1510. In certain embodiments, some of the end sections of theflexible bristles1520 may terminate within theflow restricting membrane1530.
However, in other embodiments, some or all of the flexible bristles of the embodiments shown inFIGS. 11 to 16 may extend through the stem and/or flow restricting membrane such that both ends of the flexible bristles are exterior to the stem and/or flow restricting membrane. The means and methods described in relation toFIGS. 11 to 16 are equally applicable to such embodiments.
In this regard, reference is made toFIG. 18 which shows a transverse cross-section along the length of an embodiment of the embolization device, and, in particular, thestem1610, plurality offlexible bristles1620 andflow restricting membrane1630. As can be seen from this figure, each of theflexible bristles1520 passes through thestem1610 and/orflow restricting membrane1630.
Both of the ends of theflexible bristles1620 are disposed outside thestem1610 and/orflow restricting membrane1630. Both ends extend radially outwardly from thestem1610 and/orflow restricting membrane1630.
As shown inFIG. 18, the each of theflexible bristles1520 penetrates the surface of thestem1610 and/orflow restricting membrane1630 at a first location and a second location. The first and second locations of may be on substantially opposite sides of the circumference of thestem1610 and/orflow restricting membrane1630.
In a similar manner described in relation toFIG. 10, various arrangements of the first and second locations are contemplated. For example, the first and second locations of may be in the same quarter of the circumference of thestem1610 and/orflow restricting membrane1630. The first and second locations may be in the same half, third, fifth or sixth of the circumference of thestem1610 and/orflow restricting membrane1630.
Optionally, the first and second locations are substantially axially aligned.
FIGS. 17 and 18 show an embolization device with a flow restricting membrane, but the arrangements of the flexible bristles are equally applicable to embodiments without a flow restricting membrane.
Although the above explanation is considered to fully clarify how the present disclosure may straight-forwardly be put into effect by those skilled in the art, it is to be regarded as purely exemplary. In particular, there are a number of variations which are possible, as may be appreciated by those skilled in the art.
For example, even though the embodiments described in relation toFIGS. 4 to 10 show specific examples of securing the plurality of flexibles to the stem, such examples are preferred embodiments. Accordingly, any means of securing the plurality of flexibles to the stem, and, in particular, the tube is envisaged, so long as at least one of the plurality of flexible bristles penetrates through the tube wall of the tube.
Furthermore, even though the above embodiments have been described with all of the plurality of flexible bristles secured to the stem using the same means, it will be evident to the skilled person that not all of the plurality of flexible bristles need to be secured to the stem by the same means. Any combination of the above-noted means and methods may be used to attach the plurality of flexible bristles to the stem.
Further, even though the embodiment described in relation toFIG. 15 comprises twotubes1311a,1311b,any number of tubes may be used, including a single tube. Furthermore, the tubes may be any sort of covering element which is disposed on at least a portion of any outer surface of the material of the stem.
The above embodiments refer to a flow restricting membrane, however, other forms of flow restrictors are also envisaged in accordance with the present disclosure. In particular, any shape of flow restrictor is envisaged, so long as the flow restrictor acts to restrict flow in the bodily lumen L.
In the embodiments described in relation toFIGS. 14 to 18, at least of portion of each of the flexible bristles is disposed within the material of the stem and/or flow restrictor. However, this is optional. In particular, any means and methods, for example, conventional means and methods, may be used to secure the flexible bristles to the stem, and portions of the stem to which the flexible bristles are secured may be formed by conventional means and method, for example, using a twisted wire method, as described in WO 2014/140325 and WO 2016/041961, both of which are incorporated herein by reference in their entirety.
All of the above are fully within the scope of the present disclosure, and are considered to form the basis for alternative embodiments in which one or more combinations of the above described features are applied, without limitation to the specific combinations disclosed above.
In light of this, there will be many alternatives which implement the teaching of the present disclosure. It is expected that one skilled in the art will be able to modify and adapt the above disclosure to suit its own circumstances and requirements within the scope of the present disclosure, while retaining some or all technical effects of the same, either disclosed or derivable from the above, in light of his common general knowledge in this art. All such equivalents, modifications or adaptions fall within the scope of the present disclosure.
Embodiments can be described with reference to the following numbered clauses, with certain features laid out in dependent clauses:
Clause 1: An embolization device for promoting clot formation in a bodily lumen and having a contracted delivery configuration and an expanded deployed configuration, the embolisation device comprising: a stem comprising a tube having a tube wall and a plurality of holes in the tube wall; and a plurality of flexible bristles extending radially outwardly from the tube, wherein each hole has at least one of the plurality of flexible bristles penetrating through said hole; wherein a filler material is disposed within a lumen of the tube to secure the at least one of the plurality of flexible bristles to the tube.
Clause 2: The embolization device of clause 1, wherein the filler material is an adhesive.
Clause 3: The embolization device of clause 1 or 2, wherein the filler material is a curable material or a settable material, and, optionally, wherein the filler material is curable or settable upon heating, solvent flashing and/or irradiating.
Clause 4: The embolization device of clause 1, 2 or 3, wherein the filler material adheres or bonds to the at least one of the plurality of flexible bristles, and/or wherein the filler material mechanically anchors the at least one of the plurality of flexible bristles.
Clause 5: The embolization device of any one of clauses 1 to 4, wherein the filler material substantially fills the lumen of the tube.
Clause 6: An embolization device for promoting clot formation in a bodily lumen and having a contracted delivery configuration and an expanded deployed configuration, the embolisation device comprising: a stem comprising a tube having a tube wall and a plurality of holes in the tube wall; and a plurality of flexible bristles extending radially outwardly from the tube, wherein each hole has at least one of the plurality of flexible bristles penetrating through said hole; further comprising a securing piece disposed within a lumen of the tube and configured to secure the at least one of the plurality of flexible bristles to the tube.
Clause 7: The embolization device of clause 6, wherein a portion of the at least one of the plurality of flexible bristles is clamped between the securing piece and an inner surface of the tube wall.
Clause 8: The embolization device of clause 6, wherein the securing piece is an inner mandrel, and wherein a portion of the at least one of the plurality of flexible bristles is clamped between an outer surface of the inner mandrel and an inner surface of the tube wall.
Clause 9: The embolization device of any preceding clause, wherein a portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall has a greater radius than a hole in the tube wall through which the bristle penetrates the tube wall.
Clause 10: The embolization device of any preceding clause, wherein a portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall comprises a rough portion.
Clause 11: A method of manufacturing an embolization device for promoting clot formation in a lumen having a contracted delivery configuration and an expanded deployed configuration, the method comprising: providing a stem comprising a tube having a tube wall and a plurality of holes in the tube wall; and providing a plurality of flexible bristles such that they extend radially outwardly from the tube, wherein each hole has at least one of the plurality of flexible bristles penetrating through said hole; the method comprising disposing a filler material within a lumen of the tube to secure the at least one of the plurality of flexible bristles to the tube.
Clause 12: The method clause 11, wherein the filler material is an adhesive.
Clause 13: The method of clause 11 or 12, wherein the filler material is cured or set, and, optionally, wherein the filler material is cured or set upon heating, solvent flashing and/or irradiating.
Clause 14: The method of clause 11, 12 or 13, wherein the filler material adheres or bonds to the at least one of the plurality of flexible bristles, and/or wherein the filler material mechanically anchors the at least one of the plurality of flexible bristles.
Clause 15: The method of any one of clauses 11 to 14, wherein the filler material substantially fills the lumen of the tube.
Clause 16: A method of manufacturing an embolization device for promoting clot formation in a lumen having a contracted delivery configuration and an expanded deployed configuration, the method comprising: providing a stem comprising a tube having a tube wall and a plurality of holes in the tube wall; and providing a plurality of flexible bristles such that they extend radially outwardly from the tube, wherein each hole has at least one of the plurality of flexible bristles penetrating through said hole; the method comprising disposing a securing piece within a lumen of the tube so as to secure the at least one of the plurality of flexible bristles to the tube.
Clause 17: The method of clause 16, wherein a portion of the at least one of the plurality of flexible bristles is clamped between the securing piece and an inner surface of the tube wall.
Clause 18: The method of clause 16, wherein the securing piece is an inner mandrel, and wherein a portion of the at least one of the plurality of flexible bristles is clamped between an outer surface of the inner mandrel and an inner surface of the tube wall.
Clause 19: The method of any one of clauses 16 to 18, wherein a portion of the at least one of the plurality of flexible bristles which penetrates through the tube wall has a greater radius than a hole in the tube wall through which the bristle penetrates the tube wall.
Clause 20: The method of any one of clauses 16 to 19, comprising inserting a guide into a lumen of the tube such that a portion of the flexible bristle may be guided from the inside of the lumen through a hole to the outside of the tube.