CROSS-REFERENCE TO RELATED APPLICATIONThis application claims the benefit of U.S. Provisional Patent Application No. 63007764, filed Apr. 9, 2020 titled “MANAGING AND PRIORITIZING HEALTHCARE CASES BASED ON AVAILABILITY OF RESOURCES,” which is incorporated by reference herein in its entirety.
COPYRIGHT NOTICEA portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
TECHNICAL FIELDThe present disclosure relates generally to data processing and more specifically relates to processing patient record for health assessment.
BACKGROUNDThe subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art.
The current situation with Covid-19 has caused many medical appointments including elective surgeries to be cancelled. This presents a major issue of how the medical care facilities will handle re-scheduling a huge backlog of patients waiting to be treated. The longer the situation with Covid-19 continues, the larger the backlog will become. Traditional approaches of rescheduling patients by calling each patient one-by-one will probably take many months or even years to clear the backlog and therefore will not be acceptable, especially to patients who are in critical condition.
BRIEF DESCRIPTION OF THE DRAWINGSThe included drawings are for illustrative purposes and serve only to provide examples of possible structures and process operations for the disclosed techniques. These drawings in no way limit any changes in form and detail that may be made to implementations by one skilled in the art without departing from the spirit and scope of the disclosure.
FIG. 1 shows a diagram of an example computing system that may be used with some implementations.
FIG. 2 shows a diagram of an example network environment that may be used with some implementations.
FIG. 3A shows an example healthcare system, in accordance with some implementations.
FIG. 3B shows an example healthcare system and its health assessment module, in accordance with some implementations.
FIG. 4A shows an example health assessment module with its patient identification operation, in accordance with some implementations.
FIG. 4B shows an example health assessment module with its treatment need identification operation, in accordance with some implementations.
FIG. 5A shows an example health assessment module with its risk categorizing operations, in accordance with some implementations.
FIG. 5B shows an example health assessment module with its assessment score operations, in accordance with some implementations.
FIG. 6A shows an example appointment scheduling system, in accordance with some implementations.
FIG. 6B shows an example chart of risk categories, in accordance with some implementations.
FIG. 7 is an example flow diagram of a process that may be used to schedule a plurality of patients for return appointments, in accordance with some implementations
FIG. 8A shows a system diagram illustrating architectural components of an applicable environment, in accordance with some implementations.
FIG. 8B shows a system diagram further illustrating architectural components of an applicable environment, in accordance with some implementations.
FIG. 9 shows a system diagram illustrating the architecture of a multi-tenant database environment, in accordance with some implementations.
FIG. 10 shows a system diagram further illustrating the architecture of a multi-tenant database environment, in accordance with some implementations.
DETAILED DESCRIPTIONSome implementations may include systems and methods for performing health assessment for a plurality of patients whose appointments for treatments were cancelled due to a shared health event. An example of a shared health event is a pandemic. The systems and methods may include reviewing the treatments for the patients and categorizing the treatments based on a range of risk categories from a lowest risk category to a highest risk category. Based on the review of each patient's health record and associated risk category, an assessment may be determined whether and when a patient is to be treated. The assessment may then be processed by a scheduling system to schedule the patients for return appointments. Assessment data may be evaluated to identify patterns that may be useful in planning for resources based on different factors.
Examples of systems and methods associated with performing health assessment for a plurality of patients will be described with reference to some implementations. These examples are being provided solely to add context and aid in the understanding of the present disclosure. It will thus be apparent to one skilled in the art that the techniques described herein may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order to avoid unnecessarily obscuring the present disclosure. Other applications are possible, such that the following examples should not be taken as definitive or limiting either in scope or setting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, some implementations. Although these implementations are described in sufficient detail to enable one skilled in the art to practice the disclosure, it is understood that these examples are not limiting, such that other implementations may be used and changes may be made without departing from the spirit and scope of the disclosure.
As used herein, the term “multi-tenant database system” refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
The described subject matter may be implemented in the context of any computer-implemented system, such as a software-based system, a database system, a multi-tenant environment, or the like. Moreover, the described subject matter may be implemented in connection with two or more separate and distinct computer-implemented systems that cooperate and communicate with one another. One or more examples may be implemented in numerous ways, including as a process, an apparatus, a system, a device, a method, a computer readable medium such as a computer readable storage medium containing computer readable instructions or computer program code, or as a computer program product comprising a computer usable medium having a computer readable program code embodied therein.
The disclosed implementations may include a computer-implemented method to perform health assessment for a plurality of patients and may include obtaining, from a database, data identifying a plurality of cancelled health-related appointments for a plurality of patient records stored in the database, the cancelled health-related appointments being associated with a shared health event; identifying one or more treatments associated with each cancelled health related appointment; for each cancelled health related appointment, categorizing the identified one or more treatments into any one of a plurality of risk categories ranging from a lowest risk to a highest risk; storing or updating one or more data objects in the database to identify the categorized one or more treatments in association with the patient records; assessing each patient record based on the risk category of the associated categorized one or more treatments and based on medical history data stored in the patient record; and communicating assessment data identifying the assessment of each patient record to an appointment scheduling system implemented using a server system, the appointment scheduling system configurable to engage the plurality of patients for return appointments.
The disclosed implementations may include a system for performing health assessment for a plurality of patients and may include a database system implemented using a server system, the database system configurable to cause obtaining, from a database, data identifying a plurality of cancelled health-related appointments for a plurality of patient records stored in the database, the cancelled health-related appointments being associated with a shared health event; identifying one or more treatments associated with each cancelled health related appointment; for each cancelled health related appointment, categorizing the identified one or more treatments into any one of a plurality of risk categories ranging from a lowest-risk category to a highest-risk category; storing or updating one or more data objects in the database to identify the categorized one or more treatments in association with the patient records; assessing each patient record based on the risk category of the associated categorized one or more treatments and based on medical history data stored in the patient record; and communicating assessment data identifying the assessment of each patient record to an appointment scheduling system implemented using a server system, the appointment scheduling system configurable to engage the plurality of patients for return appointments.
The disclosed implementations may include a computer program product comprising computer-readable program code to be executed by one or more processors of a server computing system when retrieved from a non-transitory computer-readable medium, the program code including instructions to obtain, from a database, data identifying a plurality of cancelled health-related appointments for a plurality of patient records stored in the database, the cancelled health-related appointments being associated with a shared health event; identify one or more treatments associated with each cancelled health related appointment; for each cancelled health related appointment, categorize the identified one or more treatments into any one of a plurality of risk categories ranging from a lowest risk to a highest risk; store or update one or more data objects in the database to identify the categorized one or more treatments in association with the patient records; assess each patient record based on the risk category of the associated categorized one or more treatments and based on medical history data stored in the patient record; and communicate assessment data identifying the assessment of each patient record to an appointment scheduling system implemented using a server system, the appointment.
While one or more implementations and techniques are described with reference to performing health assessment for a plurality of patients implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the claimed subject matter. Further, some implementations may include using Hardware Security Module (HSM), a physical computing device that safeguards and manages digital keys for strong authentication, including, for example, the keys used to encrypt secrets associated with the data elements stored in the data stores. It may be noted that the term “data store” may refer to source control systems, file storage, virtual file systems, non-relational databases (such as NoSQL), etc.
Any of the above implementations may be used alone or together with one another in any combination. The one or more implementations encompassed within this specification may also include examples that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various implementations may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the implementations do not necessarily address any of these deficiencies. In other words, different implementations may address different deficiencies that may be discussed in the specification. Some implementations may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some implementations may not address any of these deficiencies.
FIG. 1 is a diagram of an example computing system that may be used with some implementations. In diagram102,computing system110 may be used by a user to establish a connection with a server computing system. Thecomputing system110 is only one example of a suitable computing system, such as a mobile computing system, and is not intended to suggest any limitation as to the scope of use or functionality of the design. Neither should thecomputing system110 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated. The design is operational with numerous other general-purpose or special-purpose computing systems. Examples of well-known computing systems, environments, and/or configurations that may be suitable for use with the design include, but are not limited to, personal computers, server computers, hand-held or laptop devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, mini-computers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like. For example, thecomputing system110 may be implemented as a mobile computing system such as one that is configured to run with an operating system (e.g., iOS) developed by Apple Inc. of Cupertino, California or an operating system (e.g., Android) that is developed by Google Inc. of Mountain View, Calif.
Some implementations may be described in the general context of computing system executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc. that performs particular tasks or implement particular abstract data types. Those skilled in the art can implement the description and/or figures herein as computer-executable instructions, which can be embodied on any form of computing machine program product discussed below.
Some implementations may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices.
Referring toFIG. 1, thecomputing system110 may include, but are not limited to, aprocessing unit120 having one or more processing cores, a system memory130, and asystem bus121 that couples with various system components including the system memory130 to theprocessing unit120. Thesystem bus121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) locale bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
Thecomputing system110 typically includes a variety of computer program product. Computer program product can be any available media that can be accessed by computingsystem110 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer program product may store information such as computer readable instructions, data structures, program modules or other data. Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computingsystem110. Communication media typically embodies computer readable instructions, data structures, or program modules.
The system memory130 may include computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM)131 and random access memory (RAM)132. A basic input/output system (BIOS)133, containing the basic routines that help to transfer information between elements withincomputing system110, such as during start-up, is typically stored inROM131.RAM132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processingunit120. By way of example, and not limitation,FIG. 1 also illustratesoperating system134,application programs135,other program modules136, andprogram data137.
Thecomputing system110 may also include other removable/non-removable volatile/nonvolatile computer storage media. By way of example only,FIG. 1 also illustrates ahard disk drive141 that reads from or writes to non-removable, nonvolatile magnetic media, amagnetic disk drive151 that reads from or writes to a removable, nonvolatilemagnetic disk152, and anoptical disk drive155 that reads from or writes to a removable, nonvolatileoptical disk156 such as, for example, a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, USB drives and devices, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. Thehard disk drive141 is typically connected to thesystem bus121 through a non-removable memory interface such asinterface140, andmagnetic disk drive151 andoptical disk drive155 are typically connected to thesystem bus121 by a removable memory interface, such asinterface150.
The drives and their associated computer storage media discussed above and illustrated inFIG. 1, provide storage of computer readable instructions, data structures, program modules and other data for thecomputing system110. InFIG. 1, for example,hard disk drive141 is illustrated as storingoperating system144,application programs145,other program modules146, andprogram data147. Note that these components can either be the same as or different fromoperating system134,application programs135,other program modules136, andprogram data137. Theoperating system144, theapplication programs145, theother program modules146, and theprogram data147 are given different numeric identification here to illustrate that, at a minimum, they are different copies.
A user may enter commands and information into thecomputing system110 through input devices such as akeyboard162, amicrophone163, and apointing device161, such as a mouse, trackball or touch pad or touch screen. Other input devices (not shown) may include a joystick, game pad, scanner, or the like. These and other input devices are often connected to theprocessing unit120 through auser input interface160 that is coupled with thesystem bus121, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). Amonitor191 or other type of display device is also connected to thesystem bus121 via an interface, such as avideo interface190. In addition to the monitor, computers may also include other peripheral output devices such asspeakers197 andprinter196, which may be connected through an outputperipheral interface190.
Thecomputing system110 may operate in a networked environment using logical connections to one or more remote computers, such as aremote computer180. Theremote computer180 may be a personal computer, a hand-held device, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to thecomputing system110. The logical connections depicted inFIG. 1 include a local area network (LAN)171 and a wide area network (WAN)173 but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
FIG. 1 includes a local area network (LAN)171 and a wide area network (WAN)173 but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
When used in a LAN networking environment, thecomputing system110 may be connected to theLAN171 through a network interface oradapter170. When used in a WAN networking environment, thecomputing system110 typically includes amodem172 or other means for establishing communications over the WAN173, such as the Internet. Themodem172, which may be internal or external, may be connected to thesystem bus121 via the user-input interface160, or other appropriate mechanism. In a networked environment, program modules depicted relative to thecomputing system110, or portions thereof, may be stored in a remote memory storage device. By way of example, and not limitation,FIG. 1 illustratesremote application programs185 as residing onremote computer180. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
It should be noted that some implementations may be carried out on a computing system such as that described with respect toFIG. 1. However, some implementations may be carried out on a server, a computer devoted to message handling, handheld devices, or on a distributed system in which different portions of the present design may be carried out on different parts of the distributed computing system.
Another device that may be coupled with thesystem bus121 is a power supply such as a battery or a Direct Current (DC) power supply) and Alternating Current (AC) adapter circuit. The DC power supply may be a battery, a fuel cell, or similar DC power source needs to be recharged on a periodic basis. The communication module (or modem)172 may employ a Wireless Application Protocol (WAP) to establish a wireless communication channel. Thecommunication module172 may implement a wireless networking standard such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, IEEE std. 802.11-1999, published by IEEE in 1999.
Examples of mobile computing systems may be a laptop computer, a tablet computer, a Netbook, a smart phone, a personal digital assistant, or other similar device with on board processing power and wireless communications ability that is powered by a Direct Current (DC) power source that supplies DC voltage to the mobile computing system and that is solely within the mobile computing system and needs to be recharged on a periodic basis, such as a fuel cell or a battery.
FIG. 2 shows a diagram of an example network environment that may be used with some implementations. Diagram200 includescomputing systems290 and291. One or more of thecomputing systems290 and291 may be a mobile computing system. Thecomputing systems290 and291 may be connected to thenetwork250 via a cellular connection or via a Wi-Fi router (not shown). Thenetwork250 may be the Internet. Thecomputing systems290 and291 may be coupled withserver computing systems255 via thenetwork250. Theserver computing system255 may be coupled withdatabase270.
Each of thecomputing systems290 and291 may include an application module such asmodule208 or214. For example, a user may use thecomputing system290 and theapplication module208 to connect to and communicate with theserver computing system255 and log into application257 (e.g., a Salesforce.com® application).
For some implementations, one of thecomputing systems290 and291 may be used by an administrator to initiate the process of performing the health assessment. The administrator may be associated with a healthcare system305 (shown inFIG. 3A). The administrator may log into thehealthcare system305 via theapplication257. The administrator may then launch the application260 (also referred to as health assessment module260). The application orhealth assessment module260 may be coupled withdatabase270 which may be configured to store patient health records associated with a plurality of patients. Thedatabase270 may span across multiple database systems and may include multiple databases that may be used by thehealth assessment module260 to assess the plurality of patients. For some implementations, thedatabase270 may be configured to store appointment information of the plurality of patients. For some implementations, the appointment information may include information about cancelled appointments due to a shared-health event.
FIG. 3A shows an example healthcare system, in accordance with some implementations. Thehealthcare system305 in diagram300 may be associated with a hospital, a medical group, a system of hospitals or with any health care provider providing health care related services to a plurality of patients. For example, thehealthcare system305 may be implemented as a tenant in a multi-tenant environment and may be associated with a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants. Thehealthcare system305 may be part of one system, or it may span several systems across multiple geographical areas.
For some implementations, thehealthcare system305 may be configured to cause performing operations related to managing available physical resources such as equipments andbeds335. For some implementations, thehealthcare system305 may be configured to cause performing operations related to managing available human resources such as treatingspecialists325 and supportingstaff330. For some implementations, thehealthcare system305 may be configured to cause performing operations related topatient appointment scheduling340 to schedule a plurality ofpatients320 for treatment, and operations related to billing, finance orinsurance payment310 to process billing and to collect payments for treatments provided to the plurality ofpatients320.
For some implementations, thehealthcare system305 may be configured to cause accessing an electronic health record (EHR)315 to access patient health records for the plurality ofpatients320. TheEHR315 may also be referred to as electronic medical record (EMR). TheEHR315 may be configured to store patient health records of patients associated with thehealthcare system305. For example, a patient health record may include information about a patient's most current health condition as well as information about past health condition. For some implementations, a patient health record may include information about past surgeries, type of treatments received, immunization dates, allergies, radiology images, laboratory and test results, hospital stay, past appointments, and insurance coverage information when applicable. For some implementations, a patient health record may also include characteristic information about a patient including, for example, age, racial background, education background, gender, employment information and current contact information including mailing address, telephone number and email address.
For some implementations, when there is a shared health event such as, for example, a pandemic, thehealthcare system305 may be configured to cause receiving sharedhealth event update345 from one or more of local, national and international health organization such as, for example, Center for Disease Control (CDC) and World Health Organization (WHO). For example, the sharedhealth event update345 may include information about the different recovery phases associated with the shared health event.
FIG. 3B shows an example healthcare system and its health assessment module, in accordance with some implementations. Thehealthcare system305 in diagram350 may be configured to cause performing health assessment of a plurality of patients within a certain time frame so that the plurality of patients can receive treatments delayed by a shared health event. For example, at or near the end of the shared health event, the patients whose treatments were delayed may need to be treated as soon as possible if their condition fit certain criteria. The health assessment operations may be performed by thehealth assessment module260. Thehealth assessment module260 may be configured to evaluate each patient based on multiple factors such that an order may be established to schedule the plurality of patients to return for the treatments.
FIG. 4A shows an example health assessment module with its patient identification operation, in accordance with some implementations. As shown in diagram400, thehealth assessment module260 may be configured to include apatient identification module410. For some implementations, when the treatments of the plurality of patients are delayed by the shared health event, their patient records in theEHR315 may be updated. For some implementations, thepatient identification module410 may be configured to retrieve patient health records from theEHR315 and identify the patients whose health care appointments were cancelled due to a shared health event. For example, theEHR315 may include information about the cancelled appointment and the type of treatment associated with the cancelled appointment. It may be possible that not every patient health record included in theEHR315 is related to a cancelled appointment due to the shared health event. As such, thepatient identification module410 may be configured to evaluate each of the patient health records in theEHR315 to identify those patient health records that are related to cancelled appointments. The information about these patients may be stored as patients with cancelledappointments420.
FIG. 4B shows an example health assessment module with its treatment need identification operation, in accordance with some implementations. As shown in diagram450, thehealth assessment module260 may be configured to include a treatment need identification module455. The treatment needs associated with the cancelled appointments may vary with each patient. For some implementations, the treatment need identification module455 may be configured to evaluate the patient record of each of the patients with the cancelledappointments420 and determine the treatment need associated with the cancelled appointments. For example, one patient's cancelled appointment may be related to removing kidney stones, while another patient's cancelled appointment may be related to a colonoscopy. The result of the operations may be stored in patient treatment needinformation460.
FIG. 5A shows an example health assessment module with its risk categorizing operations, in accordance with some implementations. As shown in diagram500, thehealth assessment module260 may be configured to include arisk categorization module505. Therisk categorization module505 may be configured to receive the patient treatment needinformation460 andtreatment information510. For some implementations, therisk categorization module505 may be configured to use thetreatment information510 to categorize the treatment needs into different risk categories. A risk category may be used to refer to the risk to the health of the patient if treatment is delayed. For example, some patients may need immediate attention because of the potential high risk associated with their treatment needs, while some other patients may need less immediate attention because of the potential low risk associated with their treatment needs.
Thetreatment information510 may be established based on prior experience treating patients having similar treatment needs or based on recommendation of experts in the same field. For example, thetreatment information510 may include information indicating a colonoscopy is a low-risk category and a chemotherapy treatment is a high-risk category. Based on the patient treatment needinformation460 and thetreatment information510, therisk categorization module505 may assign a risk category to each patient. There may be a range of many different risk categories from a lowest risk to a highest risk. For example, there may be a low risk, a medium risk and a high risk. The risk categories of the patients may be stored in the patientrisk category information515.
FIG. 5B shows an example health assessment module with its assessment score operations, in accordance with some implementations. As shown in diagram550, thehealth assessment module260 may be configured to include anassessment score module560. Theassessment score module560 may be configured to receive the patientrisk category information515 and patient health history information555. The patient health history information555 may be accessed from the EHR315 (shown inFIG. 3A). For some implementations, theassessment score module560 may be configured to evaluate the patient health history information555 for each patient associated with the patientrisk category information515. Evaluating the patient health history information555 for a patient may include evaluating the patient's prior treatments. For some implementations, evaluating the patient health history information555 for a patient may also include determining one or more of the patient's age, ethnic background, gender and geographic location where the patient is residing to determine an assessment score. For example, a patient who is healthy and associated with a high-risk category may be able to return for an appointment earlier than a patient who is not health and associated with a low-risk category. Based on the evaluation, theassessment score module560 may assign each patient an assessment score. For example, a patient assigned with a higher assessment score may be able to return for an appointment sooner than a patient with a patient assigned with a lower assessment score.
For some implementations, thehealthcare system305 may be configured to correlate the characteristic information about the patients, their treatment needs and their assessment scores stored in theEHR315 to derive at treatment plans or resource allocation plans that may be applicable to different communities or different population groups in a community. As more data is collected, patterns may be established from the outcome of the correlation operations. The patterns may be analyzed to learn about coping with changes in the community with respect to a certain health condition and population groups. For example, using the characteristic information, the correlation may be performed based on one or more of gender, ethnicity, race, age group and geographical areas. When available, other characteristic information may also be used including, for example, education background, income, etc. An example of a population group may be all male patients between the age of45 and65. An example of a pattern may be males of European origin are more likely to have high blood pressure if they live on the West coast of the United States. The correlation may be performed on a continuous basis based on existing data as well as data collected on new patients added to theEHR315. This may be useful to organizations (e.g., hospitals) associated with thehealthcare system305 in terms of managing available resources to provide more efficient services to the patients. This may also be useful in driving operational efficiency in both hospital and surgical facilities.
FIG. 6A shows an example appointment scheduling system, in accordance with some implementations. Theappointment scheduling system615 shown in diagram600 may be coupled with thehealth assessment module260 shown inFIG. 3B. Theappointment scheduling system615 may be part of the healthcare system305 (shown inFIG. 3A andFIG. 3B), or it may be separate from thehealthcare system305. For some implementations, theappointment scheduling system615 may be configured to communicate with a plurality of patents and schedule the plurality of patients for return appointments. For some implementations, theappointment scheduling system615 may be configured to receive the assessment scores575 (also shown inFIG. 5B) and schedule the return appoints based on the assessment scores575. For example, a patient with a high assessment score may be scheduled for a return appointment prior to a patient with a lower assessment score. For some implementations, theappointment scheduling system615 may be configured to receiveresource availability information605 and may take into consideration of the resource availability when scheduling a patient for a return appointment. For example, a surgery that requires a patient to stay in the hospital for two days post-surgery may not be scheduled when the hospital does not have a bed to accommodate the patient. As another example, a surgery that requires a heart specialist at one hospital may not be scheduled when the heart specialist is already scheduled to be at another hospital. When the appointments are confirmed and scheduled with the patients, theappointment scheduling system615 may then generate anappointment report620 that includes all the return appointments. Using the operations of thehealth assessment module260 and theappointment scheduling system615 may enable thehealthcare system305 to quickly and efficiently schedule a plurality of patients for return appointments as related to a shared health event.
For some implementations, theappointment scheduling system615 may be configured to evaluate the risk of patients not showing up for appointments. For example, this may be determined based on past activities of the patients as related to missing appointments. For some implementations, theappointment scheduling system615 may be configured to perform reminder operations to remind the patients who have past histories of missing appointments. This may help reducing costs associated with missing appointments and a timely confirmation of a potential missing appointment may enable theappointment scheduling system615 to find a replacement patient from the patients with cancelledappointments420.
FIG. 6B shows an example chart of risk categories, in accordance with some implementations. Thechart680 includes several columns withcolumn681 showing the risk or tier categories,columns682 and684 showing different types of treatment needs and treatment examples,column685 showing action to be taken, andcolumn683 showing location options where the different treatments can be provided to the patients. As shown incolumn681, the risk categories may be implemented as tiers such as tier690 (tiers1A and1B) corresponding to a low-risk category, tier694 (tiers2A and2B) corresponding to a medium-risk category, and tier698 (tiers3A and3B) corresponding to a high-risk category. As shown incolumn682 and684, a tier1A category may correspond to low acuity treatment such as colonoscopy, and a tier3A category may correspond to high acuity treatment such as most cancer treatments.
Thechart680 also shows a mapping between a category (column681) and an action to be performed (column685) as related to scheduling a patient for a return appointment. For example, the action may include postponing a surgery (colonoscopy) and not postponing a surgery (high risk cancer). Thechart680 may also be used to map a category (column681) to a location (column683) where a treatment may be provided. For example, the location may be an ambulatory surgery centers (ASCs) or a Hospital Outpatient Department (HOPD). Treatments provided to patients at an ASC may be less costly than treatments provided inside a hospital setting, and treatments provided at a HOPD may be more costly than treatment provided at a doctor office due to the HOPD having more access to resources and more capabilities.
It may be noted that although thechart680 shows the different risk categories, it does not show the operations that may be performed to determine the risk categories (shown inFIG. 5A) or the operations that may be performed to determine the assessment score (shown inFIG. 5B). Further, thechart680 may not show the operations that associate the risk categories to a plurality of patients whose appointments were cancelled because of a share-health event (shown inFIGS. 4B and 5A) or the operations that associate an appointment scheduling system with the assessment scores of the patients (as shown inFIG. 6A).
FIG. 7 is an example flow diagram of a process that may be used to schedule a plurality of patients for return appointments, in accordance with some implementations. The process may be performed by a healthcare system and its associated modules. The plurality of patients may include those whose appointments were canceled because of the shared health event such as, for example, a pandemic. For some implementations, the process may be performed for all of these patients independent of the type of treatments they may need. For example, a patient who needs a minor surgery may be evaluated using the same approach as a patient who needs a major surgery.
Atblock705, the patients whose healthcare appointments were cancelled because of a shared health event may be identified. This may require accessing an EHR such as theEHR315 described inFIG. 3A. Atblock710, the treatment need associated with each patient may be identified. For example, a treatment need may be a colonoscopy. Atblock715, a risk category may be associated with a patient based on the patient's treatment need and treatment information. For example, a colonoscopy may be considered a low-risk operation, while a cancer-related surgery may be considered a high-risk operation. Atblock720, an assessment score may be assigned to a patient based on the patient's associated risk category and based on the patient's health history. Atblock725, the assessment scores of all the patients may be communicated to a scheduling system to schedule the patients for their return appointments.
FIG. 8A shows a system diagram800 illustrating architectural components of an on-demand service environment, in accordance with some implementations. A client machine located in the cloud804 (or Internet) may communicate with the on-demand service environment via one ormore edge routers808 and812. The edge routers may communicate with one or more core switches820 and824 viafirewall816. The core switches may communicate with aload balancer828, which may distribute server load over different pods, such as thepods840 and844. Thepods840 and844, which may each include one or more servers and/or other computing resources, may perform data processing and other operations used to provide on-demand Services. Communication with the pods may be conducted via pod switches832 and836. Components of the on-demand service environment may communicate with adatabase storage system856 via adatabase firewall848 and adatabase switch852.
As shown inFIGS. 8A and 8B, accessing an on-demand service environment may involve communications transmitted among a variety of different hardware and/or software components. Further, the on-demand service environment800 is a simplified representation of an actual on-demand service environment. For example, while only one or two devices of each type are shown inFIGS. 8A and 8B, some implementations of an on-demand service environment may include anywhere from one to many devices of each type. Also, the on-demand service environment need not include each device shown inFIGS. 8A and 8B or may include additional devices not shown inFIGS. 8A and 8B.
Moreover, one or more of the devices in the on-demand service environment800 may be implemented on the same physical device or on different hardware. Some devices may be implemented using hardware or a combination of hardware and software. Thus, terms such as “data processing apparatus,” “machine,” “server” and “device” as used herein are not limited to a single hardware device, but rather include any hardware and software configured to provide the described functionality.
Thecloud804 is intended to refer to a data network or plurality of data networks, often including the Internet. Client machines located in thecloud804 may communicate with the on-demand service environment to access services provided by the on-demand service environment. For example, client machines may access the on-demand service environment to retrieve, store, edit, and/or process information.
In some implementations, theedge routers808 and812 route packets between thecloud804 and other components of the on-demand service environment800. Theedge routers808 and812 may employ the Border Gateway Protocol (B GP). The B GP is the core routing protocol of the Internet. Theedge routers808 and812 may maintain a table of IP networks or ‘prefixes’ which designate network reachability among autonomous systems on the Internet.
In one or more implementations, thefirewall816 may protect the inner components of the on-demand service environment800 from Internet traffic. Thefirewall816 may block, permit, or deny access to the inner components of the on-demand service environment800 based upon a set of rules and other criteria. Thefirewall816 may act as one or more of a packet filter, an application gateway, a stateful filter, a proxy server, or any other type of firewall.
In some implementations, the core switches820 and824 are high-capacity switches that transfer packets within the on-demand service environment800. The core switches820 and824 may be configured as network bridges that quickly route data between different components within the on-demand service environment. In some implementations, the use of two or more core switches820 and824 may provide redundancy and/or reduced latency.
In some implementations, thepods840 and844 may perform the core data processing and service functions provided by the on-demand service environment. Each pod may include various types of hardware and/or software computing resources. An example of the pod architecture is discussed in greater detail with reference toFIG. 8B.
In some implementations, communication between thepods840 and844 may be conducted via the pod switches832 and836. The pod switches832 and836 may facilitate communication between thepods840 and844 and client machines located in thecloud804, for example via core switches820 and824. Also, the pod switches832 and836 may facilitate communication between thepods840 and844 and thedatabase storage856.
In some implementations, theload balancer828 may distribute workload between thepods840 and844. Balancing the on-demand service requests between the pods may assist in improving the use of resources, increasing throughput, reducing response times, and/or reducing overhead. Theload balancer828 may include multilayer switches to analyze and forward traffic.
In some implementations, access to thedatabase storage856 may be guarded by adatabase firewall848. Thedatabase firewall848 may act as a computer application firewall operating at the database application layer of a protocol stack. Thedatabase firewall848 may protect thedatabase storage856 from application attacks such as structure query language (SQL) injection, database rootkits, and unauthorized information disclosure.
In some implementations, thedatabase firewall848 may include a host using one or more forms of reverse proxy services to proxy traffic before passing it to a gateway router. Thedatabase firewall848 may inspect the contents of database traffic and block certain content or database requests. Thedatabase firewall848 may work on the SQL application level atop the TCP/IP stack, managing applications' connection to the database or SQL management interfaces as well as intercepting and enforcing packets traveling to or from a database network or application interface.
In some implementations, communication with thedatabase storage system856 may be conducted via thedatabase switch852. Themulti-tenant database system856 may include more than one hardware and/or software components for handling database queries. Accordingly, thedatabase switch852 may direct database queries transmitted by other components of the on-demand service environment (e.g., thepods840 and844) to the correct components within the database storage system856.In some implementations, thedatabase storage system856 is an on-demand database system shared by many different organizations. The on-demand database system may employ a multi-tenant approach, a virtualized approach, or any other type of database approach. An on-demand database system is discussed in greater detail with reference toFIGS. 9 and 10.
FIG. 8B shows a system diagram illustrating the architecture of thepod844, in accordance with one implementation. Thepod844 may be used to render services to a user of the on-demand service environment800. In some implementations, each pod may include a variety of servers and/or other systems. Thepod844 includes one or morecontent batch servers864,content search servers868,query servers882,Fileforce servers886, access control system (ACS)servers880,batch servers884, and app servers888. Also, thepod844 includesdatabase instances890, quick file systems (QFS)892, andindexers894. In one or more implementations, some or all communication between the servers in thepod844 may be transmitted via theswitch836.
In some implementations, the application servers888 may include a hardware and/or software framework dedicated to the execution of procedures (e.g., programs, routines, scripts) for supporting the construction of applications provided by the on-demand service environment800 via thepod844. Some such procedures may include operations for providing the services described herein. Thecontent batch servers864 may request internal to the pod. These requests may be long-running and/or not tied to a particular customer. For example, thecontent batch servers864 may handle requests related to log mining, cleanup work, and maintenance tasks.
Thecontent search servers868 may provide query and indexer functions. For example, the functions provided by thecontent search servers868 may allow users to search through content stored in the on-demand service environment. TheFileforce servers886 may manage requests information stored in theFileforce storage898. TheFileforce storage898 may store information such as documents, images, and basic large objects (BLOBs). By managing requests for information using theFileforce servers886, the image footprint on the database may be reduced.
Thequery servers882 may be used to retrieve information from one or more file systems. For example, the query system872 may receive requests for information from the app servers888 and then transmit information queries to theNFS896 located outside the pod. Thepod844 may share adatabase instance890 configured as a multi-tenant environment in which different organizations share access to the same database. Additionally, services rendered by thepod844 may require various hardware and/or software resources. In some implementations, theACS servers880 may control access to data, hardware resources, or software resources.
In some implementations, thebatch servers884 may process batch jobs, which are used to run tasks at specified times. Thus, thebatch servers884 may transmit instructions to other servers, such as the app servers888, to trigger the batch jobs. For some implementations, theQFS892 may be an open source file system available from Sun Microsystems® of Santa Clara, California. The QFS may serve as a rapid-access file system for storing and accessing information available within thepod844. TheQFS892 may support some volume management capabilities, allowing many disks to be grouped together into a file system. File system metadata can be kept on a separate set of disks, which may be useful for streaming applications where long disk seeks cannot be tolerated. Thus, the QFS system may communicate with one or morecontent search servers868 and/orindexers894 to identify, retrieve, move, and/or update data stored in thenetwork file systems896 and/or other storage systems.
In some implementations, one ormore query servers882 may communicate with theNFS896 to retrieve and/or update information stored outside of thepod844. TheNFS896 may allow servers located in thepod844 to access information to access files over a network in a manner similar to how local storage is accessed. In some implementations, queries from thequery servers882 may be transmitted to theNFS896 via theload balancer820, which may distribute resource requests over various resources available in the on-demand service environment. TheNFS896 may also communicate with theQFS892 to update the information stored on theNFS896 and/or to provide information to theQFS892 for use by servers located within thepod844.
In some implementations, the pod may include one ormore database instances890. Thedatabase instance890 may transmit information to theQFS892. When information is transmitted to the QFS, it may be available for use by servers within thepod844 without requiring an additional database call. In some implementations, database information may be transmitted to theindexer894.Indexer894 may provide an index of information available in thedatabase890 and/orQFS892. The index information may be provided toFileforce servers886 and/or theQFS892.
FIG. 9 shows a block diagram of anenvironment910 wherein an on-demand database service might be used, in accordance with some implementations.Environment910 includes an on-demand database service916.User system912 may be any machine or system that is used by a user to access a database user system. For example, any ofuser systems912 can be a handheld computing system, a mobile phone, a laptop computer, a workstation, and/or a network of computing systems. As illustrated inFIGS. 9 and 10,user systems912 might interact via anetwork914 with the on-demand database service916.
An on-demand database service, such assystem916, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service916” and “system916” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDBMS) or the equivalent may execute storage and retrieval of information against the database object(s).Application platform918 may be a framework that allows the applications ofsystem916 to run, such as the hardware and/or software, e.g., the operating system. In an implementation, on-demand database service916 may include anapplication platform918 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service viauser systems912, or third party application developers accessing the on-demand database service viauser systems912.
One arrangement for elements ofsystem916 is shown inFIG. 9, including anetwork interface920,application platform918,tenant data storage922 fortenant data923,system data storage924 forsystem data925 accessible tosystem916 and possibly multiple tenants,program code926 for implementing various functions ofsystem916, and aprocess space928 for executing MTS system processes and tenant-specific processes, such as running applications as part of an application hosting service. Additional processes that may execute onsystem916 include database indexing processes.
The users ofuser systems912 may differ in their respective capacities, and the capacity of aparticular user system912 might be entirely determined by permissions (permission levels) for the current user. For example, where a call center agent is using aparticular user system912 to interact withsystem916, theuser system912 has the capacities allotted to that call center agent. However, while an administrator is using that user system to interact withsystem916, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users may have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network914 is any network or combination of networks of devices that communicate with one another. For example,network914 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network (e.g., the Internet), that network will be used in many of the examples herein. However, it should be understood that the networks used in some implementations are not so limited, although TCP/IP is a frequently implemented protocol.
User systems912 might communicate withsystem916 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used,user system912 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server atsystem916. Such an HTTP server might be implemented as the sole network interface betweensystem916 andnetwork914, but other techniques might be used as well or instead. In some implementations, the interface betweensystem916 andnetwork914 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In some implementations,system916, shown inFIG. 9, implements a web-based customer relationship management (CRM) system. For example, in some implementations,system916 includes application servers configured to implement and execute CRM software applications as well as provide related data, code, forms, web pages and other information to and fromuser systems912 and to store to, and retrieve from, a database system related data, objects, and Webpage content. With a multi-tenant system, data for multiple tenants may be stored in the same physical database object, however, tenant data typically is arranged so that data of one tenant is kept logically separate from that of other tenants so that one tenant does not have access to another tenant's data, unless such data is expressly shared. In certain implementations,system916 implements applications other than, or in addition to, a CRM application. For example,system916 may provide tenant access to multiple hosted (standard and custom) applications. User (or third party developer) applications, which may or may not include CRM, may be supported by theapplication platform918, which manages creation, storage of the applications into one or more database objects and executing of the applications in a virtual machine in the process space of thesystem916.
Eachuser system912 could include a desktop personal computer, workstation, laptop, PDA, cell phone, or any wireless access protocol (WAP) enabled device or any other computing system capable of interfacing directly or indirectly to the Internet or other network connection.User system912 typically runs an HTTP client, e.g., a browsing program, such as Microsoft's Internet Explorer® browser, Mozilla's Firefox® browser, Opera's browser, or a WAP-enabled browser in the case of a cell phone, PDA or other wireless device, or the like, allowing a user (e.g., subscriber of the multi-tenant database system) ofuser system912 to access, process and view information, pages and applications available to it fromsystem916 overnetwork914.
Eachuser system912 also typically includes one or more user interface devices, such as a keyboard, a mouse, trackball, touch pad, touch screen, pen or the like, for interacting with a graphical user interface (GUI) provided by the browser on a display (e.g., a monitor screen, LCD display, etc.) in conjunction with pages, forms, applications and other information provided bysystem916 or other systems or servers. For example, the user interface device can be used to access data and applications hosted bysystem916, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, implementations are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
According to some implementations, eachuser system912 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system916 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such asprocessor system917, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
A computer program product implementation includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the implementations described herein. Computer code for operating and configuringsystem916 to intercommunicate and to process web pages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, or transmitted over any other conventional network connection (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.). It will also be appreciated that computer code for carrying out disclosed operations can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript®, ActiveX®, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems®, Inc.).
According to some implementations, eachsystem916 is configured to provide web pages, forms, applications, data and media content to user (client)systems912 to support the access byuser systems912 as tenants ofsystem916. As such,system916 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computing system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art.
It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
FIG. 10 also shows a block diagram ofenvironment910further illustrating system916 and various interconnections, in accordance with some implementations.FIG. 10 shows thatuser system912 may includeprocessor system912A,memory system912B,input system912C, andoutput system912D. FIG.10shows network914 andsystem916. FIG.10 also shows thatsystem916 may includetenant data storage922,tenant data923,system data storage924,system data925, User Interface (UI)1030, Application Program Interface (API)1032, PL/SOQL1034, saveroutines1036,application setup mechanism1038, applications servers10001-1000N,system process space1002,tenant process spaces1004, tenantmanagement process space1010,tenant storage area1012,user storage1014, andapplication metadata1016. In other implementations,environment910 may not have the same elements as those listed above and/or may have other elements instead of, or in addition to, those listed above.
User system912,network914,system916,tenant data storage922, andsystem data storage924 were discussed above inFIG. 9. Regardinguser system912,processor system912A may be any combination of processors.Memory system912B may be any combination of one or more memory devices, short term, and/or long term memory.Input system912C may be any combination of input devices, such as keyboards, mice, trackballs, scanners, cameras, and/or interfaces to networks.Output system912D may be any combination of output devices, such as monitors, printers, and/or interfaces to networks. As shown byFIG. 10,system916 may include a network interface920 (ofFIG. 9) implemented as a set of HTTP application servers1000, anapplication platform918,tenant data storage922, andsystem data storage924. Also shown issystem process space1002, including individualtenant process spaces1004 and a tenantmanagement process space1010. Each application server1000 may be configured to tenantdata storage922 and thetenant data923 therein, andsystem data storage924 and thesystem data925 therein to serve requests ofuser systems912. Thetenant data923 might be divided into individualtenant storage areas1012, which can be either a physical arrangement and/or a logical arrangement of data. Within eachtenant storage area1012,user storage1014 andapplication metadata1016 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored touser storage1014. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenantstorage area1012. A UI1030 provides a user interface and anAPI1032 provides an application programmer interface tosystem916 resident processes to users and/or developers atuser systems912. The tenant data and the system data may be stored in various databases, such as Oracle™ databases.
Application platform918 includes anapplication setup mechanism1038 that supports application developers' creation and management of applications, which may be saved as metadata intotenant data storage922 by saveroutines1036 for execution by subscribers astenant process spaces1004 managed bytenant management process1010 for example. Invocations to such applications may be coded using PL/SOQL34 that provides a programming language style interface extension toAPI1032. A detailed description of some PL/SOQL language implementations is discussed in commonly assigned U.S. Pat. No. 7,730,478, titled METHOD AND SYSTEM FOR ALLOWING ACCESS TO DEVELOPED APPLICATIONS VIA A MULTI-TENANT ON-DEMAND DATABASE SERVICE, by Craig Weissman, filed Sep. 21, 2007, which is hereby incorporated by reference in its entirety and for all purposes. Invocations to applications may be detected by system processes, which manage retrievingapplication metadata1016 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server1000 may be communicably coupled to database systems, e.g., having access tosystem data925 andtenant data923, via a different network connection. For example, oneapplication server10001 might be coupled via the network914 (e.g., the Internet), anotherapplication server1000N-1 might be coupled via a direct network link, and anotherapplication server1000N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers1000 and the database system. However, other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain implementations, each application server1000 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server1000. In some implementations, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers1000 and theuser systems912 to distribute requests to the application servers1000. In some implementations, the load balancer uses a least connections algorithm to route user requests to the application servers1000. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain implementations, three consecutive requests from the same user could hit three different application servers1000, and three requests from different users could hit the same application server1000. In this manner,system916 is multi-tenant, whereinsystem916 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each call center agent usessystem916 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage922). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a call center agent is visiting a customer and the customer has Internet access in their lobby, the call center agent can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed bysystem916 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data,system916 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain implementations, user systems912 (which may be client machines/systems) communicate with application servers1000 to request and update system-level and tenant-level data fromsystem916 that may require sending one or more queries to tenantdata storage922 and/orsystem data storage924. System916 (e.g., an application server1000 in system916) automatically generates one or more SQL statements (e.g., SQL queries) that are designed to access the desired information.System data storage924 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object and may be used herein to simplify the conceptual description of objects and custom objects according to some implementations. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for account, contact, lead, and opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. Pat. No. 7,779,039, titled CUSTOM ENTITIES AND FIELDS IN A MULTI-TENANT DATABASE SYSTEM, by Weissman, et al., and which is hereby incorporated by reference in its entirety and for all purposes, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In some implementations, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. In some implementations, multiple “tables” for a single customer may actually be stored in one large table and/or in the same table as the data of other customers.
These and other aspects of the disclosure may be implemented by various types of hardware, software, firmware, etc. For example, some features of the disclosure may be implemented, at least in part, by machine-program product that include program instructions, state information, etc., for performing various operations described herein. Examples of program instructions include both machine code, such as produced by a compiler, and files containing higher-level code that may be executed by the computer using an interpreter. Examples of machine-program product include, but are not limited to, magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROM disks; magneto-optical media; and hardware devices that are specially configured to store and perform program instructions, such as read-only memory devices (“ROM”) and random access memory (“RAM”).
While one or more implementations and techniques are described with reference to an implementation in which a service cloud console is implemented in a system having an application server providing a front end for an on-demand database service capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Implementations may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the implementations claimed.
Any of the above implementations may be used alone or together with one another in any combination. Although various implementations may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the implementations do not necessarily address any of these deficiencies. In other words, different implementations may address different deficiencies that may be discussed in the specification. Some implementations may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some implementations may not address any of these deficiencies.
While various implementations have been described herein, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present application should not be limited by any of the implementations described herein but should be defined only in accordance with the following and later-submitted claims and their equivalents.