CROSS-REFERENCE TO RELATED APPLICATIONSThe present application is a divisional of and claims priority to U.S. patent application Ser. No. 15/393,054, filed Dec. 28, 2016, of the same title, which claims the benefits of and priority, under 35 U.S.C. § 119(e), to U.S. Provisional Application Ser. No. 62/418,620, filed Nov. 7, 2016, entitled “Self-Driving Control Systems for the Next Generation Vehicle.” The entire disclosures of the applications listed above are hereby incorporated by reference, in their entirety, for all that they teach and for all purposes.
FIELD OF THE INVENTIONThe present disclosure relates generally to vehicle systems and, more particularly, to the use of advanced driver assistance systems and the tracking thereof.
BACKGROUND OF THE INVENTIONA conventional vehicle includes various systems of assisting a driver with the control of the vehicle, thereby increasing driver and passenger safety while increasing road safety in general. Advanced driver assistance (“ADA”) systems are developed to increase vehicular safety and allow for better driving ability. Current ADA systems include allowing for keeping drivers in a correct lane and displaying to a driver the contents of a blind spot.
Drivers of conventional vehicles are typically required to carry vehicle insurance. Vehicle insurance may cover damage to the vehicle, to other vehicles, to third parties, and other items. Typically, when a driver is at fault in an accident, he may be liable for any damage caused. This liability is typically paid via an insurance claim. The insurance rates of the at-fault party may increase because of the accident.
In recent years, ADA systems have become more complex, some offering completely autonomous capabilities. While vehicles have become more advanced, drivers have simultaneously become more distracted, some using smartphones and other technology to multi-task while driving. Despite the steady increase in vehicle technology, designed to increase driver safety, the number of motor vehicle crash deaths has not steadily declined. Between the years 2009 and 2014, according to the U.S. Department of Transportation, the number of total deaths in the United States has remained between 32,479 and 33,883. In 2015, the number increased to over 35,000.
With the increase in use of autonomous vehicles, the numbers of drivers at fault in accidents should decrease. In their place, manufacturers of autonomous vehicles may carry the liability for accidents caused by an autonomously-driven vehicle. Accordingly, the use of autonomous vehicles and vehicles utilizing other ADA systems should decrease the average cost of insurance on behalf of the driver, while manufacturers selling autonomous vehicles should carry manufacturer liability insurance. Insurance companies, to accurately adjust insurance rates to compete in the market, must update actuarial models used in the calculation of rates.
Currently, responsible drivers pay inflated insurance premiums because the insurance industry cannot adequately monitor a driver's use of a vehicle. While today's vehicles are equipped with advanced safety features, including ADAS and autonomous driving capabilities, vehicle insurance plans typically fail to take such features into consideration. A conventional insurance plan may simply offer a regular monthly premium. This plan may be offered to drivers of cars with or without such safety features. Such a plan may be offered to drivers of a common vehicle with safety features regardless of whether or not such safety features are actually utilized by the driver. Due to an inability to accurately monitor a driver's use of a vehicle, and due to inadequate actuarial models which do not take into account drivers actual use of safety features, insurance companies are incapable of providing fair and equitable insurance plans to drivers based on actual use of safety features. It is an unfair responsibility for drivers utilizing safety features such as autonomous driving mode to pay insurance premiums the same or similar to those paid by drivers under-utilizing such features.
Additionally, drivers controlling autonomous capable vehicles and vehicles with other ADA systems may under-utilize such capabilities due to a number of factors. For example, ADA systems of a vehicle may be in part deactivated. A driver may be unaware of his or her incapacity to operate the vehicle in the safest manner. ADA systems may be needed to resolve issues such as poor driving abilities or poor driving environments.
Examples of poor driving abilities may include a general lack of skill of the driver, poor road selection, or a lack of skill of the driver in certain scenarios, such as driving over hills, driving around curves, driving in rain, snow, or other bad weather, driving in traffic, driving at night, driving into a bright sun, poor speed selection for a particular condition, or a combination thereof. Other poor driving abilities may be attributed to poor driver behavior, such as looking away from the road, tiredness, sleepiness, distractions in the car (volume levels for entertainment system, other passengers, etc.), or distracting technology, poor interior vehicle lighting, or a combination thereof.
Examples of poor driving environments may include: night time, night time with nearby high intensity city lighting, bad lighting, bright lighting, steep hills, sharp curves, heavy traffic, bad weather (rain, fog, sleet, snow, ice, wind, etc.), high audio levels (from road noise, wind noise, nearby construction, etc.), road conditions (paved, gravel, bumpy, etc.), or a combination thereof.
Due to these and other factors, the safety of drivers and their passengers, as well as the safety of road traffic in general, is inefficiently low. Vehicles with autonomous capabilities and ADA systems of vehicles are also often inadequately under-utilized. Furthermore, when autonomous capabilities and ADA systems of a vehicle are utilized, drivers do not realize the full benefit and typically pay inflated rates for insurance.
While conventional vehicles utilizing autonomous capabilities and ADA systems provide a variety of benefits, typically the drivers of such vehicles are charged more than a fair share for insurance. Meanwhile, insurance companies spend a great deal of time and money researching actuarial science to generate a more accurate rate. Additionally, drivers of cars with autonomous features and other ADA systems do not totally take advantage of such systems, either due to driver choice or unknowingly. As a result, the inclusion of ADA systems in cars is wholly inefficient. Accordingly, what is needed is a system of tracking the use of ADA systems and autonomous capabilities, and a system of engaging such systems and capabilities or otherwise making the use of such systems and capabilities more efficient, thus improving driver experience, lessening driver distraction, and increasing insurance actuarial science. The present disclosure provides such a system.
BRIEF DESCRIPTION OF THE DRAWINGSThe accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate exemplary embodiments and, together with the description, serve to explain the disclosed principles.
FIG. 1 shows a vehicle in accordance with embodiments of the present disclosure;
FIG. 2 shows a plan view of the vehicle in accordance with at least some embodiments of the present disclosure;
FIG. 3A is a block diagram of an embodiment of a communication environment of the vehicle in accordance with embodiments of the present disclosure;
FIG. 3B is a block diagram of an embodiment of interior sensors within the vehicle in accordance with embodiments of the present disclosure;
FIG. 3C is a block diagram of an embodiment of a navigation system of the vehicle in accordance with embodiments of the present disclosure;
FIG. 4 shows an embodiment of the instrument panel of the vehicle according to one embodiment of the present disclosure;
FIG. 5 is a block diagram of an embodiment of a communications subsystem of the vehicle;
FIG. 6 is a block diagram of a computing environment associated with the embodiments presented herein;
FIG. 7 is a block diagram of a computing device associated with one or more components described herein;
FIG. 8 is a block diagram of an embodiment of a communications system of the vehicle;
FIG. 9 is a table illustrating an embodiment of a database in accordance with the systems presented herein;
FIG. 10A is a table illustrating an embodiment of a packet in accordance with the systems presented herein;
FIG. 10B is a table illustrating an embodiment of a packet in accordance with the systems presented herein;
FIG. 11A is a table illustrating an embodiment of a database in accordance with the systems presented herein;
FIG. 11B is a table illustrating an embodiment of a database in accordance with the systems presented herein;
FIG. 12 is a table illustrating an embodiment of a database in accordance with the systems presented herein;
FIG. 13 is a table illustrating an embodiment of a database in accordance with the systems presented herein;
FIG. 14A is an illustration of an exemplary user interface in accordance with the systems presented herein;
FIG. 14B is an illustration of an exemplary user interface in accordance with the systems presented herein;
FIG. 15 is a diagram of a road segment risk assessment in accordance with the systems presented herein;
FIG. 16 is a block diagram of an autonomous driving vehicle system according to an embodiment;
FIG. 17 is a flow chart associated with one or more embodiments presented herein;
FIG. 18 is block diagram of a computational system in a vehicle and associated with one or more components described herein;
FIG. 19 is a flow chart associated with one or more embodiments presented; and
FIG. 20 is a flow chart associated with one or more embodiments presented.
DETAILED DESCRIPTIONEmbodiments of the present disclosure will be described in connection with a vehicle, and in some embodiments, an electric vehicle, rechargeable electric vehicle, and/or hybrid-electric vehicle and associated systems.
FIG. 1 shows a perspective view of avehicle100 in accordance with embodiments of the present disclosure. Theelectric vehicle100 comprises avehicle front110, vehicle aft or rear120,vehicle roof130, at least onevehicle side160, avehicle undercarriage140, and avehicle interior150. In any event, thevehicle100 may include aframe104 and one ormore body panels108 mounted or affixed thereto. Thevehicle100 may include one or more interior components (e.g., components inside aninterior space150, or user space, of avehicle100, etc.), exterior components (e.g., components outside of theinterior space150, or user space, of avehicle100, etc.), drive systems, controls systems, structural components, etc.
An exemplary embodiment is directed towards using various data compiled, detected, or received by a system to analyze factors contributing to an individual's driving behavior and/or habits. In the event that an individual wishes to receive better insurance rates for the use of ADAS or other autonomous abilities of his or her vehicle, the driver may agree to provide insurance tracking information. The insurance tracking system may consider one or more of an amount and level of ADAS or other autonomous driving modes, etc., in order to determine fair and equitable insurance plan terms established by the insurance company.
In accordance with another exemplary aspect, in addition to the system being able to allow drivers to receive insurance rates which take into consideration actual use of vehicle safety features, the system can also be used to dynamically provide feedback on optimal Automation Levels and automatically change between Automation Levels, which can be based on an analysis of information from one or more sensors. This feedback can be given in real-time, such as via a display installed in or associated with the vehicle (or even a multi-screen device), through the speakers, tactile feedback, such as through the seat, steering wheel, the driver's phone (such as a vibration), or the like.
In addition to providing dynamic information to a driver's insurance company, the information may also be used by a vehicle manufacturer to provide information to the manufacturer's insurance carrier. This information may be used, for example, to perhaps lower a manufacturer insurance premium in the case of evidence showing drivers foregoing the use of vehicle autonomous capabilities. For example, a driver using autonomous mode at all times should theoretically avoid any liability for accidents caused by such autonomous driving. The liability instead would be placed on the vehicle manufacturer. In this scenario, a vehicle manufacturer may have a higher probability of liability and thus would expect higher insurance premiums. At the same time, a second driver, driving perhaps the same car, who does not utilize the autonomous capabilities of the vehicle should incur all liability in the event of an accident of his fault. In which case the manufacturer should see less liability for such an accident.
In accordance with an exemplary embodiment, some of the information and/or data that can be monitored are perimeter information, G-force information, proximity information, GPS location information, time and date information, biometric information, law and/or regulation information, behavior information from one or more of the driver and passenger(s), mileage information, as well as vehicle information, such as any information acquirable from, for example, on-board diagnostics (such as OBD-II) as well as lighting information, such as turn signals, headlights, radio information, Bluetooth® information, braking information, turning information, acceleration information, and in general any information related to a vehicle's operation.
In accordance with another exemplary embodiment, a insurance-data-tracking module can be located in one or more of the vehicle and remotely, such as at an insurance company premise, the insurance-data-tracking module, cooperating with a communication module, is able to not only transfer data collected from the various sensors, and/or a simple analysis decision from the vehicle to the insurance company, but also allows feedback, such as instructions, incentive, or disincentive information, to be relayed to the driver of the vehicle with the cooperation of a communication module and, as discussed, one or more of a display, speakers and tactile feedback devices.
It is anticipated that automation level use data may be compiled by the vehicle and/or associated systems. Alternatively, or in addition, vehicle operators may report Automation Level use by sending a signal to a central repository. This central repository may analyze the reported data and cause at least one driver's Automation Level use to be reflected in a Automation Level use grade.
Although shown in the form of a car, it should be appreciated that thevehicle100 described herein may include any conveyance or model of a conveyance, where the conveyance was designed for the purpose of moving one or more tangible objects, such as people, animals, cargo, and the like. The term “vehicle” does not require that a conveyance moves or is capable of movement. Typical vehicles may include but are in no way limited to cars, trucks, motorcycles, busses, automobiles, trains, railed conveyances, boats, ships, marine conveyances, submarine conveyances, airplanes, space craft, flying machines, human-powered conveyances, and the like.
In some embodiments, thevehicle100 may include a number of sensors, devices, and/or systems that are capable of assisting in driving operations. Examples of the various sensors and systems may include, but are in no way limited to, one or more of cameras (e.g., independent, stereo, combined image, etc.), infrared (IR) sensors, radio frequency (RF) sensors, ultrasonic sensors (e.g., transducers, transceivers, etc.), RADAR sensors (e.g., object-detection sensors and/or systems), LIDAR systems, odometry sensors and/or devices (e.g., encoders, etc.), orientation sensors (e.g., accelerometers, gyroscopes, magnetometer, etc.), navigation sensors and systems (e.g., GPS, etc.), and other ranging, imaging, and/or object-detecting sensors. The sensors may be disposed in aninterior space150 of thevehicle100 and/or on an outside of thevehicle100. In some embodiments, the sensors and systems may be disposed in one or more portions of a vehicle100 (e.g., theframe104, a body panel, a compartment, etc.). The vehicle may also include a number of microphones which may be used to monitor internal and/or external sounds.
The vehicle sensors and systems may be selected and/or configured to suit a level of operation associated with thevehicle100. Among other things, the number of sensors used in a system may be altered to increase or decrease information available to a vehicle control system (e.g., affecting control capabilities of the vehicle100). Additionally, or alternatively, the sensors and systems may be part of one or more advanced driver assistance systems (ADAS) associated with avehicle100. In any event, the sensors and systems may be used to provide driving assistance at any level of operation (e.g., from fully-manual to fully-autonomous operations, etc.) as described herein.
The various levels of vehicle control and/or operation can be described as corresponding to a level of autonomy associated with avehicle100 for vehicle driving operations. The level of autonomous driving may correspond to the levels as defined by the U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA). These levels may also correspond to the levels defined and described by the Society of Automobile Engineers (SAE) in the SAE International's J3016 document, wherein the revised version was published Sep. 30, 2016, which document is incorporated herein by reference for all that it teaches and for all purposes. For instance, atLevel 0, or fully-manual driving operations, a driver (e.g., a human driver) may be responsible for all the driving control operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle.Level 0 may be referred to as a “No Automation” or a “Fully-Manual” level.Level 0 may be equivalent to a modern vehicle with an automatic, or semi-automatic, transmission and without automated driving capabilities.
AtLevel 1, the vehicle may be responsible for a limited number of the driving operations associated with the vehicle, while the driver is still responsible for most driving control operations. An example of aLevel 1 vehicle may include a vehicle in which the throttle control and/or braking operations may be controlled by the vehicle (e.g., cruise control operations, etc.).Level 1 may be referred to as a “Driver Assistance” level.
AtLevel 2, the vehicle may collect information (e.g., via one or more driving assistance systems, sensors, etc.) about an environment of the vehicle (e.g., surrounding area, roadway, traffic, ambient conditions, etc.) and use the collected information to control driving operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle. In aLevel 2 autonomous vehicle, the driver may be required to perform other aspects of driving operations not controlled by the vehicle.Level 2 may be referred to as a “Partial Automation” level. It should be appreciated that Levels 0-2 all involve the driver monitoring in some way the driving operations of the vehicle.
AtLevel 3, the driver may be separated from controlling all the driving operations of the vehicle except when the vehicle makes a request for the operator to act or intervene in controlling one or more driving operations. In other words, the driver may be separated from controlling the vehicle unless the driver is required to take over for the vehicle.Level 3 may be referred to as a “Conditional Automation” level.
AtLevel 4, the driver may be separated from controlling all the driving operations of the vehicle and the vehicle may control driving operations even when a user fails to respond to a request to intervene.Level 4 may be referred to as a “High Automation” level.
AtLevel 5, the vehicle can control all the driving operations associated with the vehicle in all driving modes. The vehicle inLevel 5 may continually monitor traffic, vehicular, roadway, and/or environmental conditions while driving the vehicle. InLevel 5, there is no human driver interaction required in any driving mode. Accordingly,Level 5 may be referred to as a “Full Automation” level. It should be appreciated that in Levels 3-5 the vehicle, and/or one or more automated driving systems associated with the vehicle, monitors the driving operations of the vehicle and the driving environment.
The levels of driving operation may be manually selected or shifted by the driver through via a user interface in the vehicle.
The levels of driving operation may also be selected automatically for a driver by a processor of the vehicle. This automatic selection may be executed based on a number of factors. For example, noise inside the vehicle cabin could signify a distracting environment and when detected may provoke an initiation of a forced switch to an autonomous driving mode.
When a processor of the vehicle selects a driving operation level for the driver, the vehicle may automatically change into that driving operation level. Alternatively, the vehicle may present the driver with a notification suggesting such a change. For example, a user interface display may display a window suggesting the change along with a button for the driver to quickly select the new driving level.
The driving level used by the vehicle may be tracked and recorded and stored for statistical analysis or other purposes as discussed herein.
As shown inFIG. 1, thevehicle100 may, for example, include at least one of a ranging and imaging system112 (e.g., LIDAR, etc.), animaging sensor116A,116F (e.g., camera, IR, etc.), a radio object-detection and rangingsystem sensors116B (e.g., RADAR, RF, etc.),ultrasonic sensors116C, and/or other object-detection sensors116D,116E. In some embodiments, theLIDAR system112 and/or sensors may be mounted on aroof130 of thevehicle100. In one embodiment, theRADAR sensors116B may be disposed at least at a front110, aft120, orside160 of thevehicle100. Among other things, the RADAR sensors may be used to monitor and/or detect a position of other vehicles, pedestrians, and/or other objects near, or proximal to, thevehicle100. While shown associated with one or more areas of avehicle100, it should be appreciated that any of the sensors andsystems116A-K,112 illustrated inFIGS. 1 and 2 may be disposed in, on, and/or about thevehicle100 in any position, area, and/or zone of thevehicle100.
Referring now toFIG. 2, a plan view of avehicle100 will be described in accordance with embodiments of the present disclosure. In particular,FIG. 2 shows avehicle sensing environment200 at least partially defined by the sensors andsystems116A-K,112 disposed in, on, and/or about thevehicle100. Eachsensor116A-K may include an operational detection range R and operational detection angle α. The operational detection range R may define the effective detection limit, or distance, of thesensor116A-K. In some cases, this effective detection limit may be defined as a distance from a portion of thesensor116A-K (e.g., a lens, sensing surface, etc.) to a point in space offset from thesensor116A-K. The effective detection limit may define a distance, beyond which, the sensing capabilities of thesensor116A-K deteriorate, fail to work, or are unreliable. In some embodiments, the effective detection limit may define a distance, within which, the sensing capabilities of thesensor116A-K are able to provide accurate and/or reliable detection information. The operational detection angle α may define at least one angle of a span, or between horizontal and/or vertical limits, of asensor116A-K. As can be appreciated, the operational detection limit and the operational detection angle α of asensor116A-K together may define theeffective detection zone216A-D (e.g., the effective detection area, and/or volume, etc.) of asensor116A-K.
In some embodiments, thevehicle100 may include a ranging andimaging system112 such as LIDAR, or the like. The ranging andimaging system112 may be configured to detect visual information in an environment surrounding thevehicle100. The visual information detected in the environment surrounding the ranging andimaging system112 may be processed (e.g., via one or more sensor and/or system processors, etc.) to generate a complete 360-degree view of anenvironment200 around the vehicle. The ranging andimaging system112 may be configured to generate changing 360-degree views of theenvironment200 in real-time, for instance, as thevehicle100 drives. In some cases, the ranging andimaging system112 may have aneffective detection limit204 that is some distance from the center of thevehicle100 outward over 360 degrees. Theeffective detection limit204 of the ranging andimaging system112 defines a view zone208 (e.g., an area and/or volume, etc.) surrounding thevehicle100. Any object falling outside of theview zone208 is in theundetected zone212 and would not be detected by the ranging andimaging system112 of thevehicle100.
Sensor data and information may be collected by one or more sensors orsystems116A-K,112 of thevehicle100 monitoring thevehicle sensing environment200. This information may be processed (e.g., via a processor, computer-vision system, etc.) to determine targets (e.g., objects, signs, people, markings, roadways, conditions, etc.) inside one ormore detection zones208,216A-D associated with thevehicle sensing environment200. In some cases, information frommultiple sensors116A-K may be processed to form composite sensor detection information. For example, afirst sensor116A and asecond sensor116F may correspond to afirst camera116A and asecond camera116F aimed in a forward traveling direction of thevehicle100. In this example, images collected by thecameras116A,116F may be combined to form stereo image information. This composite information may increase the capabilities of a single sensor in the one ormore sensors116A-K by, for example, adding the ability to determine depth associated with targets in the one ormore detection zones208,216A-D. Similar image data may be collected by rear view cameras (e.g.,sensors116G,116H) aimed in a rearward travelingdirection vehicle100.
In some embodiments,multiple sensors116A-K may be effectively joined to increase a sensing zone and provide increased sensing coverage. For instance,multiple RADAR sensors116B disposed on thefront110 of the vehicle may be joined to provide azone216B of coverage that spans across an entirety of thefront110 of the vehicle. In some cases, themultiple RADAR sensors116B may cover adetection zone216B that includes one or more othersensor detection zones216A. These overlapping detection zones may provide redundant sensing, enhanced sensing, and/or provide greater detail in sensing within a particular portion (e.g.,zone216A) of a larger zone (e.g.,zone216B). Additionally or alternatively, thesensors116A-K of thevehicle100 may be arranged to create a complete coverage, via one ormore sensing zones208,216A-D around thevehicle100. In some areas, thesensing zones216C of two ormore sensors116D,116E may intersect at anoverlap zone220. In some areas, the angle and/or detection limit of two ormore sensing zones216C,216D (e.g., of two ormore sensors116E,116J,116K) may meet at avirtual intersection point224.
Thevehicle100 may include a number ofsensors116E,116G,116H,116J,116K disposed proximal to the rear120 of thevehicle100. These sensors can include, but are in no way limited to, an imaging sensor, camera, IR, a radio object-detection and ranging sensors, RADAR, RF, ultrasonic sensors, and/or other object-detection sensors. Among other things, thesesensors116E,116G,116H,116J,116K may detect targets near or approaching the rear of thevehicle100. For example, another vehicle approaching the rear120 of thevehicle100 may be detected by one or more of the ranging and imaging system (e.g., LIDAR)112, rear-view cameras116G,116H, and/or rear facingRADAR sensors116J,116K. As described above, the images from the rear-view cameras116G,116H may be processed to generate a stereo view (e.g., providing depth associated with an object or environment, etc.) for targets visible to bothcameras116G,116H. As another example, thevehicle100 may be driving and one or more of the ranging andimaging system112, front-facingcameras116A,116F, front-facingRADAR sensors116B, and/orultrasonic sensors116C may detect targets in front of thevehicle100. This approach may provide critical sensor information to a vehicle control system in at least one of the autonomous driving levels described above. For instance, when thevehicle100 is driving autonomously (e.g.,Level 3,Level 4, or Level 5) and detects other vehicles stopped in a travel path, the sensor detection information may be sent to the vehicle control system of thevehicle100 to control a driving operation (e.g., braking, decelerating, etc.) associated with the vehicle100 (in this example, slowing thevehicle100 as to avoid colliding with the stopped other vehicles). As yet another example, thevehicle100 may be operating and one or more of the ranging andimaging system112, and/or the side-facingsensors116D,116E (e.g., RADAR, ultrasonic, camera, combinations thereof, and/or other type of sensor), may detect targets at a side of thevehicle100. It should be appreciated that thesensors116A-K may detect a target that is both at aside160 and afront110 of the vehicle100 (e.g., disposed at a diagonal angle to a centerline of thevehicle100 running from thefront110 of thevehicle100 to the rear120 of the vehicle). Additionally or alternatively, thesensors116A-K may detect a target that is both, or simultaneously, at aside160 and a rear120 of the vehicle100 (e.g., disposed at a diagonal angle to the centerline of the vehicle100).
FIG. 3A is a block diagram of an embodiment of acommunication environment300 of thevehicle100 in accordance with embodiments of the present disclosure. Thecommunication system300 may include one or more vehicle driving vehicle sensors andsystems304,sensor processors340,sensor data memory344,vehicle control system348,communications subsystem350,control data364,computing devices368,display devices372, andother components374 that may be associated with avehicle100. These associated components may be electrically and/or communicatively coupled to one another via at least onebus360. In some embodiments, the one or more associated components may send and/or receive signals across acommunication network352 to at least one of anavigation source356A, acontrol source356B, or someother entity356N.
In accordance with at least some embodiments of the present disclosure, thecommunication network352 may comprise any type of known communication medium or collection of communication media and may use any type of protocols, such as SIP, TCP/IP, SNA, IPX, AppleTalk, and the like, to transport messages between endpoints. Thecommunication network352 may include wired and/or wireless communication technologies. The Internet is an example of thecommunication network352 that constitutes an Internet Protocol (IP) network consisting of many computers, computing networks, and other communication devices located all over the world, which are connected through many telephone systems and other means. Other examples of thecommunication network104 include, without limitation, a standard Plain Old Telephone System (POTS), an Integrated Services Digital Network (ISDN), the Public Switched Telephone Network (PSTN), a Local Area Network (LAN), such as an Ethernet network, a Token-Ring network and/or the like, a Wide Area Network (WAN), a virtual network, including without limitation a virtual private network (“VPN”); the Internet, an intranet, an extranet, a cellular network, an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.9 suite of protocols, the Bluetooth® protocol known in the art, and/or any other wireless protocol), and any other type of packet-switched or circuit-switched network known in the art and/or any combination of these and/or other networks. In addition, it can be appreciated that thecommunication network352 need not be limited to any one network type, and instead may be comprised of a number of different networks and/or network types. Thecommunication network352 may comprise a number of different communication media such as coaxial cable, copper cable/wire, fiber-optic cable, antennas for transmitting/receiving wireless messages, and combinations thereof.
The driving vehicle sensors andsystems304 may include at least one navigation308 (e.g., global positioning system (GPS), etc.),orientation312,odometry316,LIDAR320,RADAR324, ultrasonic328,camera332, infrared (IR)336, and/or other sensor orsystem338. These driving vehicle sensors andsystems304 may be similar, if not identical, to the sensors andsystems116A-K,112 described in conjunction withFIGS. 1 and 2.
Thenavigation sensor308 may include one or more sensors having receivers and antennas that are configured to utilize a satellite-based navigation system including a network of navigation satellites capable of providing geolocation and time information to at least one component of thevehicle100. Examples of thenavigation sensor308 as described herein may include, but are not limited to, at least one of Garmin® GLO™ family of GPS and GLONASS combination sensors, Garmin® GPS 15x™ family of sensors, Garmin® GPS 16x™ family of sensors with high-sensitivity receiver and antenna, Garmin® GPS 18x OEM family of high-sensitivity GPS sensors, Dewetron DEWE-VGPS series of GPS sensors, GlobalSat 1-Hz series of GPS sensors, other industry-equivalent navigation sensors and/or systems, and may perform navigational and/or geolocation functions using any known or future-developed standard and/or architecture.
Theorientation sensor312 may include one or more sensors configured to determine an orientation of thevehicle100 relative to at least one reference point. In some embodiments, theorientation sensor312 may include at least one pressure transducer, stress/strain gauge, accelerometer, gyroscope, and/or geomagnetic sensor. Examples of thenavigation sensor308 as described herein may include, but are not limited to, at least one ofBosch Sensortec BMX 160 series low-power absolute orientation sensors, Bosch Sensortec BMX055 9-axis sensors, Bosch Sensortec BMI055 6-axis inertial sensors, Bosch Sensortec BMI160 6-axis inertial sensors, Bosch Sensortec BMF055 9-axis inertial sensors (accelerometer, gyroscope, and magnetometer) with integrated Cortex M0+ microcontroller, Bosch Sensortec BMP280 absolute barometric pressure sensors, Infineon TLV493D-A1B6 3D magnetic sensors, Infineon TLI493D-W1B6 3D magnetic sensors, Infineon TL family of 3D magnetic sensors, Murata Electronics SCC2000 series combined gyro sensor and accelerometer, Murata Electronics SCC1300 series combined gyro sensor and accelerometer, other industry-equivalent orientation sensors and/or systems, and may perform orientation detection and/or determination functions using any known or future-developed standard and/or architecture.
The odometry sensor and/orsystem316 may include one or more components that is configured to determine a change in position of thevehicle100 over time. In some embodiments, theodometry system316 may utilize data from one or more other sensors and/orsystems304 in determining a position (e.g., distance, location, etc.) of thevehicle100 relative to a previously measured position for thevehicle100. Additionally or alternatively, theodometry sensors316 may include one or more encoders, Hall speed sensors, and/or other measurement sensors/devices configured to measure a wheel speed, rotation, and/or number of revolutions made over time. Examples of the odometry sensor/system316 as described herein may include, but are not limited to, at least one of Infineon TLE4924/26/27/28C high-performance speed sensors, Infineon TL4941plusC(B) single chip differential Hall wheel-speed sensors, Infineon TL5041plusC Giant Magnetoresistance (GMR) effect sensors, Infineon TL family of magnetic sensors, EPC Model 25SP Accu-CoderPro™ incremental shaft encoders, EPC Model 30M compact incremental encoders with advanced magnetic sensing and signal processing technology, EPC Model 925 absolute shaft encoders, EPC Model 958 absolute shaft encoders, EPC Model MA36S/MA63S/SA36S absolute shaft encoders, Dynapar™ F18 commutating optical encoder, Dynapar™ HS35R family of phased array encoder sensors, other industry-equivalent odometry sensors and/or systems, and may perform change in position detection and/or determination functions using any known or future-developed standard and/or architecture.
The LIDAR sensor/system320 may include one or more components configured to measure distances to targets using laser illumination. In some embodiments, the LIDAR sensor/system320 may provide 3D imaging data of an environment around thevehicle100. The imaging data may be processed to generate a full 360-degree view of the environment around thevehicle100. The LIDAR sensor/system320 may include a laser light generator configured to generate a plurality of target illumination laser beams (e.g., laser light channels). In some embodiments, this plurality of laser beams may be aimed at, or directed to, a rotating reflective surface (e.g., a mirror) and guided outwardly from the LIDAR sensor/system320 into a measurement environment. The rotating reflective surface may be configured to continually rotate 360 degrees about an axis, such that the plurality of laser beams is directed in a full 360-degree range around thevehicle100. A photodiode receiver of the LIDAR sensor/system320 may detect when light from the plurality of laser beams emitted into the measurement environment returns (e.g., reflected echo) to the LIDAR sensor/system320. The LIDAR sensor/system320 may calculate, based on a time associated with the emission of light to the detected return of light, a distance from thevehicle100 to the illuminated target. In some embodiments, the LIDAR sensor/system320 may generate over 2.0 million points per second and have an effective operational range of at least 100 meters. Examples of the LIDAR sensor/system320 as described herein may include, but are not limited to, at least one of Velodyne® LiDAR™ HDL-64E 64-channel LIDAR sensors, Velodyne® LiDAR™ HDL-32E 32-channel LIDAR sensors, Velodyne® LiDAR™ PUCK™ VLP-16 16-channel LIDAR sensors, Leica Geosystems Pegasus:Two mobile sensor platform, Garmin® LIDAR-Lite v3 measurement sensor, Quanergy M8 LiDAR sensors, Quanergy S3 solid state LiDAR sensor, LeddarTech® LeddarVU compact solid state fixed-beam LIDAR sensors, other industry-equivalent LIDAR sensors and/or systems, and may perform illuminated target and/or obstacle detection in an environment around thevehicle100 using any known or future-developed standard and/or architecture.
TheRADAR sensors324 may include one or more radio components that are configured to detect objects/targets in an environment of thevehicle100. In some embodiments, theRADAR sensors324 may determine a distance, position, and/or movement vector (e.g., angle, speed, etc.) associated with a target over time. TheRADAR sensors324 may include a transmitter configured to generate and emit electromagnetic waves (e.g., radio, microwaves, etc.) and a receiver configured to detect returned electromagnetic waves. In some embodiments, theRADAR sensors324 may include at least one processor configured to interpret the returned electromagnetic waves and determine locational properties of targets. Examples of theRADAR sensors324 as described herein may include, but are not limited to, at least one of Infineon RASIC™ RTN7735PL transmitter and RRN7745PL/46PL receiver sensors, Autoliv ASP Vehicle RADAR sensors, Delphi L2C0051TR 77 GHz ESR Electronically Scanning Radar sensors, Fujitsu Ten Ltd. Automotive Compact 77 GHz 3D Electronic Scan Millimeter Wave Radar sensors, other industry-equivalent RADAR sensors and/or systems, and may perform radio target and/or obstacle detection in an environment around thevehicle100 using any known or future-developed standard and/or architecture.
Theultrasonic sensors328 may include one or more components that are configured to detect objects/targets in an environment of thevehicle100. In some embodiments, theultrasonic sensors328 may determine a distance, position, and/or movement vector (e.g., angle, speed, etc.) associated with a target over time. Theultrasonic sensors328 may include an ultrasonic transmitter and receiver, or transceiver, configured to generate and emit ultrasound waves and interpret returned echoes of those waves. In some embodiments, theultrasonic sensors328 may include at least one processor configured to interpret the returned ultrasonic waves and determine locational properties of targets. Examples of theultrasonic sensors328 as described herein may include, but are not limited to, at least one of Texas Instruments TIDA-00151 automotive ultrasonic sensor interface IC sensors, MaxBotix® MB8450 ultrasonic proximity sensor, MaxBotix® ParkSonar™-EZ ultrasonic proximity sensors, Murata Electronics MA40H1S-R open-structure ultrasonic sensors, Murata Electronics MA40S4R/S open-structure ultrasonic sensors, Murata Electronics MA58MF14-7N waterproof ultrasonic sensors, other industry-equivalent ultrasonic sensors and/or systems, and may perform ultrasonic target and/or obstacle detection in an environment around thevehicle100 using any known or future-developed standard and/or architecture.
Thecamera sensors332 may include one or more components configured to detect image information associated with an environment of thevehicle100. In some embodiments, thecamera sensors332 may include a lens, filter, image sensor, and/or a digital image processer. It is an aspect of the present disclosure thatmultiple camera sensors332 may be used together to generate stereo images providing depth measurements. Examples of thecamera sensors332 as described herein may include, but are not limited to, at least one of ON Semiconductor® MT9V024 Global Shutter VGA GS CMOS image sensors, Teledyne DALSA Falcon2 camera sensors, CMOSIS CMV50000 high-speed CMOS image sensors, other industry-equivalent camera sensors and/or systems, and may perform visual target and/or obstacle detection in an environment around thevehicle100 using any known or future-developed standard and/or architecture.
The infrared (IR)sensors336 may include one or more components configured to detect image information associated with an environment of thevehicle100. TheIR sensors336 may be configured to detect targets in low-light, dark, or poorly-lit environments. TheIR sensors336 may include an IR light emitting element (e.g., IR light emitting diode (LED), etc.) and an IR photodiode. In some embodiments, the IR photodiode may be configured to detect returned IR light at or about the same wavelength to that emitted by the IR light emitting element. In some embodiments, theIR sensors336 may include at least one processor configured to interpret the returned IR light and determine locational properties of targets. TheIR sensors336 may be configured to detect and/or measure a temperature associated with a target (e.g., an object, pedestrian, other vehicle, etc.). Examples ofIR sensors336 as described herein may include, but are not limited to, at least one of Opto Diode lead-salt IR array sensors, Opto Diode OD-850 Near-IR LED sensors, Opto Diode SA/SHA727 steady state IR emitters and IR detectors, FLIR® LS microbolometer sensors, FLIR® TacFLIR 380-HD InSb MWIR FPA and HD MWIR thermal sensors, FLIR® VOx 640×480 pixel detector sensors, Delphi IR sensors, other industry-equivalent IR sensors and/or systems, and may perform IR visual target and/or obstacle detection in an environment around thevehicle100 using any known or future-developed standard and/or architecture.
The driving vehicle sensors andsystems304 may also include a precipitation sensor. The precipitation sensor may be operable to detect or sense precipitation of a varying degree. Preferably, the precipitation sensor is capable of sensing a level of precipitation, allowing the system to accurately determine a measurement of rainfall or other precipitation.
The driving vehicle sensors andsystems304 may also include an external temperature sensor. The external temperature sensor may operate to determine an ambient temperature of the environment outside the vehicle. The external temperature sensor may operate in combination with the precipitation sensor to determine a likelihood of icy road conditions, snowfall, sleet, or rain.
The driving vehicle sensors andsystems304 may also include a vehicle vibration sensor. A vibration sensor may be operable to monitor an amount of vibration of the drivetrain or tires of the vehicle. The sensor may return a road-bumpiness factor to be used to survey factors such as road damage, potholes, road material, etc.
The driving vehicle sensors andsystems304 may also include a plurality of microphones placed inside and around the exterior of the vehicle. Microphones may be operable to measure external ambience noise levels as well as internal, cabin-noise.
The driving vehicle sensors andsystems304 may also include a passenger detection behavior sensor module. A passenger detection behavior sensor module may allow one or more passenger and driver behaviors to be sensed via, for example, one or more of a camera, passenger presence detector in the seats, or via any other sensor that is capable of determining whether or not a passenger, or a pet, is also present in the vehicle with the driver. The passenger detection and behavior sensor module allows, for example, one or more of the monitoring of the driver watching the road, falling asleep, texting, talking on the phone, being distracted by food or entertainment options, or in general is capable of monitoring any behavior of one or more of the drivers, passengers, pets or cargo in the vehicle.
In some embodiments, the driving vehicle sensors andsystems304 may includeother sensors338 and/or combinations of the sensors308-336 described above. Additionally or alternatively, one or more of the sensors308-336 described above may include one or more processors configured to process and/or interpret signals detected by the one or more sensors308-336. In some embodiments, the processing of at least some sensor information provided by the vehicle sensors andsystems304 may be processed by at least onesensor processor340. Raw and/or processed sensor data may be stored in asensor data memory344 storage medium. In some embodiments, thesensor data memory344 may store instructions used by thesensor processor340 for processing sensor information provided by the sensors andsystems304. In any event, thesensor data memory344 may be a disk drive, optical storage device, solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable, and/or the like.
In accordance with another exemplary embodiment, this data can be monitored remotely, via an app or on a PC, or the like, in real-time or near real-time, by a parent or other entity to keep track of a new driver's use of Automation Levels. As with the other embodiments discussed herein, any of the information that is monitored by the vehicle can be forwarded to this remote location for monitoring with this remote location optionally being able to provide feedback to the vehicle and the driver.
Thevehicle control system348 may receive processed sensor information from thesensor processor340 and determine to control an aspect of thevehicle100. Controlling an aspect of thevehicle100 may include presenting information via one ormore display devices372 associated with the vehicle, sending commands to one ormore computing devices368 associated with the vehicle, and/or controlling a driving operation of the vehicle. In some embodiments, thevehicle control system348 may correspond to one or more computing systems that control driving operations of thevehicle100 in accordance with the Levels of driving autonomy described above. In one embodiment, thevehicle control system348 may operate a speed of thevehicle100 by controlling an output signal to the accelerator and/or braking system of the vehicle. In this example, thevehicle control system348 may receive sensor data describing an environment surrounding thevehicle100 and, based on the sensor data received, determine to adjust the acceleration, power output, and/or braking of thevehicle100. Thevehicle control system348 may additionally control steering and/or other driving functions of thevehicle100.
Thevehicle control system348 may periodically monitor operation of the vehicle using one or more of the sensors as previously described. The frequency of the monitoring may be on the order of minutes, seconds, milliseconds, or some other time period. Different sensors may be monitored on the same or different frequencies. The frequency of monitoring may vary depending on current or recent sensor levels. For example, an internal microphone may be frequently reading a very low, or quiet, level. Such microphone may be monitored at a lower frequency as a result, while a precipitation sensor may have recently detected rain and may be monitored at a higher frequency as a result.
Thevehicle control system348 may communicate, in real-time, with the driving sensors andsystems304 forming a feedback loop. In particular, upon receiving sensor information describing a condition of targets in the environment surrounding thevehicle100, thevehicle control system348 may autonomously make changes to a driving operation of thevehicle100. Thevehicle control system348 may then receive subsequent sensor information describing any change to the condition of the targets detected in the environment as a result of the changes made to the driving operation. This continual cycle of observation (e.g., via the sensors, etc.) and action (e.g., selected control or non-control of vehicle operations, etc.) allows thevehicle100 to operate autonomously in the environment.
In some embodiments, the one or more components of the vehicle100 (e.g., the drivingvehicle sensors304,vehicle control system348,display devices372, etc.) may communicate across thecommunication network352 to one ormore entities356A-N via acommunications subsystem350 of thevehicle100. Embodiments of thecommunications subsystem350 are described in greater detail in conjunction withFIG. 5. For instance, thenavigation sensors308 may receive global positioning, location, and/or navigational information from anavigation source356A. In some embodiments, thenavigation source356A may be a global navigation satellite system (GNSS) similar, if not identical, to NAVSTAR GPS, GLONASS, EU Galileo, and/or the BeiDou Navigation Satellite System (BDS) to name a few.
In some embodiments, thevehicle control system348 may receive control information from one ormore control sources356B. The control source356 may provide vehicle control information including autonomous driving control commands, vehicle operation override control commands, and the like. The control source356 may correspond to an autonomous vehicle control system, a traffic control system, an administrative control entity, and/or some other controlling server. It is an aspect of the present disclosure that thevehicle control system348 and/or other components of thevehicle100 may exchange communications with the control source356 across thecommunication network352 and via thecommunications subsystem350.
Information associated with controlling driving operations of thevehicle100 may be stored in acontrol data memory364 storage medium. Thecontrol data memory364 may store instructions used by thevehicle control system348 for controlling driving operations of thevehicle100, historical control information, autonomous driving control rules, and the like. In some embodiments, thecontrol data memory364 may be a disk drive, optical storage device, solid-state storage device such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable, and/or the like.
In addition to the mechanical components described herein, thevehicle100 may include a number of user interface devices. The user interface devices receive and translate human input into a mechanical movement or electrical signal or stimulus. The human input may be one or more of motion (e.g., body movement, body part movement, in two-dimensional or three-dimensional space, etc.), voice, touch, and/or physical interaction with the components of thevehicle100. In some embodiments, the human input may be configured to control one or more functions of thevehicle100 and/or systems of thevehicle100 described herein. User interfaces may include, but are in no way limited to, at least one graphical user interface of a display device, steering wheel or mechanism, transmission lever or button (e.g., including park, neutral, reverse, and/or drive positions, etc.), throttle control pedal or mechanism, brake control pedal or mechanism, power control switch, communications equipment, etc.
FIG. 3B shows a block diagram of an embodiment ofinterior sensors337 for avehicle100. Theinterior sensors337 may be arranged into one or more groups, based at least partially on the function of theinterior sensors337. For example, the interior space of avehicle100 may include environmental sensors, a user interface sensors, and/or safety sensors. Additionally or alternatively, there may be sensors associated with various devices inside the vehicle (e.g., smart phones, tablets, mobile computers, wearables, etc.)
Environmental sensors may comprise sensors configured to collect data relating to the internal environment of avehicle100. Examples of environmental sensors may include one or more of, but are not limited to: oxygen/air sensors301,temperature sensors303,humidity sensors305, light/photo sensors307, and more. The oxygen/air sensors301 may be configured to detect a quality or characteristic of the air in theinterior space108 of the vehicle100 (e.g., ratios and/or types of gasses comprising the air inside thevehicle100, dangerous gas levels, safe gas levels, etc.).Temperature sensors303 may be configured to detect temperature readings of one or more objects, users216, and/or areas of avehicle100.Humidity sensors305 may detect an amount of water vapor present in the air inside thevehicle100. The light/photo sensors307 can detect an amount of light present in thevehicle100. Further, the light/photo sensors307 may be configured to detect various levels of light intensity associated with light in thevehicle100.
User interface sensors may comprise sensors configured to collect data relating to one or more users (e.g., a driver and/or passenger(s)) in avehicle100. As can be appreciated, the user interface sensors may include sensors that are configured to collect data from users216 in one or more areas of thevehicle100. Examples of user interface sensors may include one or more of, but are not limited to:infrared sensors309,motion sensors311,weight sensors313,wireless network sensors315,biometric sensors317, camera (or image)sensors319,audio sensors321, and more.
Infrared sensors309 may be used to measure IR light irradiating from at least one surface, user, or another object in thevehicle100. Among other things, theInfrared sensors309 may be used to measure temperatures, form images (especially in low light conditions), identify users216, and even detect motion in thevehicle100.
Themotion sensors311 may detect motion and/or movement of objects inside thevehicle104. Optionally, themotion sensors311 may be used alone or in combination to detect movement. For example, a user may be operating a vehicle100 (e.g., while driving, etc.) when a passenger in the rear of thevehicle100 unbuckles a safety belt and proceeds to move about thevehicle10. In this example, the movement of the passenger could be detected by themotion sensors311. In response to detecting the movement and/or the direction associated with the movement, the passenger may be prevented from interfacing with and/or accessing at least some of the vehicle control features. As can be appreciated, the user may be alerted of the movement/motion such that the user can act to prevent the passenger from interfering with the vehicle controls. Optionally, the number of motion sensors in a vehicle may be increased to increase an accuracy associated with motion detected in thevehicle100.
Weight sensors313 may be employed to collect data relating to objects and/or users in various areas of thevehicle100. In some cases, theweight sensors313 may be included in the seats and/or floor of avehicle100. Optionally, thevehicle100 may include awireless network sensor315. Thissensor315 may be configured to detect one or more wireless network(s) inside thevehicle100. Examples of wireless networks may include, but are not limited to, wireless communications utilizing Bluetooth®, Wi-Fi™, ZigBee, IEEE 802.11, and other wireless technology standards. For example, a mobile hotspot may be detected inside thevehicle100 via thewireless network sensor315. In this case, thevehicle100 may determine to utilize and/or share the mobile hotspot detected via/with one or more other devices associated with thevehicle100.
Biometric sensors317 may be employed to identify and/or record characteristics associated with a user. It is anticipated thatbiometric sensors317 can include at least one of image sensors, IR sensors, fingerprint readers, weight sensors, load cells, force transducers, heart rate monitors, blood pressure monitors, and the like as provided herein.
Thecamera sensors319 may record still images, video, and/or combinations thereof.Camera sensors319 may be used alone or in combination to identify objects, users, and/or other features, inside thevehicle100. Two ormore camera sensors319 may be used in combination to form, among other things, stereo and/or three-dimensional (3D) images. The stereo images can be recorded and/or used to determine depth associated with objects and/or users in avehicle100. Further, thecamera sensors319 used in combination may determine the complex geometry associated with identifying characteristics of a user. For example, thecamera sensors319 may be used to determine dimensions between various features of a user's face (e.g., the depth/distance from a user's nose to a user's cheeks, a linear distance between the center of a user's eyes, and more). These dimensions may be used to verify, record, and even modify characteristics that serve to identify a user. Thecamera sensors319 may also be used to determine movement associated with objects and/or users within thevehicle100. It should be appreciated that the number of image sensors used in avehicle100 may be increased to provide greater dimensional accuracy and/or views of a detected image in thevehicle100.
Theaudio sensors321 may be configured to receive audio input from a user of thevehicle100. The audio input from a user may correspond to voice commands, conversations detected in thevehicle100, phone calls made in thevehicle100, and/or other audible expressions made in thevehicle100.Audio sensors321 may include, but are not limited to, microphones and other types of acoustic-to-electric transducers or sensors. Optionally, the interioraudio sensors321 may be configured to receive and convert sound waves into an equivalent analog or digital signal. The interioraudio sensors321 may serve to determine one or more locations associated with various sounds in thevehicle100. The location of the sounds may be determined based on a comparison of volume levels, intensity, and the like, between sounds detected by two or more interioraudio sensors321. For instance, afirst audio sensor321 may be located in a first area of thevehicle100 and asecond audio sensor321 may be located in a second area of thevehicle100. If a sound is detected at a first volume level by the first audio sensors321 A and a second, higher, volume level by the secondaudio sensors321 in the second area of thevehicle100, the sound may be determined to be closer to the second area of thevehicle100. As can be appreciated, the number of sound receivers used in avehicle100 may be increased (e.g., more than two, etc.) to increase measurement accuracy surrounding sound detection and location, or source, of the sound (e.g., via triangulation, etc.).
The safety sensors may comprise sensors configured to collect data relating to the safety of a user and/or one or more components of avehicle100. Examples of safety sensors may include one or more of, but are not limited to: forcesensors325,mechanical motion sensors327,orientation sensors329,restraint sensors331, and more.
Theforce sensors325 may include one or more sensors inside thevehicle100 configured to detect a force observed in thevehicle100. One example of aforce sensor325 may include a force transducer that converts measured forces (e.g., force, weight, pressure, etc.) into output signals.Mechanical motion sensors327 may correspond to encoders, accelerometers, damped masses, and the like. Optionally, themechanical motion sensors327 may be adapted to measure the force of gravity (i.e., G-force) as observed inside thevehicle100. Measuring the G-force observed inside avehicle100 can provide valuable information related to a vehicle's acceleration, deceleration, collisions, and/or forces that may have been suffered by one or more users in thevehicle100.Orientation sensors329 can include accelerometers, gyroscopes, magnetic sensors, and the like that are configured to detect an orientation associated with thevehicle100.
Therestraint sensors331 may correspond to sensors associated with one or more restraint devices and/or systems in avehicle100. Seatbelts and airbags are examples of restraint devices and/or systems. As can be appreciated, the restraint devices and/or systems may be associated with one or more sensors that are configured to detect a state of the device/system. The state may include extension, engagement, retraction, disengagement, deployment, and/or other electrical or mechanical conditions associated with the device/system.
The associateddevice sensors323 can include any sensors that are associated with a device in thevehicle100. As previously stated, typical devices may include smart phones, tablets, laptops, mobile computers, and the like. It is anticipated that the various sensors associated with these devices can be employed by thevehicle control system348. For example, a typical smart phone can include, an image sensor, an IR sensor, audio sensor, gyroscope, accelerometer, wireless network sensor, fingerprint reader, and more. It is an aspect of the present disclosure that one or more of these associateddevice sensors323 may be used by one or more subsystems of thevehicle100.
FIG. 3C illustrates a GPS/Navigation subsystem(s)302. The navigation subsystem(s)302 can be any present or future-built navigation system that may use location data, for example, from the Global Positioning System (GPS), to provide navigation information or control thevehicle100. The navigation subsystem(s)302 can include several components, such as, one or more of, but not limited to: a GPS Antenna/receiver331, alocation module333, amaps database335, etc. Generally, the several components or modules331-335 may be hardware, software, firmware, computer readable media, or combinations thereof.
A GPS Antenna/receiver331 can be any antenna, GPS puck, and/or receiver capable of receiving signals from a GPS satellite or other navigation system. The signals may be demodulated, converted, interpreted, etc. by the GPS Antenna/receiver331 and provided to thelocation module333. Thus, the GPS Antenna/receiver331 may convert the time signals from the GPS system and provide a location (e.g., coordinates on a map) to thelocation module333. Alternatively, thelocation module333 can interpret the time signals into coordinates or other location information.
Thelocation module333 can be the controller of the satellite navigation system designed for use in thevehicle100. Thelocation module333 can acquire position data, as from the GPS Antenna/receiver331, to locate the user orvehicle100 on a road in the unit'smap database335. Using theroad database335, thelocation module333 can give directions to other locations along roads also in thedatabase335. When a GPS signal is not available, thelocation module333 may apply dead reckoning to estimate distance data fromsensors304 including one or more of, but not limited to, a speed sensor attached to the drive train of thevehicle100, a gyroscope, an accelerometer, etc. Additionally or alternatively, thelocation module333 may use known locations of Wi-Fi hotspots, cell tower data, etc. to determine the position of thevehicle100, such as by using time difference of arrival (TDOA) and/or frequency difference of arrival (FDOA) techniques.
Themaps database335 can include any hardware and/or software to store information about maps, geographical information system (GIS) information, location information, etc. Themaps database335 can include any data definition or other structure to store the information. Generally, themaps database335 can include a road database that may include one or more vector maps of areas of interest. Street names, street numbers, house numbers, and other information can be encoded as geographic coordinates so that the user can find some desired destination by street address. Points of interest (waypoints) can also be stored with their geographic coordinates. For example, a point of interest may include speed cameras, fuel stations, public parking, and “parked here” (or “you parked here”) information. Themaps database335 may also include road or street characteristics, for example, speed limits, location of stop lights/stop signs, lane divisions, school locations, etc. The map database contents can be produced or updated by a server connected through a wireless system in communication with the Internet, even as thevehicle100 is driven along existing streets, yielding an up-to-date map.
FIG. 4 shows one embodiment of theinstrument panel400 of thevehicle100. Theinstrument panel400 ofvehicle100 comprises asteering wheel410, a vehicle operational display420 (e.g., configured to present and/or display driving data such as speed, measured air resistance, vehicle information, entertainment information, etc.), one or more auxiliary displays424 (e.g., configured to present and/or display information segregated from theoperational display420, entertainment applications, movies, music, etc.), a heads-up display434 (e.g., configured to display any information previously described including, but in no way limited to, guidance information such as route to destination, or obstacle warning information to warn of a potential collision, or some or all primary vehicle operational data such as speed, resistance, etc.), a power management display428 (e.g., configured to display data corresponding to electric power levels ofvehicle100, reserve power, charging status, etc.), and an input device432 (e.g., a controller, touchscreen, or other interface device configured to interface with one or more displays in the instrument panel or components of thevehicle100. Theinput device432 may be configured as a joystick, mouse, touchpad, tablet, 3D gesture capture device, etc.). In some embodiments, theinput device432 may be used to manually maneuver a portion of thevehicle100 into a charging position (e.g., moving a charging plate to a desired separation distance, etc.).
While one or more of displays ofinstrument panel400 may be touch-screen displays, it should be appreciated that the vehicle operational display may be a display incapable of receiving touch input. For instance, theoperational display420 that spans across aninterior space centerline404 and across both afirst zone408A and asecond zone408B may be isolated from receiving input from touch, especially from a passenger. In some cases, a display that provides vehicle operation or critical systems information and interface may be restricted from receiving touch input and/or be configured as a non-touch display. This type of configuration can prevent dangerous mistakes in providing touch input where such input may cause an accident or unwanted control.
In some embodiments, one or more displays of theinstrument panel400 may be mobile devices and/or applications residing on a mobile device such as a smart phone. Additionally or alternatively, any of the information described herein may be presented to one ormore portions420A-N of theoperational display420 orother display424,428,434. In one embodiment, one or more displays of theinstrument panel400 may be physically separated or detached from theinstrument panel400. In some cases, a detachable display may remain tethered to the instrument panel.
Theportions420A-N of theoperational display420 may be dynamically reconfigured and/or resized to suit any display of information as described. Additionally or alternatively, the number ofportions420A-N used to visually present information via theoperational display420 may be dynamically increased or decreased as required, and are not limited to the configurations shown.
FIG. 5 illustrates a hardware diagram of communications componentry that can be optionally associated with thevehicle100 in accordance with embodiments of the present disclosure.
The communications componentry can include one or more wired or wireless devices such as a transceiver(s) and/or modem that allows communications not only between the various systems disclosed herein but also with other devices, such as devices on a network, and/or on a distributed network such as the Internet and/or in the cloud and/or with other vehicle(s).
Thecommunications subsystem350 can also include inter- and intra-vehicle communications capabilities such as hotspot and/or access point connectivity for any one or more of the vehicle occupants and/or vehicle-to-vehicle communications.
Additionally, and while not specifically illustrated, thecommunications subsystem350 can include one or more communications links (that can be wired or wireless) and/or communications busses (managed by the bus manager574), including one or more of CANbus, OBD-II, ARCINC 429, Byteflight, CAN (Controller Area Network), D2B (Domestic Digital Bus), FlexRay, DC-BUS, IDB-1394, IEBus, I2C, ISO 9141-1/-2, J1708, J1587, J1850, J1939, ISO 11783,Keyword Protocol 2000, LIN (Local Interconnect Network), MOST (Media Oriented Systems Transport), Multifunction Vehicle Bus, SMARTwireX, SPI, VAN (Vehicle Area Network), and the like or in general any communications protocol and/or standard(s).
The various protocols and communications can be communicated one or more of wirelessly and/or over transmission media such as single wire, twisted pair, fiber optic, IEEE 1394, MIL-STD-1553, MIL-STD-1773, power-line communication, or the like. (All of the above standards and protocols are incorporated herein by reference in their entirety).
As discussed, thecommunications subsystem350 enables communications between any if the inter-vehicle systems and subsystems as well as communications with non-collocated resources, such as those reachable over a network such as the Internet.
Thecommunications subsystem350, in addition to well-known componentry (which has been omitted for clarity), includes interconnected elements including one or more of: one ormore antennas504, an interleaver/deinterleaver508, an analog front end (AFE)512, memory/storage/cache516, controller/microprocessor520,MAC circuitry522, modulator/demodulator524, encoder/decoder528, a plurality ofconnectivity managers534,558,562,566,GPU540,accelerator544, a multiplexer/demultiplexer552,transmitter570,receiver572 andwireless radio578 components such as a Wi-Fi PHY/Bluetooth® module580, a Wi-Fi/BT MAC module584,transmitter588 andreceiver592. The various elements in thedevice350 are connected by one or more links/busses5 (not shown, again for sake of clarity).
Thedevice350 can have onemore antennas504, for use in wireless communications such as multi-input multi-output (MIMO) communications, multi-user multi-input multi-output (MU-MIMO) communications Bluetooth®, LTE, 4G, 5G, Near-Field Communication (NFC), etc., and in general for any type of wireless communications. The antenna(s)504 can include, but are not limited to one or more of directional antennas, omnidirectional antennas, monopoles, patch antennas, loop antennas, microstrip antennas, dipoles, and any other antenna(s) suitable for communication transmission/reception. In an exemplary embodiment, transmission/reception using MIMO may require particular antenna spacing. In another exemplary embodiment, MIMO transmission/reception can enable spatial diversity allowing for different channel characteristics at each of the antennas. In yet another embodiment, MIMO transmission/reception can be used to distribute resources to multiple users for example within thevehicle100 and/or in another vehicle.
Antenna(s)504 generally interact with the Analog Front End (AFE)512, which is needed to enable the correct processing of the received modulated signal and signal conditioning for a transmitted signal. TheAFE512 can be functionally located between the antenna and a digital baseband system in order to convert the analog signal into a digital signal for processing and vice-versa.
Thesubsystem350 can also include a controller/microprocessor520 and a memory/storage/cache516. Thesubsystem350 can interact with the memory/storage/cache516 which may store information and operations necessary for configuring and transmitting or receiving the information described herein. The memory/storage/cache516 may also be used in connection with the execution of application programming or instructions by the controller/microprocessor520, and for temporary or long term storage of program instructions and/or data. As examples, the memory/storage/cache520 may comprise a computer-readable device, RAM, ROM, DRAM, SDRAM, and/or other storage device(s) and media.
The controller/microprocessor520 may comprise a general purpose programmable processor or controller for executing application programming or instructions related to thesubsystem350. Furthermore, the controller/microprocessor520 can perform operations for configuring and transmitting/receiving information as described herein. The controller/microprocessor520 may include multiple processor cores, and/or implement multiple virtual processors. Optionally, the controller/microprocessor520 may include multiple physical processors. By way of example, the controller/microprocessor520 may comprise a specially configured Application Specific Integrated Circuit (ASIC) or other integrated circuit, a digital signal processor(s), a controller, a hardwired electronic or logic circuit, a programmable logic device or gate array, a special purpose computer, or the like.
Thesubsystem350 can further include atransmitter570 andreceiver572 which can transmit and receive signals, respectively, to and from other devices, subsystems and/or other destinations using the one ormore antennas504 and/or links/busses. Included in thesubsystem350 circuitry is the medium access control orMAC Circuitry522.MAC circuitry522 provides for controlling access to the wireless medium. In an exemplary embodiment, theMAC circuitry522 may be arranged to contend for the wireless medium and configure frames or packets for communicating over the wired/wireless medium.
Thesubsystem350 can also optionally contain a security module (not shown). This security module can contain information regarding but not limited to, security parameters required to connect the device to one or more other devices or other available network(s), and can include WEP or WPA/WPA-2 (optionally+AES and/or TKIP) security access keys, network keys, etc. The WEP security access key is a security password used by Wi-Fi networks. Knowledge of this code can enable a wireless device to exchange information with an access point and/or another device. The information exchange can occur through encoded messages with the WEP access code often being chosen by the network administrator. WPA is an added security standard that is also used in conjunction with network connectivity with stronger encryption than WEP.
In some embodiments, thecommunications subsystem350 also includes aGPU540, anaccelerator544, a Wi-Fi/BT/BLE PHY module580 and a Wi-Fi/BT/BLE MAC module584 andwireless transmitter588 andreceiver592. In some embodiments, theGPU540 may be a graphics processing unit, or visual processing unit, comprising at least one circuit and/or chip that manipulates and changes memory to accelerate the creation of images in a frame buffer for output to at least one display device. TheGPU540 may include one or more of a display device connection port, printed circuit board (PCB), a GPU chip, a metal-oxide-semiconductor field-effect transistor (MOSFET), memory (e.g., single data rate random-access memory (SDRAM), double data rate random-access memory (DDR) RAM, etc., and/or combinations thereof), a secondary processing chip (e.g., handling video out capabilities, processing, and/or other functions in addition to the GPU chip, etc.), a capacitor, heatsink, temperature control or cooling fan, motherboard connection, shielding, and the like.
Thevarious connectivity managers534,558,562,566 manage and/or coordinate communications between thesubsystem350 and one or more of the systems disclosed herein and one or more other devices/systems. Theconnectivity managers534,558,562,566 include acharging connectivity manager534, a vehicledatabase connectivity manager558, a remote operatingsystem connectivity manager562, and asensor connectivity manager566.
The chargingconnectivity manager534 can coordinate not only the physical connectivity between thevehicle100 and a charging device/vehicle, but can also communicate with one or more of a power management controller, one or more third parties and optionally a billing system(s). As an example, thevehicle100 can establish communications with the charging device/vehicle to one or more of coordinate interconnectivity between the two (e.g., by spatially aligning the charging receptacle on the vehicle with the charger on the charging vehicle) and optionally share navigation information. Once charging is complete, the amount of charge provided can be tracked and optionally forwarded to, for example, a third party for billing. In addition to being able to manage connectivity for the exchange of power, the chargingconnectivity manager534 can also communicate information, such as billing information to the charging vehicle and/or a third party. This billing information could be, for example, the owner of the vehicle, the driver/occupant(s) of the vehicle, company information, or in general any information usable to charge the appropriate entity for the power received.
The vehicledatabase connectivity manager558 allows the subsystem to receive and/or share information stored in the vehicle database. This information can be shared with other vehicle components/subsystems and/or other entities, such as third parties and/or charging systems. The information can also be shared with one or more vehicle occupant devices, such as an app (application) on a mobile device the driver uses to track information about thevehicle100 and/or a dealer or service/maintenance provider. In general any information stored in the vehicle database can optionally be shared with any one or more other devices optionally subject to any privacy or confidentially restrictions.
The remote operatingsystem connectivity manager562 facilitates communications between thevehicle100 and any one or more autonomous vehicle systems. These communications can include one or more of navigation information, vehicle information, other vehicle information, weather information, occupant information, or in general any information related to the remote operation of thevehicle100.
Thesensor connectivity manager566 facilitates communications between any one or more of the vehicle sensors (e.g., the driving vehicle sensors andsystems304, etc.) and any one or more of the other vehicle systems. Thesensor connectivity manager566 can also facilitate communications between any one or more of the sensors and/or vehicle systems and any other destination, such as a service company, app, or in general to any destination where sensor data is needed.
In accordance with one exemplary embodiment, any of the communications discussed herein can be communicated via the conductor(s) used for charging. One exemplary protocol usable for these communications is Power-line communication (PLC). PLC is a communication protocol that uses electrical wiring to simultaneously carry both data, and Alternating Current (AC) electric power transmission or electric power distribution. It is also known as power-line carrier, power-line digital subscriber line (PDSL), mains communication, power-line telecommunications, or power-line networking (PLN). For DC environments in vehicles PLC can be used in conjunction with CAN-bus, LIN-bus over power line (DC-LIN) and DC-BUS.
The communications subsystem can also optionally manage one or more identifiers, such as an IP (internet protocol) address(es), associated with the vehicle and one or other system or subsystems or components therein. These identifiers can be used in conjunction with any one or more of the connectivity managers as discussed herein.
FIG. 6 illustrates a block diagram of acomputing environment600 that may function as the servers, user computers, or other systems provided and described herein. Thecomputing environment600 includes one or more user computers, or computing devices, such as avehicle computing device604, acommunication device608, and/or more612. Thecomputing devices604,608,612 may include general purpose personal computers (including, merely by way of example, personal computers, and/or laptop computers running various versions of Microsoft Corp.'s Windows® and/or Apple Corp.'s Macintosh® operating systems) and/or workstation computers running any of a variety of commercially-available UNIX® or UNIX-like operating systems. Thesecomputing devices604,608,612 may also have any of a variety of applications, including for example, database client and/or server applications, and web browser applications. Alternatively, thecomputing devices604,608,612 may be any other electronic device, such as a thin-client computer, Internet-enabled mobile telephone, and/or personal digital assistant, capable of communicating via anetwork352 and/or displaying and navigating web pages or other types of electronic documents. Although theexemplary computing environment600 is shown with two computing devices, any number of user computers or computing devices may be supported.
Thecomputing environment600 may also include one ormore servers614,616. In this example,server614 is shown as a web server andserver616 is shown as an application server. Theweb server614, which may be used to process requests for web pages or other electronic documents from computingdevices604,608,612. Theweb server614 can be running an operating system including any of those discussed above, as well as any commercially-available server operating systems. Theweb server614 can also run a variety of server applications, including SIP (Session Initiation Protocol) servers, HTTP(s) servers, FTP servers, CGI servers, database servers, Java servers, and the like. In some instances, theweb server614 may publish operations available operations as one or more web services.
Thecomputing environment600 may also include one or more file and or/application servers616, which can, in addition to an operating system, include one or more applications accessible by a client running on one or more of thecomputing devices604,608,612. The server(s)616 and/or614 may be one or more general purpose computers capable of executing programs or scripts in response to thecomputing devices604,608,612. As one example, theserver616,614 may execute one or more web applications. The web application may be implemented as one or more scripts or programs written in any programming language, such as Java™, C, C#®, or C++, and/or any scripting language, such as Perl, Python, or TCL, as well as combinations of any programming/scripting languages. The application server(s)616 may also include database servers, including without limitation those commercially available from Oracle®, Microsoft®, Sybase®, IBM® and the like, which can process requests from database clients running on acomputing device604,608,612.
The web pages created by theserver614 and/or616 may be forwarded to acomputing device604,608,612 via a web (file)server614,616. Similarly, theweb server614 may be able to receive web page requests, web services invocations, and/or input data from acomputing device604,608,612 (e.g., a user computer, etc.) and can forward the web page requests and/or input data to the web (application)server616. In further embodiments, theserver616 may function as a file server. Although for ease of description,FIG. 6 illustrates aseparate web server614 and file/application server616, those skilled in the art will recognize that the functions described with respect toservers614,616 may be performed by a single server and/or a plurality of specialized servers, depending on implementation-specific needs and parameters. Thecomputer systems604,608,612, web (file)server614 and/or web (application)server616 may function as the system, devices, or components described inFIGS. 1-6.
Thecomputing environment600 may also include adatabase618. Thedatabase618 may reside in a variety of locations. By way of example,database618 may reside on a storage medium local to (and/or resident in) one or more of thecomputers604,608,612,614,616. Alternatively, it may be remote from any or all of thecomputers604,608,612,614,616, and in communication (e.g., via the network352) with one or more of these. Thedatabase618 may reside in a storage-area network (“SAN”) familiar to those skilled in the art. Similarly, any necessary files for performing the functions attributed to thecomputers604,608,612,614,616 may be stored locally on the respective computer and/or remotely, as appropriate. Thedatabase618 may be a relational database, such as Oracle 20i®, that is adapted to store, update, and retrieve data in response to SQL-formatted commands.
FIG. 7 illustrates one embodiment of acomputer system700 upon which the servers, user computers, computing devices, or other systems or components described above may be deployed or executed. Thecomputer system700 is shown comprising hardware elements that may be electrically coupled via abus704. The hardware elements may include one or more central processing units (CPUs)708; one or more input devices712 (e.g., a mouse, a keyboard, etc.); and one or more output devices716 (e.g., a display device, a printer, etc.). Thecomputer system700 may also include one ormore storage devices720. By way of example, storage device(s)720 may be disk drives, optical storage devices, solid-state storage devices such as a random access memory (“RAM”) and/or a read-only memory (“ROM”), which can be programmable, flash-updateable and/or the like.
Thecomputer system700 may additionally include a computer-readablestorage media reader724; a communications system728 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.); and workingmemory736, which may include RAM and ROM devices as described above. Thecomputer system700 may also include aprocessing acceleration unit732, which can include a DSP, a special-purpose processor, and/or the like.
The computer-readablestorage media reader724 can further be connected to a computer-readable storage medium, together (and, optionally, in combination with storage device(s)720) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. Thecommunications system728 may permit data to be exchanged with a network and/or any other computer described above with respect to the computer environments described herein. Moreover, as disclosed herein, the term “storage medium” may represent one or more devices for storing data, including read only memory (ROM), random access memory (RAM), magnetic RAM, core memory, magnetic disk storage mediums, optical storage mediums, flash memory devices and/or other machine readable mediums for storing information.
Thecomputer system700 may also comprise software elements, shown as being currently located within a workingmemory736, including anoperating system740 and/orother code744. It should be appreciated that alternate embodiments of acomputer system700 may have numerous variations from that described above. For example, customized hardware might also be used and/or particular elements might be implemented in hardware, software (including portable software, such as applets), or both. Further, connection to other computing devices such as network input/output devices may be employed.
Examples of theprocessors340,708 as described herein may include, but are not limited to, at least one of Qualcomm® Snapdragon®800 and801, Qualcomm® Snapdragon®620 and615 with 4G LTE Integration and 64-bit computing, Apple® A7 processor with 64-bit architecture, Apple® M7 motion coprocessors, Samsung® Exynos® series, the Intel® Core™ family of processors, the Intel® Xeon® family of processors, the Intel® Atom™ family of processors, the Intel Itanium® family of processors, Intel® Core® i5-4670K and i7-4770K 22 nm Haswell, Intel® Core® i5-3570K 22 nm Ivy Bridge, the AMD® FX™ family of processors, AMD® FX-4300, FX-6300, and FX-8350 32 nm Vishera, AMD® Kaveri processors, Texas Instruments® Jacinto C6000™ automotive infotainment processors, Texas Instruments® OMAP™ automotive-grade mobile processors, ARM® Cortex™-M processors, ARM® Cortex-A and ARM926EJ-S™ processors, other industry-equivalent processors, and may perform computational functions using any known or future-developed standard, instruction set, libraries, and/or architecture.
The disclosure presented herein provides a means for a vehicle system to detect a need for a change in the Driver Level as discussed herein, automatically initiate a change in the Driver Level or suggest the manual-initiation of a suggested Driver Level to a user, track the use of each Driver Level, and/or inform third-party entities regarding the use of each Driver Level.
Automation Levels
As discussed above, the vehicle may include a number of sensors, devices, and/or systems that are capable of assisting in driving operations. The vehicle sensors and systems may be selected and/or configured to suit a level of operation associated with the vehicle. Among other things, the sensors and systems may be part of one or more advanced driver assistance systems (ADAS) associated with a vehicle. In any event, the sensors and systems may be used to provide driving assistance at any level of operation (e.g., ranging between fully-manual to fully-autonomous operations and variations there-between, etc.) as described herein.
The various levels of vehicle control and/or operation may be described as corresponding to a level of autonomy associated with a vehicle for vehicle driving operations. For instance, as discussed above, atAutomation Level 0, or fully-manual driving operations, a driver (e.g., a human driver) may be responsible for all the driving control operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle.Automation Level 0 may be referred to as a “No Automation” or a “Fully-Manual” level.
AtAutomation Level 1, the vehicle may be responsible for a limited number of the driving operations associated with the vehicle, while the driver is still responsible for most driving control operations. An example of a vehicle operating atAutomation Level 1 may include a vehicle in which the throttle control and/or braking operations may be controlled by the vehicle (e.g., cruise control operations, etc.).Automation Level 1 may be referred to as a “Driver Assistance” level.
AtAutomation Level 2, the vehicle may collect information (e.g., via one or more driving assistance systems, sensors, etc.) about an environment of the vehicle (e.g., surrounding area, roadway, traffic, ambient conditions, etc.) and use the collected information to control driving operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle. In aLevel 2 Automation Level, the driver may be required to perform other aspects of driving operations not controlled by the vehicle.Automation Level 2 may be referred to as a “Partial Automation” level. It should be appreciated that Automation Levels 0-2 all involve the driver monitoring in some way the driving operations of the vehicle.
AtAutomation Level 3, the driver may be separated from controlling all the driving operations of the vehicle except when the vehicle makes a request for the operator to act or intervene in controlling one or more driving operations. In other words, the driver may be separated from controlling the vehicle unless the driver is required to take over for the vehicle.Level 3 may be referred to as a “Conditional Automation” level.
AtAutomation Level 4, the driver may be separated from controlling all the driving operations of the vehicle and the vehicle may control driving operations even when a user fails to respond to a request to intervene.Automation Level 4 may be referred to as a “High Automation” level.
AtAutomation Level 5, the vehicle can control all the driving operations associated with the vehicle in all driving modes. The vehicle inLevel 5 may continually monitor traffic, vehicular, roadway, and/or environmental conditions while driving the vehicle. InAutomation Level 5, there is no human driver interaction required in any driving mode. Accordingly,Automation Level 5 may be referred to as a “Full Automation” level. It should be appreciated that in Automation Levels 3-5 the vehicle, and/or one or more automated driving systems associated with the vehicle, monitors the driving operations of the vehicle and the driving environment.
The levels of driving operation may be manually selected or shifted by the driver through via a user interface in the vehicle.
The levels of driving operation may also be selected automatically for a driver by a processor of the vehicle. This automatic selection may be executed based on a number of factors. For example, a risk score may be assigned and adjusted during travel. The risk score may be preassigned to particular stretches of road based on GPS information. The risk score may be adjusted based on information gathered from onboard sensors. For example, if precipitation is detected, the risk score for the current time may be increased. Likewise, if heavy traffic is detected, the risk score may be increased. The risk score may be adjusted based on information gathered via an internet connection. For example, a connection to Google Maps may show heavy traffic, or a connection to a weather website may inform the onboard computer of rain, ice or snow.
When a processor of the vehicle selects a driving operation level for the driver, the vehicle may automatically change into that driving operation level. Alternatively, the vehicle may present the driver with a notification suggesting such a change. For example, a user interface display may display a window suggesting the change along with a button for the driver to quickly select the new driving level.
The Automation Level used by the vehicle may be tracked and recorded and stored for statistical analysis or other purposes as discussed herein. The vehicle system may be operable to detect particular scenarios in which a particular Automation Level may be desirable.
By automatically switching between Automation Levels or by suggesting to a driver a particular Automation Level, a vehicle may be operated in a more efficient and safe manner. For example, a driver may be unaware of his inability to properly control the vehicle. Vehicles requiring manual initiation of an ADA system will likely result in an under-utilization of ADA capabilities. On the other hand, if a vehicle forces a driver into autonomous mode, the vehicle may be over-utilizing its ADA capabilities, severely impacting a driver's enjoyment of driving the vehicle.
As a first example, in good weather and on straight and flat roads or smooth roads with easy curves, a driver may enjoy using the vehicle in a fully manual mode, orAutomation Level 0 as discussed above.
AtAutomation Level 0, or fully-manual driving operations, a driver (e.g., a human driver) may be responsible for all the driving control operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle.Automation Level 0 may be referred to as a “No Automation” or a “Fully-Manual” level. As an example, if a driver is operating a vehicle at a higher Automation Level,e.g. Automation Level 4, in a high risk scenario, e.g. down a hill during a rainstorm, if the sensors onboard the vehicle detect the road has flattened out and the rain has stopped, the vehicle system may suggest a change toAutomation Level 0 in which the Driver may regain full control of the vehicle.
As a second example, in some less than ideal situations the vehicle may suggest or automatically change toAutomation Level 1. AtAutomation Level 1, the vehicle may be responsible for a limited number of the driving operations associated with the vehicle, while the driver is still responsible for most driving control operations. An example of a vehicle operating atAutomation Level 1 may include a vehicle in which the throttle control and/or braking operations may be controlled by the vehicle (e.g., cruise control operations, etc.).Automation Level 1 may be referred to as a “Driver Assistance” level.
Automation Level 1 may be triggered when a scenario such as a steep incline or steep decline is detected via the onboard sensors. If a driver of a vehicle usingAutomation Level 0 approaches a steep hill, the vehicle may suggest or automatically switch toAutomation Level 1. Whether the vehicle automatically switches or merely suggests the change may depend on a number of factors, for example, a user may set settings or the vehicle system may be operable to detect the severity of the situation. As an example, a vehicle travelling at a high speed towards a steep incline, as detected by the onboard sensors, may determine a driver will lack sufficient time to review the suggestion and the vehicle system may determine the optimal response would be to automatically switch to the new Automation Level.
In some situations, the vehicle system may determineAutomation Level 2 is optimal based on a determined scenario. As discussed above, atAutomation Level 2, the vehicle may collect information (e.g., via one or more driving assistance systems, sensors, etc.) about an environment of the vehicle (e.g., surrounding area, roadway, traffic, ambient conditions, etc.) and use the collected information to control driving operations (e.g., steering, accelerating, braking, etc.) associated with the vehicle. In aLevel 2 Automation Level, the driver may be required to perform aspects of driving operations not controlled by the vehicle.Automation Level 2 may be referred to as a “Partial Automation” level. It should be appreciated that Automation Levels 0-2 all involve the driver monitoring in some way the driving operations of the vehicle.
In other situations, the vehicle system may determineAutomation Level 3 is optimal based on a determined scenario. AtAutomation Level 3, the driver may be separated from controlling all the driving operations of the vehicle except when the vehicle makes a request for the operator to act or intervene in controlling one or more driving operations. In other words, the driver may be separated from controlling the vehicle unless the driver is required to take over for the vehicle.Level 3 may be referred to as a “Conditional Automation” level.
In other situations, the vehicle system may determineAutomation Level 4 is optimal based on a determined scenario. AtAutomation Level 4, the driver may be separated from controlling all the driving operations of the vehicle and the vehicle may control driving operations even when a user fails to respond to a request to intervene.Automation Level 4 may be referred to as a “High Automation” level.
Finally, in extreme scenarios, a driver may be provided a suggestion to switch into fully autonomous mode, orAutomation Level 5. AtAutomation Level 5, a vehicle may take over all aspects of driving and operate without any expectation of input from a driver. In the most extreme scenarios, a vehicle may automatically switch intoAutomation Level 5, without first suggesting the switch to the user.
AtAutomation Level 5, the vehicle can control all the driving operations associated with the vehicle in all driving modes. The vehicle inLevel 5 may continually monitor traffic, vehicular, roadway, and/or environmental conditions while driving the vehicle. InAutomation Level 5, there is no human driver interaction required in any driving mode. Accordingly,Automation Level 5 may be referred to as a “Full Automation” level. It should be appreciated that in Automation Levels 3-5 the vehicle, and/or one or more automated driving systems associated with the vehicle, monitors the driving operations of the vehicle and the driving environment.
An optimum Automation Level may be determined by assigning a risk score to particular sensor measurements and detected situations. For example, a straight and flat road as detected by onboard sensors may be assigned a risk score of 0, while moderate rain as detected by onboard precipitation sensors may be assigned a risk score of 15. Other sources of information may be used to gather data affecting risk scores. For example, an internet connection may access a weather information source and determine roads are icy. Alternatively, an internet connection may access a traffic information source and determine, in combination with information from the GPS, that the vehicle is travelling through heavy traffic. Icy roads may be assigned, for example, a risk score of 40, while heavy traffic may be assigned a risk score of 20. The magnitude of various risk scores may be adjusted based on user preference via an onboard user interface. By totaling the risk scores as determined by the onboard sensors and other sources of information, a total risk score may be calculated. As illustrated inFIG. 12, further described below, this risk score may be used to select an optimum Automation Level.
The vehicle system may, after determining an optimal Automation Level, determine whether to suggest a change to the driver or automatically change to the optimal Automation Level. In some embodiments, a change from a higher Automation Level to a lower Automation Level may never be made automatically. For example, a vehicle travelling inAutomation Level 5 may not automatically change toAutomation Level 0 as a driver may not be aware of the situation. In those circumstances, a driver may be presented with a notification on a HUD display stating the optimum Automation Level and a button may be presented to the driver allowing for a quick change into the optimum Automation Level.
As illustrated inFIG. 12, further described below, the risk score may be used both to select an optimum Automation Level as well as determine whether to automatically switch to the optimum Automation Level or to merely suggest to the user to make the switch. The risk scores and levels amounting to a particular optimum Automation Level may be customized by a driver based on his or her personal preferences.
Typically a large increase in risk score would result in an auto-switch, regardless of the total risk score. For example, switching from risk score 20 to risk score 52, based on weather and noise levels in the car, while the chart shows a reaction of suggest AL5, the system may simply auto-switch. Smaller increases, for example from risk score 50 to risk score 56 would likely be a suggestion as opposed to auto-switch.
Database and Communication
The use by a driver of Automation Levels may be tracked and recorded by the vehicle system. For example, a database may be created and stored on a memory device onboard the vehicle.
In some embodiments, upon vehicle startup, a database entry may be created, recording a timestamp, a Driver Identification (Driver ID), an Automation Level, and a change type (e.g., vehicle startup, a manual change made by the driver, a suggested change accepted by the driver, a suggested changed declined by the driver, or an automatic change initiated by the vehicle system). Other data may be included in each database entry, for example, vehicle manufacturer information and/or driver insurance information.
FIG. 8 illustrates an exemplaryvehicle monitoring system800. Thevehicle monitoring system800 may include avehicle820, aninsurance entity840, one or moreoptional servers801 andstorage802, optionally one or moreother vehicles806, and optionally authorities, all of which can be interconnected via one or more wired orwireless links804 and communication network(s)803. Alternatively, or additionally, amanufacturer805 may communicate with thevehicle820 via the communication network(s)803 in order to receive analytical data regarding use of Automation Levels as well as communicate updates to the vehicle system, etc.
Thevehicle820 may be as illustrated inFIG. 1 and comprise one or more of the driving vehicle sensors as described inFIG. 3A-C.
The insurance company orentity840 includes one ormore servers842 andstorage844 all interconnected via one or more links. Theservers801 andstorage802 can be associated with any of the exemplary entities that are capable of accessing information in the vehicle and/or the insurance company being law enforcement agencies, other insurance entities, other drivers, or the like. As will be appreciated, however, some of the information stored in the various storage locations may be sensitive and therefore access thereto may be limited.
In accordance with an optional exemplary embodiment, thevehicle820 can transmit its information to one or more other entities, such as theinsurance company840, at a predetermined time during the day, such as during low network-traffic times in the middle of the night, and/or utilize, for example, a high-speed network communication link associated with the driver's home for uploading the data. For example, upon thevehicle820 returning to the driver's home, the communication module as described inFIG. 3A can detect that the driver's home Wi-Fi is range and commence the appropriate procedures to logon to the Wi-Fi and begin transmission of one or more portions of the data stored in storage to another entity, such asinsurance company840.
In accordance with another exemplary embodiment, instead of this information being forwarded to the other entity, the reputation information is stored in storage onboard thevehicle820, and at a later time, and in cooperation with the communication module illustrated inFIG. 3A, sent to, for example, a central repository that can optionally be queried by one or more entities. The information stored in the central repository could also optionally be pushed to the vehicle that the reputation information was associated with and optionally stored in that vehicle's storage.
In some embodiments, a database of Automation Levels may be shared with a third party. For example, it may be beneficial for data to be shared with an insurance company.
FIG. 9 illustrates anexample database900 which may be used to monitor the use of automated driving modes. Such a database may be stored in memory or memory storage on the vehicle or stored remotely and updated by the vehicle system via a network connection.
Adatabase900 may comprise information including aDriver ID901 used to identify a driver of the vehicle. The driver may be identified automatically based on information such as weight, driving characteristics, a retina scan, fingerprint data, voice profile, or other biometric data, or manually via a login system, such as a button pressed by the driver identifying him or herself.
Thedatabase900 may further compriseManufacturer ID information902 which may be used by third parties to identify a make and/or model of the vehicle.
Thedatabase900 may further comprise atimestamp903 indicating the day and/or time of a change in driving mode. Such information may be used to determine the amount of time spent in each driving mode.
Thedatabase900 may further comprise an entry for a level information904 indicating the level of automation or driving level initiated at the time of the entry.
Thedatabase900 may further comprise an entry for atype information905 indicating a type of switch in the driving level. For example, upon the vehicle starting up, a database entry may be generated indicating the driving level being used at the time the vehicle starts. An “AUTO” entry may signify the switch was made automatically, while a “MANUAL” entry may indicate the entry was made manually by the driver. The “TYPE” information may also include whether a suggested change was accepted or declined by the driver. For example, an entry may state a level and under a column for TYPE, the information may state “Declined.” This may be used by a manufacturer to determine whether the suggestions are being accepted by users, and by insurance companies to determine whether the drivers are operating vehicles in the most safe manner.
Thedatabase900 may further comprise an entry for aninsurance ID906. For example, each driver may have a personal insurance policy. By including an insurance ID information with each database entry, an insurance company or other third party may more easily identify relevant information.
Thedatabase900 may further comprise an entry for acontext907 of the driving level change. For example, upon vehicle startup, the context may merely show that the change was made due to a startup of the vehicle. Other changes may be labelled for historical and analytical purposes, such as inentry910, discussed below, when a level was auto changed toautomation level 3 due to cabin noise as indicated in the context column. Insurance companies may use this information to determine whether a driver was in some way responsible for the automatic or suggested change in automation level and whether the driver accepted the suggested change.
Thedatabase900 may comprise a number of database entries, forexample database entry910 may show that a driver “ALEX” started the car atdriver level 2 on Feb. 2, 2015 at 12:47 and that the driver “ALEX” has an insurance policy associated with the insurance ID of 813243.Database entry911 may show that driver “ALEX” manually switched intodriver level 0, or “fully-manual” at 12:49 as a result of user preference.Database entry920 may show that a driver “BILLY” started the vehicle on Feb. 3, 2015 at 7:52 in the fully manual driver level.
FIGS. 10A and 10B illustrate exemplary data packets which may be sent from a vehicle via a network to a third party to update an externally stored database.
For example inFIG. 10A, apacket1010 may comprise adriver ID entry1011, amanufacturer ID entry1012, atimestamp entry1013, adriver level1014, aswitch type entry1015, adriver context1018 of the switch, aninsurance ID entry1016, and possiblyentries1017 for other information.
FIG. 10B illustrates anexemplary packet1020 for use by a manufacturer or an insurance company representing a manufacturer. Such apacket1020 may operate to update a database without “Driver ID” information for privacy reasons. Such apacket1020 may comprise amanufacturer ID entry1022, atimestamp entry1023, a driver level1024, aswitch type entry1025, aninsurance ID entry1026 and possiblyentries1027 for other information.
FIGS. 11A and 11B illustrate exemplary databases which may be stored and accessible by third parties. Such databases may comprise data associated with the driving modes/levels used by a number of drivers of a number of vehicles. For example,FIG. 11A illustrates an exemplary database which may comprise information associated with adriver ID entry1111, avehicle ID entry1112, atimestamp entry1113, adriver level1114, aswitch type entry1115, and aninsurance ID entry1116.
FIG. 11B illustrates an exemplary database associated with information regarding a vehicle manufacturer insurance policy. Such a database may comprise information associated with amanufacturer ID entry1121, avehicle ID entry1122, atimestamp entry1123, adriver level1124, aswitch type entry1125, aninsurance ID entry1126.
Data may be collected such that roads which appear to be normal may be identified as especially dangerous in one way or another.FIG. 12 illustrates an example table1200 which may be used to determine a response to a vehicle entering a segment of road with a particular risk score. For example, the table may comprise data fields for arisk score range1201, anoptimum driving level1202, and areaction1203. For example, a vehicle determining a current road segment is within a range of risk scores from 0-10 (a low risk category of road) may suggest to a driver to switch to an automation level of 0, or fully manual. If a vehicle system determines a current road segment is within a higher category of risk, e.g. 31-35, the vehicle system may suggest the driver switch toautomation level 3. If a vehicle system determines the current category of risk is very high, e.g. 56-60, the system may determine the proper reaction is to automatically switch to automation level 5 (i.e. fully automated).
The risk scores may be calculated by measuring readings from a number of onboard sensors either alone or in combination with information from other sources.FIG. 13 illustrates an exemplary table1300 of current sensor readings showing a number ofsensors1301 and their associatedmeasurements1302. As illustrated inFIG. 13, a sensor ID of S3 reads 4.2. Each sensor may have its own range of thresholds and risk categories. For example, a sensor monitoring internal cabin noise of a vehicle may have a number of ranges such as 0-10 indicating a quiet cabin, 11-20 indicating a typically noisy cabin, and 21-30 indicating an unusually noisy cabin. The range 0-10 may be assigned a risk modifier of +0, while the range 11-20 may be assigned a risk modifier of +10 and the range 21-30 may be assigned a risk modifier of +20. Such modifiers may be applied to an overall risk score used to determine the optimum driving level.
FIGS. 14A and 14B illustrate exemplary embodiments of user interface presentations displaying driver level switch information on a display. Such a presentation may be displayed on a display as for example one or more of the displays illustrated inFIG. 4.
As illustrated inFIG. 14A, when a vehicle system determines a new driver level should be suggested to the driver, aUI display1400 may appear on a screen in view of the driver. Via theUI display1400, the driver may be able to select abutton1401 to initiate the suggested driver level.
As illustrated inFIG. 14B, when a vehicle system determines a new driver level should be automatically initiated, a UI display1410 may appear on a screen in view of the driver. Via the UI display1410, the driver may be able to select abutton1411 to cancel the automatic initiation of the determined driver level.
FIG. 15 illustrates an example scenario of avehicle1510 driving through anenvironment1500. The vehicle system may determine particular stretches of aroad1520 may be more or less risky for a driver of avehicle1510. For example, a flat portion of road,e.g. segment1501, may be a low risk portion, while a portion of road comprising a steep incline,e.g. segment1502, may be a higher risk portion. Risk levels may be calculated from a number of information sources, for example onboard sensors as described herein may provide information to be used alone or in combination to information gathered from external sources, such as a maps database or a weather information source.
A vehicle system of avehicle1510 may divide a road into segments (1501-1506) and calculate a risk score based on a variety of factors. For example, a segment ofroad1520 determined to be moderately steep and to be in a rainstorm,e.g. segment1505, may be assigned a higher risk score than a relatively flat portion of road with no identifiable extreme weather,e.g. segment1503.
With reference toFIG. 16, an onboardautonomous driving system1600 in thevehicle100 is depicted that employs one or more of the foregoing features. Theautonomous driving system1600 includes anautonomous driving agent1604 in communication with an automaticvehicle location system1608,sensor connectivity manager1666 and associated first, second, . . .Mth sensors1612A-M,user interface1620, andbehavior selector system1678, and having access to the sensedobject information1670, sensedoccupant information1616, learnedautonomous driving information1674, vehicle-relatedinformation1682, exteriorenvironmental information1686, andnavigation information1624.
The automaticvehicle location system1608 is in communication with the GPS/Nav sensor308 to acquire current vehicle position coordinates, which position coordinates are then correlated by the map database manager1612 to a position on a road. Dead reckoning using distance data from one or more sensors attached to the drive train, agyroscope sensor312 and/or anaccelerometer sensor312 can be used for greater reliability, as GPS signal loss and/or multipath can occur due to themap database manager1812, illustrated inFIG. 18, such as due to a cellular signal dead or low signal strength area or passage of the vehicle through a tunnel.
The first, second, . . . mth sensors1612a-mcan collect the sensedobject information1670, sensedoccupant information1616, vehicle-relatedinformation1682, and exteriorenvironmental information1686. The first, second, . . .mth sensors1612A-M include the sensors orsystems116A-K,112,312,316,320,324,328,332,336, and338 discussed above, a camera to capture images of interior objects (such as occupants), a seat belt sensor to determine seat belt settings (e.g., closed or open), a seat weight sensor settings, a microphone to capture audio within the vehicle (such as occupant comments which are then input into a speech-to-text engine to determine or identify one or more words spoken by an occupant), a wireless network node that receives unique identifiers of occupant portable computing devices (which identifiers can be associated with a corresponding occupant to identify the occupant), and the like. In some applications, a portable computing device of the occupant can be employed as a sensor that tracks occupant behavior while the occupant is in the vehicle. The information collected by the sensors is received by thesensor connectivity manager1666 and provided to theautonomous driving agent1604 and/or to thecontrol source356B.
Theuser interface1620 receives user commands and other input, such as user selections, preferences, and settings that are used in configuring, determining, and selecting vehicle parameters, settings, or operations, such as navigation route selection, acceptable rates of acceleration and deceleration, acceptable minimum inter-object spacing distance, and acceptable steering lines, and stimuli or events triggering associated rule-based actions. Theuser interface1620 can be one or more ofvehicle instrument panel400, vehicleoperational display420, heads-updisplay434, andpower management display428. It can also be a portable computational or communication device of an occupant.
Thebehavior selector1678 determines which behavior logic and other autonomous driving information is to be employed by the vehicle. Thebehavior selector1678 can determine therefore which locally stored (e.g., in working memory736) learned behavior or otherautonomous driving information1674 is to be executed or implemented and which identified or learned behavior of other autonomous driving information is to be executed or implemented.
Theautonomous driving agent1604 controls the driving behavior of the vehicle, such as whether to execute an accelerate event, acceleration rate, decelerate event, deceleration rate, steering angle selected relative to a selected reference axis, and selected inter-object spacing magnitude in response to the current vehicle location, sensedobject information1670, sensedoccupant information1616, vehicle-relatedinformation1682, exteriorenvironmental information1686, andnavigation information1624 in accordance with the autonomous driving information selected by thebehavior selector1678 and implemented by theautonomous driving agent1604. In a typical implementation, the autonomous driving agent, based on feedback from certain sensors, specifically the LIDAR and radar sensors positioned around the circumference of the vehicle, constructs a three-dimensional map in spatial proximity to the vehicle that enables the autonomous driving agent to identify and spatially locate animate and inanimate objects. Other sensors, such as inertial measurement units, gyroscopes, wheel encoders, sonar sensors, motion sensors to perform odometry calculations with respect to nearby moving objects, and exterior facing cameras (e.g., to perform computer vision processing) can provide further contextual information for generation of a more accurate three-dimensional map. The navigation information is combined with the three-dimensional map to provide short, intermediate and long range course tracking and route selection. The autonomous driving system processes real-world information as well as GPS data, and driving speed to determine accurately the precise position of each vehicle, down to a few centimeters all while making corrections for nearby animate and inanimate objects.
Theautonomous driving agent1604 processes in real time the aggregate mapping information and models behavior of occupants of the current vehicle and other nearby animate objects relying on the behavior selector's selected autonomous driving information. The autonomous driving information can be generically applied to multiple types, models, and manufacturer of vehicles or specific to a specific type, model, or manufacturer of vehicle. The applicability of the respective set of identified autonomous driving information can be stored as part of the data structures comprising the identified autonomous driving information.
In some applications, thebehavior selector1678 selects between learned and identified autonomous driving information for a nearby object in the sensedobject information1670. The selected autonomous driving information is used to model the behavior of the nearby object and therefore determining a behavior of the selected vehicle to be implemented by the autonomous driving agent.
The autonomous driving agent, based on the learned and autonomous driving information, issues appropriate commands regarding implementing an accelerate event, acceleration rate, deceleration event, deceleration rate, inter-object spacing distance, and steering angle magnitude. While some commands are hard-coded into the vehicle, such as stopping at red lights and stop signs, other responses are learned and recorded by the control source or autonomous driving agent based on previous driving experiences.
The learning ability of the control source is based on monitoring the behavior of multiple vehicles and of the autonomous driving agent is based on monitoring the behavior of the selected vehicle hosting the autonomous driving agent. Examples of learned behavior include a slow-moving or stopped vehicle or emergency vehicle in a right lane suggests a higher probability that the car following it will attempt to pass, a pot hole, rock, or other foreign object in the roadway equates to a higher probability that a driver will swerve to avoid it, and traffic congestion in one lane means that other drivers moving in the same direction will have a higher probability of passing in an adjacent lane or by driving on the shoulder.
With reference toFIG. 17, theautonomous driving agent1604, in step1700, detects a stimulus, such as any set forth above, and commences execution of the instructions. Exemplary stimuli include, for example, detection of a change in any of the previously sensed vehicle location, sensedobject information1670, sensedoccupant information1616, vehicle-relatedinformation1682, exteriorenvironmental information1686, and/ornavigation information1624 and/or in learnedautonomous driving information1674.
In step1704, theautonomous driving agent1604 determines from the automaticvehicle location system1608 the current geographical location of thevehicle100.
In step1708, theautonomous driving agent1604 collects vehicle-relatedinformation1682 from thesensor connectivity manager1666.
Instep1712, theautonomous driving agent1604 collects occupant-relatedinformation1616, such as the information set forth above. This includes, for example, the identities of the vehicle occupants, the roles of each identified occupant (e.g., driver or passenger), a current activity of each occupant (e.g., operating vehicle, operating portable computing device, interacting with an on board vehicle user interface, and the like), gaze detection of an occupant, and the like.
In step1716, theautonomous driving agent1604 collects sensed exteriorenvironmental information1686 from thesensor connectivity manager1666.
In step1720, the autonomous driving agent908 collects sensed animate andinanimate object information1670 from thesensor connectivity manager1666.
In step1724, theautonomous driving agent1608 forwards all or part of the foregoing collected information to the navigation or control source as appropriate. As noted, how much of the collected information is transmitted can depend on whether or not the vehicle of the autonomous driving agent is the master or slave vehicle in the ad hoc network comprising the vehicle. In general, the types of collected information unique to the vehicle, including sensedoccupant information1616, vehicle location, and vehicle-relatedinformation1682 is always transmitted by the vehicle, whether acting as a master or slave vehicle, while the types of collected information that are common to the vehicles in the network, including sensedobject information1670 andenvironmental information1686, is generally transmitted by the master vehicle and not the slave vehicles.
With reference toFIGS. 3 and 17-18, thevehicle100 is in wireless communication, vianetwork352, withnavigation source356A comprising amap database manager1812 and associatedmap database1816 and thecontrol source356B having an associatedcontrol source database1824.
Themap database manager1812 andmap database1816 interact with the navigation sensor308 (which is part of the automaticvehicle location system1608 discussed below) in thevehicle100 to provide navigation or map output to anautonomous driving agent1604 in thevehicle100.
Themap database manager1812 stores and recalls navigation information from themap database1816.
With reference toFIG. 19, an embodiment of amethod1900 for dynamically creating database entries based on changes in driving level is illustrated. Generally, themethod1900 starts with astart operation1910. Themethod1900 can include more or fewer steps or can arrange the order of the steps differently than those shown inFIG. 19. Themethod1900 can be executed as a set of computer-executable instructions executed by a computer system or processor and encoded or stored on a computer-readable medium. In other configurations, the method1000 may be executed by a series of components, circuits, gates, etc. created in a hardware device, such as a System-on-Chip (SOC), Application Specific Integrated Circuit (ASIC), and/or a Field Programmable Gate Array (FPGA). Hereinafter, themethod1900 shall be explained with reference to the systems, components, circuits, modules, software, data structures, signaling processes, models, environments, vehicles, etc. described in conjunction withFIGS. 1-18.
Upon vehicle startup, or otherwise an initiation of the database entry generation system, the method may begin with a start process instep1910. At this point, thevehicle control system348 may determine a current vehicle autonomous driving level atstep1920. For example, upon vehicle startup, the vehicle may be in fully-manual mode. Before a driver is able to switch into an autonomous mode, the vehicle system may first determine the current/initial driving level.
At step1930 a database entry may be created. For example, upon determining a current vehicle driving level, the vehicle system may determine associated information, e.g. a driver ID, a current timestamp, a manufacturer ID, a driver insurance ID, a change type (after startup the type may be “StartUp” or “Initiation”, etc.), and/or a vehicle ID. The database entry may be initially stored on memory onboard the vehicle, or immediately transferred via a communication system to a network location. The database entry may be transmitted to a number of entities and used as a part of a number of databases. For example, an entry may be accessed by an insurance company collecting information on the driver, or a manufacturer collecting information on the vehicle itself, or an insurance company collecting information on the manufacturer and the vehicle. The database entry may be one of any of the types shown inFIGS. 9-13.
Thevehicle control system348 may at step1940 wait until a change in the driving level has been made. This change may be a result of an automatic change or a manual change by the user either at the result of a suggestion by thevehicle control system348 or a preference of the user. Upon a change in the driving level being made, the method returns to step1920 in which the current vehicle driving level is determined. Atstep1930, when a database entry is created, thevehicle control system348 may note in the database entry the type of change made. For example, whether the change was made automatically or manually and whether a manual change was the result of a suggestion or simply a user's choice.
Atstep1950, the vehicle system may determine whether a change was made. If a change is determined to have been made, the method may return to step1920, in which the current (newly changed) vehicle driving level is determined. If no change is determined to have been made instep1950, the method may move to step1960 in which the vehicle system may determine whether the drive has ended. If the drive has ended, the method may move to step1970 and end the method. Alternatively, if the drive has not ended, the method may return to step1940 and continue waiting for a change in driving level.
An embodiment of amethod2000 for dynamically changing or suggesting a change of driving level based on a change in driving context may be as shown inFIG. 20. Generally, themethod2000 begins with astart operation2010. Themethod2000 can include more or fewer steps or can arrange the order of the steps differently than those shown inFIG. 20. Themethod2000 can be executed as a set of computer-executable instructions executed by a computer system or processor and encoded or stored on a computer readable medium. In other configurations, themethod2000 may be executed by a series of components, circuits, gates, etc. created in a hardware device, such as a System-on-Chip (SOC), Application Specific Integrated Circuit (ASIC), and/or a Field Programmable Gate Array (FPGA). Hereinafter, themethod2000 shall be explained with reference to the systems, components, circuits, modules, software, data structures, signaling processes, models, environments, vehicles, etc. described in conjunction withFIGS. 1-19.
Atstep2020, the vehicle system may monitor sensor data and external information via the communication system to detect a change in driving context. The driving context may comprise any relevant information which may affect driving conditions. For example, road conditions (including, but not limited to, road surface quality, road incline/decline, road curves), weather conditions (including, but not limited to, ice, rain, sleet, mud, snow), time of day factors (including, but not limited to, sunset, bright light, night-time, darkness), vehicle cabin conditions (including, but not limited to, driver health, driver sobriety, driver sleepiness, cabin noise level, cabin light level). The information used to gather information relevant to driving context may be sourced from any number of the sensors described above, or from external sources, such as a weather database or navigation system database.
Atstep2030, the vehicle system may determine the driver context. This step may comprise determining a level of driver context, for example a level of driver distraction, or a level of inclement weather. The system may also attribute the change in overall driver context to a particular sensor or source of database information. For example, if interior cabin noise is the factor causing a change in overall driving context, the vehicle system may note this determination to be stored in a database entry along with the driver level change information.
Atstep2040, the vehicle system may determine whether the optimum vehicle driving level has changed as a result of the change in driver context. For example, the driver context may be measured as a risk score. Risk scores may be split into a number of threshold ranges making up a number of risk score categories. For example as illustrated inFIG. 12 a risk score of 9 may be in a different risk score category from a risk score of 11. The vehicle system may determine the optimum vehicle driving level based on the current driver context. This determination may be made based on a current risk score associated with the current driver context. For example, as illustrated inFIG. 12, if a current driver context is associated with a risk score of 31, the vehicle system may determine the optimum vehicle driving level isautomation level 3.
Atstep2050, the vehicle system may determine whether the vehicle driving level should be changed to the optimum vehicle driving level automatically, or whether a suggestion should be made to the driver. This determination may also be made based on a current risk score associated with the current driver context.
This determination may also be made on the current driving level as compared to the determined optimum driving level. For example, if a driver is operating a vehicle inautomation level 1 and the vehicle system determinesautomation level 4 is optimum, the vehicle system may determine that an increase in driving level of more than one level should be made automatically.
Alternatively, if the current driving level is atautomation level 2 and the vehicle system determines the optimum driving level isautomation level 3, the vehicle system may determine the change should only be suggested to the driver.
Alternatively, or in addition to the above, if the optimum driving level is below the current level, i.e. the optimum driving level is a level with less automation than the current driving level, the vehicle system may determine the ideal response is a suggestion to the driver as opposed to automatically switching to a lower driver level.
If the vehicle system determines instep2050 that the change should be made automatically, atstep2080, the vehicle system may automatically change the vehicle driving level to the optimum driving level. Such a change may be made without any notification made to the driver. Alternatively, a UI display may be presented to the driver notifying him or her of the automatic change.
If the vehicle system determines instep2050 that the change should only be suggested to the driver, atstep2070, the vehicle system may suggest the vehicle driving level to the driver via a user interface menu as discussed above.
Following both ofsteps2070 and2080, the vehicle system may return to step2020 and wait for a second change in driving context and repeat the method.
Themethod2000 may include a ending process, wherein following a detection of a change in optimum driving level atstep2040, the system may determine whether the drive has ended in astep2090. If the drive is not determined to have ended, the method may proceed to step2050. If, alternatively, the drive is determined to have ended atstep2090, the method may end atstep2099.
Maps are commonly stored as graphs, or two or three dimensional arrays of objects with attributes of location and category, where some common categories include parks, roads, cities, and the like. A map database commonly represents a road network along with associated features, with the road network corresponding to a selected road network model. Commonly, such a model comprises basic elements (nodes, links and areas) of the road network and properties of those elements (location coordinates, shape, addresses, road class, speed range, etc.). The basic elements are referred to as features and the properties as attributes. Other information associated with the road network can also be included, such as points of interest, waypoints, building shapes, and political boundaries. Geographic Data Files (GDF) is a standardized description of such a model. Each node within a map graph represents a point location of the surface of the Earth and can be represented by a pair of longitude (lon) and latitude (lat) coordinates. Each link can represent a stretch of road between two nodes, and be represented by a line segment (corresponding to a straight section of road) or a curve having a shape that is generally described by intermediate points (called shape points) along the link. However, curves can also be represented by a combination of centroid (point or node), with a radius, and polar coordinates to define the boundaries of the curve. Shape points can be represented by longitude and latitude coordinates as are nodes, but shape points generally do not serve the purpose of connecting links, as do nodes. Areas are generally two- or three-dimensional shapes that represent things like parks, cities, blocks and are defined by their boundaries (usually formed by a closed polygon).
Auxiliary data can be attached by themap database manager1812 to the features and/or attributes. The auxiliary data can be not only various navigational functions, involving active safety, and driver assistance but also identified autonomous driving information relating to an autonomous vehicle or other object to be sensed by passing autonomous vehicles, such as observed behaviors of other autonomous vehicles or an object at the map location, to be applied at the corresponding geographic locations. The auxiliary data, for example, can comprise identified embedded autonomous driving information, such as commands to the receiving autonomous driving agent, requests to the receiving autonomous driving agent, warnings to the receiving autonomous driving agent, (e.g., of potential hazards such as potholes, hazardous objects in or near the roadway, poor roadway conditions (such as icy or wet), heavy traffic warning, emergency vehicle or personnel-related warning, vehicle wreck warning, road construction warning, bridge or roadway out warning, high water or flood warning, and the like) logic, instructions or rules to be employed by the receiving autonomous driving agent, references, identifiers, observed behaviors, or links to locally or remote stored autonomous driving rules, logic or instructions to be employed the receiving autonomous driving agent, in the navigation information provided by thenavigation source356A.
The identified autonomous driving information embedded in the navigation information as auxiliary data can include temporal, spatial, or event-limitations learned by the control system monitoring the behaviors of multiple autonomous vehicles. The identified autonomous driving information can be limited in application by temporal limitations (e.g., identified behavior application start and end times), spatial limitations (e.g., sets of geographical coordinates defining an area in or location at which the identified autonomous driving information is to be applied), or event limitations (e.g., a defined event (such as a weather storm event, ambient temperature range (such as below freezing), set of road conditions, etc.) during which the identified autonomous driving information is to be applied but after which the autonomous driving information is not to be applied).
The auxiliary data fields can include a flag to indicate the existence of such identified embedded autonomous driving information relating to an autonomous vehicle or other object to be sensed by passing autonomous vehicles. When the flag is set, the autonomous vehicle driving agent accesses the field(s) dedicated to identified embedded autonomous driving information and, when the flag is not set, the autonomous vehicle driving agent does not access the field(s) as they are deemed not to contain identified autonomous driving information.
The functions and other auxiliary data can be cross-referenced with the entities and attributes of themain map database1816. Since the auxiliary data is not necessarily compiled with themain map database1816 some other means is generally needed to establish cross-referencing, or attaching of the auxiliary data. The common approaches are function-specific referencing tables and generic referencing.
Function-specific referencing tables provide a technique for attaching function-specific data, such as embedded identified autonomous driving information relating to an autonomous vehicle or other object to be sensed by passing autonomous vehicles, to themap database1816. Such a table can be collaboratively produced by thenavigation source356A and controlsource356B to support a specific function or class of functions involving location-based behaviors or embedded identified autonomous driving information. It will generally include a list of map elements of a specific type (e.g., links, intersections, point-of-interest locations, etc.) along with identifying attributes (e.g., street names, longitude/latitude coordinates, etc.). Additionally, each entry in the table can be assigned a unique identifier. As a practical matter, the result will represent a small subset of the elements of the given type that are available in the map databases and will include those that are more important to the application area.
Generic referencing attaches data, such as observed behaviors and embedded identified autonomous driving information relating to an autonomous vehicle or other object to be sensed by passing autonomous vehicles, to any map database by discovering reference information through a form of map matching. The function-specific data items can be assigned to elements, such as points, links or areas, that likely only approximate the corresponding map elements in aspecific map database1816. A search of the map database can be made for the best fit. To enhance the search process, neighboring elements can be strategically appended to each given element to help ensure that the correct solution is found in each case. For example, if the map element is a link connecting two intersections, then one or both cross streets could be appended for the sake of the search thereby making an incorrect match unlikely.
By way of illustration, the Navigation Data Standard (NDS) is a standardized format for automotive-grade navigation databases. NDS uses the SQLLite Database File Format. An NDS database can have several product databases, and each product database may be divided further into update regions. This concept supports a flexible and consistent versioning concept for NDS databases and makes it possible to integrate databases from different database suppliers into one NDS database. The inner structure of databases complying with Navigation Data Standard is further characterized by building blocks, levels and the content itself. An update region represents a geographic area in a database that can be subject to an update. All navigation data in an NDS database belongs a specific building block. Each building block addresses specific functional aspects of navigation, such as names for location input, routing, or map display.
Alternatively, thecontrol source356B can push the identified autonomous driving information directly to the autonomous driving agent based on the selected vehicle location and not incorporate or reference the identified autonomous driving information in the navigation information.
Thecontrol source356B and controlsource database1824 interact with theautonomous driving agent1604 in eachvehicle100 to receive various types of information regarding vehicle behavior and the behaviors of nearby objects, such as other vehicles and pedestrians, identify specific behaviors and other autonomous driving information, and directly or indirectly provide the autonomous driving information to selected vehicles for use in determining and selecting various autonomous vehicle commands or settings, particularly acceleration rate of the vehicle, deceleration (e.g., braking) rate of the vehicle, steering angle of the vehicle (e.g., for turns and lane changes), and inter-object spacing (e.g., end-to-end or side-to-side spacing between the vehicle and a nearby object).
The map and controlsource databases1816 and1824 can be constructed according to any data model, whether conceptual, logical, or physical, such as a flat model, hierarchical model, network model, relational model, object-relational model, star schema, entity-relationship model, geographic model, generic model, semantic model, and the like.
Each learned or identified behavior (or other autonomous driving information) is described typically by output behavior and associated with a corresponding set of limitations. By way of illustration, the output behavior is typically a driving behavior of the car, such as use a specified lane, slow to a selected speed, gently apply brakes, turn lights on, use inter-vehicle spacing of X meters, transition from a lower level of automation to a higher level or vice versa, and the like. The learned or identified behavior can be further described with reference to a set of sensed inputs.
The sensed inputs can vary by corresponding object type but include one or more of geographic or spatial vehicle location, sensed object information1670 (with examples being animate objects such as animals and attributes thereof (e.g., animal type, current spatial location, current activity, etc.), and pedestrians and attributes thereof (e.g., identity, age, sex, current spatial location, current activity, etc.), and the like and inanimate objects and attributes thereof such as other vehicles (e.g., current vehicle state or activity (parked or in motion or level of automation currently employed), occupant or operator identity, vehicle type (truck, car, etc.), vehicle spatial location, etc.), curbs (topography and spatial location), potholes (size and spatial location), lane division markers (type or color and spatial locations), signage (type or color and spatial locations such as speed limit signs, yield signs, stop signs, and other restrictive or warning signs), traffic signals (e.g., red, yellow, blue, green, etc.), buildings (spatial locations), walls (height and spatial locations), barricades (height and spatial location), and the like), sensed occupant information916 (with examples being number and identities of occupants and attributes thereof (e.g., seating position, age, sex, gaze direction, biometric information, authentication information, preferences, historic behavior patterns (such as current or historical user driving behavior, historical user route, destination, and waypoint preferences), nationality, ethnicity and race, language preferences (e.g., Spanish, English, Chinese, etc.), current occupant role (e.g., operator or passenger), occupant priority ranking (e.g., vehicle owner is given a higher ranking than a child occupant), electronic calendar information (e.g., Outlook™), medical information and history, etc.), selected vehicle-related information1682 (with examples being vehicle manufacturer, type, model, year of manufacture, current geographic location, current vehicle state or activity (parked or in motion or level of automation currently employed), vehicle specifications and capabilities, currently sensed operational parameters for the vehicle, and other information), exterior environmental information1686 (with examples being road type (pavement, gravel, brick, etc.), road condition (e.g., wet, dry, icy, snowy, etc.), weather condition (e.g., outside temperature, pressure, humidity, wind speed and direction, etc.), ambient light conditions (e.g., time-of-day), degree of development of vehicle surroundings (e.g., urban or rural), and the like), occupant commands or other input, and other information.
The identified behavior or other autonomous driving information can be based on observations of repetitive behavior of multiple vehicles observed at a specific map location or area or in response to an event (e.g., any of the sensedobject information1670 or sensed environmental information1686) or during a specified time-of-day.
The application or usage of the identified behavior can be limited temporally, spatially, or by occurrence or duration of an event. While the application or usage of the identified behavior is permitted by the corresponding limitation, the identified behavior and other autonomous driving information is used instead of learned behaviors and other autonomous driving information of the vehicle. When the application or usage of the identified behavior and other autonomous driving information is not permitted by the corresponding limitation (e.g., the vehicle is outside the spatially limited area, the time duration of the behavior is expired, or the event has terminated or otherwise ended), the learned behavior and other autonomous driving information of the vehicle is employed.
Any of the steps, functions, and operations discussed herein can be performed continuously and automatically.
The exemplary systems and methods of this disclosure have been described in relation to vehicle systems and electric vehicles. However, to avoid unnecessarily obscuring the present disclosure, the preceding description omits a number of known structures and devices. This omission is not to be construed as a limitation of the scope of the claimed disclosure. Specific details are set forth to provide an understanding of the present disclosure. It should, however, be appreciated that the present disclosure may be practiced in a variety of ways beyond the specific detail set forth herein.
Furthermore, while the exemplary embodiments illustrated herein show the various components of the system collocated, certain components of the system can be located remotely, at distant portions of a distributed network, such as a LAN and/or the Internet, or within a dedicated system. Thus, it should be appreciated, that the components of the system can be combined into one or more devices, such as a server, communication device, or collocated on a particular node of a distributed network, such as an analog and/or digital telecommunications network, a packet-switched network, or a circuit-switched network. It will be appreciated from the preceding description, and for reasons of computational efficiency, that the components of the system can be arranged at any location within a distributed network of components without affecting the operation of the system.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. These wired or wireless links can also be secure links and may be capable of communicating encrypted information. Transmission media used as links, for example, can be any suitable carrier for electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.
While the flowcharts have been discussed and illustrated in relation to a particular sequence of events, it should be appreciated that changes, additions, and omissions to this sequence can occur without materially affecting the operation of the disclosed embodiments, configuration, and aspects.
A number of variations and modifications of the disclosure can be used. It would be possible to provide for some features of the disclosure without providing others.
In yet another embodiment, the systems and methods of this disclosure can be implemented in conjunction with a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device or gate array such as PLD, PLA, FPGA, PAL, special purpose computer, any comparable means, or the like. In general, any device(s) or means capable of implementing the methodology illustrated herein can be used to implement the various aspects of this disclosure. Exemplary hardware that can be used for the present disclosure includes computers, handheld devices, telephones (e.g., cellular, Internet enabled, digital, analog, hybrids, and others), and other hardware known in the art. Some of these devices include processors (e.g., a single or multiple microprocessors), memory, nonvolatile storage, input devices, and output devices. Furthermore, alternative software implementations including, but not limited to, distributed processing or component/object distributed processing, parallel processing, or virtual machine processing can also be constructed to implement the methods described herein.
In yet another embodiment, the disclosed methods may be readily implemented in conjunction with software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this disclosure is dependent on the speed and/or efficiency requirements of the system, the particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized.
In yet another embodiment, the disclosed methods may be partially implemented in software that can be stored on a storage medium, executed on programmed general-purpose computer with the cooperation of a controller and memory, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this disclosure can be implemented as a program embedded on a personal computer such as an applet, JAVA® or CGI script, as a resource residing on a server or computer workstation, as a routine embedded in a dedicated measurement system, system component, or the like. The system can also be implemented by physically incorporating the system and/or method into a software and/or hardware system.
Although the present disclosure describes components and functions implemented in the embodiments with reference to particular standards and protocols, the disclosure is not limited to such standards and protocols. Other similar standards and protocols not mentioned herein are in existence and are considered to be included in the present disclosure. Moreover, the standards and protocols mentioned herein and other similar standards and protocols not mentioned herein are periodically superseded by faster or more effective equivalents having essentially the same functions. Such replacement standards and protocols having the same functions are considered equivalents included in the present disclosure.
The present disclosure, in various embodiments, configurations, and aspects, includes components, methods, processes, systems and/or apparatus substantially as depicted and described herein, including various embodiments, subcombinations, and subsets thereof. Those of skill in the art will understand how to make and use the systems and methods disclosed herein after understanding the present disclosure. The present disclosure, in various embodiments, configurations, and aspects, includes providing devices and processes in the absence of items not depicted and/or described herein or in various embodiments, configurations, or aspects hereof, including in the absence of such items as may have been used in previous devices or processes, e.g., for improving performance, achieving ease, and/or reducing cost of implementation.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments, configurations, or aspects for the purpose of streamlining the disclosure. The features of the embodiments, configurations, or aspects of the disclosure may be combined in alternate embodiments, configurations, or aspects other than those discussed above. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the description of the disclosure has included description of one or more embodiments, configurations, or aspects and certain variations and modifications, other variations, combinations, and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights, which include alternative embodiments, configurations, or aspects to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges, or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges, or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
Embodiments include a method for tracking activation of an advanced driver assistance (“ADA”) system of a vehicle, the method comprising: a sensor detecting a driving context, wherein the driver context comprises one or more of an environmental condition and/or a driver behavior; a processor determining, based on the detected driving context, an optimum driving level of the ADA system; the processor initiating the optimum driving level of the ADA system; based on initiating the optimum driving level, the processor creating a first entry in a database, wherein the database entry comprises information associated with the initiation of the driving level of the ADA system; and a communication system transmitting the first entry in the database to a third party via a network.
Aspects of the above method include wherein a second entry in the database is created upon a manual initiation of a second driver level of the ADA system.
Aspects of the above method include wherein a second entry in the database comprises information associated with a second driving level of the ADA system, wherein the second driving level of the ADA system is determined at a startup of the vehicle.
Aspects of the above method include wherein the third party comprises a manufacturer of the vehicle.
Aspects of the above method include wherein the sensor comprises a global positioning system (GPS), a LIDAR sensor, a RADAR sensor, a camera, and/or a microphone.
Aspects of the above method include suggesting initiation of a second driving level of the ADA system, wherein suggesting initiation comprises presenting a notification displayed on a user-interface in the vehicle.
Aspects of the above method include wherein the driving level of the ADA system comprises one or more of a steering-assist system, an accelerating-assist system, and a braking-assist system.
Aspects of the above method include wherein the database comprises a level of autonomy, a driver context description, a timestamp associated with an ADA system initiation, and/or a driver identification.
Aspects of the above method include: the sensor detecting a change in the driver context; determining, based on the change in the driver context, a second optimum driving level of the ADA system; and the processor initiating the second optimum driving level of the ADA system; based on initiating the optimum driving level, the processor creating a second entry in the database, wherein the database entry comprises information associated with the initiation of the second optimum driving level of the ADA system; and a communication system transmitting the second entry in the database to the third party via the network.
Embodiments further include a system comprising: a processor; and a memory coupled to the processor and comprising computer-readable program code that when executed by the processor causes the processor to perform operations, the operations comprising: detecting an advantageous situation for the initiation of one or more of a plurality of ADA systems; performing one or more of: suggesting initiation of the one or more of the plurality of ADA systems; and initiating the one or more of the plurality of ADA systems; creating a first entry in a database, wherein the database entry comprises information associated with the initiation of the one or more of the plurality of ADA systems; and transmitting one or more entries of the database to a third party via a network.
Aspects of the above system include wherein a second entry in the database is created upon a manual initiation of a second one or more of the plurality of ADA systems.
Aspects of the above system include wherein a second entry in the database is created upon vehicle startup.
Aspects of the above system include wherein a second entry in the database is created upon vehicle power-down.
Aspects of the above system include wherein the advantageous situation is detected via one or more of a global positioning system (GPS), a LIDAR sensor, a RADAR sensor, a camera, and a microphone.
Embodiments further include a computer program product comprising: a non-transitory computer-readable storage medium having computer-readable program code embodied therewith, the computer-readable program code configured, when executed by a processor, to: detect an advantageous situation for the initiation of one or more of a plurality of ADA systems; perform one or more of: suggest initiation of the one or more of the plurality of ADA systems; and initiate the one or more of the plurality of ADA systems; create a first entry in a database, wherein the database entry comprises information associated with the initiation of the one or more of the plurality of ADA systems; and transmit one or more entries of the database to a third party via a network.
Aspects of the above computer program product include wherein a second entry in the database is created upon a manual initiation of a second one or more of the plurality of ADA systems.
Aspects of the above computer program product include wherein a second entry in the database is created upon vehicle startup.
Aspects of the above computer program product include wherein a second entry in the database is created upon vehicle power-down
Aspects of the above computer program product include wherein the advantageous situation is detected via one or more of a global positioning system (GPS), a LIDAR sensor, a RADAR sensor, a camera, and a microphone.
Embodiments further include a method of correcting actuarial models for a vehicle equipped with autonomous or partial-automation capabilities, the method comprising: receiving a database entry from the vehicle via a network; updating, based on the database entry, a database associated with a first driver; determining, based on the database, a risk score associated with the first driver; updating, based on the risk score, a risk profile associated with the first driver; and modifying, based on the risk profile, an insurance premium associated with the first driver.
Any one of the methods discussed above, wherein the database comprises data fields associated with one or more a level of autonomy, a timestamp associated with an advanced driver assistance (“ADA”) system initiation, and a driver identification.
Any one of the methods discussed above, wherein the database entry is received via the vehicle.
Any one of the methods discussed above, wherein an actuarial model is updated based on the database entry.
Any one of the methods discussed above, wherein the database entry comprises data associated with one or more of a global positioning system (“GPS”), a LIDAR sensor, a RADAR sensor, a camera, and a microphone.
Any one of the methods discussed above, wherein a second database comprises data associated with a second driver of the vehicle.
Any one of the methods discussed above, wherein the database entry comprises data associated with one or more of a plurality of advanced driver assistance (“ADA”) systems.
Any one of the methods discussed above, wherein the plurality of ADA systems comprises one or more of a steering-assist system, an accelerating-assist system, and a braking-assist system
Any one of the methods discussed above, further comprising transmitting feedback to the vehicle, wherein the feedback is associated with the insurance premium associated with the first driver.
Any one of the methods discussed above, further comprising: updating, based on the database entry, a database associated with a manufacturer of the vehicle; determining, based on the database, a risk score associated with the manufacturer; updating, based on the risk score, a risk profile associated with the manufacturer; and modifying, based on the risk profile, an insurance premium associated with the manufacturer.
A system of correcting actuarial models for a vehicle equipped with autonomous or partial-automation capabilities, the system comprising: a processor; and a memory coupled to the processor and comprising computer-readable program code that when executed by the processor causes the processor to perform operations, the operations comprising: receiving a database entry from the vehicle via a network; updating, based on the database entry, a database associated with a first driver; determining, based on the database, a risk score associated with the first driver; updating, based on the risk score, a risk profile associated with the first driver; and modifying, based on the risk profile, an insurance premium associated with the first driver.
Any one of the methods discussed above, wherein the database comprises data fields associated with one or more a level of autonomy, a timestamp associated with an advanced driver assistance (“ADA”) system initiation, and a driver identification.
Any one of the methods discussed above, wherein the database entry is received via the vehicle.
Any one of the methods discussed above, wherein an actuarial model is updated based on the database entry.
Any one of the methods discussed above, wherein the operations further comprise: updating, based on the database entry, a database associated with a manufacturer of the vehicle; determining, based on the database, a risk score associated with the manufacturer; updating, based on the risk score, a risk profile associated with the manufacturer; and modifying, based on the risk profile, an insurance premium associated with the manufacturer.
A computer program product for of correcting actuarial models for a vehicle equipped with autonomous or partial-automation capabilities, the computer program product comprising: a non-transitory computer-readable storage medium having computer-readable program code embodied therewith, the computer-readable program code configured, when executed by a processor, to: receive a database entry from the vehicle via a network; update, based on the database entry, a database associated with a first driver; determine, based on the database, a risk score associated with the first driver; update, based on the risk score, a risk profile associated with the first driver; and modify, based on the risk profile, an insurance premium associated with the first driver.
Any one of the methods discussed above, wherein the database comprises data fields associated with one or more a level of autonomy, a timestamp associated with an advanced driver assistance (“ADA”) system initiation, and a driver identification.
Any one of the methods discussed above, wherein the database entry is received via the vehicle.
Any one of the methods discussed above, wherein an actuarial model is updated based on the database entry.
Any one of the methods discussed above, the computer-readable program code further configured, when executed by the processor, to: update, based on the database entry, a database associated with a manufacturer of the vehicle; determine, based on the database, a risk score associated with the manufacturer; update, based on the risk score, a risk profile associated with the manufacturer; and modify, based on the risk profile, an insurance premium associated with the manufacturer.
Any one or more of the aspects/embodiments as substantially disclosed herein.
Any one or more of the aspects/embodiments as substantially disclosed herein optionally in combination with any one or more other aspects/embodiments as substantially disclosed herein.
One or means adapted to perform any one or more of the above aspects/embodiments as substantially disclosed herein.
The phrases “at least one,” “one or more,” “or,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” “A, B, and/or C,” and “A, B, or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B and C together.
The term “a” or “an” entity refers to one or more of that entity. As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein. It is also to be noted that the terms “comprising,” “including,” and “having” can be used interchangeably.
The term “automatic” and variations thereof, as used herein, refers to any process or operation, which is typically continuous or semi-continuous, done without material human input when the process or operation is performed. However, a process or operation can be automatic, even though performance of the process or operation uses material or immaterial human input, if the input is received before performance of the process or operation. Human input is deemed to be material if such input influences how the process or operation will be performed. Human input that consents to the performance of the process or operation is not deemed to be “material.”
Aspects of the present disclosure may take the form of an embodiment that is entirely hardware, an embodiment that is entirely software (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module,” or “system.” Any combination of one or more computer-readable medium(s) may be utilized. The computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
A computer-readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer-readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer-readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer-readable signal medium may include a propagated data signal with computer-readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer-readable medium may be transmitted using any appropriate medium, including, but not limited to, wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
The terms “determine,” “calculate,” “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The term “electric vehicle” (EV), also referred to herein as an electric drive vehicle, may use one or more electric motors or traction motors for propulsion. An electric vehicle may be powered through a collector system by electricity from off-vehicle sources, or may be self-contained with a battery or generator to convert fuel to electricity. An electric vehicle generally includes a rechargeable electricity storage system (RESS) (also called Full Electric Vehicles (FEV)). Power storage methods may include: chemical energy stored on the vehicle in on-board batteries (e.g., battery electric vehicle or BEV), on board kinetic energy storage (e.g., flywheels), and/or static energy (e.g., by on-board double-layer capacitors). Batteries, electric double-layer capacitors, and flywheel energy storage may be forms of rechargeable on-board electrical storage.
The term “hybrid electric vehicle” refers to a vehicle that may combine a conventional (usually fossil fuel-powered) powertrain with some form of electric propulsion. Most hybrid electric vehicles combine a conventional internal combustion engine (ICE) propulsion system with an electric propulsion system (hybrid vehicle drivetrain). In parallel hybrids, the ICE and the electric motor are both connected to the mechanical transmission and can simultaneously transmit power to drive the wheels, usually through a conventional transmission. In series hybrids, only the electric motor drives the drivetrain, and a smaller ICE works as a generator to power the electric motor or to recharge the batteries. Power-split hybrids combine series and parallel characteristics. A full hybrid, sometimes also called a strong hybrid, is a vehicle that can run on just the engine, just the batteries, or a combination of both. A mid hybrid is a vehicle that cannot be driven solely on its electric motor, because the electric motor does not have enough power to propel the vehicle on its own.
The term “rechargeable electric vehicle” or “REV” refers to a vehicle with on board rechargeable energy storage, including electric vehicles and hybrid electric vehicles.