CROSS-REFERENCE TO RELATED APPLICATIONSThis application claims the benefit of U.S. patent application Ser. No. 15/872,909, entitled Device and Method to Treat Eye Conditions, Eyelids Conditions, or Both, filed on Jan. 16, 2018, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/447397, entitled Device and Method to Treat Skin and Eye Conditions, filed on Jan.17, 2017. Both of the above-referenced applications are incorporated by reference herein in their entireties for all purposes.
FIELD OF THE INVENTIONThe present invention relates to a handheld eyelid vaporizer/steamer that delivers aerosolized heat onto the eyelid in order to treat eyelid and eye conditions including chalazions, hordeolums, dry eyes, blepharitis infections, meibomian gland dysfunction, tired eyes and strained eyes. More particularity, the invention relates to a handheld eyelid vaporizer/steamer that uses the physical and therapeutic properties of both steam (gaseous water) and vapor of certain compounds or liquids together with pressure control to treat eye and eyelid disorders.
BACKGROUND OF THE INVENTIONVarious eyelid and eye conditions exist which require some variable use of applied heat directly onto the eyelid as a treatment protocol. Direct heat using a warm compress is very popular since they are easily accessible. However, they are limited in success given their short duration of application. For example, repeated heating attempts have to be performed in order to allow the technique to work effectively.
Using steamed water as a source of heat has also been found to be beneficial. The advantage of using steam is that there is no direct contact to the skin, hence a decreased likelihood of a skin burn. The use of steam water has also been advocated, although it is more cumbersome in comparison to the use of warm compresses. The use of heat around the eyelids and eye helps in several ways. For example, applying heat helps open up the eyelid's meibomian glands and allows the egress of oil from glands which may be obstructed or dysfunctional; applying heat also dilates the blood vessels and allows for increased blood flow. The use of applied heat onto the eyelid can help in various disorders such as treating internal or external chalazions or hordeolums (styes), which are blocked eyelid sebaceous oil glands. Other disorders that can benefit from the use of applied heat include dry eye syndrome (DES), blepharitis, meibomitis, allergic conjunctivitis, infections such as preseptal cellulitis, orbital cellulitis, or dacryocystitis, ocular rosacea, contact lens related conjunctivitis or irritation. Tired eyes or eye strain can occur from overuse of eyes, reading, and mobile phone use, and can result in dry eye syndrome or dry eye syndrome-like symptoms.
It has been established that the use of heat can help treat meibomian gland dysfunction. The heat can be placed outside the eyelid or even inside the eyelid. Meibomian gland dysfunction can be associated with various eyelid disorders such as blepharitis, chalazions, hordeolums, and dry eyes. Prior patents have described a heating device with pressure that is placed directly on the eye to treat meibomian gland dysfunction (e.g., U.S. Pat. No. 7,981,147).
Other patents have described treating meibomian gland dysfunction by placing a heating and pressurized system directly on the eye through a scleral lens (e.g., LipiFlow® Dry Eye Treatment). The system uses an internal heating system that is not steam or vapor based. The direct heat has been shown to improve the meibomian gland dysfunction in the eyelids but it does not directly treat chalazions or other eyelid disorders. Another method similar to this involves light technology to deliver heat directly onto the eye via a scleral lens to treat meibomian gland disease as well, but it does not directly treat chalazions or other eyelid disorders, for example, the iLUX® device (e.g., US20150005750).
However, these past approaches utilize devices that may be uncomfortable, ineffective, clumsy to use, make it difficult to precisely regulate temperature and flow, are not for use with both water and other liquids, and are not comfortable to the eye.
What is needed is a handheld steamer designed specifically for outside of the eyelids.
SUMMARY OF THE INVENTIONTo achieve the forgoing and other aspects and in accordance with the purpose of the invention, a steam and/or vapor generator is provided that combines steam and pressure to the user eyelid.
The subject device provides a device for treating eyelid surfaces, eyes, or both, in the form of a handheld housing, the device comprising a first chamber configured as a fluid reservoir; a second chamber opened on a top end of a housing and configured as a steam reservoir; a hydrophilic material disposed within the chamber and configured to connect the chamber, the hydrophilic material having a plurality of pores configured to allow the fluid to seep from the first chamber to the hydrophilic material; a heating element positioned adjacent hydrophilic material and the second chamber, the heating element configured to convert the liquid to a vapor and continuously regulate a temperature of the steam; a user interface disposed on an outside of the housing and configured to control a variable circulator, the variable circulator being positioned in an orifice proximate the top end of the housing, the variable circulator functioning to control the temperature of the vapor reaching the user.
In embodiments the device provides a method for treating eyelid surfaces, eyes, or both, the method being performed with a handheld housing, the method comprising filling a first chamber in the housing with a fluid reservoir; connecting a second chamber to the first chamber, the second chamber being configured as a steam reservoir; placing a hydrophilic material within the passage, the hydrophilic material having a plurality of pores; seeping fluid from the first chamber to the hydrophilic material; heating the fluid with a heating element positioned adjacent the hydrophilic material and the second chamber, the heating element configured to convert the liquid to a vapor and continuously regulate a temperature of the steam; toggling a switch to control a variable circulator, the variable circulator being positioned in an orifice at the top end of the housing, the variable circulator functioning to control the temperature of the vapor reaching the user.
The device described herein provides a safe and effective portable treatment for a myriad of eye conditions that utilizes steam and/or vapor, each being readily controlled by the user to ensure effective treatment.
In embodiments, the device provides a plurality of fail-safe mechanisms to avoid injury, while allowing the user to control steam temperature and pressure to maximize results over time.
In embodiments, the steam and vapor flow, and by proxy the temperature, are easily controlled by the user via convenient user interface with multiple buttons for different modes, or a single toggle.
The device provides a mechanism such that the vapor or steam is produced using very low energy thus conserving battery.
The device provides an environment in which microbes are substantially reduced in both the fluid chamber and the vapor/steam chamber.
The device is also is comfortable to use on the eyes.
Further, the device ensures the temperature is within approved ranges for enhanced therapeutic action. A yet further object of the invention is to provide a steamer which supplies moisture-laden air directly to the eye.
Further, the device provides for vapor of distilled water, and also for medicated fluids and the like.
Further, the device provides for a hand-held steamer device having a self-contained easily refillable reservoir.
Further, the device provides a replaceable hydrophilic member that allows fluid seepage to the heating element.
Further, a device that is connected to a mobile application via wireless communication to provide the user the ability to change settings and receive feedback on operation of the device is described.
Further, the device provides a steamer that can treat both the eye and other skin areas and body parts of the user.
Other features, advantages, and aspects of the present invention will become more apparent and be more readily understood from the following detailed description, which should be read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGSThe present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
FIG. 1 is a cross-sectional side view of the device in accordance with embodiments of the present invention.
FIG. 2 is a bottom view of the device showing the chambers of the device in accordance with embodiments of the present invention.
FIG. 3 is a perspective view of the eye member attachment in accordance with embodiments of the present invention.
FIG. 4 is a side partially-exploded view of the of the device in accordance with embodiments of the present invention.
FIG. 5 is side view of the device in accordance with embodiments of the present invention.
FIG. 6 is a back view of the device in accordance with embodiments of the present invention.
FIG. 7 is a block circuit diagram of the device in accordance with embodiments of the present invention.
FIG. 8 is step-wise method flow chart of a method of using the device in accordance with embodiments of the present invention.
FIG. 9 is a cross-sectional view of fluid and steam flowing into the device in accordance with embodiments of the present invention.
FIG. 10 is a partial side view of the interior of the housing in accordance with embodiments of the present invention.
FIG. 11 is a top view of the device showing an optional embodiment or configuration of the heating element in in accordance with embodiments of the present invention.
Unless otherwise indicated illustrations in the figures are not necessarily drawn to scale.
DETAILED DESCRPTION OF THE PREFERRED EMBODIMENTSThe present invention is best understood by reference to the detailed description and examples set forth herein.
Embodiments of the invention are discussed below with reference to the examples. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these examples is for explanatory purposes as the invention extends beyond these limited embodiments. For example, it should be appreciated that those skilled in the art will, in light of the teachings of the present invention, recognize a multiplicity of alternate and suitable approaches, depending upon the needs of the particular application, to implement the functionality of any given detail described herein, beyond the particular implementation choices in the following embodiments described and shown. That is, there are numerous modifications and variations of the invention that are too numerous to be listed but that all fit within the scope of the invention. Also, singular words should be read as plural and vice versa and masculine as feminine and vice versa, where appropriate, and alternative embodiments do not necessarily imply that the two are mutually exclusive.
It is to be further understood that the present invention is not limited to the particular methodology, compounds, materials, manufacturing techniques, uses, and applications, described herein, as these may vary. It is also to be understood that the terminology used herein is used for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention. It must be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include the plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to “an element” is a reference to one or more elements and includes equivalents thereof known to those skilled in the art. Similarly, for another example, a reference to “a step” or “a means” is a reference to one or more steps or means and may include sub-steps and subservient means. All conjunctions used are to be understood in the most inclusive sense possible. Thus, the word “or” should be understood as having the definition of a logical “or” rather than that of a logical “exclusive or” unless the context clearly necessitates otherwise. Structures described herein are to be understood also to refer to functional equivalents of such structures. Language that may be construed to express approximation should be so understood unless the context clearly dictates otherwise.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Preferred methods, techniques, devices, and materials are described, although any methods, techniques, devices, or materials similar or equivalent to those described herein may be used in the practice or testing of the present invention.
As used herein, the terms “vapor” and “steam” may be used interchangeably, and refers to: (1) water in the gas phase, which is formed when water boils; and (2) wet steam, which is the visible mist or aerosol of water droplets formed as this water vapor condenses; and/or (3) the vapor or gaseous phase of a fluid or medications.
As used herein, the term “capillary action” (sometimes referred to as also “capillarity” or “capillary motion”) is the ability of a liquid or fluid to flow in narrow spaces or pore without the assistance of, or even in opposition to, external forces like gravity.
Referring now toFIG. 1, a vapor device for treating an eyelid, eye or skin surface is shown generally at100. As an overview, the device comprises ahousing102 having a top104, a bottom106, an approximatelyflat side108, and a curved, angled, orrounded side110. It should be appreciated that the housing shape can be of any useful shape, and that the design shown herein is for purposes of example only. Thehousing102 is sized in way that makes it portable and comfortable to grasp. Thehousing102 has an exterior112 and an interior114. The interior112 is broken down into different chambers: afirst chamber116, asecond chamber118, and athird chamber120. Aheating element124 is positioned adjacent a hydrophilic element ormaterial126. Avariable circulator122 is positioned proximate to thetop portion104 of thehousing102, and angled in a parallel to that portion of the housing, but in a manner diagonal or transverse the bottom of thehousing102.
More specifically, with reference still toFIG. 1, thehousing102 may be constructed of plastics or other polymers, with a focus on somatosensation and also on the weight of the material. Exemplary materials comprise polyethylene terephthalate (PET or PETE), high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), and polystyrene (PS). Certain rubbers, felts, and cloths may be used to enhance grip and feel as well. In embodiments, the materials shall be biocompatible, electrically safe (including emissions and immunity) and corrosion-resistant. A window, which is shown in greater detail with relation toFIG. 4, provides the user the ability to see the amount of fluid in the chamber (in many cases distilled water). Thehousing102 comprises multiple ports for charging a battery, discharging the vapor, steam or mist, and for refilling the chambers. Thehousing102, in an embodiment, may be approximately 115 mm wide, 47 mm deep and 24 mm tall. All user contacting materials shall be biocompatible and shall meet applicable requirements of ISO 10993 series of standards. Theinterior114 of the housing provides for multiple fluid pathways, electronics gateways, and battery power designed such that the user is not in danger of electric shock.
With reference still toFIG. 1, thefirst chamber116 is configured as a fluid reservoir. In some embodiments the fluid130 is distilled water. In other embodiments, the fluid may be medicated, while in other embodiments, the fluid may be a mixture or combination of distilled water (dH2O) and a medication that is a dissolvable solid or fluid in its own right, this medicated solid of fluid being housed inthird chamber120. The firstfluid chamber116 envelopes thesecond chamber118, such that the dH2O fill is approximately or at least110 ml. In optional embodiments, thefirst chamber116 may be modular such that it is removable from the device100 itself for the user to refill. In exemplary embodiments, the first chamber is refilled throughport146. Thefirst chamber116 positioned such that it is in fluid communication with asecond chamber118.
Still with reference toFIG. 1, thesecond chamber118 is configured as a steam or vapor reservoir. Thesecond chamber118 is opened at atop end104 of thehousing102, to form a vapor path, and in some embodiments, may comprise a valve at its top end. Thesecond chamber118 is positioned on a center-interior portion of thehousing102, and is approximately concentric, but may be any other shape or size. In this way, thefirst chamber116 surrounds the second chamber in a shroud like manner. Thesecond chamber118 may comprise a plurality of sensors, which are discussed in more detail with relation toFIG. 5. Thesecond chamber118 is in fluid communication with thefirst chamber116 viahydrophilic material126, which is positioned below the second chamber, and within both thefirst chamber116 and thesecond chamber118. The fluid communication between the chambers is a result of capillary effect, traveling in opposition to external forces (i.e. gravity) up or through the hydrophilic material that is disposed inchambers116 and118.
In exemplary embodiments, thehydrophilic material126 comprises a plurality of pores and allows the fluid from the first chamber to slowly seep into material, where it travels into thesecond chamber118 to be converted into vapor or steam, which then rises through thesecond chamber118 and through additional elements, to the eye, eyelid or skin of the user. Thehydrophilic material126, as define herein, is a material which has a strong affinity for water. Even more specifically, the material used herein is defined as hydrophilic by the geometry of water on a flat surface, specifically, the angle between a droplet's edge and the surface underneath it (contact angle). If the droplet spreads, wetting a large area of the surface, then the contact angle is less than 90 degrees and that surface is considered hydrophilic. In exemplary embodiments, the material is absorbent, wicking, cleanable, durable, dimensionally stable, and anti-pathogenic. Exemplary materials comprise cellulose-based materials. The material may be treated to render it hydrophilic, such as with an anionic-ethoxylated sulfonated polyester (AESP) and a high molecular weight ethoxylated polyester (HMWEP) to maximize its hydrophilicity. In optional embodiments, the material may be a fabric such as a polyester/cotton blend, nylon, corn fiber, or other fibers that are conducive to capillary action. The material may be a microdenier knitted fabric, but it may alternatively be an ordinary knitted fabric or a woven tufted or non-woven fabric, or a mesh. In optional embodiments, the material may comprise a metal mesh framework, a synthetic mesh framework, or a cable rope. The material may also be heat-resistant. The material may further be flecked with an antimicrobial agent, such as silver.
Thematerial126 may have pores or capillaries for the fluid to travel through via sorption and/or capillary action. In embodiments, it may use capillary action to convey fluid from the first chamber to thehydrophilic material126 to thesecond chamber118 where it is heated byheating element124 to produce a vapor that rises though thesecond chamber118. Theheating element124 may be positioned on a top side of thehydrophilic material126. In other embodiments, theheating element124 may surround thehydrophilic material126 like a shroud. In other embodiments, such as that shown inFIG. 2, the heating element may have a smaller diameter than the hydrophilic material, and sit within the hydrophilic material.
Thehydrophilic material126 may be comprised of a single material throughout, or be comprises of a different material on the bottom portion than the middle or top portions, or the outer portion and the inner portion. In some embodiments, thehydrophilic material126 may be tubular in shape, cubed, or be a strip. The fabric may also be bundled much like if one were to push a cloth down into a chamber. In an embodiment,hydrophilic material126 is a tubular shaped member compressed inpassage128, leaving a small space between the bottom of thematerial126 and the bottom internal portion of the housing. In this way, thematerial126 fits snuggly in thepassage126 so that a seal is formed between edges of thematerial126 and thefirst chamber116, such that fluid flow will be through the pores throughmaterial126 and not through any edge gaps exceeding the average pore. Consequently, thematerial126 should be of appropriate pore size and material so that capillary action provides a supply offluid130 such that when heat is transferred fromheating member124 tomaterial126, thematerial126 provides for a boiling transition from liquid to vapor/steam over an appropriate range of temperatures and pressures. Also, a vapor tight seal between due to compression between the material126 the edges of134 of the chambers. The space is configured to allow fluid to seep in and form a shallow fluid reserve for the fluid to seep in from thefirst chamber116.
Referring still toFIG. 1, theheating element124 is in electronic communication with and controlled by a printed circuit board (PCB)132, which is configured to control the electrical elements of the device100, and which will be discussed in greater detail with relation toFIG. 7. Theheating element124 is configured to heat fluid to form a vapor, the temperature of which will be between 0-115 degrees Fahrenheit and optimally operate between 100-115 degrees Fahrenheit +/−3 degrees. The temperature of the vapor/steam/mist is user controllable via a user interface or a toggle or switch that is shown inFIG. 4. Theheating element124 may be formed with heat conductive materials, such as metals, for conducting heat into the materialhydrophilic material126 for boiling the fluid. Theheating element124, in optional embodiments, may be formed with a series of narrow grooves or slots to increase the surface area of the heating element to speed up the conversation of fluid to vapor or steam. An optional or alternative configuration of the heating element is shown inFIG. 11.
With reference still toFIG. 1, avariable circulator122 is positioned proximate the top104 of thehousing102, positioned diagonal (e.g., approximately 45 degrees with respect to the bottom of the housing) to the steam flow and is communication with thePCB132 and user interface (shown inFIG. 4) such that a user has variable control of the speed of thecirculator122. Thecirculator122 may, in some embodiments, comprise a fan assembly having arotor136 and a plurality ofvanes138, therotor136 being adapted to be rotated by an electric motor (not shown). The fan motor is supported within ahousing102 by anorifice outlet140. In this way, the user can control the temperature of the steam or vapor by increasing or decreasing the speed of the vanes of thecirculator122. In operation, amotor142 is disposed of in thebottom106 of thehousing102 in axial alignment with thehousing102 and is of sufficient power to rotate a drive shaft. Once rotating, the circulator, via pressure change in the second chamber, pulses the steam, vapor and mist from thesecond chamber118 into the attachment member and eye cup, shown greater detail with relation toFIG. 3.
Optionally, athird chamber120 may be provided to supply medication to the first chamber. In this embodiment, avalve150 is disposed on the wall of the third chamber, and is controllable via UI. Asecond port152 allows the user to pour or inject a medication to the third chamber. In operation, a user via the UI can mix a specified amount of the medication with the fluid (dH2O) to treat the eye or skin of the user.
Now with reference toFIG. 2, a bottom view of the device ofFIG. 1 is shown generally at200.FIG. 2 is provided to show the configuration, in an embodiment, of thehousing102,first chamber116,second chamber118, and theheating element124. As can be seen inFIG. 2, thehousing102 envelopes thefirst chamber116, which in turn envelopes thesecond chamber118, and the heating element rests atop of thesecond chamber118, while partially enveloping it on the sides down approximately twenty percent the length of the hydrophilic material, however, it may envelope the material anywhere from zero to ninety-five percent the material. The optionalthird chamber120 is also shown therewith.
With reference now toFIG. 3, an eye attachment member of the device ofFIG. 1 is shown generally at300. Theeye attachment member300 is configured to treat one eye or two eyes of the user, depending upon the attachment. It is connectable to the top side of the housing, and defines a vapor passage for directing the vapor from the second chamber to the eye of the user. The eye attachment member compriseseye cup302, aneck portion304,vapor passage306, left routingchannel308, andright routing channel310. In operation, theeye cup302 is connected to theneck304 at one end, and the neck is removabley attached to the housing on an opposite end. In optional embodiments, the neck is also removably attached to the eye cup to provide additional or different length necks which would be chosen by the user. In optional embodiments, the eye cup that covers both eyes of the user comprises aleft routing channel308 and aright routing channel310, the channels configured to direct vapor towards the users right and left eye uniformly. Theeye cup302 may be formed of various materials, all materials being biocompatible materials that meet applicable requirements of ISO 10993 series of standards, for example medical grade silicone. Theneck portion304 may be made of the same materials as theeye cup302, or a material that has a higher density or hardness if needed. Vents may be disposed therein as well.
With reference now toFIG. 4, a partially exploded view of the device ofFIG. 1 is shown generally at400. The device compriseseye cup302,neck304,housing102. In this embodiment, the neck comprises a plurality ofvents402 disposed through the surface of thearm410 and configured to regulate the temperature of the vapor and to regulate the amount of vapor that reaches the eye or eyes of the user. As stated with relation toFIG. 3, theneck portion304 is removably attached to the arm via friction fit, and comprises aslit412 configured to allow mating of the neck portion and anarm410, and further comprises asecond slit408. It should be noted that whilevents402 are disposed through thearm portion410, they may also be positioned on theneck304 oreye cup302 as shown inFIG. 5. Furthermore, while two-piece construction of thearm410 andneck304 is shown, it should be appreciated that thearm410 andneck304 may be one piece, and can be fit into thehousing102 in a similar fashion.
Still referring toFIG. 4 the,housing102 further comprises a user interface positioned on the outside of thehousing102, the UI comprising an on/offswitch404 and buttons or toggles406 which reference different modes. In optional embodiments, a single button that is pressure sensitive may be employed such that, in operation, the pressure-sensitive buttons406 is in communication with the PCB and comprises a button (anyone of the buttons shown), configured for the thumb of the user such that as the toggle orbutton406 is depressed, the PCB signals the variable circulator to increase a flow rate, thus decreasing the temperature. In optional embodiments, separate buttons each having been pre-set for different speeds may apply. Another mode or button that may be employed to activate at least light emitting diode ultraviolet germicidal irradiation (UVGI) configured to disinfection the fluid, the vapor, or both, using short wavelength ultraviolet (UV-C) light to kill or inactivate microorganisms, the UVIG being positioned in the first chamber, the second chamber, or both, as is shown inFIG. 5.
With reference toFIG. 5, a side view of the vapor device ofFIGS. 1-3 is shown generally at500. For purposes of perspective, ahousing102, thefirst chamber116,second chamber118,hydrophilic material126, thevariable circulator122, and theeye cup302. The PCB (shown inFIG. 1) is in communication with a plurality of components that are disposed both inside and outside thehousing102 andchambers116 and118 to ensure safe operation of the device, and for certain measures of convenience. The PCB is positioned on the flat side of thehousing102 together with the battery (shown inFIG. 6) . As shown, vents can be in the eye attachment member itself in optional embodiments.
Atemperature sensor502 is positioned in the second chamber communication with the PCB, a flow, at least aflow rate sensor504 in the second chamber and communication with the PCB, and atimer506 in communication withPCB132, the timer being set in a to predetermined time range and configured to turn the device on and off once outside of the predetermined range Thetemperature sensor502 and at least oneflow rates sensor504 are configured to turn the device off if predetermined parameters are exceeded. The temperature sensor is configured to ensure the temperate does not exceed 115 degrees Celsius, +/−3 degrees, and if it does, an automatic shutdown will occur. The device, in embodiments a minimum flow rate of 1.0 ml/min, and be controlled based on feedback from the sensor. In other embodiments, the flow rate may be between 0.1 ml/min and 3 ml/min.
Furthermore, thehousing102 may comprise a synovial joint508 and510 on which thearm410 attached is capable of motion around an indefinite number of axes only bounded by thehousing102. In embodiments, the synovial joint and comprises a ball and socket positioned in an end of the housing. In this way, eye cup be adjusted relative to an eye by configuring eye cup such that device100 can be pivoted about a point, and the user can comfortably use at many different angles.
The device further comprises light emitting diode ultraviolet germicidal irradiation (UVGI)512 configured to disinfect the fluid, the vapor, or both, using short wavelength ultraviolet (UV-C) light to kill or inactivate microorganisms. The UVIG may be positioned in the first chamber, the second chamber, or both, as is shown inFIG. 5.
With reference now toFIG. 6, a back view of the device ofFIG. 1 is shown generally at600. For purposes of perspective, ahousing102 and theeye attachment cup302 are shown together with theUI406. ThePCB132 is in communication with a plurality of components that are disposed inside thehousing102 andchambers116 and118 to ensure safe operation of the device, and for certain measures of convenience.
The device further comprises a rechargeable battery in connection with themotor608 and a chargingport602 provided by the housing, the battery being 3.7V. In optional embodiment, any type of battery may be used. The battery is in communication withmotor608, which operates the variable circulator ofFIG. 1. Bluetooth may be incorporated as well viabuttons610, and be in communication with a mobile web application so that a user can control time settings, provide battery info, usage info (how often they have used it throughout the day) which can help their doctor's in measuring compliance. While Bluetooth® is used as an example, other protocol for wireless communication over short distances may be used as well using radio waves, IR, and the like. The Bluetooth may operate in the ISM bands at 2.4-5 GHz or above with a set of 79 hop carriers with 1 MHz spacing. A master-slave communication model with frequency hopping spread spectrum (FHSS) transmission technique is adopted in the Bluetooth specification to ensure protection from interference and security of data the user provides therein.
Afill port606 is further provided, the fill port being disposed on the outside of the housing and configured to allow a user to easily fill the first chamber with fluid, typically dH2O. While the fill port is shown positioned near the top of the housing, the fill port may be in any useful location. In operation, the hand-held portable steamer device is fully adjustable, able to be controlled by in a myriad of different ways, be it mechanically or electrically. The device100 has a temperature range of providing heat from 100-115 degrees in some embodiments. The attachment serves dual purposes in that it is configured to provide direct pressure to the affected area based on the tight seal. In a wireless setting, the dimmer may be optionally coupled to network interface which enables communication with an external devices such as a controller via communication channels, which may be implemented as a hardwired or wireless communications link using suitable conventional technologies. While these components are shown as being within the housing, they may also be disposed within the eye member ofFIG. 3.
With reference now toFIG. 7, a block diagram is provided showing some of the electrical and mechanical components that the device100 comprises, as constructed according to one embodiment of the present invention as shown atreference numeral700.
In this example, themicrocontroller702 is in communication with a plurality of components for which it controls. The microcontroller comprises one or more CPUs (processor cores) along with memory and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers are designed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.
In operation, power is drawn from an outlet (110v)738, run through an AC/DC converter712, to acharger710, and housed in abattery714. Thebattery714 powers themicrocontroller702, which in turns controls the various electrical components of the device shown therein.
In embodiments, themicrocontroller702 is in communication with adriver704 for the variable circulator122 (e.g., fan). Thefan122 may run on five both directcurrent power block730. Abattery714 is in electrical communication with themicrocontroller702 and DC/DC converters706 and708 are configured to provide power to the microcontroller and the various electrical and mechanical components of the invention. Acharger710 is in communication with an AC toDC converter712, which is in communication with a wall outlet738 (e.g., 110v) and5V DC750. An on/off switch is further provided atblock716 and is in communication with themicrocontroller702 and UI/toggle718 is also in communication withmicrocontroller702, as ourlights720 which are configured as an on/off indicator.
Still with reference toFIG. 7, themicrocontroller702 is in communication with the plurality of sensors, for example,PH sensor722 thermo-sensors732 and the like. UV diode forsterilization726 is in further communication withmicrocontroller702 as it is a start/stop mechanism724. Aheater734 is in communication with both thethermosensor732 andthermofuse736.
AMOF SET728 is in communication with themicrocontroller702 andbattery714 and is configured as a type of field-effect transistor (FET) with an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. Athermofuse736 is in communication withMOF SET728.
Bluetooth®740 is in further in communication withmicrocontroller702, and is configured to connect to a user device via mobile application.
With reference now toFIG. 8, a stepwise method diagram is provided and shows the method of using the device herein atreference numeral800.
Filling a first chamber in the housing with afluid step802 comprises using a fill port or a modular design to allow the user to easily fill the first chamber or fluid reservoir with dH2O.
Treating the fluid with UV rays in thechamber step804 comprises comprising using at least light emitting diode Ultraviolet germicidal irradiation (UVGI) configured to disinfection the fluid, the vapor, or both, using short-wavelength ultraviolet (UV-C) light to kill or inactivate microorganisms, the UVIG being positioned in the first chamber, the second chamber, or both. In this way, the device can treat not only the fluid but the steam as well.
Filling a third chamber withmedication step806 comprises using a prescribed medication using a second port.
Placing a hydrophilic material within the passage, the hydrophilic material having a plurality of pours,step808, comprises providing the hydrophilic material in the passage, the material being fully replaceable.
Seeping fluid from the first chamber to thehydrophilic material step810 comprises using capillary action to draw fluid into the material
Heating the fluid with a heating element positioned adjacent the hydrophilic material and thesecond chamber step812 comprises heating the fluid to a boil to produce a steam and vapor.
Using a UI to control a variable circulator, the variable circulator functioning to control the temperature of the vapor reaching theuser step814 comprises providing buttons or levers to the user to control different modes provided therein.
Directing vapor towards the users right and left eye uniformly step816 comprises providing an eye cup with passages that direct the vapor to each eye.
Venting the vapor to control the temperature of thevapor step818 comprises providing vents in wither the eye cup, neck or arm.
FIG. 9 is a fluid flow diagram showing the fluid and steam flow of the device, shown generally900.Arrow902 denotes filling thefirst chamber116 with a fluid, typically dH20. The fluid then seeps intohydrophilic material126 viapassages904. Theheating element124 heats the fluid moves up thematerial126 via capillary action shown byarrows906, where it is heated and turned into vapor/steam and aerosolized droplets in thesecond chamber118, denoted by908 and912 respectively. The mixture then exits the device as shown viaarrows914.
With reference now toFIG. 10, thehydrophilic material126 is shown together with abuffer1002, which is formed of a perforated meal and is configured to protect thehydrophilic material126 from the direct heat of theheating element124. In operation, whenheating element124 is on, the aerosolized droplets can be seen at910.
With reference now toFIG. 11, in optional embodiments, theheating element124 has a diameter that is less than that of thehydrophilic material126 . Also, theheating element124 is heptagonal to lower energy requirements. In this way, thehydrophilic material126 surrounds the heating element.
While the present invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the present invention is not limited to these herein disclosed embodiments. Rather, the present invention is intended to cover all of the various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Although specific features of various embodiments of the invention may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the invention, the feature(s) of one drawing may be combined with any or all of the features in any of the other drawings. The words “including”, “comprising”, “having”, and “with” as used herein are to be interpreted broadly and comprehensively and are not limited to any physical interconnection. Moreover, any embodiments disclosed herein are not to be interpreted as the only possible embodiments. Rather, modifications and other embodiments are intended to be included within the scope of the appended claims.