Movatterモバイル変換


[0]ホーム

URL:


US20210097376A1 - Backpressure for Accelerated Deep Learning - Google Patents

Backpressure for Accelerated Deep Learning
Download PDF

Info

Publication number
US20210097376A1
US20210097376A1US16/875,795US202016875795AUS2021097376A1US 20210097376 A1US20210097376 A1US 20210097376A1US 202016875795 AUS202016875795 AUS 202016875795AUS 2021097376 A1US2021097376 A1US 2021097376A1
Authority
US
United States
Prior art keywords
fabric
neural network
processing element
backpressure
virtual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/875,795
Inventor
Sean Lie
Gary R. Lauterbach
Michael Edwin JAMES
Michael Morrison
Srikanth Arekapudi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cerebras Systems Inc
Original Assignee
Cerebras Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cerebras Systems IncfiledCriticalCerebras Systems Inc
Priority to US16/875,795priorityCriticalpatent/US20210097376A1/en
Publication of US20210097376A1publicationCriticalpatent/US20210097376A1/en
Abandonedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Techniques in advanced deep learning provide improvements in one or more of accuracy, performance, and energy efficiency. An array of processing elements performs flow-based computations on wavelets of data. Each processing element comprises a respective compute element and a respective routing element. Each compute element comprises virtual input queues. Each router enables communication via wavelets with at least nearest neighbors in a 2D mesh. Routing is controlled by respective virtual channel specifiers in each wavelet and routing configuration information in each router. Each router comprises data queues. The virtual input queues of the compute element and the data queues of the router are managed in accordance with the virtual channels. Backpressure information, per each of the virtual channels, is generated, communicated, and used to prevent overrun of the virtual input queues and the data queues.

Description

Claims (21)

2. A method comprising:
managing a plurality of virtual input queues of a processing element having a coupling to a fabric, each virtual input queue enabled to store at most a respective number of fabric packets received via the fabric, the coupling associated with a plurality of fabric virtual channels each associated with one of the virtual input queues;
managing a plurality of backpressure indicators, each backpressure indicator associated with a respective one of the fabric virtual channels and enabled to selectively indicate one of a stall state and a ready state, each backpressure indicator set to indicate the ready state responsive to the virtual input queue associated with the fabric virtual channel associated with the respective backpressure indicator holding less than a respective threshold number of fabric packets and otherwise set to indicate the stall state; and
transmitting the backpressure indicators via the coupling and through routing paths enabled by the fabric and determinable at least in part by referencing information identified by fabric virtual channel identifiers respectively associated with each of the fabric virtual channels and wherein each of the fabric packets comprises a respective instance of one of the fabric virtual channel identifiers.
10. An apparatus comprising:
a fabric;
a processing element comprising
a plurality of virtual input queues,
virtual input queue control hardware logic circuitry,
a coupling to the fabric,
a plurality of backpressure indicators,
backpressure indicator control hardware logic circuitry, and
transmission hardware logic circuitry; and
wherein
each virtual input queue is enabled to store at most a respective number of fabric packets received via the fabric,
the virtual input queue control hardware logic circuitry is enabled to manage the virtual input queues,
the coupling is associated with a plurality of fabric virtual channels each associated with one of the virtual input queues,
each backpressure indicator is associated with a respective one of the fabric virtual channels and enabled to selectively indicate one of a stall state and a ready state,
the backpressure indicator control hardware logic circuitry is enabled to manage the backpressure indicators via setting respective ones of the backpressure indicators to indicate the ready state responsive to the virtual input queue associated with the fabric virtual channel associated with the respective backpressure indicator holding less than a respective threshold number of fabric packets and otherwise setting the respective backpressure indicator to indicate the stall state,
the transmission hardware logic circuitry is enabled to transmit the backpressure indicators via the coupling and through routing paths enabled by the fabric and determinable at least in part by referencing information identified by fabric virtual channel identifiers respectively associated with each of the fabric virtual channels, and
each of the fabric packets comprises a respective instance of one of the fabric virtual channel identifiers.
16. A system comprising:
means for managing a plurality of virtual input queues of a processing element having a coupling to a fabric, each virtual input queue enabled to store at most a respective number of fabric packets received via the fabric, the coupling associated with a plurality of fabric virtual channels each associated with one of the virtual input queues;
means for managing a plurality of backpressure indicators, each backpressure indicator associated with a respective one of the fabric virtual channels and enabled to selectively indicate one of a stall state and a ready state, each backpressure indicator set to indicate the ready state responsive to the virtual input queue associated with the fabric virtual channel associated with the respective backpressure indicator holding less than a respective threshold number of fabric packets and otherwise set to indicate the stall state; and
means for transmitting the backpressure indicators via the coupling and through routing paths enabled by the fabric and determinable at least in part by referencing information identified by fabric virtual channel identifiers respectively associated with each of the fabric virtual channels and wherein each of the fabric packets comprises a respective instance of one of the fabric virtual channel identifiers.
US16/875,7952017-04-172020-05-15Backpressure for Accelerated Deep LearningAbandonedUS20210097376A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US16/875,795US20210097376A1 (en)2017-04-172020-05-15Backpressure for Accelerated Deep Learning

Applications Claiming Priority (16)

Application NumberPriority DateFiling DateTitle
US201762486372P2017-04-172017-04-17
US201762517949P2017-06-112017-06-11
US201762520433P2017-06-152017-06-15
US201762522081P2017-06-192017-06-19
US201762522065P2017-06-192017-06-19
US201762542645P2017-08-082017-08-08
US201762542657P2017-08-082017-08-08
US201762580207P2017-11-012017-11-01
US201862628784P2018-02-092018-02-09
US201862628773P2018-02-092018-02-09
US201862652933P2018-04-052018-04-05
US201862655210P2018-04-092018-04-09
US201862655826P2018-04-112018-04-11
US16/088,706US10657438B2 (en)2017-04-172018-04-17Backpressure for accelerated deep learning
PCT/IB2018/052666WO2018193379A1 (en)2017-04-172018-04-17Backpressure for accelerated deep learning
US16/875,795US20210097376A1 (en)2017-04-172020-05-15Backpressure for Accelerated Deep Learning

Related Parent Applications (2)

Application NumberTitlePriority DateFiling Date
PCT/IB2018/052666ContinuationWO2018193379A1 (en)2017-04-172018-04-17Backpressure for accelerated deep learning
US16/088,706ContinuationUS10657438B2 (en)2017-04-172018-04-17Backpressure for accelerated deep learning

Publications (1)

Publication NumberPublication Date
US20210097376A1true US20210097376A1 (en)2021-04-01

Family

ID=63855637

Family Applications (8)

Application NumberTitlePriority DateFiling Date
US16/604,108ActiveUS11157806B2 (en)2017-04-172018-04-17Task activating for accelerated deep learning
US16/603,184ActiveUS11232347B2 (en)2017-04-172018-04-17Fabric vectors for deep learning acceleration
US16/090,049ActiveUS10762418B2 (en)2017-04-172018-04-17Control wavelet for accelerated deep learning
US16/603,950ActiveUS11475282B2 (en)2017-04-172018-04-17Microthreading for accelerated deep learning
US16/088,706ActiveUS10657438B2 (en)2017-04-172018-04-17Backpressure for accelerated deep learning
US16/875,795AbandonedUS20210097376A1 (en)2017-04-172020-05-15Backpressure for Accelerated Deep Learning
US17/005,140Active2038-05-13US11727254B2 (en)2017-04-172020-08-27Control wavelet for accelerated deep learning
US17/504,784ActiveUS11853867B2 (en)2017-04-172021-10-19Task activating for accelerated deep learning

Family Applications Before (5)

Application NumberTitlePriority DateFiling Date
US16/604,108ActiveUS11157806B2 (en)2017-04-172018-04-17Task activating for accelerated deep learning
US16/603,184ActiveUS11232347B2 (en)2017-04-172018-04-17Fabric vectors for deep learning acceleration
US16/090,049ActiveUS10762418B2 (en)2017-04-172018-04-17Control wavelet for accelerated deep learning
US16/603,950ActiveUS11475282B2 (en)2017-04-172018-04-17Microthreading for accelerated deep learning
US16/088,706ActiveUS10657438B2 (en)2017-04-172018-04-17Backpressure for accelerated deep learning

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
US17/005,140Active2038-05-13US11727254B2 (en)2017-04-172020-08-27Control wavelet for accelerated deep learning
US17/504,784ActiveUS11853867B2 (en)2017-04-172021-10-19Task activating for accelerated deep learning

Country Status (5)

CountryLink
US (8)US11157806B2 (en)
EP (2)EP3607503B1 (en)
JP (2)JP6860694B2 (en)
CA (2)CA3060356C (en)
WO (5)WO2018193377A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11062200B2 (en)2017-04-172021-07-13Cerebras Systems Inc.Task synchronization for accelerated deep learning
US11157806B2 (en)2017-04-172021-10-26Cerebras Systems Inc.Task activating for accelerated deep learning
US11321087B2 (en)2018-08-292022-05-03Cerebras Systems Inc.ISA enhancements for accelerated deep learning
US11328207B2 (en)2018-08-282022-05-10Cerebras Systems Inc.Scaled compute fabric for accelerated deep learning
US11328208B2 (en)2018-08-292022-05-10Cerebras Systems Inc.Processor element redundancy for accelerated deep learning
US20220343136A1 (en)*2019-10-162022-10-27Cerebras Systems Inc.Advanced wavelet filtering for accelerated deep learning
US11488004B2 (en)2017-04-172022-11-01Cerebras Systems Inc.Neuron smearing for accelerated deep learning
US11568021B2 (en)2020-02-212023-01-31Alibaba Group Holding LimitedVector-vector multiplication techniques for processing systems
US11934945B2 (en)2017-02-232024-03-19Cerebras Systems Inc.Accelerated deep learning
US12177133B2 (en)2019-10-162024-12-24Cerebras Systems Inc.Dynamic routing for accelerated deep learning

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11017295B1 (en)2017-05-012021-05-25Perceive CorporationDevice storing ternary weight parameters for machine-trained network
US11436433B2 (en)*2017-12-282022-09-06Intel CorporationMalleable fabric attached virtual artificial intelligence (AI) training appliances
KR102694572B1 (en)*2018-02-202024-08-13삼성전자주식회사Method and apparatus for controlling data input and output of fully connected network
US11645501B2 (en)*2018-02-282023-05-09International Business Machines CorporationDistributed, event-based computation using neuromorphic cores
US11586910B1 (en)2018-04-202023-02-21Perceive CorporationWrite cache for neural network inference circuit
US10977338B1 (en)2018-04-202021-04-13Perceive CorporationReduced-area circuit for dot product computation
US11210586B1 (en)2018-04-202021-12-28Perceive CorporationWeight value decoder of neural network inference circuit
US11568227B1 (en)2018-04-202023-01-31Perceive CorporationNeural network inference circuit read controller with multiple operational modes
US12093696B1 (en)2018-04-202024-09-17Perceive CorporationBus for transporting output values of a neural network layer to cores specified by configuration data
US11205115B1 (en)2018-04-202021-12-21Perceive CorporationNeural network inference circuit
US11886979B1 (en)2018-04-202024-01-30Perceive CorporationShifting input values within input buffer of neural network inference circuit
US11783167B1 (en)2018-04-202023-10-10Perceive CorporationData transfer for non-dot product computations on neural network inference circuit
US11074041B2 (en)*2018-08-072021-07-27NovuMind LimitedMethod and system for elastic precision enhancement using dynamic shifting in neural networks
CN109359767B (en)*2018-09-252022-03-25佛山科学技术学院Intelligent expression method and device for fault recognition result in intelligent manufacturing process
US11620525B2 (en)*2018-09-252023-04-04Advanced Micro Devices, Inc.Dropout for accelerated deep learning in heterogeneous architectures
JP2020086479A (en)*2018-11-152020-06-04株式会社日立製作所 Calculator, construction method of neural network, and computer system
US11170263B2 (en)*2018-11-152021-11-09Nvidia CorporationDistributed batch normalization using estimates and rollback
US11995533B1 (en)*2018-12-052024-05-28Perceive CorporationExecuting replicated neural network layers on inference circuit
US11347297B1 (en)2019-01-232022-05-31Perceive CorporationNeural network inference circuit employing dynamic memory sleep
US11562247B2 (en)*2019-01-242023-01-24Microsoft Technology Licensing, LlcNeural network activation compression with non-uniform mantissas
US11961007B2 (en)*2019-02-062024-04-16Qualcomm IncorporatedSplit network acceleration architecture
CN113396425B (en)*2019-03-252023-08-22杭州飞步科技有限公司 Acceleration method, device and system on chip
CN111782577B (en)*2019-04-042023-03-24安徽寒武纪信息科技有限公司Data processing device and method and related product
US11868901B1 (en)2019-05-212024-01-09Percieve CorporationCompiler for optimizing memory allocations within cores
CA3147392A1 (en)2019-07-192021-01-28Pavel SINHAConfigurable processor for implementing convolution neural networks
GB2581546B (en)*2019-08-222021-03-31Imagination Tech LtdMethods and systems for converting weights of a deep neural network from a first number format to a second number format
KR102819972B1 (en)2019-08-222025-06-13구글 엘엘씨 Sharding for synchronous processors
US11551054B2 (en)*2019-08-272023-01-10International Business Machines CorporationSystem-aware selective quantization for performance optimized distributed deep learning
US11687778B2 (en)2020-01-062023-06-27The Research Foundation For The State University Of New YorkFakecatcher: detection of synthetic portrait videos using biological signals
US11687336B2 (en)*2020-05-082023-06-27Black Sesame Technologies Inc.Extensible multi-precision data pipeline for computing non-linear and arithmetic functions in artificial neural networks
US11809908B2 (en)2020-07-072023-11-07SambaNova Systems, Inc.Runtime virtualization of reconfigurable data flow resources
GB202011959D0 (en)*2020-07-312020-09-16Nordic Semiconductor AsaHardware accelerator
US20220114135A1 (en)*2020-09-212022-04-14Mostafizur RahmanComputer architecture for artificial intelligence and reconfigurable hardware
US20220092382A1 (en)*2020-09-232022-03-24The Governing Council Of The University Of TorontoQuantization for neural network computation
US11237880B1 (en)*2020-12-182022-02-01SambaNova Systems, Inc.Dataflow all-reduce for reconfigurable processor systems
US11392740B2 (en)2020-12-182022-07-19SambaNova Systems, Inc.Dataflow function offload to reconfigurable processors
US11182221B1 (en)2020-12-182021-11-23SambaNova Systems, Inc.Inter-node buffer-based streaming for reconfigurable processor-as-a-service (RPaaS)
US11782760B2 (en)2021-02-252023-10-10SambaNova Systems, Inc.Time-multiplexed use of reconfigurable hardware
US11200096B1 (en)2021-03-262021-12-14SambaNova Systems, Inc.Resource allocation for reconfigurable processors
US12159214B1 (en)2021-04-232024-12-03Perceive CorporationBuffering of neural network inputs and outputs
US12210962B2 (en)2021-06-302025-01-28Micron Technology, Inc.Artificial neural networks on a deep learning accelerator
CN113784410B (en)*2021-09-242022-09-23吉林大学 Vertical Handoff Method for Heterogeneous Wireless Networks Based on Reinforcement Learning TD3 Algorithm
TWI819480B (en)*2022-01-272023-10-21緯創資通股份有限公司Acceleration system and dynamic configuration method thereof
CN114840470B (en)*2022-03-312025-05-16成都登临科技有限公司 On-chip cache-friendly dimension transformation device and neural network processor
US11995030B1 (en)*2022-11-102024-05-28Azurengine Technologies, Inc.Reconfigurable parallel processor with stacked columns forming a circular data path
US12417047B2 (en)2023-01-102025-09-16Google LlcHeterogeneous ML accelerator cluster with flexible system resource balance
US12380041B2 (en)2023-01-192025-08-05SambaNova Systems, Inc.Method and apparatus for data transfer between accessible memories of multiple processors in a heterogeneous processing system using two memory to memory transfer operations
US12229057B2 (en)2023-01-192025-02-18SambaNova Systems, Inc.Method and apparatus for selecting data access method in a heterogeneous processing system with multiple processors
US12210468B2 (en)2023-01-192025-01-28SambaNova Systems, Inc.Data transfer between accessible memories of multiple processors incorporated in coarse-grained reconfigurable (CGR) architecture within heterogeneous processing system using one memory to memory transfer operation
US20250045569A1 (en)*2023-08-042025-02-06Expedera, Inc.Methods and Apparatus For Recomputing Neural Networks

Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6078963A (en)*1998-01-162000-06-20At&T Corp.Router with de-centralized processing using intelligent ports
US20020075883A1 (en)*2000-12-152002-06-20Dell Martin S.Three-stage switch fabric with input device features
US20030058880A1 (en)*2001-09-212003-03-27Terago Communications, Inc.Multi-service queuing method and apparatus that provides exhaustive arbitration, load balancing, and support for rapid port failover
US20040120335A1 (en)*2002-12-232004-06-24Alcatel Canada Inc.Efficient per-queue backpressure signaling
US20050138243A1 (en)*2003-12-222005-06-23James TierneyManaging flow control buffer
US20080008471A1 (en)*2002-11-052008-01-10Dress William BN-way serial-channel interconnect
US20180174032A1 (en)*2016-12-202018-06-21Intel CorporationNeuromorphic core and chip traffic control

Family Cites Families (202)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE68909426T2 (en)1988-01-151994-01-27Quantel Ltd Data processing and transmission.
JPH03175548A (en)1989-12-041991-07-30Fujitsu Ltd Microprocessor and address control method
JP3219826B2 (en)1992-02-212001-10-15日本電気株式会社 Information processing device
JPH0668056A (en)1992-08-201994-03-11Hitachi Ltd Parallel computer system
JPH06110864A (en)1992-09-301994-04-22Sony CorpLearning processing device
CA2129882A1 (en)1993-08-121995-02-13Soheil ShamsDynamically reconfigurable interprocessor communication network for simd multiprocessors and apparatus implementing same
US5710549A (en)1994-09-301998-01-20Tandem Computers IncorporatedRouting arbitration for shared resources
US5761103A (en)1995-03-081998-06-02Texas Instruments IncorporatedLeft and right justification of single precision mantissa in a double precision rounding unit
US5835024A (en)1995-06-071998-11-10International Business Machines CorporationMulti-stage interconnection network with selectable function switching apparatus
US6055618A (en)1995-10-312000-04-25Cray Research, Inc.Virtual maintenance network in multiprocessing system having a non-flow controlled virtual maintenance channel
US5870396A (en)1996-12-311999-02-09Northern Telecom LimitedOutput queueing in a broadband multi-media satellite and terrestrial communications network
US6285679B1 (en)1997-08-222001-09-04Avici Systems, Inc.Methods and apparatus for event-driven routing
US6199089B1 (en)1998-09-182001-03-06Ati International SrlFloating point arithmetic logic unit rounding using at least one least significant bit
US6212627B1 (en)1998-10-122001-04-03Intel CorporationSystem for converting packed integer data into packed floating point data in reduced time
US6246615B1 (en)1998-12-232001-06-12Micron Technology, Inc.Redundancy mapping in a multichip semiconductor package
JP2000278316A (en)1999-03-232000-10-06Toshiba Microelectronics Corp Data switching device
US6542986B1 (en)*1999-11-092003-04-01Advanced Micro Devices, Inc.Resolving dependencies among concurrently dispatched instructions in a superscalar microprocessor
GB0019341D0 (en)2000-08-082000-09-27Easics NvSystem-on-chip solutions
CN1311376C (en)2001-02-242007-04-18国际商业机器公司Novel massively parallel super computer
US20020141427A1 (en)*2001-03-292002-10-03Mcalpine Gary L.Method and apparatus for a traffic optimizing multi-stage switch fabric network
JP4542722B2 (en)2001-04-252010-09-15富士通株式会社 Instruction processing method
US7293002B2 (en)2001-06-192007-11-06Ohio UniversitySelf-organizing data driven learning hardware with local interconnections
US9170812B2 (en)2002-03-212015-10-27Pact Xpp Technologies AgData processing system having integrated pipelined array data processor
US7403525B2 (en)2002-05-152008-07-22Broadcom CorporationEfficient routing of packet data in a scalable processing resource
GB0304628D0 (en)2003-02-282003-04-02Imec Inter Uni Micro ElectrMethod for hardware-software multitasking on a reconfigurable computing platform
AU2003255254A1 (en)2002-08-082004-02-25Glenn J. LeedyVertical system integration
JP2005535974A (en)2002-08-162005-11-24コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Apparatus, method, and compiler for enabling variable length instruction processing in a very long instruction word processor
US20040115995A1 (en)2002-11-252004-06-17Sanders Samuel SidneyCircuit array module
US7299338B2 (en)2002-12-042007-11-20Agere Systems Inc.Vector indexed memory unit and method
ITRM20030354A1 (en)2003-07-172005-01-18Micron Technology Inc CONTROL UNIT FOR MEMORY DEVICE.
JP3984209B2 (en)2003-07-312007-10-03株式会社東芝 Semiconductor memory device
US7814222B2 (en)*2003-12-192010-10-12Nortel Networks LimitedQueue state mirroring
US7701957B1 (en)2004-01-202010-04-20Integrated Device Technology, Inc.Method and apparatus for switching, merging, and demerging data between data communication locations
US7453810B2 (en)2004-07-272008-11-18Alcatel LucentMethod and apparatus for closed loop, out-of-band backpressure mechanism
US7277990B2 (en)2004-09-302007-10-02Sanjeev JainMethod and apparatus providing efficient queue descriptor memory access
US7493474B1 (en)2004-11-102009-02-17Altera CorporationMethods and apparatus for transforming, loading, and executing super-set instructions
US7657891B2 (en)2005-02-042010-02-02Mips Technologies, Inc.Multithreading microprocessor with optimized thread scheduler for increasing pipeline utilization efficiency
US7671398B2 (en)2005-02-232010-03-02Tran Bao QNano memory, light, energy, antenna and strand-based systems and methods
US8443169B2 (en)2005-03-282013-05-14Gerald George PechanekInterconnection network connecting operation-configurable nodes according to one or more levels of adjacency in multiple dimensions of communication in a multi-processor and a neural processor
US7565657B1 (en)2005-04-192009-07-21Sandia CorporationAllocating application to group of consecutive processors in fault-tolerant deadlock-free routing path defined by routers obeying same rules for path selection
US8275976B2 (en)2005-08-292012-09-25The Invention Science Fund I, LlcHierarchical instruction scheduler facilitating instruction replay
US20070058557A1 (en)2005-09-152007-03-15Interdigital Technology CorporationMethod and apparatus for scheduling data transmissions based on a traffic data pattern model
US9009660B1 (en)2005-11-292015-04-14Tilera CorporationProgramming in a multiprocessor environment
US8220704B2 (en)*2006-01-242012-07-17Mycrolab Diagnostics Pty LtdMethods for low cost manufacturing of complex layered materials and device
US9542642B2 (en)2006-04-062017-01-10Samuel F. WoodPacket data neural network system and method
US8194690B1 (en)2006-05-242012-06-05Tilera CorporationPacket processing in a parallel processing environment
US8390325B2 (en)*2006-06-212013-03-05Element Cxi, LlcReconfigurable integrated circuit architecture with on-chip configuration and reconfiguration
US8010966B2 (en)2006-09-272011-08-30Cisco Technology, Inc.Multi-threaded processing using path locks
US7773616B2 (en)2006-11-082010-08-10Sicortex, Inc.System and method for communicating on a richly connected multi-processor computer system using a pool of buffers for dynamic association with a virtual channel
US7688725B2 (en)2007-02-072010-03-30King Fahd University Of Petroleum & MineralsContent-aware congestion control system
CN100591047C (en)2007-02-102010-02-17华为技术有限公司 Back pressure method, system and switching node of multi-level switching network
US8752032B2 (en)2007-02-232014-06-10Irdeto Canada CorporationSystem and method of interlocking to protect software-mediated program and device behaviours
US8185909B2 (en)2007-03-062012-05-22Sap AgPredictive database resource utilization and load balancing using neural network model
WO2008131802A1 (en)2007-05-012008-11-06Telefonaktiebolaget Lm Ericsson (Publ)All optical processing circuit for conflict resolution and switch configuration in a 2x2 optical node
JP5012232B2 (en)2007-06-082012-08-29富士通株式会社 Optical switch device
CN101354694B (en)2007-07-262010-10-13上海红神信息技术有限公司Ultra-high expanding super computing system based on MPU structure
US7873701B2 (en)2007-11-272011-01-18International Business Machines CorporationNetwork on chip with partitions
US8526422B2 (en)2007-11-272013-09-03International Business Machines CorporationNetwork on chip with partitions
US8862706B2 (en)2007-12-142014-10-14Nant Holdings Ip, LlcHybrid transport—application network fabric apparatus
US8161209B2 (en)2008-03-312012-04-17Advanced Micro Devices, Inc.Peer-to-peer special purpose processor architecture and method
US8245240B2 (en)2008-04-042012-08-14Intel CorporationExtended dynamic optimization of connection establishment and message progress processing in a multi-fabric message passing interface implementation
US9501448B2 (en)*2008-05-272016-11-22Stillwater Supercomputing, Inc.Execution engine for executing single assignment programs with affine dependencies
TW200951752A (en)2008-06-062009-12-16Inotera Memories IncA method for prognostic maintenance in semiconductor manufacturing
US20110213950A1 (en)2008-06-112011-09-01John George MathiesonSystem and Method for Power Optimization
GB0811057D0 (en)2008-06-172008-07-23Univ UlsterArtificial neural network architecture
US8103858B2 (en)2008-06-302012-01-24Intel CorporationEfficient parallel floating point exception handling in a processor
US8151088B1 (en)2008-07-082012-04-03Tilera CorporationConfiguring routing in mesh networks
US8311057B1 (en)2008-08-052012-11-13Xilinx, Inc.Managing formatting of packets of a communication protocol
US8213308B2 (en)2008-09-112012-07-03Juniper Networks, Inc.Methods and apparatus for defining a flow control signal related to a transmit queue
US8423983B2 (en)2008-10-142013-04-16International Business Machines CorporationGenerating and executing programs for a floating point single instruction multiple data instruction set architecture
US9152427B2 (en)2008-10-152015-10-06Hyperion Core, Inc.Instruction issue to array of arithmetic cells coupled to load/store cells with associated registers as extended register file
US7814303B2 (en)2008-10-232010-10-12International Business Machines CorporationExecution of a sequence of vector instructions preceded by a swizzle sequence instruction specifying data element shuffle orders respectively
WO2010069395A1 (en)2008-12-192010-06-24Telefonaktiebolaget Lm Ericsson (Publ)A method and apparatus for routing data
US20110022821A1 (en)2009-03-092011-01-27Yunsi FeiSystem and Methods to Improve Efficiency of VLIW Processors
US8886899B1 (en)2009-09-212014-11-11Tilera CorporationManaging memory requests based on priority
US8396119B1 (en)2009-09-302013-03-12Ambarella, Inc.Data sample compression and decompression using randomized quantization bins
US8583896B2 (en)2009-11-132013-11-12Nec Laboratories America, Inc.Massively parallel processing core with plural chains of processing elements and respective smart memory storing select data received from each chain
US8559307B2 (en)2009-12-282013-10-15Empire Technology Development LlcRouting packets in on-chip networks
CN101778049A (en)2010-03-042010-07-14南京大学Router and transmission method thereof on packet-circuit switching chip
US8379659B2 (en)2010-03-292013-02-19Intel CorporationPerformance and traffic aware heterogeneous interconnection network
US9015448B2 (en)*2010-06-172015-04-21Advanced Micro Devices, Inc.Message broadcast with router bypassing
US9065773B2 (en)2010-06-222015-06-23Juniper Networks, Inc.Methods and apparatus for virtual channel flow control associated with a switch fabric
WO2012051577A1 (en)2010-10-152012-04-19Coherent Logix, IncorporatedDisabling communication in a multiprocessor system
US8738860B1 (en)2010-10-252014-05-27Tilera CorporationComputing in parallel processing environments
US8745626B1 (en)2012-12-172014-06-03Throughputer, Inc.Scheduling application instances to configurable processing cores based on application requirements and resource specification
US8843425B2 (en)2011-07-292014-09-23International Business Machines CorporationHierarchical routing for two-way information flow and structural plasticity in neural networks
US8712941B2 (en)2011-09-212014-04-29Brain CorporationElementary network description for efficient link between neuronal models and neuromorphic systems
WO2013032753A2 (en)2011-08-262013-03-07The Trustees Of Columbia University In The City Of New YorkSystems and methods for switched-inductor integrated voltage regulators
US8909576B2 (en)2011-09-162014-12-09International Business Machines CorporationNeuromorphic event-driven neural computing architecture in a scalable neural network
WO2013048388A1 (en)2011-09-282013-04-04Hewlett-Packard Development Company, L.P.Managing packet flow in a switch fabric
US10078515B2 (en)2011-10-032018-09-18International Business Machines CorporationTracking operand liveness information in a computer system and performing function based on the liveness information
US8909690B2 (en)2011-12-132014-12-09International Business Machines CorporationPerforming arithmetic operations using both large and small floating point values
KR101197103B1 (en)2012-03-092012-11-07(주) 지솔루션An apparatus for segmenting a satellite compressed image and the method thereof
US9390461B1 (en)*2012-05-082016-07-12Apple Inc.Graphics hardware mode controls
JP2013251715A (en)2012-05-312013-12-12Toshiba CorpRouter and many-core system
US9563841B2 (en)2012-07-312017-02-07International Business Machines CorporationGlobally asynchronous and locally synchronous (GALS) neuromorphic network
US9569279B2 (en)2012-07-312017-02-14Nvidia CorporationHeterogeneous multiprocessor design for power-efficient and area-efficient computing
US9507746B2 (en)2012-10-222016-11-29Intel CorporationControl messaging in multislot link layer flit
US9424213B2 (en)2012-11-212016-08-23Coherent Logix, IncorporatedProcessing system with interspersed processors DMA-FIFO
US9465620B2 (en)*2012-12-202016-10-11Intel CorporationScalable compute fabric
US9373073B2 (en)2012-12-212016-06-21International Business Machines CorporationTime-division multiplexed neurosynaptic module with implicit memory addressing for implementing a universal substrate of adaptation
US9826058B2 (en)2013-02-272017-11-21Nec CorporationMethod for operating a network
US9471388B2 (en)2013-03-142016-10-18Altera CorporationMapping network applications to a hybrid programmable many-core device
US9086813B2 (en)2013-03-152015-07-21Qualcomm IncorporatedMethod and apparatus to save and restore system memory management unit (MMU) contexts
EP2796987A1 (en)2013-04-262014-10-29EM Microelectronic-Marin SARandom number generator
US9069602B2 (en)2013-09-252015-06-30Netronome Systems, IncorporatedTransactional memory that supports put and get ring commands
FR3011659B1 (en)2013-10-042015-10-16Commissariat Energie Atomique ELECTRONIC CIRCUIT, PARTICULARLY ABLE TO IMPLEMENTATION OF A NETWORK OF NEURONS, AND NEURONAL SYSTEM
US9924490B2 (en)2013-10-092018-03-20International Business Machines CorporationScaling multi-core neurosynaptic networks across chip boundaries
US9563599B2 (en)2013-11-042017-02-07Lewis Rhodes Labs, Inc.Computing architecture for operating on sequential data
US10044612B2 (en)2013-11-062018-08-07Citrix Systems, Inc.Systems and methods for port allocation
US9699079B2 (en)2013-12-302017-07-04Netspeed SystemsStreaming bridge design with host interfaces and network on chip (NoC) layers
US9614745B2 (en)2014-01-092017-04-04Citrix Systems, Inc.Systems and methods for cloud-based probing and diagnostics
US9348557B1 (en)2014-02-212016-05-24Altera CorporationFused floating point datapath with correct rounding
US20150242741A1 (en)2014-02-212015-08-27Qualcomm IncorporatedIn situ neural network co-processing
US10282465B2 (en)2014-02-252019-05-07Intel CorporationSystems, apparatuses, and methods for deep learning of feature detectors with sparse coding
US20150324690A1 (en)2014-05-082015-11-12Microsoft CorporationDeep Learning Training System
US10650301B2 (en)2014-05-082020-05-12International Business Machines CorporationUtilizing a distributed and parallel set of neurosynaptic core circuits for neuronal computation and non-neuronal computation
US9330433B2 (en)2014-06-302016-05-03Intel CorporationData distribution fabric in scalable GPUs
US9785565B2 (en)2014-06-302017-10-10Microunity Systems Engineering, Inc.System and methods for expandably wide processor instructions
US20160019061A1 (en)*2014-07-212016-01-21Qualcomm IncorporatedMANAGING DATAFLOW EXECUTION OF LOOP INSTRUCTIONS BY OUT-OF-ORDER PROCESSORS (OOPs), AND RELATED CIRCUITS, METHODS, AND COMPUTER-READABLE MEDIA
US10528682B2 (en)2014-09-042020-01-07Netspeed SystemsAutomatic performance characterization of a network-on-chip (NOC) interconnect
US10133570B2 (en)*2014-09-192018-11-20Intel CorporationProcessors, methods, systems, and instructions to select and consolidate active data elements in a register under mask into a least significant portion of result, and to indicate a number of data elements consolidated
US10120716B2 (en)2014-10-022018-11-06International Business Machines CorporationTask pooling and work affinity in data processing
EP3035204B1 (en)2014-12-192018-08-15Intel CorporationStorage device and method for performing convolution operations
US10523585B2 (en)2014-12-192019-12-31Amazon Technologies, Inc.System on a chip comprising multiple compute sub-systems
US9961019B2 (en)2014-12-222018-05-01Intel CorporationAdaptively switched network-on-chip
GB2527165B (en)2015-01-162017-01-11Imagination Tech LtdArbiter verification
US9568960B2 (en)2015-02-202017-02-14International Business Machines CorporationSupercomputer using wafer scale integration
US9747218B2 (en)2015-03-202017-08-29Mill Computing, Inc.CPU security mechanisms employing thread-specific protection domains
US9729460B2 (en)2015-04-132017-08-08Arista Networks, Inc.Method and system for managing port bandwidth in network devices
FR3035243B1 (en)2015-04-202018-06-29Commissariat A L'energie Atomique Et Aux Energies Alternatives PLACING A CALCULATION TASK ON A FUNCTIONALLY ASYMMETRIC PROCESSOR
US10346170B2 (en)*2015-05-052019-07-09Intel CorporationPerforming partial register write operations in a processor
IL238690B (en)2015-05-072019-07-31Mellanox Technologies LtdNetwork-based computational accelerator
US10262259B2 (en)2015-05-082019-04-16Qualcomm IncorporatedBit width selection for fixed point neural networks
US10192162B2 (en)2015-05-212019-01-29Google LlcVector computation unit in a neural network processor
US10140572B2 (en)2015-06-252018-11-27Microsoft Technology Licensing, LlcMemory bandwidth management for deep learning applications
US9946548B2 (en)2015-06-262018-04-17Microsoft Technology Licensing, LlcAge-based management of instruction blocks in a processor instruction window
US20160379109A1 (en)2015-06-292016-12-29Microsoft Technology Licensing, LlcConvolutional neural networks on hardware accelerators
US10452995B2 (en)2015-06-292019-10-22Microsoft Technology Licensing, LlcMachine learning classification on hardware accelerators with stacked memory
US10540588B2 (en)2015-06-292020-01-21Microsoft Technology Licensing, LlcDeep neural network processing on hardware accelerators with stacked memory
US11244225B2 (en)2015-07-102022-02-08Samsung Electronics Co., Ltd.Neural network processor configurable using macro instructions
US11126433B2 (en)*2015-09-192021-09-21Microsoft Technology Licensing, LlcBlock-based processor core composition register
US10452399B2 (en)2015-09-192019-10-22Microsoft Technology Licensing, LlcBroadcast channel architectures for block-based processors
US10936316B2 (en)2015-09-192021-03-02Microsoft Technology Licensing, LlcDense read encoding for dataflow ISA
CN108353081B (en)2015-09-282021-01-1913部门有限公司Device and method for detecting and confronting remote-controlled vehicle and storage medium
US10614354B2 (en)2015-10-072020-04-07Altera CorporationMethod and apparatus for implementing layers on a convolutional neural network accelerator
US9817661B2 (en)2015-10-072017-11-14Arm LimitedFloating point number rounding
US10585848B2 (en)2015-10-082020-03-10Via Alliance Semiconductor Co., Ltd.Processor with hybrid coprocessor/execution unit neural network unit
US11165717B2 (en)2015-10-262021-11-02Western Digital Technologies, Inc.Fabric interconnection for memory banks based on network-on-chip methodology
US10489152B2 (en)2016-01-282019-11-26International Business Machines CorporationStochastic rounding floating-point add instruction using entropy from a register
WO2017129325A1 (en)2016-01-292017-08-03Fotonation LimitedA convolutional neural network
KR102420897B1 (en)2016-03-172022-07-18에스케이하이닉스 주식회사Memory module, memory system inculding the same, and operation method thereof
US10142258B2 (en)2016-04-082018-11-27Advanced Micro Devices, Inc.Methods and apparatus for processing in a network on chip (NOC)
US9910673B2 (en)2016-04-192018-03-06Xiaolin WangReconfigurable microprocessor hardware architecture
US10531542B2 (en)2016-04-222020-01-07Nanogrid LimitedSystems and methods for connecting and controlling configurable lighting units
GB2549933B (en)2016-04-272018-08-01Imagination Tech LtdVerification of hardware designs to implement floating point power functions
US11423289B2 (en)2016-06-142022-08-23Samsung Electronics Co., Ltd.Accelerator for deep neural networks
US10015072B2 (en)2016-07-072018-07-03Netscout Systems, Inc.Consolidation of network test automation tools
US10621486B2 (en)2016-08-122020-04-14Beijing Deephi Intelligent Technology Co., Ltd.Method for optimizing an artificial neural network (ANN)
US20190303743A1 (en)2016-08-132019-10-03Intel CorporationApparatuses, methods, and systems for neural networks
US11064019B2 (en)2016-09-142021-07-13Advanced Micro Devices, Inc.Dynamic configuration of inter-chip and on-chip networks in cloud computing system
US10157059B2 (en)2016-09-292018-12-18Intel CorporationInstruction and logic for early underflow detection and rounder bypass
US11176450B2 (en)2017-08-032021-11-16Xcelsis CorporationThree dimensional circuit implementing machine trained network
US10991675B2 (en)2016-10-102021-04-27Monolithic 3D Inc.3D semiconductor device and structure
US10355975B2 (en)2016-10-192019-07-16Rex Computing, Inc.Latency guaranteed network on chip
US10700968B2 (en)2016-10-192020-06-30Rex Computing, Inc.Optimized function assignment in a multi-core processor
US10127043B2 (en)2016-10-192018-11-13Rex Computing, Inc.Implementing conflict-free instructions for concurrent operation on a processor
US10268679B2 (en)2016-12-022019-04-23Microsoft Technology Licensing, LlcJoint language understanding and dialogue management using binary classification based on forward and backward recurrent neural network
US10528321B2 (en)2016-12-072020-01-07Microsoft Technology Licensing, LlcBlock floating point for neural network implementations
US10885425B2 (en)2016-12-202021-01-05Intel CorporationNetwork traversal using neuromorphic instantiations of spike-time-dependent plasticity
US10871964B2 (en)*2016-12-292020-12-22Qualcomm IncorporatedArchitecture for sparse neural network acceleration
US11748625B2 (en)2016-12-302023-09-05Intel CorporationDistributed convolution for neural networks
US10416999B2 (en)2016-12-302019-09-17Intel CorporationProcessors, methods, and systems with a configurable spatial accelerator
US10558575B2 (en)2016-12-302020-02-11Intel CorporationProcessors, methods, and systems with a configurable spatial accelerator
US10565492B2 (en)2016-12-312020-02-18Via Alliance Semiconductor Co., Ltd.Neural network unit with segmentable array width rotator
US11562115B2 (en)2017-01-042023-01-24Stmicroelectronics S.R.L.Configurable accelerator framework including a stream switch having a plurality of unidirectional stream links
US10810492B2 (en)2017-01-272020-10-20Hewlett Packard Enterprise Development LpMemory side acceleration for deep learning parameter updates
US10096134B2 (en)2017-02-012018-10-09Nvidia CorporationData compaction and memory bandwidth reduction for sparse neural networks
KR102369209B1 (en)2017-02-232022-02-28세레브라스 시스템즈 인코포레이티드 Accelerated Deep Learning
US10256198B2 (en)2017-03-232019-04-09Intel CorporationWarpage control for microelectronics packages
WO2018184208A1 (en)*2017-04-072018-10-11Intel CorporationMethods and apparatus for deep learning network execution pipeline on multi-processor platform
US10637744B2 (en)2017-04-122020-04-28Battelle Memorial InstituteComplementary workflows for identifying one-hop network behavior and multi-hop network dependencies
WO2018189728A1 (en)2017-04-142018-10-18Cerebras Systems Inc.Floating-point unit stochastic rounding for accelerated deep learning
EP3607503B1 (en)2017-04-172022-03-09Cerebras Systems Inc.Task activating for accelerated deep learning
US11488004B2 (en)2017-04-172022-11-01Cerebras Systems Inc.Neuron smearing for accelerated deep learning
US10614357B2 (en)2017-04-172020-04-07Cerebras Systems Inc.Dataflow triggered tasks for accelerated deep learning
WO2019025864A2 (en)2017-07-302019-02-07Sity EladA memory-based distributed processor architecture
US10963780B2 (en)2017-08-242021-03-30Google LlcYield improvements for three-dimensionally stacked neural network accelerators
KR102452953B1 (en)2017-10-302022-10-11삼성전자주식회사Method and apparatus for performing convolution operation in neural network
US11360930B2 (en)*2017-12-192022-06-14Samsung Electronics Co., Ltd.Neural processing accelerator
US11494582B2 (en)2018-02-082022-11-08Western Digital Technologies, Inc.Configurable neural network engine of tensor arrays and memory cells
KR102555057B1 (en)2018-05-092023-07-12에스케이하이닉스 주식회사Method for formatting weight matrix, accelerator using the formatted weight matrix and system including the same
US10289816B1 (en)2018-06-082019-05-14Gsfm LlcMethods, systems, and devices for an encrypted and obfuscated algorithm in a computing environment
WO2020021395A1 (en)2018-07-252020-01-30Cerebras Systems Inc.Numerical representation for neural networks
US11328207B2 (en)2018-08-282022-05-10Cerebras Systems Inc.Scaled compute fabric for accelerated deep learning
WO2020044208A1 (en)2018-08-292020-03-05Cerebras Systems Inc.Isa enhancements for accelerated deep learning
WO2020044238A1 (en)2018-08-292020-03-05Cerebras Systems Inc.Processor element redundancy for accelerated deep learning
US10802942B2 (en)2018-12-282020-10-13Intel CorporationMethods and apparatus to detect anomalies of a monitored system
US10817627B1 (en)*2019-07-222020-10-27Arm LimitedNetwork on-chip topology generation
US11360667B2 (en)2019-09-092022-06-14Stmicroelectronics S.R.L.Tagged memory operated at lower vmin in error tolerant system
WO2021084485A1 (en)2019-10-302021-05-06Cerebras Systems Inc.Placement of compute and memory for accelerated deep learning
WO2022034542A1 (en)2020-08-142022-02-17Cerebras Systems Inc.Weight sparsity techniques for accelerated deep learning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6078963A (en)*1998-01-162000-06-20At&T Corp.Router with de-centralized processing using intelligent ports
US20020075883A1 (en)*2000-12-152002-06-20Dell Martin S.Three-stage switch fabric with input device features
US20030058880A1 (en)*2001-09-212003-03-27Terago Communications, Inc.Multi-service queuing method and apparatus that provides exhaustive arbitration, load balancing, and support for rapid port failover
US20080008471A1 (en)*2002-11-052008-01-10Dress William BN-way serial-channel interconnect
US20040120335A1 (en)*2002-12-232004-06-24Alcatel Canada Inc.Efficient per-queue backpressure signaling
US20050138243A1 (en)*2003-12-222005-06-23James TierneyManaging flow control buffer
US20180174032A1 (en)*2016-12-202018-06-21Intel CorporationNeuromorphic core and chip traffic control

Cited By (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11934945B2 (en)2017-02-232024-03-19Cerebras Systems Inc.Accelerated deep learning
US11488004B2 (en)2017-04-172022-11-01Cerebras Systems Inc.Neuron smearing for accelerated deep learning
US11157806B2 (en)2017-04-172021-10-26Cerebras Systems Inc.Task activating for accelerated deep learning
US11232348B2 (en)2017-04-172022-01-25Cerebras Systems Inc.Data structure descriptors for deep learning acceleration
US11232347B2 (en)2017-04-172022-01-25Cerebras Systems Inc.Fabric vectors for deep learning acceleration
US11062200B2 (en)2017-04-172021-07-13Cerebras Systems Inc.Task synchronization for accelerated deep learning
US11475282B2 (en)2017-04-172022-10-18Cerebras Systems Inc.Microthreading for accelerated deep learning
US11328207B2 (en)2018-08-282022-05-10Cerebras Systems Inc.Scaled compute fabric for accelerated deep learning
US11321087B2 (en)2018-08-292022-05-03Cerebras Systems Inc.ISA enhancements for accelerated deep learning
US11328208B2 (en)2018-08-292022-05-10Cerebras Systems Inc.Processor element redundancy for accelerated deep learning
US20220343136A1 (en)*2019-10-162022-10-27Cerebras Systems Inc.Advanced wavelet filtering for accelerated deep learning
US20230162012A1 (en)*2019-10-162023-05-25Cerebras Systems Inc.Basic wavelet filtering for accelerated deep learning
US12169771B2 (en)*2019-10-162024-12-17Cerebras Systems Inc.Basic wavelet filtering for accelerated deep learning
US12177133B2 (en)2019-10-162024-12-24Cerebras Systems Inc.Dynamic routing for accelerated deep learning
US12217147B2 (en)*2019-10-162025-02-04Cerebras Systems Inc.Advanced wavelet filtering for accelerated deep learning
US11568021B2 (en)2020-02-212023-01-31Alibaba Group Holding LimitedVector-vector multiplication techniques for processing systems

Also Published As

Publication numberPublication date
WO2018193380A1 (en)2018-10-25
US11475282B2 (en)2022-10-18
EP3607506B1 (en)2021-07-14
US10762418B2 (en)2020-09-01
JP2021108157A (en)2021-07-29
US20210224639A1 (en)2021-07-22
CA3060356C (en)2021-03-23
JP2020517029A (en)2020-06-11
WO2018193379A1 (en)2018-10-25
US10657438B2 (en)2020-05-19
CA3060356A1 (en)2018-10-25
EP3607503A4 (en)2020-04-29
CA3108089A1 (en)2018-10-25
EP3607506A4 (en)2020-05-06
US20200125934A1 (en)2020-04-23
WO2018193370A1 (en)2018-10-25
US20190258921A1 (en)2019-08-22
WO2018193377A1 (en)2018-10-25
US11727254B2 (en)2023-08-15
US20190332926A1 (en)2019-10-31
JP7233656B2 (en)2023-03-07
EP3607503A1 (en)2020-02-12
WO2018193361A1 (en)2018-10-25
US11853867B2 (en)2023-12-26
EP3607503B1 (en)2022-03-09
US20220284275A1 (en)2022-09-08
US11232347B2 (en)2022-01-25
EP3607506A1 (en)2020-02-12
CA3108089C (en)2024-04-02
US20210004674A1 (en)2021-01-07
US20200380341A1 (en)2020-12-03
US11157806B2 (en)2021-10-26
JP6860694B2 (en)2021-04-21

Similar Documents

PublicationPublication DateTitle
US11853867B2 (en)Task activating for accelerated deep learning
US12314218B2 (en)Task synchronization for accelerated deep learning
US11449574B2 (en)Floating-point unit stochastic rounding for accelerated deep learning
US11488004B2 (en)Neuron smearing for accelerated deep learning

Legal Events

DateCodeTitleDescription
STPPInformation on status: patent application and granting procedure in general

Free format text:DOCKETED NEW CASE - READY FOR EXAMINATION

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STCBInformation on status: application discontinuation

Free format text:ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION


[8]ページ先頭

©2009-2025 Movatter.jp