TECHNICAL FIELD OF THE INVENTIONThe present invention relates generally to processes of child-birth monitoring and assistance. More specifically, the present invention relates to a system, apparatus, and method for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac.
COPYRIGHT AND TRADEMARK NOTICEA portion of the disclosure of this patent application may contain material that is subject to copyright protection. The owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyrights whatsoever.
Certain marks referenced herein may be common law or registered trademarks of third parties affiliated or unaffiliated with the applicant or the assignee. Use of these marks is by way of example and should not be construed as descriptive or to limit the scope of this invention to material associated only with such marks.
BACKGROUND OF THE INVENTIONThere are various reasons to induce labor. For example, when a woman is two or more weeks overdue (postdate), and labor does not start on its own, it may be desirous to induce labor, due to fetal or maternal indications, such as placental dysfunction, pregnancy induced hypertension, Preeclampsia, Diabetes, intrauterine growth restriction, conditions that may jeopardize fetal well-being, or other conditions that may affect the woman's health.
Labor may be induced by causing the cervix to soften and open. For example, the pharmaceutical substance, prostaglandin (PG), leads to local biochemical and biophysical alterations in the cervical region that reduce cervical resistance and induce myometrial contractions. Endocervical, or vaginal application of PG, in a gel form, is presently used for priming the cervix before labor induction and for labor induction. Currently, the Prepidil Gel is applied by intracervical injection using a syringe with a simple canula. However, it is extremely difficult, if not impossible, to administer 3 ml of gel in a strictly endocervical fashion without applying some of the gel retroamniotically, which may cause side effects to uterine hypercontractility, and may lead to fetal distress.
Intracorporeal labor induction systems of the prior art do not control or measure uterus/amniotic-fluid pressure. By clogging the cervical canal, the existing systems make it hard, if not impossible, to insert a separate pressure measuring instrument into a patient's reproductive system to measure uterus and amniotic-fluid pressures. Furthermore, available uterus/amniotic-fluid pressure measurement devices are inherently inaccurate.
During many labor-inducing procedures, it is desirable to monitor and measure a condition within the uterus. However, known methods often rely on apparatus or devices that are inherently inaccurate and often cause or require the amniotic sac to be ruptured. An advantage of obtaining accurate measurements without breaching the amniotic sac is a decrease in the rate of intrauterine infection for the mother and decrease of infection for the fetus during labor. For example, it is desirable to evaluate the intrauterine pressure during labor before rupturing the amniotic sac. Current methods inadequately address this need.
Accordingly, the prior art inadequately addresses labor monitoring systems that: (i) may induce labor while accurately measuring the uterus and amniotic fluid pressure without rupturing the amniotic sac, (ii) facilitate control of the uterus and amniotic fluid pressure without rupturing the amniotic sac, and (iii) facilitate measuring and or observing a frequency of uterine contractions, without rupturing the amniotic sac.
Therefore, there is a need for a system, apparatus, and method that facilitates the monitoring and measuring of a condition inside the uterus during labor, without rupturing the amniotic sac. It is to these ends that the present invention has been developed.
SUMMARY OF THE INVENTIONTo minimize the limitations in the prior art, and to minimize other limitations that will be apparent upon reading and understanding the present specification, the present invention describes a system and method for child-bearing monitoring and assistance.
Generally, the invention involves systems, apparatus, and methods for child-bearing monitoring and assistance but more specifically, a system, apparatus, and method for monitoring and measuring a condition inside the uterus without rupturing the amniotic sac, which in exemplary embodiments employs a pressure sensing module for use with a single or multi-balloon catheter. The single or multi-balloon catheter may be coupled to the pressure sensing module so that a chamber within the pressure-sensing module is in fluid communication with a balloon of the catheter. The chamber includes an impermeable pressure-sensing membrane in communication with a sensor or sensing circuitry. The sensor or sensing circuitry is configured to detect a condition, for example a pressure, applied to the impermeable pressure-sensing membrane and communicate the condition to a monitor of the system. Methods include inserting the catheter through a cervix so that the balloon may be inflated and situated in the lower segment of the uterus, resting against the amniotic sac. Because the balloon of the catheter is in fluid communication with the impermeable pressure-sensing membrane, pulsations of the amniotic sac will be sensed by the sensing circuitry of the pressure sensing module. In this way, a change in intrauterine pressure during labor may be evaluated and monitored without rupturing the amniotic sac.
A system, in accordance with the present invention, for monitoring and measuring a change in intrauterine pressure during labor without rupturing the amniotic sac, may comprise: a catheter configured for manipulation by an operator, the catheter including: a distal end adapted to be placed at least partially inside a cervix of a patient; a uterine balloon situated substantially at the distal end of the catheter adapted to be placed at least partially inside a lower segment of a uterus of the patient; a first port situated at the proximate end of the catheter; a second port situated at the proximate end of the catheter; and a conduit fluidly communicating the first port and the second port to an interior of the uterine balloon, wherein the uterine balloon is inflated by introducing a fluid through the first port; and a pressure sensing module coupled to the second port, the pressure sensing module including an enclosure having a chamber in fluid communication with the uterine balloon via the conduit, a pressure-sensing membrane coupled to the chamber, and a sensing circuitry coupled to the pressure-sensing membrane configured to detect a pressure applied to the uterine balloon of the catheter.
A pressure sensing module, in accordance with the present invention, for monitoring and measuring a change in intrauterine pressure during labor without rupturing the amniotic sac, may include: an enclosure configured to couple to a first port of a catheter, the catheter including: a distal end adapted to be placed at least partially inside a cervix of a patient; a uterine balloon situated substantially at the distal end of the catheter adapted to be placed at least partially inside a lower segment of a uterus of the patient; a second port situated at the proximate end of the catheter; and a conduit fluidly communicating the first port and the second port to an interior of the uterine balloon, wherein the uterine balloon is inflated by introducing a fluid through the first port; a chamber within the enclosure including a chamber port adapted for fluid communication with the uterine balloon via the conduit; a pressure-sensing membrane coupled to the chamber; and a sensing circuitry coupled to the pressure-sensing membrane configured to detect a pressure applied to the uterine balloon of the catheter.
A method, in accordance with practice of the present invention, for monitoring and measuring a change in intrauterine pressure during labor without rupturing the amniotic sac, may include the steps of: coupling a pressure sensing module to a catheter; inserting the catheter into a vagina and through a cervical canal of a female patient, wherein: a distal end of the catheter is placed inside the cervical canal, and a proximal end of the catheter is kept outside the cervical canal, the catheter including: a uterine balloon in fluid communication with the proximal end and attached at or near the distal end of the catheter, a first port situated at the proximate end of the catheter, a second port situated at the proximate end of the catheter, a conduit fluidly communicating the first port and the second port to an interior of the uterine balloon, and a vaginal balloon situated closer to the proximate end of the catheter than the uterine balloon and adapted to secure the uterine balloon inside the uterus; positioning the uterine balloon at a lower segment of a uterus of the female patient; inflating the uterine balloon from the proximal end and through the catheter by introducing a fluid through a first port of the catheter so that the fluid inflates the balloon and enters a first chamber of the sensing module; positioning the vaginal balloon at an external OS of the cervical canal of the female patient; inflating the vaginal balloon to anchor the uterine balloon inside the lower segment of the uterus so that the uterine balloon rests against an amniotic sac of the female patient; and reading a pressure output from the pressure sensing module.
Various objects and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings submitted herewith constitute a part of this specification, include exemplary embodiments of the present invention, and illustrate various objects and features thereof.
BRIEF DESCRIPTION OF THE DRAWINGSElements in the figures have not necessarily been drawn to scale in order to enhance their clarity and improve understanding of the various embodiments of the invention. Furthermore, elements that are known to be common and well understood to those in the industry are not depicted in order to provide a clear view of the various embodiments of the invention.
FIG. 1 is a schematic diagram of the women's reproductive system during pregnancy.
FIG. 2 illustrates an inflatable system in accordance with the present invention.
FIG. 3A illustrates an example of possible arrangements for fluid communication from a proximate end to a distal end of an inflatable system in accordance with the present invention.
FIG. 3B illustrates an example of possible arrangements for fluid communication from a proximate end to a distal end of an inflatable system in accordance with the present invention.
FIG. 3C illustrates an example of possible arrangements for fluid communication from a proximate end to a distal end of an inflatable system in accordance with the present invention.
FIG. 3D illustrates an example of possible arrangements for fluid communication from a proximate end to a distal end of an inflatable system in accordance with the present invention.
FIG. 4 illustrates an exemplary inflatable system in accordance with the present invention, shown inside a woman's reproductive system.
FIG. 5 illustrates an exemplary system in accordance with some embodiments of the present invention that employs a pressure sensing module coupled to a one-balloon catheter.
FIG. 6A illustrates an exemplary system in accordance with some embodiments of the present invention that employs a pressure sensing module coupled to a multi-balloon catheter.
FIG. 6B-6D illustrate an exemplary stylet that may be implemented with some exemplary embodiments of a catheter in accordance with the present invention, which includes a tubular support for facilitating the introduction of other instruments through the catheter.
FIG. 7 illustrates a block diagram of an exemplary system employing a pressure sensing module in accordance with some embodiments of the present invention.
FIG. 8A illustrates an exemplary pressure sensing module in accordance with some embodiments of the present invention.
FIG. 8B illustrates an exemplary pressure sensing module in accordance with some embodiments of the present invention.
FIG. 8C illustrates an exemplary pressure sensing module in accordance with some embodiments of the present invention.
FIG. 9 illustrates an exemplary multi-balloon catheter system in accordance with the present invention, shown inside a woman's reproductive system.
FIG. 9A illustrates an exemplary method in accordance with practice of the present invention.
FIG. 10 illustrates an exemplary method in accordance with practice of the present invention.
DETAILED DESCRIPTION OF THE INVENTIONIn the following discussion that addresses a number of embodiments and applications of the present invention, reference is made to the accompanying drawings, which form a part thereof. Depictions are made, by way of illustration, of specific embodiments in which the invention may be practiced; however, it is to be understood that other embodiments may be utilized, and changes may be made without departing from the scope of the present invention. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well-known structures, components, and/or functional or structural relationship thereof, etc., have been described at a relatively high level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment/example,” as used herein, does not necessarily refer to the same embodiment, and the phrase “in another embodiment/example,” as used herein, does not necessarily refer to a different embodiment. It is intended, for example, that the claimed subject matter include combinations of example embodiments in whole or in part.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc., may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require at least one of X, at least one of Y, and at least one of Z to each be present.
The term “and/or” means that “and” applies to some embodiments and “or” applies to some embodiments. Thus, A, B, and/or C can be replaced with A, B, and C written in one sentence and A, B, or C written in another sentence. A, B, and/or C means that some embodiments can include A and B, some embodiments can include A and C, some embodiments can include B and C, some embodiments can include only A, some embodiments can include only B, some embodiments can include only C, and some embodiments can include A, B, and C. The term “and/or” is used to avoid unnecessary redundancy. Similarly, terms such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of facts and may, instead, allow of the existence of additional factors not necessarily expressly described, again, depending at least in part on context.
While exemplary embodiments of the disclosure may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Thus, nothing in the foregoing description is intended to imply that any particular feature, characteristic, step, module, or block is necessary or indispensable. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions, and changes in the form of the methods and systems described herein may be made without departing from the spirit of the invention or inventions disclosed herein. Accordingly, the following detailed description does not limit the disclosure. Instead, the proper scope of the disclosure is defined by the appended claims.
Generally, the invention involves systems, apparatus, and methods for monitoring and measuring a condition inside the uterus without rupturing the amniotic sac, which in exemplary embodiments employs a pressure sensing module for use with a single or multi-balloon catheter. Coupled to the catheter, a pressure sensing module is configured with a plurality of chambers wherein at least a first of the plurality of chambers is adapted to receive a fluid that is applied via a catheter port and wherein at least a second of the plurality of chambers is adapted to contain air or another fluid separated from the first chamber by a membrane. A sensor coupled to the second chamber may be configured to detect a change in pressure applied to the membrane in order to communicate the pressure change to, for example, a pressure monitor of the system.
In some exemplary embodiments of the present invention, a system for inducing labor may include: a catheter with at least one, two or three balloons (or more) inflatable balloons that are configured to keep the system in an exact position within woman's reproductive system, monitor and/or control pressures inside uterus, exert controllable pressure on the cervical canal walls, stimulate cervical canal, monitor pressures inside cervical canal, and, if desired, administer pharmaceutical substances and/or rupture an amniotic sac.
In some exemplary embodiments of the present invention, a uterine balloon may be positioned at a proximal portion of the uterus, with respect to an operator, adjacent to the cervical internal orifice of the uterus (internal OS). In some embodiments, the uterine balloon may have different shapes so as to, for example, maximize the pressure against the decidua and the external orifice of the uterus (external OS) and to minimize the pressure on the fetal head. In other embodiments, the uterine balloon may have different surface roughness, for example, for anchoring the uterine balloon in place.
In some exemplary embodiments of the present invention, the system may optionally or additionally include a vaginal balloon for positioning in the vagina for applying pressure on the external OS. The combination of a uterine balloon and a vaginal balloon may stabilize the position of the inflatable system within the woman's reproductive system as long as both balloons are inflated.
In some exemplary embodiments of the present invention, the system may optionally or additionally include a cervical balloon for positioning in the cervical canal, shaped so as to maximize the contact area with the cervix. The shape and the surface roughness of the cervical balloon may also be designed in order to maximize cervix contact and stimulation.
In exemplary embodiments, the one or more balloons of the system may stimulate the secretion of hormone by exerting pressure on the proximal decidual surfaces of the uterus and on the cervix, to soften and ripen the cervix, to cause the cervix to dilate, and to induce labor. The balloons, which in some embodiments may have rough external surfaces in order to keep them anchored in place, may be inflated by the operator directly after their insertion, or manually and gradually by the patient.
In some exemplary embodiments of the present invention, various sensors and instruments may be used as part of the system to monitor cervical dilation, fetal well-being, and the woman's conditions. In some embodiments, pharmaceutical substances may also be applied to the cervix canal through a cervical canal portion of the disclosed device.
Turning now to the figures,FIG. 1 is a schematic diagram of the women's reproductive system during pregnancy. More specifically,FIG. 1 illustrates a woman'sreproductive system100 during pregnancy, showing avagina112, acervix116 forming acervical canal114, an ectocervix orexternal OS115, aninternal OS117, auterus118, anendometrium121 which is the mucous membrane lining theuterus118, anamniotic sac125 containing afetus127 having ahead129, and adecidua123 which is the mucous membrane lining theuterus118 in preparation for, and during pregnancy.
Turning now to the next figures,FIG. 2 illustrates an inflatable system in accordance with the present invention. More specifically,FIG. 2 schematically illustrates an embodiment ofsystem200 for cervical dilation, labor induction and uterus and cervical canal pressure monitoring and control. As seen inFIG. 2,system200 includes acatheter210 having aproximal end220 and adistal end230, with respect to an operator, wherein thedistal end230 enters a woman's reproductive system and theproximal end220 remains outside her body to be manipulated by an operator/medical staff.
In some exemplary embodiments,catheter210 may include: (1) auterine balloon240 substantially at thedistal end230 and a conduit/tube (not shown) inside thecatheter210, spanning from theproximal end220 to thedistal end230 and in fluid communication with theuterine balloon240. In some exemplary embodiments, thecatheter210 may also include a cervical balloon250, in fluid communication with a cervical-balloon conduit/tube (not shown) inside thecatheter210, spanning from theproximal end220 to thedistal end230.
As seen inFIG. 2, the location of the cervical balloon250 on thecatheter210 is closer to catheter'sproximal end220 than the location of theuterine balloon240 is. Thecatheter210 is designed for insertion into the woman's reproductive system, so that the cervical balloon250 is positioned and inflated within thecervical canal114. The cervical balloon250 is designed for applying pressure on thecervix116. It will be appreciated that the pressure on thecervix116 may further include pressure on theinternal OS117 and on theexternal OS115.
In some embodiments, theinflatable system200 may include avaginal balloon260, in fluid communication with a vaginal-balloon conduit/tube (not shown) inside thecatheter210, spanning from theproximal end220 to thedistal end230. Thevaginal balloon260 is adapted for positioning within the vagina112, at a distal portion thereof, for pressing against the externalcervical OS115. The one, two or three-balloons ofsystem200, fromcatheter210'sdistal end230, may be inserted into a woman'sreproductive system100, prior to inflation of the balloons.
In an exemplary three-ballooninflatable system200, theuterine balloon240 and thevaginal balloon260 are partly operative to anchor the cervical balloon250 in place and to enhance hormonal secretion by applying pressure on the decidual123, theinternal OS117, and theexternal OS115. At the same time, the cervical balloon250, anchored within thecervical canal114, may accelerate cervical dilation, by applying pressure on thecervix116, and preferably also, theinternal OS117 and on theexternal OS115.
In various embodiments theinflatable system200 may also have openings, such asopening255, which is in fluid communication with a conduit/tube (not shown) inside thecatheter210, spanning from theproximal end220 to thedistal end230.Opening255 is situated on thecatheter210 such that, for example, upon placement in a woman's reproductive system theopening255 is positioned within thecervical canal114 and is used to insert pharmaceutical substances into thecervical canal114.
In accordance with the present invention, the inflation of the balloons of theinflatable system200 may be performed by a doctor or a midwife (not shown) directly after its insertion. In some exemplary embodiments, the inflation of the balloons of theinflatable system200 may be performed by the patient via ahand pump270, in a gradual manner, for example over several hours. Alternatively still,uterine balloon240 and orvagina balloon260 may be inflated by the doctor or midwife, while the inflation of the cervical balloon250 may be performed by the patient, for example, via ahand pump270. Without limiting the scope of the present invention, pump270 inFIG. 2 represents any kind of manual or automatic gas or fluid pump suitable for inflating the one or more balloons ofcatheter210 ofsystem200.
Having a pressure sensor at the distal end of the inflatable instrument, inside the uterus and/or cervix canal, has some limitations and disadvantages including: (1) the pressure sensor must be small enough, such as a few millimeters, to fit and/or move inside the instrument, which has to pass through the cervix canal; (2) the pressure sensor must be disposable since the entire intracorporeal part of the system needs to be discarded after use; (3) the sensed pressures need to be transmitted outside the woman's body for recording or display, by wire or wirelessly; and (4) the system will be more expensive and bulkier as a result of the mentioned limitations and disadvantages.
Accordingly, a system for labor induction and monitoring/control in accordance with the present invention will be much smaller, less expensive and simpler if the pressures inside the uterus and/or cervical canal can be transferred to one or more sensors situated outside the woman's body. To do so, a very simple and instantaneous transfer of pressure is possible by using gasses and fluids. However, pressure transfer through a gaseous medium is not as accurate as through incompressible fluids since gasses are compressible and their compressibility varies by temperature and pressure, which introduce undesirable variables into the sensing subsystem. On the other hand, pressure may be accurately sensed at any point of a fluid body without any erroneous effect from the surrounding variables. Therefore, the preferred embodiment of this specification inflates, at least, the uterine balloon by nontoxic incompressible fluids such as water.
In the uterus, as a result of hydraulic principles, the pressure inside the fluid-filled uterine balloon will rapidly come to static equilibrium with the pressures of the amniotic sac and the uterus walls. At such stage, the pressure of the amniotic fluid, the uterine balloon fluid and the pressure on the uterus walls are equal. Hence a sensor outside the woman's body and in fluid contact with the uterine balloon will sense the exact pressure of the uterus/amniotic fluid. The uterus/amniotic fluid pressure may be controllably increased or decreased by inflating or deflating the uterine balloon, respectively. While inflating or deflating the uterine balloon, the exact pressure inside the uterus may also be sensed and observed. With fluid, no wait time is required for pressure equilibrium. A pressure sensing module that may be used withsystem200 or other systems in accordance with exemplary embodiments of the present invention, is discussed further below with reference toFIG. 5,FIG. 6A,FIG. 7, andFIGS. 8A-8C.
The same is true about a cervical balloon and the monitoring and control of the cervix pressures. In some embodiments, the fluid inside the cervical canal balloon may even be pulsated to further stimulate the canal walls. The pulsation may be caused manually or mechanically. Here also, the cervical balloon itself may be a combination of multiple balloons which may be inflated separately or as a group.
The inflation/deflation of multiple balloons may be controlled together or independently to allow stimulation of the cervical canal with variable pressures across both time and position within the cervical canal. Such an arrangement may be used to create a pressure signal, varying over time and space, to stimulate different regions within the canal at different pressures and at different times, which may be helpful in stimulating dilation more effectively.
For example, if two balloons are employed, their inflation and deflation may be alternated to create a two-point variable pressure signal. In some embodiments, theinflatable system200 may be coupled with a pressure controller to automatically inflate and deflated the multiple balloons according to a predefined signal pattern chosen by the operator. For example, the pressure controller may have several settings such as sinusoidal pattern, ramped inflation/deflation, and pulsed/rapid inflation/deflation, each of which may be selected by the operator to inflate and deflate the balloons accordingly for different types of stimulation. In multiple balloon embodiments, each balloon may need its own separate micro-tube for independent inflation/deflation, in which the micro-tubes pass through a larger outer tube to allow easy handling and control of the inflatable system, in a manner similar to those shown inFIGS. 3A-3D discussed below.
In general, a vaginal balloon in accordance with the present invention need not be inflated by fluid because it is usually not used to sense or control any pressure; however, if fluid is used to inflate the other balloons, it may be easier to do the same with the vaginal balloon. The vaginal balloon may also consist of more than one balloon controlled as a group or separately in a manner similar to the cervical canal balloons described above.
In exemplary embodiments, at least one of the balloons is inflated by fluid such as water to accurately measure and control the pressure of its surrounding. An increase or decrease of the size of the balloons will increase or decrease, respectively, the pressure of their environment which at the same time can be measured. For example, a small fluid inflation of theuterine balloon240 enables an accurate measurement of the uterus and amniotic fluid pressures while any increase in the uterine balloon size will increase the uterus and amniotic fluid pressures. Same is true with cervical canal pressure measurement and control. Usually there is no need for measurement and/or control of vaginal pressure and therefore the vaginal balloon may be inflated by air instead of a fluid.
FIG. 2, shows anexample system200 with fourconnection ports280,282,284, and286, to which gas and fluid pumps, sensors and gauges, and other instruments may be attached. Each port may be of different kind and use different operating mechanisms. For example,connection port280 may be closed in its unattached state and be open as long as being connected to any device. Or, for example,port286 may have a manually operatedvalve288.
Therefore,connection port280, which in this example is assumed to be in fluid communication withuterine balloon240, may first be connected to a pressure gauge290 and afluid pump270 until theuterine balloon240 is inflated to a desired pressure or size and subsequently be disconnected from the pump, if needed. In such a case, the uterus pressures can be continuously monitored. If constant monitoring of the pressure is not needed, both the pressure gauge290 and thefluid pump270 may be removed and the pressure of uterus be checked at theconnection port280 whenever desired. In some embodiments, the conduit/tube connectingconnection port280 touterine balloon240 may even have a separate dedicated port for connecting to sensors and gauges. In yet another example,connection port280 may be attached to an automated machine for monitoring and/or controlling the pressure of the uterus. In various embodiments, dedicated monitoring ports for each balloon may be connected to a monitoring device(s) while ports, such asport280, are dedicated to injection, manipulation and/or pumping devices. In these embodiments the pumping device can be amere syringe281. There is no need for complicated pumping devices with pressure gauge. Assuming that connection port284 is in fluid communication with cervical balloon250, it can be connected to a fluid pulsating device that is capable of controlled fluid pulsation with desired low and high pressures.
If fluid is used to inflate the balloons, there are several ways to eliminate the air in the conduits/tubes. In one embodiment the conduits and the balloons of thesystem200 may be manufactured in a collapsed or vacuumed initial form. In other embodiments the connection ports may provide manual release valves to empty the trapped air while inserting fluid into the conduits. Such solutions are known to those skilled in the art and need no further elaboration.
As illustrated inFIG. 2, different devices may be used as a part of suchinflatable system200. In various embodiments theinflatable system200 may include at least one additional conduit/tube (not shown), having at least oneopening235, to the uterus. The at least one additional conduit/tube is operable for inserting at least onedevice236 to the woman's reproductive system. In the embodiment ofFIG. 2, the at least one additional tube is operable for inserting the at least onedevice236 into the uterus, via theopening235. Similarly, another conduit/tube may be used for inserting another device into the cervical canal, via a similar opening. InFIG. 2, the at least onedevice236 is a device for rupturing the amniotic sac.Device236 may be operated as a plunger-like device, using a handle at theproximal end220 of theinflatable system200. After the puncture,device236 may be withdrawn from one of the connection ports.
In yet other embodiments, the at least onedevice236 may be a sensor, for example, for sensing amniotic-fluid temperature, or for sensing fetal heart-beat, preferably operable via theopening235 to the uterus. The measurements may be transmitted extracorporeally in a wired or wireless manner.
It will be appreciated that thedevice236 may be selected from the group consisting of device for breaking water, a device for sensing amniotic-fluid temperature, a device for sensing fetal heart-beat, a device for measuring an extent of cervical dilation, a device for measuring a frequency of uterine contractility, a device for measuring an intensity of uterine contractility, a device for amnioscopy, a device for fetoscopy, a device for scalp blood pH sampling, and the like.
Alternatively, the at least onedevice236 may include a drug form, designed for passive dispensing of a medication. The drug form may be inserted with asyringe281, and thesyringe281 may then be withdrawn. The passive dispensing of a medication may be by instantaneous release, delayed release, pulsating release, timed release, slow release, or another release form, as known, operable via theopening235 to the uterus, or via a similar opening(s) to the cervical canal.Device236 may be electronically-controlled, pre-programmed, or may be wirelessly controlled from an extracorporeal station.
In yet other embodiments,device236 may include a device for measuring an extent of cervical dilation, operable via an opening to the cervical canal. The measurements may be transmitted extracorporeally by wire or wirelessly. In various embodiments,device236 may be a combination of several devises and/or sensors.
FIG. 3A-FIG. 3D illustrate several exemplary embodiments of conduits for a catheter in accordance with the present invention. InFIG. 3A, afirst tube310 may includeseparate conduits301,302, and303 corresponding to separatetubes311,312, and313, all of which reside within a conduit oftube310. In exemplary embodiments, each oftubes311,312, and313 may connect to a connection port, to a balloon or an opening via their ownrespective conduits301,302, and303.
As will be evident from the following figures, other configurations of tubes and conduits may be possible without deviating or limiting the scope of the present invention. InFIG. 3B,tubes340 and330 may be nested withintube320, each of the tubes providingconcentric conduits341,331, and321, respectively. In other embodiments the arrangement of the tubes may be a combination of the arrangements inFIGS. 3A and 3B. For example, and without limiting the scope of the present invention,FIG. 3C showstube350housing tube351, which in turn housesseveral tubes352,353, and354.FIG. 3D shows yet another embodiment, in which a single catheter tube may include two smaller tubes with conduits therein, such astube360housing tube361 andtube362.
Turning now to the next figure,FIG. 4 depicts a three-balloon catheter410 that has been inserted into a woman'sreproductive system400 and subsequently inflated, so that theuterine balloon420 is in contact with theamniotic sac450 in the lower segment of the uterus, thecervical balloon430 is in the cervical canal, and thevaginal balloon440 is in the distal end of the vagina.
In the example ofFIG. 4, theuterine balloon420 applies pressure on the decidua and the internal OS. Thecervical balloon430 applies pressure on the cervix walls, and thevaginal balloon440 applies pressure on the external OS. For withdrawal, the balloons are deflated.
As seen fromFIG. 4, theuterine balloon420 is operative partly to separate theamniotic sac450 from the decidua in the lower segment of the uterus, thereby stimulating endogenous hormone secretion of PG from the decidua. The hormone secretion by the decidua is operative to soften and ripen the cervical canal and induce labor. Similarly, thecervical balloon430 is operative to stimulate hormone secretion by the cervix. Again, the hormone secretion is operative to soften and ripen the cervical canal and induce labor.
In some embodiments electrocardiogram of the fetus heart may be obtained by temporarily or permanently attaching a desired type and number of electrodes on the surface of theuterine balloon420, to be directly in contact with the fetus head or indirectly through the amniotic sac, and to send the sensed signals to an extracorporeal EKG or ECG machine, by wire or wirelessly. In some embodiments the electrodes may be a part of or be ingrained in the material of theuterine balloon420.
Turning now to the next figure,FIG. 5 depictssystem500, which includes acatheter501 having aproximal end502 and adistal end503, with respect to an operator, wherein thedistal end503 enters a woman's reproductive system and theproximal end502 remains outside her body to be manipulated by the operator, such as a physician or medical staff.
In some exemplary embodiments,catheter501 may include: asingle balloon510 that serves as a uterine balloon, substantially at thedistal end503 ofcatheter501; a conduit (not shown) inside thecatheter510, spanning from theproximal end502 to thedistal end503 in fluid communication withballoon510 via said conduit withopenings504 and505; afirst port506 for introducing a fluid into theballoon510; and asecond port507 coupled directly to apressure sensing module520.Catheter501 may include atip508 that is blunt so as to not rupture the amniotic sac or may be alternatively configured to rupture the amniotic sac. Theblunt tip508 may include anopening509 so that an instrument, such as a temperature transducer or an imaging transducer, may be provided access to the lower segment of the uterus and amniotic sac of a patient viaopening509. Moreover, as will be explained below, in some exemplary embodiments,pressure sensing module520 may be coupled to an external component such as a sensing device or monitor via communication means511.
In exemplary embodiments,system500 includes acatheter501 configured for manipulation by an operator, the catheter including: adistal end503 adapted to be placed at least partially inside a cervix of a patient; aballoon510 situated substantially at thedistal end503 of thecatheter501 adapted to be placed at least partially inside a uterus of the patient; afirst port506 situated at the proximate end of thecatheter501; asecond port507 situated at theproximate end502 of thecatheter501; and a conduit fluidly communicating thefirst port506 and thesecond port507 to an interior of theballoon510, wherein the balloon is inflated by introducing a fluid through thefirst port506; and apressure sensing module520 coupled to the second port, thepressure sensing module520 including an enclosure having a first chamber in fluid communication with the conduit, a second chamber in fluid communication with a sensor, and an pressure-sensing membrane separating the first chamber from the second chamber, wherein the pressure sensing module is configured to detect a pressure applied to the balloon of the catheter.
In exemplary embodiments of the present invention, the conduit of thecatheter501 includes: a first conduit communicating thefirst port506 to afirst opening504 on the distal end of the catheter situated at the interior of theballoon510; and a second conduit communicating thesecond port507 to asecond opening505 on the distal end of the catheter situated at the interior of theballoon510.
In exemplary embodiments of the present invention, thefirst port506 of the catheter may include a valve configured to prevent a fluid injected throughport506 and into the conduit that fills theballoon510 from returning back out ofport506. Similarly, a first chamber ofpressure sensing module520 may also include a valve, such as a check-valve or otherwisesealable valve521a, which allows any air inside the chamber to exit the pressure sensing module as the fluid is received. Once adequately filled, a user may seal the valve512ain order to maintain the fluid within.
Turning now to the next figure,FIG. 6A a similar exemplary embodiment as that shown inFIG. 5, comprising acatheter601 that may include: auterine balloon610 substantially at thedistal end603 and a conduit/tube (not shown) inside thecatheter601, spanning from theproximal end602 to thedistal end603 and in fluid communication with theuterine balloon610, and avaginal balloon692, in fluid communication with a vaginal-balloon conduit/tube (not shown) inside thecatheter601, spanning from theproximal end602 to thedistal end603. Thevaginal balloon692, is spaced apparat and situated a distance closer to theproximate end602 of thecatheter601 so that whencatheter601 is inserted through the cervix of a patient,balloon610 may be situated at a lower segment of the uterus andballoon693 may be situated outside of the uterus and against an exterior portion of the cervix anchoring the balloon at or proximate to theexternal OS115 of the patient (see alsoFIG. 9 and related discussion below).
In exemplary embodiments,system600 includes acatheter601 configured for manipulation by an operator, the catheter including: adistal end603 adapted to be placed at least partially inside a cervix of a patient; aballoon610 situated substantially at thedistal end603 of thecatheter601 adapted to be placed at least partially inside a uterus of the patient; afirst port606 situated at the proximate end of thecatheter601; asecond port607 situated at theproximate end602 of thecatheter601; and a conduit fluidly communicating thefirst port606 and thesecond port607 to an interior of theballoon610, wherein the balloon is inflated by introducing a fluid through thefirst port606; and apressure sensing module620 coupled to the second port, thepressure sensing module620 including an enclosure having a first chamber in fluid communication with the conduit, the first chamber including a pressure-sensing membrane in communication with a sensor (see for exampleFIG. 7, orFIGS. 8A-8C), wherein the pressure sensing module is configured to detect a pressure applied to theuterine balloon610 of thecatheter601. In exemplary embodiments of the present invention, thefirst port606 of the catheter may include a valve configured to prevent a fluid injected throughport606 and into the conduit that fills theballoon610 from returning back out ofport606. Similarly, a first chamber ofpressure sensing module620 may also include a valve, such as a check-valve or otherwisesealable valve621a, which allows any air inside the chamber to exit the pressure sensing module as the fluid is received. Once adequately filled, a user may seal thevalve621ain order to maintain the fluid within.
As seen inFIG. 6A, the location of thevaginal balloon692 on thecatheter610 is closer to catheter'sproximal end603 than the location of theuterine balloon610 is. Thevaginal balloon692 is adapted for positioning within thevagina112, at a distal portion thereof, for pressing against the externalcervical OS115. The distal portion of the two-balloon catheter ofsystem600 in such embodiment, fromcatheter601'sdistal end602, may be inserted into a woman'sreproductive system100, prior to inflation of the balloons.
In an exemplary two-ballooninflatable system600, thevaginal balloon692 is at least partly operative to anchor theuterine balloon692 in place. That is,vaginal balloon692 will help stabilizeuterine balloon610 so thatuterine balloon610 may rest securely against an unruptured amniotic sac of the patient. In this way, more accurate readings may be obtained. More specifically, when uterine balloon is filled and placed against an unruptured amniotic sac, a pressure change within the unruptured amniotic sac may be detected via the pressure sensing module since any change in pressure within the unruptured amniotic sac will be transferred to the uterine balloon, which is in fluid communication with a pressure sensing membrane of the pressure sensing module620 (see alsoFIG. 7). Moreover, as with previously discussed exemplary embodiments,pressure sensing module620 may be coupled to an external component such as a sensing device or monitor via communication means611.
In various embodiments, theinflatable system600 may also have openings, such asopening688, which is in fluid communication with a conduit/tube (not shown) inside thecatheter601, spanning from theproximal end602 to thedistal end603.Opening688 is situated on thecatheter610 such that, for example, upon placement in a woman's reproductive system theopening688 is positioned within thecervical canal114 and is used to insert pharmaceutical substances into thecervical canal114. Similarly,catheter601 may include atip608 that is blunt so as to not rupture the amniotic sac or may be alternatively configured to rupture the amniotic sac. Theblunt tip608 may include anopening609 so that an instrument, such as a temperature transducer or an imaging transducer, may be provided access to the lower segment of the uterus and amniotic sac of a patient viaopening609.
In accordance with the present invention, the inflation of the balloons of theinflatable system600 may be performed by a doctor or a midwife (not shown) directly after its insertion. Alternatively, the inflation of the balloons of theinflatable system600 may be performed by the patient via a hand pump, in a gradual manner, for example over several hours. Without limiting the scope of the present invention, a pump may include any kind of manual or automatic gas or fluid pump suitable for inflating the one or more balloons ofcatheter610 ofsystem600.
As a person of ordinary skill in the art will appreciate, several conduits withincatheter601 will facilitate the inflation of the vaginal and uterine balloons, as well as the introduction of devices such as a stylet and or instruments that may be desirably introduced through the catheter. For example, and without limiting the scope of the present invention,catheter601 may include (in addition to the ports mentioned above)several ports693,694, and695. In order to inflateballoon692, aport693 may be employed. Furthermore, in order to guidecatheter601 into the desired position, anotherport694 may be implemented for inserting a stylet (not shown here but see for exampleFIGS. 6B-6E). Similarly, anadditional port695 may be used in embodiments in whichopening688 is included in order to provide a means for supplying a pharmaceutical or therapeutic agent via saidport695 throughopening688.
Turning now to the next set of figures,FIGS. 6B-6D illustrate an exemplary stylet that may be implemented with some exemplary embodiments of a catheter in accordance with the present invention, which includes a tubular support for facilitating the introduction of other instruments through the catheter. More specifically, these figures showstylet650, which includes ahandle651 and a substantially hollowtubular support652 coupled tostylet650 via at least onedetachable arm653. The hollowtubular support652 may be detached or broken off fromstylet650, typically by pressure applied by the operator. It is supposed that braking away the stylet leaves the tubular support inside a conduit of the catheter in order to provide support so that opening609 may be kept accessible to other devices. As mentioned above, other devices may include a temperature transducer or an imaging transducer, which may be provided access to the lower segment of the uterus and amniotic sac of a patient viaopening609. As illustrated in this set of figures,FIG. 6B showsstylet650 outside of a conduit ofcatheter601;FIG. 6C showsstylet650 inside the conduit and facilitating a positioning of thetubular support652 within the conduit; andFIG. 6D shows how once within a desired region (for example aregion610athat may support uterine balloon610),arms653 may be broken or snapped off from the tubular support in order to removestylet650 and leave thetubular support652 inside the conduit ofcatheter601.
Turning now to the next figure,FIG. 7 illustrates a block diagram of an exemplary system employing a pressure sensing module in accordance with some embodiments of the present invention. More specifically,FIG. 7 depictssystem700 in accordance with some exemplary embodiments of the present invention, which is configured to assist an operator in evaluating an intrauterine pressure during labor before rupturing the amniotic membrane. In some exemplary embodiments,system700 comprises acatheter701 having at least one balloon—auterine balloon702—in fluid communication with afluid chamber703 of a pressure-sensingmodule720. Thefluid chamber703 exemplarily includes an impermeable pressure-sensingmembrane704 situated within anenclosure705 that housesfluid chamber703. Aport706 of thepressure sensing module720 communicates aconduit701cofcatheter701 that fluidly connectsballoon702 tofluid chamber703. Asensing circuitry707 is coupled to pressure-sensingmembrane704 and configured to detect a change in pressure applied toballoon702.
In exemplary embodiments, sensingcircuitry707 typically includes asensor module708, amicrocontroller709 having amemory710 that includes a set of executable instructions for reading sensing data from thesensor module708, acommunications module711 for transmitting the sensing data to a remote device having atransceiver712 or directly to a monitor viamonitor interface713, and apower module714 to supply power to the components ofsensing circuitry707.
In some exemplary embodiments,sensor module708 may comprise one or more sensors adapted to generate sensing signals concerning a pressure applied to theuterine balloon702 via sensing a change in pressure applied to pressure-sensingmembrane704. The sensors may include optical sensors, strain gauges, capacitive sensors, Hall Effect sensors, and the like, and may measure stress and/or strain and/or deflection of the pressure-sensingmembrane704.
As may be appreciated from the block diagram, becauseuterine balloon702 ofcatheter701 is in fluid communication with the pressure-sensingmembrane704, a pressure or force Fpapplied touterine balloon702 will be transferred to pressure-sensingmembrane704. Accordingly, pulsations of the amniotic sac will be sensed by the sensing circuitry of the pressure sensing module. In this manner, changes in the intrauterine pressure of a patient in labor may be monitored before rupturing the amniotic sac. As briefly mentioned above, an advantage of monitoring intrauterine pressure without rupturing the amniotic sac is a decrease in the risk of intrauterine infections for the mother and fetus during labor that is typically associated with prematurely rupturing the amniotic sac. Moreover, this allows for improved recording of the number of contractions and contraction patters. Further, use ofsystem700 may further cause the cervix to be diluted and ripen.
In some exemplary embodiments of the present invention,system700 may include: acatheter701 configured for manipulation by an operator, thecatheter701 including: a distal end adapted to be placed at least partially inside a cervix of a patient; auterine balloon702 situated substantially at the distal end of thecatheter701 adapted to be placed at least partially inside a lower segment of a uterus of the patient; aport701asituated at a proximate end of thecatheter701; aport701bsituated also at the proximate end of the catheter; and aconduit701cfluidly communicatingport701aandport701bto an interior of theuterine balloon702, wherein theuterine balloon702 is inflated by introducing a fluid through theport701a; and apressure sensing module720 coupled toport701b, the pressure sensing module including anenclosure705 having afluid chamber703 in fluid communication with theuterine balloon702 via theconduit701c, a pressure-sensingmembrane704 coupled to thefluid chamber703, and optionally asensing circuitry707 coupled to the pressure-sensingmembrane704 configured to detect a pressure applied to the uterine balloon of the catheter. In some exemplary embodiments, the sensing circuitry is external to pressure sensing module720 (so that the sensing circuitry is housed separately). In some exemplary embodiments, the sensing circuitry is integral with the pressure-sensingmodule720 so that the sensing circuitry is housed together with the other components of pressure-sensingmodule720, for example whereinenclosure705 of pressure-sensingmodule720 includes a second chamber that houses sensingcircuitry707.
In some exemplary embodiments of the present invention, apressure sensing module720 may include: anenclosure705 configured to couple toport701bof acatheter701, wherein thecatheter701 includes: a distal end adapted to be placed at least partially inside a cervix of a patient; auterine balloon702 situated substantially at the distal end of the catheter adapted to be placed at least partially inside a uterus of the patient; aport701aand aport701bsituated at the proximate end of thecatheter701; and aconduit701cfluidly communicatingports701aand701bto an interior of theuterine balloon702, wherein theuterine balloon702 is inflated by introducing a fluid through theport701a. Theenclosure705 housesfluid chamber703 within theenclosure705 and includeschamber port706 adapted to couple withport701bfor achieving fluid communication betweenfluid chamber703 and theuterine balloon702 via theconduit701c. In exemplary embodiments of the present invention, theport701aofcatheter701 may include a valve (not shown) configured to prevent a fluid injected throughport701aand into theconduit701cthat fills theballoon702 from returning back out ofport701a. Similarly,fluid chamber703 ofenclosure705 may also include a valve, such as a check-valve or otherwise asealable valve705a, which allows any air insidefluid chamber703 to exit as the fluid is received therein. Once adequately filled, a user may seal thevalve705ain order to maintain the fluid withinfluid chamber703,conduit701c, andballoon702.
Moreover, pressure-sensingmodule720 includes a pressure-sensingmembrane704 coupled to thefluid chamber703, and asensing circuitry707 coupled to or in communication with the pressure-sensingmembrane703, saidsensing circuitry707 configured to detect a pressure applied to theuterine balloon702 of thecatheter701.
Now turning to the next set of figures,FIG. 8A illustrates an exemplarypressure sensing module820 in accordance with some exemplary embodiments of the present invention. In the shown embodiment, thepressure sensing module820 includes anenclosure821 having avalve821a,first chamber822 in fluid communication with theconduit829, asecond chamber823 in fluid communication with asensor826, and an pressure-sensingmembrane824 separating thefirst chamber822 from thesecond chamber823, wherein thepressure sensing module820 is configured to detect a pressure applied to the balloon810 of thecatheter801. In some exemplary embodiments, such as the one depicted inFIG. 8A, thesecond chamber822 of thepressure sensing module820 houses a second fluid that is distinct from the fluid introduced through the first port806 into thefirst chamber822. In some exemplary embodiments, the fluid in thesecond chamber823 is a gas or a liquid. In some exemplary embodiments, a gas in the second chamber may be simply air. In some exemplary embodiments, the fluid introduced through the first port806 into thefirst chamber822 is water or a nontoxic liquid.
Now turning to the next figure,FIG. 8B illustratespressure sensing module820 in accordance with some exemplary embodiments of the present invention. In embodiments such as the one depicted in this figure, apressure sensing module820 for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac, may include anenclosure821 configured to couple to afirst port807 of acatheter801, thecatheter801 including: a distal end803 adapted to be placed at least partially inside a cervix of a patient; a balloon810 situated substantially at the distal end803 of the catheter adapted to be placed at least partially inside a uterus of the patient; a second port806 situated at the proximate end802 of thecatheter801; and a conduit fluidly communicating the second port806 and thefirst port807 to an interior of theballoon801, wherein theballoon801 is inflated by introducing a fluid through the second port806; afirst chamber822 housed within theenclosure821 and in fluid communication with the conduit; asecond chamber823 housed within theenclosure821 and in fluid communication with asensor826; and an pressure-sensingmembrane824 separating thefirst chamber822 from thesecond chamber823, wherein thesensor826 is configured to detect a pressure applied to the balloon810 of thecatheter801. In the shown embodiments, air that may be occupyingchamber822 prior to a liquid being introduced, may be ejected out ofchamber822 via avalve821a.
In some exemplary embodiments, thepressure sensing module820 may include asecond chamber823 that houses a second fluid that is distinct from the fluid introduced through the second port806 into thefirst chamber822. In some embodiments, the fluid in thesecond chamber823 is a gas or a liquid. In some exemplary embodiments, the gas in thesecond chamber823 is air.
In some exemplary embodiments, theenclosure821 of thepressure sensing module820 includes athird chamber825 for housing thesensor826. In some exemplary embodiments, theenclosure821 is removably coupled to thesensor826, wherein thesensor826 is situated external to theenclosure821.
Now turning to the next figure,FIG. 8C illustratespressure sensing module820 in accordance with yet another exemplary embodiment of the present invention. In embodiments such as the one depicted in this figure, apressure sensing module820 for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac, may include asecond chamber823 configured to house thesensing circuitry826, which is coupled to the pressure-sensingmembrane824 without any interface fluid in-between. In some exemplary embodiments, sensingcircuitry826 may employ transmitters or transceivers and the like to communicate with a remote monitor ormonitoring device828.
In some exemplary embodiments, sensingcircuitry826 may comprise one or more sensors adapted to generate sensing signals concerning a pressure applied to the pressure-sensingmembrane824. The sensors may include optical sensors, strain gauges, capacitive sensors, Hall Effect sensors, and the like, and may measure stress and/or strain and/or deflection of the pressure-sensingmembrane824.
Monitoring device828 may facilitate presenting sensing data including but not limited to changes in the intrauterine pressure of a patient in labor, which may be monitored before rupturing the amniotic sac. As briefly mentioned above, an advantage of monitoring intrauterine pressure without rupturing the amniotic sac is a decrease in the ration of intrauterine infections for the mother and fetus during labor. Moreover, amonitoring device828 may facilitate recording of the number of contractions and visually appreciating contraction patters that will be useful t the operator during the patient's labor.
Turning now to the next figure,FIG. 9 illustrates an exemplary multi-balloon catheter system in accordance with the present invention, shown inside a woman's reproductive system. More specifically,FIG. 9 depictssystem900, comprising: acatheter901 including auterine balloon902, as well as avaginal balloon903 situated below or closer to the proximate end of the catheter than the uterine balloon and adapted to secure the uterine balloon inside the uterus; more specificallyvaginal balloon903 securescatheter901 so thatuterine balloon902 may be more stable in its position in the lower section of the uterus. Moreover,catheter901 includes several ports. In the embodiment shown inFIG. 9,catheter901 includesports904,905,906, and907.
Port904 may, for example and in no way limiting the scope of the present invention, fluidly communicate with a conduit withincatheter901 that may be used by an operator for inserting a stylet that guides the catheter into cervix of the patient.Port905 may, for example and in no way limiting the scope of the present invention, fluidly communicate with a conduit that fluidly connectsport905 toport906 via an interior of theuterine balloon902, in a manner such that injecting a fluid intoport906 may inflateballoon902 as well as reach a chamber within pressure-sensingmodule901 fluidly coupled toport906.Port907 may, for example and in no way limiting the scope of the present invention, fluidly communicate withvaginal balloon903 so that injecting a fluid viaport907 will inflatevaginal balloon903.
In some exemplary embodiments, system900 comprises: a catheter901 configured for manipulation by an operator, the catheter including: a distal end adapted to be placed at least partially inside a cervix of a patient; a uterine balloon902 situated substantially at the distal end of the catheter901 adapted to be placed at least partially inside a uterus of the patient; a vaginal balloon903 situated closer to the proximate end of the catheter901 than the uterine balloon902 and adapted to secure the uterine balloon902 inside the uterus; a first port905, a second port906, a third port907, and a fourth port904 situated at the proximate end of the catheter, wherein the third port907 is in fluid communication with the vaginal balloon903; and a conduit fluidly communicating the first port905 and the second port906 to an interior of the uterine balloon902, wherein the uterine balloon902 is inflated by introducing a fluid through the first port905; and a pressure sensing module coupled to the second port906, the pressure-sensing module including an enclosure having a chamber in fluid communication with the uterine balloon902 via the conduit, a pressure-sensing membrane coupled to the chamber, and a sensing circuitry coupled to the pressure-sensing membrane configured to detect a pressure applied to the uterine balloon902 of the catheter901.
A method in accordance with practice of the present invention, may include amethod910 for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac. With reference toFIG. 9 andFIG. 9A, by way of example and in no way limiting the scope of the present invention,such method910 may include the following steps, disclosed in one particular sequence although other sequences may be practiced without limiting from the scope of the present invention.
Instep911, a pressure-sensing module may be coupled to a catheter as described above.
Instep912, the catheter may be inserted into a vagina and through a cervical canal of a female patient, wherein a distal end of the catheter is placed inside the cervical canal, and a proximal end of the catheter is kept outside the cervical canal, the catheter including: a uterine balloon in fluid communication with the proximal end and attached at or near the distal end of the catheter, a first port situated at the proximate end of the catheter, a second port situated at the proximate end of the catheter, a conduit fluidly communicating the first port and the second port to an interior of the uterine balloon, and a vaginal balloon situated closer to the proximate end of the catheter than the uterine balloon and adapted to secure the uterine balloon inside the uterus.
Instep913, the uterine balloon may be positioned at a lower segment of a uterus of the female patient. In exemplary embodiments, subsequent to positioning the uttering balloon at the lower segment of a uterus of the female patient, atstep913a, the uterine balloon may be inflated from the proximal end and through the catheter by introducing a fluid through the first port of the catheter so that the fluid inflates the balloon and enters a first chamber of the pressure-sensing module.
Instep914, the vaginal balloon may be positioned at an external OS of the cervical canal of the female patient, prior to inflating the vaginal balloon. Subsequently, atstep914a, the vaginal balloon may be inflated to anchor the uterine balloon inside the lower segment of the uterus so that the uterine balloon rests against an amniotic sac of the female patient.
Instep915, once the vaginal balloon is secured and the uterine balloon is anchored or secured in place against the amniotic sac of the female patient—as discussed above—a pressure output may be read from the pressure-sensing module, which detects a change in intrauterine pressure or a change in pressure inside the unruptured amniotic sac, without having to rupture the amniotic sac.
In some exemplary embodiments, during or after the procedure or after taking several readings, it may be desirable to take additional measurements with instruments or devices that may be introduced through the catheter. For example, and in no way limiting the scope to the present invention, temperature transducers or imaging transducers may be inserted through an opening at the distal end of the catheter.
Turning now to the last figure,FIG. 10 depicts another flow chart of a method in accordance with practice of the present invention. More specifically,FIG. 10 depictsmethod1000, for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac. Althoughmethod1000 is exemplarily shown with a series of steps in one particular sequence,method1000 may include fewer or more steps in alternative sequences without deviating from the scope of the present invention.
In exemplary embodiments, a method for monitoring and measuring a change in intrauterine pressure during labor, without rupturing the amniotic sac, may include steps1001-1005. In exemplary embodiments,step1001 may include coupling a pressure sensing module to a catheter.
Step1002 may include inserting the catheter into a vagina and through a cervical canal of a female patient, wherein: a distal end of the catheter is placed inside the cervical canal, and a proximal end of the catheter is kept outside the cervical canal, the catheter including: a balloon in fluid communication with the proximal end and attached at or near the distal end of the catheter, a first port situated at the proximate end of the catheter, a second port situated at the proximate end of the catheter, and a conduit fluidly communicating the first port and the second port to an interior of the balloon. In some exemplary embodiments, the catheter may include a plurality a plurality of balloons and accordingly this step may further include: a first balloon is placed inside the uterus, and a second balloon is placed inside the vagina. In some exemplary embodiments, the catheter may include a plurality a plurality of balloons and accordingly this step may further include: a first balloon is placed inside the uterus, a second balloon is placed inside the vagina, and a third balloon is placed inside the cervical canal.
In exemplary embodiments,step1003 may include inflating the balloon from the proximal end and through the catheter by introducing a fluid through a first port of the catheter so that the fluid enters inflates the balloon and enters a first chamber of the sensing module.
In exemplary embodiments,step1004 reading a pressure output from the pressure sensing module.
In exemplary embodiments,step1005 optionally controlling a pressure of the balloon by further inflating or deflating the balloon. In some exemplary embodiments, this step may comprise manually inflating or deflating the balloon. In some exemplary embodiments, this step may comprise automatically inflating or deflating the balloon, by for example implementation of a pump device.
As mentioned above, the presented embodiments disclose an inflatable system that may use a single uterine balloon, a uterine balloon and a vaginal balloon, or a uterine and a vaginal and a cervical balloon, or any combination thereof. In various embodiments, each of the named balloons (vaginal, uterine, cervical) may itself be a combination of several balloons. In some embodiments the uterine balloon and/or the cervical balloon are inflated by incompressible fluids, such as water or oil, to transfer the intracorporeal pressures to extracorporeal pressure sensors. While fluid is the best medium for transfer of pressure throughout the system, air or other gases may also be used for this purpose. In all applications, nontoxic liquids or gases are preferable.
The balloons, which may have rough external surfaces in order to keep them anchored in place, may be inflated by the operator or by the patient herself. Various sensors and other instruments may be used along with or as a part of the inflatable system to monitor cervical dilation, fetal well-being, and the woman's conditions. The disclosed inflatable system is not limited in its application to the details of construction and the arrangement of the components set forth in this specification or illustrated in the drawings.
A system and method for child-bearing monitoring and assistance has been described. The foregoing description of the various exemplary embodiments of the invention has been presented for the purposes of illustration and disclosure. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching without departing from the spirit of the invention.