CROSS-REFERENCE TO RELATED APPLICATIONSThe present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/826,584, titled MODULAR SURGICAL PLATFORM ELECTRICAL ARCHITECTURE, filed Mar. 29, 2019, the disclosure of which is herein incorporated by reference in its entirety.
The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/826,587, titled MODULAR ENERGY SYSTEM CONNECTIVITY, filed Mar. 29, 2019, the disclosure of which is herein incorporated by reference in its entirety.
The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/826,588, titled MODULAR ENERGY SYSTEM INSTRUMENT COMMUNICATION TECHNIQUES, filed Mar. 29, 2019, the disclosure of which is herein incorporated by reference in its entirety.
The present application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/728,480, titled MODULAR ENERGY SYSTEM AND USER INTERFACE, filed Sep. 7, 2018, the disclosure of which is herein incorporated by reference in its entirety.
BACKGROUNDThe present disclosure relates to various surgical systems, including modular electrosurgical and/or ultrasonic surgical systems. Operating rooms (ORs) are in need of streamlined capital solutions because ORs are a tangled web of cords, devices, and people due to the number of different devices that are needed to complete each surgical procedure. This is a reality of every OR in every market throughout the globe. Capital equipment is a major offender in creating clutter within ORs because most capital equipment performs one task or job, and each type of capital equipment requires unique techniques or methods to use and has a unique user interface. Accordingly, there are unmet consumer needs for capital equipment and other surgical technology to be consolidated in order to decrease the equipment footprint within the OR, streamline the equipment's interfaces, and improve surgical staff efficiency during a surgical procedure by reducing the number of devices that surgical staff members need to interact with.
SUMMARYAn energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises a sensor configured to detect the engagement of the electrical connector, wherein the port is further configured to detect the engagement of the electrical connector, send a detection signal to the control circuit, and supply electrical power from the energy module to the instrument; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to establish communication between the port and the control circuit.
An energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises: an emitter configured to transmit a beam of energy; an optical sensor configured to receive the beam of energy from the emitter, wherein the optical sensor is further configured detect the interruption of the beam of energy transmitted by the emitter and not received by the optical sensor, detect the engagement of the electrical connector, and send a detection signal to the control circuit when the optical sensor detects the engagement of the electrical connector; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to establish communication between the port and the control circuit.
An energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises: an emitter configured to transmit a beam of energy; an optical sensor configured to receive the beam of energy from the emitter, wherein the optical sensor is further configured to detect the interruption of the beam of energy transmitted by the emitter and not received by the optical sensor, detect the engagement of the electrical connector, and send a detection signal to the control circuit when the optical sensor detects the engagement of the electrical connector; and an illumination element, wherein the illumination element is configured to emit light when the port receives a message from the control circuit; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to receive a detection signal from the port and establish communication between the port and the control circuit; wherein the control circuit is further configured to access data associated with the instrument from the data storage device, and wherein the message indicates to change a setting of the energy module prior to using the instrument.
FIGURESThe various aspects described herein, both as to organization and methods of operation, together with further objects and advantages thereof, may best be understood by reference to the following description, taken in conjunction with the accompanying drawings as follows.
FIG. 1 is a block diagram of a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.
FIG. 2 is a surgical system being used to perform a surgical procedure in an operating room, in accordance with at least one aspect of the present disclosure.
FIG. 3 is a surgical hub paired with a visualization system, a robotic system, and an intelligent instrument, in accordance with at least one aspect of the present disclosure.
FIG. 4 is a partial perspective view of a surgical hub enclosure, and of a combo generator module slidably receivable in a drawer of the surgical hub enclosure, in accordance with at least one aspect of the present disclosure.
FIG. 5 is a perspective view of a combo generator module with bipolar, ultrasonic, and monopolar contacts and a smoke evacuation component, in accordance with at least one aspect of the present disclosure.
FIG. 6 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateral modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.
FIG. 7 illustrates a vertical modular housing configured to receive a plurality of modules, in accordance with at least one aspect of the present disclosure.
FIG. 8 illustrates a surgical data network comprising a modular communication hub configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to the cloud, in accordance with at least one aspect of the present disclosure.
FIG. 9 illustrates a computer-implemented interactive surgical system, in accordance with at least one aspect of the present disclosure.
FIG. 10 illustrates a surgical hub comprising a plurality of modules coupled to the modular control tower, in accordance with at least one aspect of the present disclosure.
FIG. 11 illustrates one aspect of a Universal Serial Bus (USB) network hub device, in accordance with at least one aspect of the present disclosure.
FIG. 12 illustrates a logic diagram of a control system of a surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG. 13 illustrates a control circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG. 14 illustrates a combinational logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG. 15 illustrates a sequential logic circuit configured to control aspects of the surgical instrument or tool, in accordance with at least one aspect of the present disclosure.
FIG. 16 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions, in accordance with at least one aspect of the present disclosure.
FIG. 17 is a schematic diagram of a robotic surgical instrument configured to operate a surgical tool described herein, in accordance with at least one aspect of the present disclosure.
FIG. 18 illustrates a block diagram of a surgical instrument programmed to control the distal translation of a displacement member, in accordance with at least one aspect of the present disclosure.
FIG. 19 is a schematic diagram of a surgical instrument configured to control various functions, in accordance with at least one aspect of the present disclosure.
FIG. 20 is a system configured to execute adaptive ultrasonic blade control algorithms in a surgical data network comprising a modular communication hub, in accordance with at least one aspect of the present disclosure.
FIG. 21 illustrates an example of a generator, in accordance with at least one aspect of the present disclosure.
FIG. 22 is a surgical system comprising a generator and various surgical instruments usable therewith, in accordance with at least one aspect of the present disclosure.
FIG. 23 is a diagram of a situationally aware surgical system, in accordance with at least one aspect of the present disclosure.
FIG. 24 is a diagram of various modules and other components that are combinable to customize modular energy systems, in accordance with at least one aspect of the present disclosure.
FIG. 25A is a first illustrative modular energy system configuration including a header module and a display screen that renders a graphical user interface (GUI) for relaying information regarding modules connected to the header module, in accordance with at least one aspect of the present disclosure.
FIG. 25B is the modular energy system shown inFIG. 25A mounted to a cart, in accordance with at least one aspect of the present disclosure.
FIG. 26A is a second illustrative modular energy system configuration including a header module, a display screen, an energy module, and an expanded energy module connected together and mounted to a cart, in accordance with at least one aspect of the present disclosure.
FIG. 26B is a third illustrative modular energy system configuration that is similar to the second configuration shown inFIG. 25A, except that the header module lacks a display screen, in accordance with at least one aspect of the present disclosure.
FIG. 27 is a fourth illustrative modular energy system configuration including a header module, a display screen, an energy module, are expanded energy module, and a technology module connected together and mounted to a cart, in accordance with at least one aspect of the present disclosure.
FIG. 28 is a fifth illustrative modular energy system configuration including a header module, a display screen, an energy module, an expanded energy module, a technology module, and a visualization module connected together and mounted to a cart, in accordance with at least one aspect of the present disclosure.
FIG. 29 is a diagram of a modular energy system including communicably connectable surgical platforms, in accordance with at least one aspect of the present disclosure.
FIG. 30 is a perspective view of a header module of a modular energy system including a user interface, in accordance with at least one aspect of the present disclosure.
FIG. 31 is a block diagram of a stand-alone hub configuration of a modular energy system, in accordance with at least one aspect of the present disclosure.
FIG. 32 is a block diagram of a hub configuration of a modular energy system integrated with a surgical control system, in accordance with at least one aspect of the present disclosure.
FIG. 33 is a block diagram of a user interface module coupled to a communications module of a modular energy system, in accordance with at least one aspect of the present disclosure.
FIG. 34 is a block diagram of an energy module of a modular energy system, in accordance with at least one aspect of the present disclosure.
FIGS. 35A and 35B illustrate a block diagram of an energy module coupled to a header module of a modular energy system, in accordance with at least one aspect of the present disclosure.
FIGS. 36A and 36B illustrate a block diagram of a header/user interface (UI) module of a modular energy system for a hub, such as the header module depicted inFIG. 33, in accordance with at least one aspect of the present disclosure.
FIG. 37 is a block diagram of an energy module for a hub, such as the energy module depicted inFIGS. 31-36B, in accordance with at least one aspect of the present disclosure.
FIG. 38 is a block diagram of an energy module including multiple ports configured to detect presence of a connector in accordance with at least one aspect of the present disclosure.
FIG. 39 is a perspective view of an optical sensing port in accordance with at least one aspect of the present disclosure.
FIG. 40 is a top view of the optical sensing port ofFIG. 39 in accordance with at least one aspect of the present disclosure.
FIG. 41 is a front view of an optical sensing port in accordance with at least one aspect of the present disclosure.
FIG. 42 is a top view of an optical sensing port is depicted in accordance with at least one aspect of the present disclosure.
FIGS. 43A-43B illustrate a mechanical sensing port receptacle comprising a depressible switch, in accordance with at least one aspect of the present disclosure, whereFIG. 43A depicts the depressible switch in an open configuration andFIG. 43B depicts the depressible switch in a closed configuration.
FIGS. 44A-44B illustrate a mechanical sensing port receptacle comprising a push button switch, whereFIG. 44A depicts the push button switch in an open configuration andFIG. 44B depicts the push button switch in a closed configuration.
FIGS. 45A-45B illustrate an electrical sensing port receptacle comprising a non-contact proximity switch, whereFIG. 45A depicts the non-contact proximity switch in an open configuration andFIG. 45B depicts the non-contact proximity switch in a closed configuration.
FIG. 46 is a perspective view of a force sensing port in accordance with at least one aspect of the present disclosure.
FIG. 47 is a perspective view of an electrosurgical generator in accordance with at least one aspect of the present disclosure.
FIG. 48 is a logic diagram of a process depicting a control program or a logic configuration for detecting, identifying, and managing instruments connected to ports of a energy module in accordance with at least one aspect of the present disclosure.
FIGS. 49A-49E is a block diagram of a system for detecting instruments to a energy module using radio frequency identification (RFID) circuits in accordance with at least one aspect of the present disclosure, where:
FIG. 49A illustrates a user initiated detection sequence via a display of a user interface of the RFID enabled energy module by selecting a pairing mode option;
FIG. 49B illustrates selecting a pairing mode option to transition the user interface to another display to prompts the user to pair a device;
FIG. 49C illustrates an RFID circuit affixed to an RFID enabled instrument and an RFID scanner affixed to an RFID enabled energy module;
FIG. 49D illustrates an RFID circuit that could be affixed to inventory management paperwork associated with the instrument; and
FIG. 49E illustrates a visual confirmation provided by the RFID enabled energy module that the RFID enabled instrument has been successfully detected by and paired to the RFID enabled energy module.
FIGS. 50A-50E is a block diagram of a system for detecting instruments to a energy module using a battery installation process in accordance with at least one aspect of the present disclosure, where:
FIG. 50A illustrates a user initiates detection sequence via a user interface of a wirelessly enabled energy module by selecting a pairing mode option;
FIG. 50B illustrates selection of the pairing mode option commencing the process of pairing;
FIG. 50C illustrates the user installing a removable battery into the cavity of the wirelessly enabled having initiated the pairing mode;
FIG. 50D illustrates electrical communication established and the wireless communication module activated when the battery is installed;
FIG. 50E illustrates a user interface of the wirelessly enabled energy module to provide a visual confirmation that the wirelessly enabled instrument has been successfully detected by and paired to the wirelessly enabled energy module.
FIG. 51 is a block diagram of an electrical circuit configured to detect whether an instrument is connected to an energy module in accordance with at least one aspect of the present disclosure.
FIG. 52 is a block diagram of an electrical circuit configured to detect whether an instrument is connected to an energy module in accordance with at least one aspect of the present disclosure.
FIG. 53 is a block diagram of an electrical circuit configured to detect whether an instrument is connected to an energy module in accordance with at least one aspect of the present disclosure.
FIG. 54 is a block diagram of a system for detecting instruments to an energy module using a wireless capital equipment key in accordance with at least one aspect of the present disclosure.
FIG. 55 is a block diagram of a system for detecting instruments to an energy module using a wireless mesh network in accordance with at least one aspect of the present disclosure.
DESCRIPTIONApplicant of the present application owns the following U.S. patent applications filed concurrently herewith, the disclosure of each of which is herein incorporated by reference in its entirety:
- U.S. patent application Docket No. END9067USNP1/180679-1M, titled METHOD FOR CONSTRUCTING AND USING A MODULAR SURGICAL ENERGY SYSTEM WITH MULTIPLE DEVICES;
- U.S. patent application Docket No. END9069USNP1/180681-1M, titled METHOD FOR ENERGY DISTRIBUTION IN A SURGICAL MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9069USNP2/180681-2, titled SURGICAL MODULAR ENERGY SYSTEM WITH A SEGMENTED BACKPLANE;
- U.S. patent application Docket No. END9069USNP3/180681-3, titled SURGICAL MODULAR ENERGY SYSTEM WITH FOOTER MODULE;
- U.S. patent application Docket No. END9069USNP4/180681-4, titled POWER AND COMMUNICATION MITIGATION ARRANGEMENT FOR MODULAR SURGICAL ENERGY SYSTEM;
- U.S. patent application Docket No. END9069USNP5/180681-5, titled MODULAR SURGICAL ENERGY SYSTEM WITH MODULE POSITIONAL AWARENESS SENSING WITH VOLTAGE DETECTION;
- U.S. patent application Docket No. END9069USNP6/180681-6, titled MODULAR SURGICAL ENERGY SYSTEM WITH MODULE POSITIONAL AWARENESS SENSING WITH TIME COUNTER;
- U.S. patent application Docket No. END9069USNP7/180681-7, titled MODULAR SURGICAL ENERGY SYSTEM WITH MODULE POSITIONAL AWARENESS WITH DIGITAL LOGIC;
- U.S. patent application Docket No. END9068USNP1/180680-1M, titled METHOD FOR CONTROLLING AN ENERGY MODULE OUTPUT;
- U.S. patent application Docket No. END9068USNP2/180680-2, titled ENERGY MODULE FOR DRIVING MULTIPLE ENERGY MODALITIES;
- U.S. patent application Docket No. END9068USNP3/180680-3, titled GROUNDING ARRANGEMENT OF ENERGY MODULES;
- U.S. patent application Docket No. END9068USNP4/180680-4, titled BACKPLANE CONNECTOR DESIGN TO CONNECT STACKED ENERGY MODULES;
- U.S. patent application Docket No. END9068USNP5/180680-5, titled ENERGY MODULE FOR DRIVING MULTIPLE ENERGY MODALITIES THROUGH A PORT;
- U.S. patent application Docket No. END9068USNP6/180680-6 titled SURGICAL INSTRUMENT UTILIZING DRIVE SIGNAL TO POWER SECONDARY FUNCTION;
- U.S. patent application Docket No. END9038USNP1/180529-1M, titled METHOD FOR CONTROLLING A MODULAR ENERGY SYSTEM USER INTERFACE;
- U.S. patent application Docket No. END9038USNP2/180529-2, titled PASSIVE HEADER MODULE FOR A MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9038USNP3/180529-3, titled CONSOLIDATED USER INTERFACE FOR MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9038USNP4/180529-4, titled AUDIO TONE CONSTRUCTION FOR AN ENERGY MODULE OF A MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9038USNP5/180529-5, titled ADAPTABLY CONNECTABLE AND REASSIGNABLE SYSTEM ACCESSORIES FOR MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9070USNP1/180682-1M, titled METHOD FOR COMMUNICATING BETWEEN MODULES AND DEVICES IN A MODULAR SURGICAL SYSTEM;
- U.S. patent application Docket No. END9070USNP2/180682-2, titled FLEXIBLE HAND-SWITCH CIRCUIT;
- U.S. patent application Docket No. END9070USNP3/180682-3, titled FIRST AND SECOND COMMUNICATION PROTOCOL ARRANGEMENT FOR DRIVING PRIMARY AND SECONDARY DEVICES THROUGH A SINGLE PORT;
- U.S. patent application Docket No. END9070USNP4/180682-4, titled FLEXIBLE NEUTRAL ELECTRODE;
- U.S. patent application Docket No. END9070USNP5/180682-5, titled SMART RETURN PAD SENSING THROUGH MODULATION OF NEAR FIELD COMMUNICATION AND CONTACT QUALITY MONITORING SIGNALS;
- U.S. patent application Docket No. END9070USNP6/180682-6, titled AUTOMATIC ULTRASONIC ENERGY ACTIVATION CIRCUIT DESIGN FOR MODULAR SURGICAL SYSTEMS;
- U.S. patent application Docket No. END9070USNP7/180682-7, titled COORDINATED ENERGY OUTPUTS OF SEPARATE BUT CONNECTED MODULES;
- U.S. patent application Docket No. END9070USNP8/180682-8, titled MANAGING SIMULTANEOUS MONOPOLAR OUTPUTS USING DUTY CYCLE AND SYNCHRONIZATION;
- U.S. patent application Docket No. END9070USNP9/180682-9, titled PORT PRESENCE DETECTION SYSTEM FOR MODULAR ENERGY SYSTEM;
- U.S. patent application Docket No. END9070USNP10/180682-10, titled INSTRUMENT TRACKING ARRANGEMENT BASED ON REAL TIME CLOCK INFORMATION;
- U.S. patent application Docket No. END9070USNP11/180682-11, titled REGIONAL LOCATION TRACKING OF COMPONENTS OF A MODULAR ENERGY SYSTEM;
- U.S. Design patent application Docket No. END9212USDP1/190370D, titled ENERGY MODULE;
- U.S. Design patent application Docket No. END9213USDP1/190371D, titled ENERGY MODULE MONOPOLAR PORT WITH FOURTH SOCKET AMONG THREE OTHER SOCKETS;
- U.S. Design patent application Docket No. END9214USDP1/190372D, titled BACKPLANE CONNECTOR FOR ENERGY MODULE; and
- U.S. Design patent application Docket No. END9215USDP1/190373D, titled ALERT SCREEN FOR ENERGY MODULE.
Before explaining various aspects of surgical devices and generators in detail, it should be noted that the illustrative examples are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative examples may be implemented or incorporated in other aspects, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative examples for the convenience of the reader and are not for the purpose of limitation thereof. Also, it will be appreciated that one or more of the following-described aspects, expressions of aspects, and/or examples, can be combined with any one or more of the other following-described aspects, expressions of aspects and/or examples.
Various aspects are directed to improved ultrasonic surgical devices, electrosurgical devices and generators for use therewith. Aspects of the ultrasonic surgical devices can be configured for transecting and/or coagulating tissue during surgical procedures, for example. Aspects of the electrosurgical devices can be configured for transecting, coagulating, scaling, welding and/or desiccating tissue during surgical procedures, for example.
Surgical System HardwareReferring toFIG. 1, a computer-implemented interactivesurgical system100 includes one or moresurgical systems102 and a cloud-based system (e.g., thecloud104 that may include aremote server113 coupled to a storage device105). Eachsurgical system102 includes at least onesurgical hub106 in communication with thecloud104 that may include aremote server113. In one example, as illustrated inFIG. 1, thesurgical system102 includes avisualization system108, arobotic system110, and a handheld intelligentsurgical instrument112, which are configured to communicate with one another and/or thehub106. In some aspects, asurgical system102 may include an M number ofhubs106, an N number ofvisualization systems108, an O number ofrobotic systems110, and a P number of handheld intelligentsurgical instruments112, where M, N, O, and P are integers greater than or equal to one.
FIG. 2 depicts an example of asurgical system102 being used to perform a surgical procedure on a patient who is lying down on an operating table114 in asurgical operating room116. Arobotic system110 is used in the surgical procedure as a part of thesurgical system102. Therobotic system110 includes a surgeon'sconsole118, a patient side cart120 (surgical robot), and a surgicalrobotic hub122. Thepatient side cart120 can manipulate at least one removably coupledsurgical tool117 through a minimally invasive incision in the body of the patient while the surgeon views the surgical site through the surgeon'sconsole118. An image of the surgical site can be obtained by a medical imaging device124, which can be manipulated by thepatient side cart120 to orient the imaging device124. Therobotic hub122 can be used to process the images of the surgical site for subsequent display to the surgeon through the surgeon'sconsole118.
Other types of robotic systems can be readily adapted for use with thesurgical system102. Various examples of robotic systems and surgical tools that are suitable for use with the present disclosure are described in U.S. Provisional Patent Application Ser. No. 62/611,339, titled ROBOT ASSISTED SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
Various examples of cloud-based analytics that are performed by thecloud104, and are suitable for use with the present disclosure, are described in U.S. Provisional Patent Application Ser. No. 62/611,340, titled CLOUD-BASED MEDICAL ANALYTICS, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
In various aspects, the imaging device124 includes at least one image sensor and one or more optical components. Suitable image sensors include, but are not limited to, Charge-Coupled Device (CCD) sensors and Complementary Metal-Oxide Semiconductor (CMOS) sensors.
The optical components of the imaging device124 may include one or more illumination sources and/or one or more lenses. The one or more illumination sources may be directed to illuminate portions of the surgical field. The one or more image sensors may receive light reflected or refracted from the surgical field, including light reflected or refracted from tissue and/or surgical instruments.
The one or more illumination sources may be configured to radiate electromagnetic energy in the visible spectrum as well as the invisible spectrum. The visible spectrum, sometimes referred to as the optical spectrum or luminous spectrum, is that portion of the electromagnetic spectrum that is visible to (i.e., can be detected by) the human eye and may be referred to as visible light or simply light. A typical human eye will respond to wavelengths in air that are from about 380 nm to about 750 nm.
The invisible spectrum (i.e., the non-luminous spectrum) is that portion of the electromagnetic spectrum that lies below and above the visible spectrum (i.e., wavelengths below about 380 nm and above about 750 nm). The invisible spectrum is not detectable by the human eye. Wavelengths greater than about 750 nm are longer than the red visible spectrum, and they become invisible infrared (IR), microwave, and radio electromagnetic radiation. Wavelengths less than about 380 nm are shorter than the violet spectrum, and they become invisible ultraviolet, x-ray, and gamma ray electromagnetic radiation.
In various aspects, the imaging device124 is configured for use in a minimally invasive procedure. Examples of imaging devices suitable for use with the present disclosure include, but not limited to, an arthroscope, angioscope, bronchoscope, choledochoscope, colonoscope, cytoscope, duodenoscope, enteroscope, esophagogastro-duodenoscope (gastroscope), endoscope, laryngoscope, nasopharyngo-neproscope, sigmoidoscope, thoracoscope, and ureteroscope.
In one aspect, the imaging device employs multi-spectrum monitoring to discriminate topography and underlying structures. A multi-spectral image is one that captures image data within specific wavelength ranges across the electromagnetic spectrum. The wavelengths may be separated by filters or by the use of instruments that are sensitive to particular wavelengths, including light from frequencies beyond the visible light range, e.g., IR and ultraviolet. Spectral imaging can allow extraction of additional information the human eye fails to capture with its receptors for red, green, and blue. The use of multi-spectral imaging is described in greater detail under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. Multi-spectrum monitoring can be a useful tool in relocating a surgical field after a surgical task is completed to perform one or more of the previously described tests on the treated tissue.
It is axiomatic that strict sterilization of the operating room and surgical equipment is required during any surgery. The strict hygiene and sterilization conditions required in a “surgical theater,” i.e., an operating or treatment room, necessitate the highest possible sterility of all medical devices and equipment. Part of that sterilization process is the need to sterilize anything that comes in contact with the patient or penetrates the sterile field, including the imaging device124 and its attachments and components. It will be appreciated that the sterile field may be considered a specified area, such as within a tray or on a sterile towel, that is considered free of microorganisms, or the sterile field may be considered an area, immediately around a patient, who has been prepared for a surgical procedure. The sterile field may include the scrubbed team members, who are properly attired, and all furniture and fixtures in the area. In various aspects, thevisualization system108 includes one or more imaging sensors, one or more image-processing units, one or more storage arrays, and one or more displays that are strategically arranged with respect to the sterile field, as illustrated inFIG. 2. In one aspect, thevisualization system108 includes an interface for HL7, PACS, and EMR. Various components of thevisualization system108 are described under the heading “Advanced Imaging Acquisition Module” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety.
As illustrated inFIG. 2, aprimary display119 is positioned in the sterile field to be visible to an operator at the operating table114. In addition, avisualization tower111 is positioned outside the sterile field. Thevisualization tower111 includes a firstnon-sterile display107 and a secondnon-sterile display109, which face away from each other. Thevisualization system108, guided by thehub106, is configured to utilize thedisplays107,109, and119 to coordinate information flow to operators inside and outside the sterile field. For example, thehub106 may cause thevisualization system108 to display a snapshot of a surgical site, as recorded by an imaging device124, on anon-sterile display107 or109, while maintaining a live feed of the surgical site on theprimary display119. The snapshot on thenon-sterile display107 or109 can permit a non-sterile operator to perform a diagnostic step relevant to the surgical procedure, for example.
In one aspect, thehub106 is also configured to route a diagnostic input or feedback entered by a non-sterile operator at thevisualization tower111 to theprimary display119 within the sterile field, where it can be viewed by a sterile operator at the operating table. In one example, the input can be in the form of a modification to the snapshot displayed on thenon-sterile display107 or109, which can be routed to theprimary display119 by thehub106.
Referring toFIG. 2, asurgical instrument112 is being used in the surgical procedure as part of thesurgical system102. Thehub106 is also configured to coordinate information flow to a display of thesurgical instrument112. For example, in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety. A diagnostic input or feedback entered by a non-sterile operator at thevisualization tower111 can be routed by thehub106 to the surgical instrument display115 within the sterile field, where it can be viewed by the operator of thesurgical instrument112. Example surgical instruments that are suitable for use with thesurgical system102 are described under the heading SURGICAL INSTRUMENT HARDWARE and in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, the disclosure of which is herein incorporated by reference in its entirety, for example.
Referring now toFIG. 3, ahub106 is depicted in communication with avisualization system108, arobotic system110, and a handheld intelligentsurgical instrument112. Thehub106 includes ahub display135, animaging module138, agenerator module140, acommunication module130, aprocessor module132, and astorage array134. In certain aspects, as illustrated inFIG. 3, thehub106 further includes asmoke evacuation module126 and/or a suction/irrigation module128.
During a surgical procedure, energy application to tissue, for sealing and/or cutting, is generally associated with smoke evacuation, suction of excess fluid, and/or irrigation of the tissue. Fluid, power, and/or data lines from different sources are often entangled during the surgical procedure. Valuable time can be lost addressing this issue during a surgical procedure. Detangling the lines may necessitate disconnecting the lines from their respective modules, which may require resetting the modules. The hubmodular enclosure136 offers a unified environment for managing the power, data, and fluid lines, which reduces the frequency of entanglement between such lines.
Aspects of the present disclosure present a surgical hub for use in a surgical procedure that involves energy application to tissue at a surgical site. The surgical hub includes a hub enclosure and a combo generator module slidably receivable in a docking station of the hub enclosure. The docking station includes data and power contacts. The combo generator module includes two or more of an ultrasonic energy generator component, a bipolar RF energy generator component, and a monopolar RF energy generator component that are housed in a single unit. In one aspect, the combo generator module also includes a smoke evacuation component, at least one energy delivery cable for connecting the combo generator module to a surgical instrument, at least one smoke evacuation component configured to evacuate smoke, fluid, and/or particulates generated by the application of therapeutic energy to the tissue, and a fluid line extending from the remote surgical site to the smoke evacuation component.
In one aspect, the fluid line is a first fluid line and a second fluid line extends from the remote surgical site to a suction and irrigation module slidably received in the hub enclosure. In one aspect, the hub enclosure comprises a fluid interface.
Certain surgical procedures may require the application of more than one energy type to the tissue. One energy type may be more beneficial for cutting the tissue, while another different energy type may be more beneficial for sealing the tissue. For example, a bipolar generator can be used to seal the tissue while an ultrasonic generator can be used to cut the sealed tissue. Aspects of the present disclosure present a solution where a hubmodular enclosure136 is configured to accommodate different generators, and facilitate an interactive communication therebetween. One of the advantages of the hubmodular enclosure136 is enabling the quick removal and/or replacement of various modules.
Aspects of the present disclosure present a modular surgical enclosure for use in a surgical procedure that involves energy application to tissue. The modular surgical enclosure includes a first energy-generator module, configured to generate a first energy for application to the tissue, and a first docking station comprising a first docking port that includes first data and power contacts, wherein the first energy-generator module is slidably movable into an electrical engagement with the power and data contacts and wherein the first energy-generator module is slidably movable out of the electrical engagement with the first power and data contacts,
Further to the above, the modular surgical enclosure also includes a second energy-generator module configured to generate a second energy, different than the first energy, for application to the tissue, and a second docking station comprising a second docking port that includes second data and power contacts, wherein the second energy-generator module is slidably movable into an electrical engagement with the power and data contacts, and wherein the second energy-generator module is slidably movable out of the electrical engagement with the second power and data contacts.
In addition, the modular surgical enclosure also includes a communication bus between the first docking port and the second docking port, configured to facilitate communication between the first energy-generator module and the second energy-generator module.
Referring toFIGS. 3-7, aspects of the present disclosure are presented for a hubmodular enclosure136 that allows the modular integration of agenerator module140, asmoke evacuation module126, and a suction/irrigation module128. The hubmodular enclosure136 further facilitates interactive communication between themodules140,126,128. As illustrated inFIG. 5, thegenerator module140 can be a generator module with integrated monopolar, bipolar, and ultrasonic components supported in asingle housing unit139 slidably insertable into the hubmodular enclosure136. As illustrated inFIG. 5, thegenerator module140 can be configured to connect to amonopolar device146, a bipolar device147, and anultrasonic device148. Alternatively, thegenerator module140 may comprise a series of monopolar, bipolar, and/or ultrasonic generator modules that interact through the hubmodular enclosure136. The hubmodular enclosure136 can be configured to facilitate the insertion of multiple generators and interactive communication between the generators docked into the hubmodular enclosure136 so that the generators would act as a single generator.
In one aspect, the hubmodular enclosure136 comprises a modular power andcommunication backplane149 with external and wireless communication headers to enable the removable attachment of themodules140,126,128 and interactive communication therebetween.
In one aspect, the hubmodular enclosure136 includes docking stations, or drawers,151, herein also referred to as drawers, which are configured to slidably receive themodules140,126,128.FIG. 4 illustrates a partial perspective view of asurgical hub enclosure136, and acombo generator module145 slidably receivable in adocking station151 of thesurgical hub enclosure136. Adocking port152 with power and data contacts on a rear side of thecombo generator module145 is configured to engage acorresponding docking port150 with power and data contacts of acorresponding docking station151 of the hubmodular enclosure136 as thecombo generator module145 is slid into position within thecorresponding docking station151 of thehub module enclosure136. In one aspect, thecombo generator module145 includes a bipolar, ultrasonic, and monopolar module and a smoke evacuation module integrated together into asingle housing unit139, as illustrated inFIG. 5.
In various aspects, thesmoke evacuation module126 includes afluid line154 that conveys captured/collected smoke and/or fluid away from a surgical site and to, for example, thesmoke evacuation module126. Vacuum suction originating from thesmoke evacuation module126 can draw the smoke into an opening of a utility conduit at the surgical site. The utility conduit, coupled to the fluid line, can be in the form of a flexible tube terminating at thesmoke evacuation module126. The utility conduit and the fluid line define a fluid path extending toward thesmoke evacuation module126 that is received in thehub enclosure136.
In various aspects, the suction/irrigation module128 is coupled to a surgical tool comprising an aspiration fluid line and a suction fluid line. In one example, the aspiration and suction fluid lines are in the form of flexible tubes extending from the surgical site toward the suction/irrigation module128. One or more drive systems can be configured to cause irrigation and aspiration of fluids to and from the surgical site.
In one aspect, the surgical tool includes a shaft having an end effector at a distal end thereof and at least one energy treatment associated with the end effector, an aspiration tube, and an irrigation tube. The aspiration tube can have an inlet port at a distal end thereof and the aspiration tube extends through the shaft. Similarly, an irrigation tube can extend through the shaft and can have an inlet port in proximity to the energy deliver implement. The energy deliver implement is configured to deliver ultrasonic and/or RF energy to the surgical site and is coupled to thegenerator module140 by a cable extending initially through the shaft.
The irrigation tube can be in fluid communication with a fluid source, and the aspiration tube can be in fluid communication with a vacuum source. The fluid source and/or the vacuum source can be housed in the suction/irrigation module128. In one example, the fluid source and/or the vacuum source can be housed in thehub enclosure136 separately from the suction/irrigation module128. In such example, a fluid interface can be configured to connect the suction/irrigation module128 to the fluid source and/or the vacuum source.
In one aspect, themodules140,126,128 and/or their corresponding docking stations on the hubmodular enclosure136 may include alignment features that are configured to align the docking ports of the modules into engagement with their counterparts in the docking stations of the hubmodular enclosure136. For example, as illustrated inFIG. 4, thecombo generator module145 includesside brackets155 that are configured to slidably engage withcorresponding brackets156 of thecorresponding docking station151 of the hubmodular enclosure136. The brackets cooperate to guide the docking port contacts of thecombo generator module145 into an electrical engagement with the docking port contacts of the hubmodular enclosure136.
In some aspects, thedrawers151 of the hubmodular enclosure136 are the same, or substantially the same size, and the modules are adjusted in size to be received in thedrawers151. For example, theside brackets155 and/or156 can be larger or smaller depending on the size of the module. In other aspects, thedrawers151 are different in size and are each designed to accommodate a particular module.
Furthermore, the contacts of a particular module can be keyed for engagement with the contacts of a particular drawer to avoid inserting a module into a drawer with mismatching contacts.
As illustrated inFIG. 4, thedocking port150 of onedrawer151 can be coupled to thedocking port150 of anotherdrawer151 through a communications link157 to facilitate an interactive communication between the modules housed in the hubmodular enclosure136. Thedocking ports150 of the hubmodular enclosure136 may alternatively, or additionally, facilitate a wireless interactive communication between the modules housed in the hubmodular enclosure136. Any suitable wireless communication can be employed, such as for example Air Titan-Bluetooth.
FIG. 6 illustrates individual power bus attachments for a plurality of lateral docking ports of a lateral modular housing160 configured to receive a plurality of modules of asurgical hub206. The lateral modular housing160 is configured to laterally receive and interconnect themodules161. Themodules161 are slidably inserted intodocking stations162 of lateral modular housing160, which includes a backplane for interconnecting themodules161. As illustrated inFIG. 6, themodules161 are arranged laterally in the lateral modular housing160. Alternatively, themodules161 may be arranged vertically in a lateral modular housing.
FIG. 7 illustrates a verticalmodular housing164 configured to receive a plurality ofmodules165 of thesurgical hub106. Themodules165 are slidably inserted into docking stations, or drawers,167 of verticalmodular housing164, which includes a backplane for interconnecting themodules165. Although thedrawers167 of the verticalmodular housing164 are arranged vertically, in certain instances, a verticalmodular housing164 may include drawers that are arranged laterally. Furthermore, themodules165 may interact with one another through the docking ports of the verticalmodular housing164. In the example ofFIG. 7, adisplay177 is provided for displaying data relevant to the operation of themodules165. In addition, the verticalmodular housing164 includes amaster module178 housing a plurality of sub-modules that are slidably received in themaster module178.
In various aspects, theimaging module138 comprises an integrated video processor and a modular light source and is adapted for use with various imaging devices. In one aspect, the imaging device is comprised of a modular housing that can be assembled with a light source module and a camera module. The housing can be a disposable housing. In at least one example, the disposable housing is removably coupled to a reusable controller, a light source module, and a camera module. The light source module and/or the camera module can be selectively chosen depending on the type of surgical procedure. In one aspect, the camera module comprises a CCD sensor. In another aspect, the camera module comprises a CMOS sensor. In another aspect, the camera module is configured for scanned beam imaging. Likewise, the light source module can be configured to deliver a white light or a different light, depending on the surgical procedure.
During a surgical procedure, removing a surgical device from the surgical field and replacing it with another surgical device that includes a different camera or a different light source can be inefficient. Temporarily losing sight of the surgical field may lead to undesirable consequences. The module imaging device of the present disclosure is configured to permit the replacement of a light source module or a camera module midstream during a surgical procedure, without having to remove the imaging device from the surgical field.
In one aspect, the imaging device comprises a tubular housing that includes a plurality of channels. A first channel is configured to slidably receive the camera module, which can be configured for a snap-fit engagement with the first channel. A second channel is configured to slidably receive the light source module, which can be configured for a snap-fit engagement with the second channel. In another example, the camera module and/or the light source module can be rotated into a final position within their respective channels. A threaded engagement can be employed in lieu of the snap-fit engagement.
In various examples, multiple imaging devices are placed at different positions in the surgical field to provide multiple views. Theimaging module138 can be configured to switch between the imaging devices to provide an optimal view. In various aspects, theimaging module138 can be configured to integrate the images from the different imaging device.
Various image processors and imaging devices suitable for use with the present disclosure are described in U.S. Pat. No. 7,995,045, titled COMBINED SBI AND CONVENTIONAL IMAGE PROCESSOR, which issued on Aug. 9, 2011, which is herein incorporated by reference in its entirety. In addition, U.S. Pat. No. 7,982,776, titled SBI MOTION ARTIFACT REMOVAL APPARATUS AND METHOD, which issued on Jul. 19, 2011, which is herein incorporated by reference in its entirety, describes various systems for removing motion artifacts from image data. Such systems can be integrated with theimaging module138. Furthermore, U.S. Patent Application Publication No. 2011/0306840, titled CONTROLLABLE MAGNETIC SOURCE TO FIXTURE INTRACORPOREAL APPARATUS, which published on Dec. 15, 2011, and U.S. Patent Application Publication No. 2014/0243597, titled SYSTEM FOR PERFORMING A MINIMALLY INVASIVE SURGICAL PROCEDURE, which published on Aug. 28, 2014, each of which is herein incorporated by reference in its entirety.
FIG. 8 illustrates asurgical data network201 comprising amodular communication hub203 configured to connect modular devices located in one or more operating theaters of a healthcare facility, or any room in a healthcare facility specially equipped for surgical operations, to a cloud-based system (e.g., thecloud204 that may include aremote server213 coupled to a storage device205). In one aspect, themodular communication hub203 comprises anetwork hub207 and/or anetwork switch209 in communication with a network router. Themodular communication hub203 also can be coupled to alocal computer system210 to provide local computer processing and data manipulation. Thesurgical data network201 may be configured as passive, intelligent, or switching. A passive surgical data network serves as a conduit for the data, enabling it to go from one device (or segment) to another and to the cloud computing resources. An intelligent surgical data network includes additional features to enable the traffic passing through the surgical data network to be monitored and to configure each port in thenetwork hub207 ornetwork switch209. An intelligent surgical data network may be referred to as a manageable hub or switch. A switching hub reads the destination address of each packet and then forwards the packet to the correct port.
Modular devices1a-1nlocated in the operating theater may be coupled to themodular communication hub203. Thenetwork hub207 and/or thenetwork switch209 may be coupled to anetwork router211 to connect thedevices1a-1nto thecloud204 or thelocal computer system210. Data associated with thedevices1a-1nmay be transferred to cloud-based computers via the router for remote data processing and manipulation. Data associated with thedevices1a-1nmay also be transferred to thelocal computer system210 for local data processing and manipulation.Modular devices2a-2mlocated in the same operating theater also may be coupled to anetwork switch209. Thenetwork switch209 may be coupled to thenetwork hub207 and/or thenetwork router211 to connect to thedevices2a-2mto thecloud204. Data associated with thedevices2a-2nmay be transferred to thecloud204 via thenetwork router211 for data processing and manipulation. Data associated with thedevices2a-2mmay also be transferred to thelocal computer system210 for local data processing and manipulation.
It will be appreciated that thesurgical data network201 may be expanded by interconnectingmultiple network hubs207 and/or multiple network switches209 withmultiple network routers211. Themodular communication hub203 may be contained in a modular control tower configured to receivemultiple devices1a-1n/2a-2m. Thelocal computer system210 also may be contained in a modular control tower. Themodular communication hub203 is connected to a display212 to display images obtained by some of thedevices1a-1n/2a-2m, for example during surgical procedures. In various aspects, thedevices1a-1n/2a-2mmay include, for example, various modules such as animaging module138 coupled to an endoscope, agenerator module140 coupled to an energy-based surgical device, asmoke evacuation module126, a suction/irrigation module128, acommunication module130, aprocessor module132, astorage array134, a surgical device coupled to a display, and/or a non-contact sensor module, among other modular devices that may be connected to themodular communication hub203 of thesurgical data network201.
In one aspect, thesurgical data network201 may comprise a combination of network hub(s), network switch(es), and network router(s) connecting thedevices1a-1n/2a-2mto the cloud. Any one of or all of thedevices1a-1n/2a-2mcoupled to the network hub or network switch may collect data in real time and transfer the data to cloud computers for data processing and manipulation. It will be appreciated that cloud computing relies on sharing computing resources rather than having local servers or personal devices to handle software applications. The word “cloud” may be used as a metaphor for “the Internet,” although the term is not limited as such. Accordingly, the term “cloud computing” may be used herein to refer to “a type of Internet-based computing,” where different services—such as servers, storage, and applications—are delivered to themodular communication hub203 and/orcomputer system210 located in the surgical theater (e.g., a fixed, mobile, temporary, or field operating room or space) and to devices connected to themodular communication hub203 and/orcomputer system210 through the Internet. The cloud infrastructure may be maintained by a cloud service provider. In this context, the cloud service provider may be the entity that coordinates the usage and control of thedevices1a-1n/2a-2mlocated in one or more operating theaters. The cloud computing services can perform a large number of calculations based on the data gathered by smart surgical instruments, robots, and other computerized devices located in the operating theater. The hub hardware enables multiple devices or connections to be connected to a computer that communicates with the cloud computing resources and storage.
Applying cloud computer data processing techniques on the data collected by thedevices1a-1n/2a-2m, the surgical data network provides improved surgical outcomes, reduced costs, and improved patient satisfaction. At least some of thedevices1a-1n/2a-2mmay be employed to view tissue states to assess leaks or perfusion of sealed tissue after a tissue sealing and cutting procedure. At least some of thedevices1a-1n/2a-2mmay be employed to identify pathology, such as the effects of diseases, using the cloud-based computing to examine data including images of samples of body tissue for diagnostic purposes. This includes localization and margin confirmation of tissue and phenotypes. At least some of thedevices1a-1n/2a-2mmay be employed to identify anatomical structures of the body using a variety of sensors integrated with imaging devices and techniques such as overlaying images captured by multiple imaging devices. The data gathered by thedevices1a-1n/2a-2m, including image data, may be transferred to thecloud204 or thelocal computer system210 or both for data processing and manipulation including image processing and manipulation. The data may be analyzed to improve surgical procedure outcomes by determining if further treatment, such as the application of endoscopic intervention, emerging technologies, a targeted radiation, targeted intervention, and precise robotics to tissue-specific sites and conditions, may be pursued. Such data analysis may further employ outcome analytics processing, and using standardized approaches may provide beneficial feedback to either confirm surgical treatments and the behavior of the surgeon or suggest modifications to surgical treatments and the behavior of the surgeon.
In one implementation, theoperating theater devices1a-1nmay be connected to themodular communication hub203 over a wired channel or a wireless channel depending on the configuration of thedevices1a-1nto a network hub. Thenetwork hub207 may be implemented, in one aspect, as a local network broadcast device that works on the physical layer of the Open System Interconnection (OSI) model. The network hub provides connectivity to thedevices1a-1nlocated in the same operating theater network. Thenetwork hub207 collects data in the form of packets and sends them to the router in half duplex mode. Thenetwork hub207 does not store any media access control/Internet Protocol (MAC/IP) to transfer the device data. Only one of thedevices1a-1ncan send data at a time through thenetwork hub207. Thenetwork hub207 has no routing tables or intelligence regarding where to send information and broadcasts all network data across each connection and to a remote server213 (FIG. 9) over thecloud204. Thenetwork hub207 can detect basic network errors such as collisions, but having all information broadcast to multiple ports can be a security risk and cause bottlenecks.
In another implementation, theoperating theater devices2a-2mmay be connected to anetwork switch209 over a wired channel or a wireless channel. Thenetwork switch209 works in the data link layer of the OSI model. Thenetwork switch209 is a multicast device for connecting thedevices2a-2mlocated in the same operating theater to the network. Thenetwork switch209 sends data in the form of frames to thenetwork router211 and works in full duplex mode.Multiple devices2a-2mcan send data at the same time through thenetwork switch209. Thenetwork switch209 stores and uses MAC addresses of thedevices2a-2mto transfer data.
Thenetwork hub207 and/or thenetwork switch209 are coupled to thenetwork router211 for connection to thecloud204. Thenetwork router211 works in the network layer of the OSI model. Thenetwork router211 creates a route for transmitting data packets received from thenetwork hub207 and/ornetwork switch211 to cloud-based computer resources for further processing and manipulation of the data collected by any one of or all thedevices1a-1n/2a-2m. Thenetwork router211 may be employed to connect two or more different networks located in different locations, such as, for example, different operating theaters of the same healthcare facility or different networks located in different operating theaters of different healthcare facilities. Thenetwork router211 sends data in the form of packets to thecloud204 and works in full duplex mode. Multiple devices can send data at the same time. Thenetwork router211 uses IP addresses to transfer data.
In one example, thenetwork hub207 may be implemented as a USB hub, which allows multiple USB devices to be connected to a host computer. The USB hub may expand a single USB port into several tiers so that there are more ports available to connect devices to the host system computer. Thenetwork hub207 may include wired or wireless capabilities to receive information over a wired channel or a wireless channel. In one aspect, a wireless USB short-range, high-bandwidth wireless radio communication protocol may be employed for communication between thedevices1a-1nanddevices2a-2mlocated in the operating theater.
In other examples, theoperating theater devices1a-1n/2a-2mmay communicate to themodular communication hub203 via Bluetooth wireless technology standard for exchanging data over short distances (using short-wavelength UHF radio waves in the ISM band from 2.4 to 2.485 GHz) from fixed and mobile devices and building personal area networks (PANs). In other aspects, theoperating theater devices1a-1n/2a-2mmay communicate to themodular communication hub203 via a number of wireless or wired communication standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long-term evolution (LTE), and Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, and Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter-range wireless communications such as W-Fi and Bluetooth, and a second communication module may be dedicated to longer-range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
Themodular communication hub203 may serve as a central connection for one or all of theoperating theater devices1a-1n/2a-2mand handles a data type known as frames. Frames carry the data generated by thedevices1a-1n/2a-2m. When a frame is received by themodular communication hub203, it is amplified and transmitted to thenetwork router211, which transfers the data to the cloud computing resources by using a number of wireless or wired communication standards or protocols, as described herein.
Themodular communication hub203 can be used as a standalone device or be connected to compatible network hubs and network switches to form a larger network. Themodular communication hub203 is generally easy to install, configure, and maintain, making it a good option for networking theoperating theater devices1a-1n/2a-2m.
FIG. 9 illustrates a computer-implemented interactivesurgical system200. The computer-implemented interactivesurgical system200 is similar in many respects to the computer-implemented interactivesurgical system100. For example, the computer-implemented interactivesurgical system200 includes one or more surgical systems202, which are similar in many respects to thesurgical systems102. Each surgical system202 includes at least onesurgical hub206 in communication with acloud204 that may include aremote server213. In one aspect, the computer-implemented interactivesurgical system200 comprises amodular control tower236 connected to multiple operating theater devices such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating theater. As shown inFIG. 10, themodular control tower236 comprises amodular communication hub203 coupled to acomputer system210. As illustrated in the example ofFIG. 9, themodular control tower236 is coupled to animaging module238 that is coupled to anendoscope239, agenerator module240 that is coupled to anenergy device241, asmoke evacuator module226, a suction/irrigation module228, acommunication module230, aprocessor module232, astorage array234, a smart device/instrument235 optionally coupled to adisplay237, and anon-contact sensor module242. The operating theater devices are coupled to cloud computing resources and data storage via themodular control tower236. Arobot hub222 also may be connected to themodular control tower236 and to the cloud computing resources. The devices/instruments235, visualization systems208, among others, may be coupled to themodular control tower236 via wired or wireless communication standards or protocols, as described herein. Themodular control tower236 may be coupled to a hub display215 (e.g., monitor, screen) to display and overlay images received from the imaging module, device/instrument display, and/or other visualization systems208. The hub display also may display data received from devices connected to the modular control tower in conjunction with images and overlaid images.
FIG. 10 illustrates asurgical hub206 comprising a plurality of modules coupled to themodular control tower236. Themodular control tower236 comprises amodular communication hub203, e.g., a network connectivity device, and acomputer system210 to provide local processing, visualization, and imaging, for example. As shown inFIG. 10, themodular communication hub203 may be connected in a tiered configuration to expand the number of modules (e.g., devices) that may be connected to themodular communication hub203 and transfer data associated with the modules to thecomputer system210, cloud computing resources, or both. As shown inFIG. 10, each of the network hubs/switches in themodular communication hub203 includes three downstream ports and one upstream port. The upstream network hub/switch is connected to a processor to provide a communication connection to the cloud computing resources and alocal display217. Communication to thecloud204 may be made either through a wired or a wireless communication channel.
Thesurgical hub206 employs anon-contact sensor module242 to measure the dimensions of the operating theater and generate a map of the surgical theater using either ultrasonic or laser-type non-contact measurement devices. An ultrasound-based non-contact sensor module scans the operating theater by transmitting a burst of ultrasound and receiving the echo when it bounces off the perimeter walls of an operating theater as described under the heading “Surgical Hub Spatial Awareness Within an Operating Room” in U.S. Provisional Patent Application Ser. No. 62/611,341, titled INTERACTIVE SURGICAL PLATFORM, filed Dec. 28, 2017, which is herein incorporated by reference in its entirety, in which the sensor module is configured to determine the size of the operating theater and to adjust Bluetooth-pairing distance limits. A laser-based non-contact sensor module scans the operating theater by transmitting laser light pulses, receiving laser light pulses that bounce off the perimeter walls of the operating theater, and comparing the phase of the transmitted pulse to the received pulse to determine the size of the operating theater and to adjust Bluetooth pairing distance limits, for example.
Thecomputer system210 comprises aprocessor244 and anetwork interface245. Theprocessor244 is coupled to acommunication module247,storage248,memory249,non-volatile memory250, and input/output interface251 via a system bus. The system bus can be any of several types of bus structure(s) including the memory bus or memory controller, a peripheral bus or external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, 9-bit bus, Industrial Standard Architecture (ISA), Micro-Charmel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), USB, Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Small Computer Systems Interface (SCSI), or any other proprietary bus.
Theprocessor244 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), an internal read-only memory (ROM) loaded with StellarisWare® software, a 2 KB electrically erasable programmable read-only memory (EEPROM), and/or one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analogs, one or more 12-bit analog-to-digital converters (ADCs) with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, theprocessor244 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
The system memory includes volatile memory and non-volatile memory. The basic input/output system (BIOS), containing the basic routines to transfer information between elements within the computer system, such as during start-up, is stored in non-volatile memory. For example, the non-volatile memory can include ROM, programmable ROM (PROM), electrically programmable ROM (EPROM), EEPROM, or flash memory. Volatile memory includes random-access memory (RAM), which acts as external cache memory. Moreover, RAM is available in many forms such as SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM).
Thecomputer system210 also includes removable/non-removable, volatile/non-volatile computer storage media, such as for example disk storage. The disk storage includes, but is not limited to, devices like a magnetic disk drive, floppy disk drive, tape drive, Jaz drive, Zip drive, LS-60 drive, flash memory card, or memory stick. In addition, the disk storage can include storage media separately or in combination with other storage media including, but not limited to, an optical disc drive such as a compact disc ROM device (CD-ROM), compact disc recordable drive (CD-R Drive), compact disc rewritable drive (CD-RW Drive), or a digital versatile disc ROM drive (DVD-ROM). To facilitate the connection of the disk storage devices to the system bus, a removable or non-removable interface may be employed.
It is to be appreciated that thecomputer system210 includes software that acts as an intermediary between users and the basic computer resources described in a suitable operating environment. Such software includes an operating system. The operating system, which can be stored on the disk storage, acts to control and allocate resources of the computer system. System applications take advantage of the management of resources by the operating system through program modules and program data stored either in the system memory or on the disk storage. It is to be appreciated that various components described herein can be implemented with various operating systems or combinations of operating systems.
A user enters commands or information into thecomputer system210 through input device(s) coupled to the I/O interface251. The input devices include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to the processor through the system bus via interface port(s). The interface port(s) include, for example, a serial port, a parallel port, a game port, and a USB. The output device(s) use some of the same types of ports as input device(s). Thus, for example, a USB port may be used to provide input to the computer system and to output information from the computer system to an output device. An output adapter is provided to illustrate that there are some output devices like monitors, displays, speakers, and printers, among other output devices that require special adapters. The output adapters include, by way of illustration and not limitation, video and sound cards that provide a means of connection between the output device and the system bus. It should be noted that other devices and/or systems of devices, such as remote computer(s), provide both input and output capabilities.
Thecomputer system210 can operate in a networked environment using logical connections to one or more remote computers, such as cloud computer(s), or local computers. The remote cloud computer(s) can be a personal computer, server, router, network PC, workstation, microprocessor-based appliance, peer device, or other common network node, and the like, and typically includes many or all of the elements described relative to the computer system. For purposes of brevity, only a memory storage device is illustrated with the remote computer(s). The remote computer(s) is logically connected to the computer system through a network interface and then physically connected via a communication connection. The network interface encompasses communication networks such as local area networks (LANs) and wide area networks (WANs). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet/IEEE 802.3, Token Ring/IEEE 802.5 and the like. WAN technologies include, but are not limited to, point-to-point links, circuit-switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet-switching networks, and Digital Subscriber Lines (DSL).
In various aspects, thecomputer system210 ofFIG. 10, theimaging module238 and/or visualization system208, and/or theprocessor module232 ofFIGS. 9-10, may comprise an image processor, image-processing engine, media processor, or any specialized digital signal processor (DSP) used for the processing of digital images. The image processor may employ parallel computing with single instruction, multiple data (SIMD) or multiple instruction, multiple data (MIMD) technologies to increase speed and efficiency. The digital image-processing engine can perform a range of tasks. The image processor may be a system on a chip with multicore processor architecture.
The communication connection(s) refers to the hardware/software employed to connect the network interface to the bus. While the communication connection is shown for illustrative clarity inside the computer system, it can also be external to thecomputer system210. The hardware/software necessary for connection to the network interface includes, for illustrative purposes only, internal and external technologies such as modems, including regular telephone-grade modems, cable modems, and DSL modems, ISDN adapters, and Ethernet cards.
FIG. 11 illustrates a functional block diagram of one aspect of aUSB network hub300 device, in accordance with at least one aspect of the present disclosure. In the illustrated aspect, the USBnetwork hub device300 employs a TUSB2036 integrated circuit hub by Texas Instruments. TheUSB network hub300 is a CMOS device that provides an upstreamUSB transceiver port302 and up to three downstreamUSB transceiver ports304,306,308 in compliance with the USB 2.0 specification. The upstreamUSB transceiver port302 is a differential root data port comprising a differential data minus (DM0) input paired with a differential data plus (DP0) input. The three downstreamUSB transceiver ports304,306,308 are differential data ports where each port includes differential data plus (DP1-DP3) outputs paired with differential data minus (DM1-DM3) outputs.
TheUSB network hub300 device is implemented with a digital state machine instead of a microcontroller, and no firmware programming is required. Fully compliant USB transceivers are integrated into the circuit for the upstreamUSB transceiver port302 and all downstreamUSB transceiver ports304,306,308. The downstreamUSB transceiver ports304,306,308 support both full-speed and low-speed devices by automatically setting the slew rate according to the speed of the device attached to the ports. TheUSB network hub300 device may be configured either in bus-powered or self-powered mode and includes ahub power logic312 to manage power.
TheUSB network hub300 device includes a serial interface engine310 (SIE). TheSIE310 is the front end of theUSB network hub300 hardware and handles most of the protocol described inchapter 8 of the USB specification. TheSIE310 typically comprehends signaling up to the transaction level. The functions that it handles could include: packet recognition, transaction sequencing, SOP, EOP, RESET, and RESUME signal detection/generation, clock/data separation, non-return-to-zero invert (NRZI) data encoding/decoding and bit-stuffing, CRC generation and checking (token and data), packet ID (PID) generation and checking/decoding, and/or serial-parallel/parallel-serial conversion. The310 receives aclock input314 and is coupled to a suspend/resume logic andframe timer316 circuit and ahub repeater circuit318 to control communication between the upstreamUSB transceiver port302 and the downstreamUSB transceiver ports304,306,308 throughport logic circuits320,322,324. TheSIE310 is coupled to acommand decoder326 via interface logic to control commands from a serial EEPROM via aserial EEPROM interface330.
In various aspects, theUSB network hub300 can connect127 functions configured in up to six logical layers (tiers) to a single computer. Further, theUSB network hub300 can connect to all peripherals using a standardized four-wire cable that provides both communication and power distribution. The power configurations are bus-powered and self-powered modes. TheUSB network hub300 may be configured to support four modes of power management: a bus-powered hub, with either individual-port power management or ganged-port power management, and the self-powered hub, with either individual-port power management or ganged-port power management. In one aspect, using a USB cable, theUSB network hub300, the upstreamUSB transceiver port302 is plugged into a USB host controller, and the downstreamUSB transceiver ports304,306,308 are exposed for connecting USB compatible devices, and so forth.
Surgical Instrument HardwareFIG. 12 illustrates a logic diagram of acontrol system470 of a surgical instrument or tool in accordance with one or more aspects of the present disclosure. Thesystem470 comprises a control circuit. The control circuit includes amicrocontroller461 comprising aprocessor462 and amemory468. One or more ofsensors472,474,476, for example, provide real-time feedback to theprocessor462. Amotor482, driven by amotor driver492, operably couples a longitudinally movable displacement member to drive a clamp arm closure member. Atracking system480 is configured to determine the position of the longitudinally movable displacement member. The position information is provided to theprocessor462, which can be programmed or configured to determine the position of the longitudinally movable drive member as well as the position of the closure member. Additional motors may be provided at the tool driver interface to control closure tube travel, shaft rotation, articulation, or clamp arm closure, or a combination of the above. Adisplay473 displays a variety of operating conditions of the instruments and may include touch screen functionality for data input. Information displayed on thedisplay473 may be overlaid with images acquired via endoscopic imaging modules.
In one aspect, themicrocontroller461 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, themain microcontroller461 may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, and internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, and/or one or more 12-bit ADCs with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, themicrocontroller461 may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x, known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
Themicrocontroller461 may be programmed to perform various functions such as precise control over the speed and position of the knife, articulation systems, clamp arm, or a combination of the above. In one aspect, themicrocontroller461 includes aprocessor462 and amemory468. Theelectric motor482 may be a brushed direct current (DC) motor with a gearbox and mechanical links to an articulation or knife system. In one aspect, amotor driver492 may be an A3941 available from Allegro Microsystems, Inc. Other motor drivers may be readily substituted for use in thetracking system480 comprising an absolute positioning system. A detailed description of an absolute positioning system is described in U.S. Patent Application Publication No. 2017/0296213, titled SYSTEMS AND METHODS FOR CONTROLLING A SURGICAL STAPLING AND CUTTING INSTRUMENT, which published on Oct. 19, 2017, which is herein incorporated by reference in its entirety.
Themicrocontroller461 may be programmed to provide precise control over the speed and position of displacement members and articulation systems. Themicrocontroller461 may be configured to compute a response in the software of themicrocontroller461. The computed response is compared to a measured response of the actual system to obtain an “observed” response, which is used for actual feedback decisions. The observed response is a favorable, tuned value that balances the smooth, continuous nature of the simulated response with the measured response, which can detect outside influences on the system.
In one aspect, themotor482 may be controlled by themotor driver492 and can be employed by the firing system of the surgical instrument or tool. In various forms, themotor482 may be a brushed DC driving motor having a maximum rotational speed of approximately 25,000 RPM. In other arrangements, themotor482 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. Themotor driver492 may comprise an H-bridge driver comprising field-effect transistors (FETs), for example. Themotor482 can be powered by a power assembly releasably mounted to the handle assembly or tool housing for supplying control power to the surgical instrument or tool. The power assembly may comprise a battery which may include a number of battery cells connected in series that can be used as the power source to power the surgical instrument or tool. In certain circumstances, the battery cells of the power assembly may be replaceable and/or rechargeable battery cells. In at least one example, the battery cells can be lithium-ion batteries which can be couplable to and separable from the power assembly.
Themotor driver492 may be an A3941 available from Allegro Microsystems, Inc. TheA3941 492 is a full-bridge controller for use with external N-channel power metal-oxide semiconductor field-effect transistors (MOSFETs) specifically designed for inductive loads, such as brush DC motors. Thedriver492 comprises a unique charge pump regulator that provides full (>10 V) gate drive for battery voltages down to 7 V and allows the A3941 to operate with a reduced gate drive, down to 5.5 V. A bootstrap capacitor may be employed to provide the above battery supply voltage required for N-channel MOSFETs. An internal charge pump for the high-side drive allows DC (100% duty cycle) operation. The full bridge can be driven in fast or slow decay modes using diode or synchronous rectification. In the slow decay mode, current recirculation can be through the high-side or the low-side FETs. The power FETs are protected from shoot-through by resistor-adjustable dead time. Integrated diagnostics provide indications of undervoltage, overtemperature, and power bridge faults and can be configured to protect the power MOSFETs under most short circuit conditions. Other motor drivers may be readily substituted for use in thetracking system480 comprising an absolute positioning system.
Thetracking system480 comprises a controlled motor drive circuit arrangement comprising aposition sensor472 according to one aspect of this disclosure. Theposition sensor472 for an absolute positioning system provides a unique position signal corresponding to the location of a displacement member. In one aspect, the displacement member represents a longitudinally movable drive member comprising a rack of drive teeth for meshing engagement with a corresponding drive gear of a gear reducer assembly. In other aspects, the displacement member represents the firing member, which could be adapted and configured to include a rack of drive teeth. In yet another aspect, the displacement member represents a longitudinal displacement member to open and close a clamp arm, which can be adapted and configured to include a rack of drive teeth. In other aspects, the displacement member represents a clamp arm closure member configured to close and to open a clamp arm of a stapler, ultrasonic, or electrosurgical device, or combinations of the above. Accordingly, as used herein, the term displacement member is used generically to refer to any movable member of the surgical instrument or tool such as the drive member, the clamp arm, or any element that can be displaced. Accordingly, the absolute positioning system can, in effect, track the displacement of the clamp arm by tracking the linear displacement of the longitudinally movable drive member. In other aspects, the absolute positioning system can be configured to track the position of a clamp arm in the process of closing or opening. In various other aspects, the displacement member may be coupled to anyposition sensor472 suitable for measuring linear displacement. Thus, the longitudinally movable drive member, or clamp arm, or combinations thereof, may be coupled to any suitable linear displacement sensor. Linear displacement sensors may include contact or non-contact displacement sensors. Linear displacement sensors may comprise linear variable differential transformers (LVDT), differential variable reluctance transducers (DVRT), a slide potentiometer, a magnetic sensing system comprising a movable magnet and a series of linearly arranged Hall effect sensors, a magnetic sensing system comprising a fixed magnet and a series of movable, linearly arranged Hall effect sensors, an optical sensing system comprising a movable light source and a series of linearly arranged photo diodes or photo detectors, an optical sensing system comprising a fixed light source and a series of movable linearly, arranged photo diodes or photo detectors, or any combination thereof.
Theelectric motor482 can include a rotatable shaft that operably interfaces with a gear assembly that is mounted in meshing engagement with a set, or rack, of drive teeth on the displacement member. A sensor element may be operably coupled to a gear assembly such that a single revolution of theposition sensor472 element corresponds to some linear longitudinal translation of the displacement member. An arrangement of gearing and sensors can be connected to the linear actuator, via a rack and pinion arrangement, or a rotary actuator, via a spur gear or other connection. A power source supplies power to the absolute positioning system and an output indicator may display the output of the absolute positioning system. The displacement member represents the longitudinally movable drive member comprising a rack of drive teeth formed thereon for meshing engagement with a corresponding drive gear of the gear reducer assembly. The displacement member represents the longitudinally movable firing member to open and close a clamp arm.
A single revolution of the sensor element associated with theposition sensor472 is equivalent to a longitudinal linear displacement d1of the displacement member, where d1is the longitudinal linear distance that the displacement member moves from point “a” to point “b” after a single revolution of the sensor element coupled to the displacement member. The sensor arrangement may be connected via a gear reduction that results in theposition sensor472 completing one or more revolutions for the full stroke of the displacement member. Theposition sensor472 may complete multiple revolutions for the full stroke of the displacement member.
A series of switches, where n is an integer greater than one, may be employed alone or in combination with a gear reduction to provide a unique position signal for more than one revolution of theposition sensor472. The state of the switches are fed back to themicrocontroller461 that applies logic to determine a unique position signal corresponding to the longitudinal linear displacement d1+d2+ . . . dnof the displacement member. The output of theposition sensor472 is provided to themicrocontroller461. Theposition sensor472 of the sensor arrangement may comprise a magnetic sensor, an analog rotary sensor like a potentiometer, or an array of analog Hall-effect elements, which output a unique combination of position signals or values.
Theposition sensor472 may comprise any number of magnetic sensing elements, such as, for example, magnetic sensors classified according to whether they measure the total magnetic field or the vector components of the magnetic field. The techniques used to produce both types of magnetic sensors encompass many aspects of physics and electronics. The technologies used for magnetic field sensing include search coil, fluxgate, optically pumped, nuclear precession, SQUID, Hall-effect, anisotropic magnetoresistance, giant magnetoresistance, magnetic tunnel junctions, giant magnetoimpedance, magnetostrictive/piezoelectric composites, magnetodiode, magnetotransistor, fiber-optic, magneto-optic, and microelectromechanical systems-based magnetic sensors, among others.
In one aspect, theposition sensor472 for thetracking system480 comprising an absolute positioning system comprises a magnetic rotary absolute positioning system. Theposition sensor472 may be implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor472 is interfaced with themicrocontroller461 to provide an absolute positioning system. Theposition sensor472 is a low-voltage and low-power component and includes four Hall-effect elements in an area of theposition sensor472 that is located above a magnet. A high-resolution ADC and a smart power management controller are also provided on the chip. A coordinate rotation digital computer (CORDIC) processor, also known as the digit-by-digit method and Volder's algorithm, is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations. The angle position, alarm bits, and magnetic field information are transmitted over a standard serial communication interface, such as a serial peripheral interface (SPI) interface, to themicrocontroller461. Theposition sensor472 provides 12 or 14 bits of resolution. Theposition sensor472 may be an AS5055 chip provided in a small QFN 16-pin 4×4×0.85 mm package.
Thetracking system480 comprising an absolute positioning system may comprise and/or be programmed to implement a feedback controller, such as a PID, state feedback, and adaptive controller. A power source converts the signal from the feedback controller into a physical input to the system: in this case the voltage. Other examples include a PWM of the voltage, current, and force. Other sensor(s) may be provided to measure physical parameters of the physical system in addition to the position measured by theposition sensor472. In some aspects, the other sensor(s) can include sensor arrangements such as those described in U.S. Pat. No. 9,345,481, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which issued on May 24, 2016, which is herein incorporated by reference in its entirety; U.S. Patent Application Publication No. 2014/0263552, titled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, which published on Sep. 18, 2014, which is herein incorporated by reference in its entirety; and U.S. patent application Ser. No. 15/628,175, titled TECHNIQUES FOR ADAPTIVE CONTROL OF MOTOR VELOCITY OF A SURGICAL STAPLING AND CUTTING INSTRUMENT, filed Jun. 20, 2017, which is herein incorporated by reference in its entirety. In a digital signal processing system, an absolute positioning system is coupled to a digital data acquisition system where the output of the absolute positioning system will have a finite resolution and sampling frequency. The absolute positioning system may comprise a compare-and-combine circuit to combine a computed response with a measured response using algorithms, such as a weighted average and a theoretical control loop, that drive the computed response towards the measured response. The computed response of the physical system takes into account properties like mass, inertia, viscous friction, inductance resistance, etc., to predict what the states and outputs of the physical system will be by knowing the input.
The absolute positioning system provides an absolute position of the displacement member upon power-up of the instrument, without retracting or advancing the displacement member to a reset (zero or home) position as may be required with conventional rotary encoders that merely count the number of steps forwards or backwards that themotor482 has taken to infer the position of a device actuator, drive bar, knife, or the like.
Asensor474, such as, for example, a strain gauge or a micro-strain gauge, is configured to measure one or more parameters of the end effector, such as, for example, the amplitude of the strain exerted on the anvil during a clamping operation, which can be indicative of the closure forces applied to the anvil. The measured strain is converted to a digital signal and provided to theprocessor462. Alternatively, or in addition to thesensor474, asensor476, such as, for example, a load sensor, can measure the closure force applied by the closure drive system to the anvil in a stapler or a clamp arm in an ultrasonic or electrosurgical instrument. Thesensor476, such as, for example, a load sensor, can measure the firing force applied to a closure member coupled to a clamp arm of the surgical instrument or tool or the force applied by a clamp arm to tissue located in the jaws of an ultrasonic or electrosurgical instrument. Alternatively, acurrent sensor478 can be employed to measure the current drawn by themotor482. The displacement member also may be configured to engage a clamp arm to open or close the clamp arm. The force sensor may be configured to measure the clamping force on tissue. The force required to advance the displacement member can correspond to the current drawn by themotor482, for example. The measured force is converted to a digital signal and provided to theprocessor462.
In one form, thestrain gauge sensor474 can be used to measure the force applied to the tissue by the end effector. A strain gauge can be coupled to the end effector to measure the force on the tissue being treated by the end effector. A system for measuring forces applied to the tissue grasped by the end effector comprises astrain gauge sensor474, such as, for example, a micro-strain gauge, that is configured to measure one or more parameters of the end effector, for example. In one aspect, thestrain gauge sensor474 can measure the amplitude or magnitude of the strain exerted on a jaw member of an end effector during a clamping operation, which can be indicative of the tissue compression. The measured strain is converted to a digital signal and provided to aprocessor462 of themicrocontroller461. Aload sensor476 can measure the force used to operate the knife element, for example, to cut the tissue captured between the anvil and the staple cartridge. Aload sensor476 can measure the force used to operate the clamp arm element, for example, to capture tissue between the clamp arm and an ultrasonic blade or to capture tissue between the clamp arm and a jaw of an electrosurgical instrument. A magnetic field sensor can be employed to measure the thickness of the captured tissue. The measurement of the magnetic field sensor also may be converted to a digital signal and provided to theprocessor462.
The measurements of the tissue compression, the tissue thickness, and/or the force required to close the end effector on the tissue, as respectively measured by thesensors474,476, can be used by themicrocontroller461 to characterize the selected position of the firing member and/or the corresponding value of the speed of the firing member. In one instance, amemory468 may store a technique, an equation, and/or a lookup table which can be employed by themicrocontroller461 in the assessment.
Thecontrol system470 of the surgical instrument or tool also may comprise wired or wireless communication circuits to communicate with the modular communication hub as shown inFIGS. 8-11.
FIG. 13 illustrates acontrol circuit500 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thecontrol circuit500 can be configured to implement various processes described herein. Thecontrol circuit500 may comprise a microcontroller comprising one or more processors502 (e.g., microprocessor, microcontroller) coupled to at least onememory circuit504. Thememory circuit504 stores machine-executable instructions that, when executed by theprocessor502, cause theprocessor502 to execute machine instructions to implement various processes described herein. Theprocessor502 may be any one of a number of single-core or multicore processors known in the art. Thememory circuit504 may comprise volatile and non-volatile storage media. Theprocessor502 may include aninstruction processing unit506 and anarithmetic unit508. The instruction processing unit may be configured to receive instructions from thememory circuit504 of this disclosure.
FIG. 14 illustrates acombinational logic circuit510 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thecombinational logic circuit510 can be configured to implement various processes described herein. Thecombinational logic circuit510 may comprise a finite state machine comprising acombinational logic512 configured to receive data associated with the surgical instrument or tool at aninput514, process the data by thecombinational logic512, and provide anoutput516.
FIG. 15 illustrates asequential logic circuit520 configured to control aspects of the surgical instrument or tool according to one aspect of this disclosure. Thesequential logic circuit520 or thecombinational logic522 can be configured to implement various processes described herein. Thesequential logic circuit520 may comprise a finite state machine. Thesequential logic circuit520 may comprise acombinational logic522, at least onememory circuit524, and aclock529, for example. The at least onememory circuit524 can store a current state of the finite state machine. In certain instances, thesequential logic circuit520 may be synchronous or asynchronous. Thecombinational logic522 is configured to receive data associated with the surgical instrument or tool from aninput526, process the data by thecombinational logic522, and provide anoutput528. In other aspects, the circuit may comprise a combination of a processor (e.g.,processor502,FIG. 13) and a finite state machine to implement various processes herein. In other aspects, the finite state machine may comprise a combination of a combinational logic circuit (e.g.,combinational logic circuit510,FIG. 14) and thesequential logic circuit520.
FIG. 16 illustrates a surgical instrument or tool comprising a plurality of motors which can be activated to perform various functions. In certain instances, a first motor can be activated to perform a first function, a second motor can be activated to perform a second function, a third motor can be activated to perform a third function, a fourth motor can be activated to perform a fourth function, and so on. In certain instances, the plurality of motors of roboticsurgical instrument600 can be individually activated to cause firing, closure, and/or articulation motions in the end effector. The firing, closure, and/or articulation motions can be transmitted to the end effector through a shaft assembly, for example.
In certain instances, the surgical instrument system or tool may include a firingmotor602. The firingmotor602 may be operably coupled to a firingmotor drive assembly604 which can be configured to transmit firing motions, generated by themotor602 to the end effector, in particular to displace the clamp arm closure member. The closure member may be retracted by reversing the direction of themotor602, which also causes the clamp arm to open.
In certain instances, the surgical instrument or tool may include aclosure motor603. Theclosure motor603 may be operably coupled to a closuremotor drive assembly605 which can be configured to transmit closure motions, generated by themotor603 to the end effector, in particular to displace a closure tube to close the anvil and compress tissue between the anvil and the staple cartridge. Theclosure motor603 may be operably coupled to a closuremotor drive assembly605 which can be configured to transmit closure motions, generated by themotor603 to the end effector, in particular to displace a closure tube to close the clamp arm and compress tissue between the clamp arm and either an ultrasonic blade or jaw member of an electrosurgical device. The closure motions may cause the end effector to transition from an open configuration to an approximated configuration to capture tissue, for example. The end effector may be transitioned to an open position by reversing the direction of themotor603.
In certain instances, the surgical instrument or tool may include one ormore articulation motors606a,606b, for example. Themotors606a,606bmay be operably coupled to respective articulationmotor drive assemblies608a,608b, which can be configured to transmit articulation motions generated by themotors606a,606bto the end effector. In certain instances, the articulation motions may cause the end effector to articulate relative to the shaft, for example.
As described above, the surgical instrument or tool may include a plurality of motors which may be configured to perform various independent functions. In certain instances, the plurality of motors of the surgical instrument or tool can be individually or separately activated to perform one or more functions while the other motors remain inactive. For example, thearticulation motors606a,606bcan be activated to cause the end effector to be articulated while the firingmotor602 remains inactive. Alternatively, the firingmotor602 can be activated to fire the plurality of staples, and/or to advance the cutting edge, while the articulation motor606 remains inactive. Furthermore, theclosure motor603 may be activated simultaneously with the firingmotor602 to cause the closure tube or closure member to advance distally as described in more detail hereinbelow.
In certain instances, the surgical instrument or tool may include acommon control module610 which can be employed with a plurality of motors of the surgical instrument or tool. In certain instances, thecommon control module610 may accommodate one of the plurality of motors at a time. For example, thecommon control module610 can be couplable to and separable from the plurality of motors of the robotic surgical instrument individually. In certain instances, a plurality of the motors of the surgical instrument or tool may share one or more common control modules such as thecommon control module610. In certain instances, a plurality of motors of the surgical instrument or tool can be individually and selectively engaged with thecommon control module610. In certain instances, thecommon control module610 can be selectively switched from interfacing with one of a plurality of motors of the surgical instrument or tool to interfacing with another one of the plurality of motors of the surgical instrument or tool.
In at least one example, thecommon control module610 can be selectively switched between operable engagement with thearticulation motors606a,606band operable engagement with either the firingmotor602 or theclosure motor603. In at least one example, as illustrated inFIG. 16, aswitch614 can be moved or transitioned between a plurality of positions and/or states. In afirst position616, theswitch614 may electrically couple thecommon control module610 to the firingmotor602; in asecond position617, theswitch614 may electrically couple thecommon control module610 to theclosure motor603; in athird position618a, theswitch614 may electrically couple thecommon control module610 to thefirst articulation motor606a; and in afourth position618b, theswitch614 may electrically couple thecommon control module610 to thesecond articulation motor606b, for example. In certain instances, separatecommon control modules610 can be electrically coupled to the firingmotor602, theclosure motor603, and the articulations motor606a,606bat the same time. In certain instances, theswitch614 may be a mechanical switch, an electromechanical switch, a solid-state switch, or any suitable switching mechanism.
Each of themotors602,603,606a,606bmay comprise a torque sensor to measure the output torque on the shaft of the motor. The force on an end effector may be sensed in any conventional manner, such as by force sensors on the outer sides of the jaws or by a torque sensor for the motor actuating the jaws.
In various instances, as illustrated inFIG. 16, thecommon control module610 may comprise amotor driver626 which may comprise one or more H-Bridge FETs. Themotor driver626 may modulate the power transmitted from apower source628 to a motor coupled to thecommon control module610 based on input from a microcontroller620 (the “controller”), for example. In certain instances, themicrocontroller620 can be employed to determine the current drawn by the motor, for example, while the motor is coupled to thecommon control module610, as described above.
In certain instances, themicrocontroller620 may include a microprocessor622 (the “processor”) and one or more non-transitory computer-readable mediums or memory units624 (the “memory”). In certain instances, thememory624 may store various program instructions, which when executed may cause theprocessor622 to perform a plurality of functions and/or calculations described herein. In certain instances, one or more of thememory units624 may be coupled to theprocessor622, for example. In various aspects, themicrocontroller620 may communicate over a wired or wireless channel, or combinations thereof.
In certain instances, thepower source628 can be employed to supply power to themicrocontroller620, for example. In certain instances, thepower source628 may comprise a battery (or “battery pack” or “power pack”), such as a lithium-ion battery, for example. In certain instances, the battery pack may be configured to be releasably mounted to a handle for supplying power to thesurgical instrument600. A number of battery cells connected in series may be used as thepower source628. In certain instances, thepower source628 may be replaceable and/or rechargeable, for example.
In various instances, theprocessor622 may control themotor driver626 to control the position, direction of rotation, and/or velocity of a motor that is coupled to thecommon control module610. In certain instances, theprocessor622 can signal themotor driver626 to stop and/or disable a motor that is coupled to thecommon control module610. It should be understood that the term “processor” as used herein includes any suitable microprocessor, microcontroller, or other basic computing device that incorporates the functions of a computer's central processing unit (CPU) on an integrated circuit or, at most, a few integrated circuits. Theprocessor622 is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output. It is an example of sequential digital logic, as it has internal memory. Processors operate on numbers and symbols represented in the binary numeral system.
In one instance, theprocessor622 may be any single-core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In certain instances, themicrocontroller620 may be an LM 4F230H5QR, available from Texas Instruments, for example. In at least one example, the Texas Instruments LM4F230H5QR is an ARM Cortex-M4F Processor Core comprising an on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle SRAM, an internal ROM loaded with StellarisWare® software, a 2 KB EEPROM, one or more PWM modules, one or more QEI analogs, one or more 12-bit ADCs with 12 analog input channels, among other features that are readily available for the product datasheet. Other microcontrollers may be readily substituted for use with the module4410. Accordingly, the present disclosure should not be limited in this context.
In certain instances, thememory624 may include program instructions for controlling each of the motors of thesurgical instrument600 that are couplable to thecommon control module610. For example, thememory624 may include program instructions for controlling the firingmotor602, theclosure motor603, and thearticulation motors606a,606b. Such program instructions may cause theprocessor622 to control the firing, closure, and articulation functions in accordance with inputs from algorithms or control programs of the surgical instrument or tool.
In certain instances, one or more mechanisms and/or sensors such as, for example,sensors630 can be employed to alert theprocessor622 to the program instructions that should be used in a particular setting. For example, thesensors630 may alert theprocessor622 to use the program instructions associated with firing, closing, and articulating the end effector. In certain instances, thesensors630 may comprise position sensors which can be employed to sense the position of theswitch614, for example. Accordingly, theprocessor622 may use the program instructions associated with firing the closure member coupled to the clamp arm of the end effector upon detecting, through thesensors630 for example, that theswitch614 is in thefirst position616; theprocessor622 may use the program instructions associated with closing the anvil upon detecting, through thesensors630 for example, that theswitch614 is in thesecond position617; and theprocessor622 may use the program instructions associated with articulating the end effector upon detecting, through thesensors630 for example, that theswitch614 is in the third orfourth position618a,618b.
FIG. 17 is a schematic diagram of a roboticsurgical instrument700 configured to operate a surgical tool described herein according to one aspect of this disclosure. The roboticsurgical instrument700 may be programmed or configured to control distal/proximal translation of a displacement member, distal/proximal displacement of a closure tube, shaft rotation, and articulation, either with single or multiple articulation drive links. In one aspect, thesurgical instrument700 may be programmed or configured to individually control a firing member, a closure member, a shaft member, or one or more articulation members, or combinations thereof. Thesurgical instrument700 comprises acontrol circuit710 configured to control motor-driven firing members, closure members, shaft members, or one or more articulation members, or combinations thereof.
In one aspect, the roboticsurgical instrument700 comprises acontrol circuit710 configured to control aclamp arm716 and aclosure member714 portion of anend effector702, anultrasonic blade718 coupled to anultrasonic transducer719 excited by anultrasonic generator721, ashaft740, and one ormore articulation members742a,742bvia a plurality of motors704a-704e. Aposition sensor734 may be configured to provide position feedback of theclosure member714 to thecontrol circuit710.Other sensors738 may be configured to provide feedback to thecontrol circuit710. A timer/counter731 provides timing and counting information to thecontrol circuit710. Anenergy source712 may be provided to operate the motors704a-704e, and acurrent sensor736 provides motor current feedback to thecontrol circuit710. The motors704a-704ecan be operated individually by thecontrol circuit710 in an open-loop or closed-loop feedback control.
In one aspect, thecontrol circuit710 may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to perform one or more tasks. In one aspect, a timer/counter731 provides an output signal, such as the elapsed time or a digital count, to thecontrol circuit710 to correlate the position of theclosure member714 as determined by theposition sensor734 with the output of the timer/counter731 such that thecontrol circuit710 can determine the position of theclosure member714 at a specific time (t) relative to a starting position or the time (t) when theclosure member714 is at a specific position relative to a starting position. The timer/counter731 may be configured to measure elapsed time, count external events, or time external events.
In one aspect, thecontrol circuit710 may be programmed to control functions of theend effector702 based on one or more tissue conditions. Thecontrol circuit710 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Thecontrol circuit710 may be programmed to select a firing control program or closure control program based on tissue conditions. A firing control program may describe the distal motion of the displacement member. Different firing control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, thecontrol circuit710 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, thecontrol circuit710 may be programmed to translate the displacement member at a higher velocity and/or with higher power. A closure control program may control the closure force applied to the tissue by theclamp arm716. Other control programs control the rotation of theshaft740 and thearticulation members742a,742b.
In one aspect, thecontrol circuit710 may generate motor set point signals. The motor set point signals may be provided to various motor controllers708a-708e. The motor controllers708a-708emay comprise one or more circuits configured to provide motor drive signals to the motors704a-704eto drive the motors704a-704eas described herein. In some examples, the motors704a-704emay be brushed DC electric motors. For example, the velocity of the motors704a-704emay be proportional to the respective motor drive signals. In some examples, the motors704a-704emay be brushless DC electric motors, and the respective motor drive signals may comprise a PWM signal provided to one or more stator windings of the motors704a-704e. Also, in some examples, the motor controllers708a-708emay be omitted and thecontrol circuit710 may generate the motor drive signals directly.
In one aspect, thecontrol circuit710 may initially operate each of the motors704a-704ein an open-loop configuration for a first open-loop portion of a stroke of the displacement member. Based on the response of the roboticsurgical instrument700 during the open-loop portion of the stroke, thecontrol circuit710 may select a firing control program in a closed-loop configuration. The response of the instrument may include a translation distance of the displacement member during the open-loop portion, a time elapsed during the open-loop portion, the energy provided to one of the motors704a-704eduring the open-loop portion, a sum of pulse widths of a motor drive signal, etc. After the open-loop portion, thecontrol circuit710 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during a closed-loop portion of the stroke, thecontrol circuit710 may modulate one of the motors704a-704ebased on translation data describing a position of the displacement member in a closed-loop manner to translate the displacement member at a constant velocity.
In one aspect, the motors704a-704emay receive power from anenergy source712. Theenergy source712 may be a DC power supply driven by a main alternating current power source, a battery, a super capacitor, or any other suitable energy source. The motors704a-704emay be mechanically coupled to individual movable mechanical elements such as theclosure member714,clamp arm716,shaft740,articulation742a, andarticulation742bvia respective transmissions706a-706e. The transmissions706a-706emay include one or more gears or other linkage components to couple the motors704a-704eto movable mechanical elements. Aposition sensor734 may sense a position of theclosure member714. Theposition sensor734 may be or include any type of sensor that is capable of generating position data that indicate a position of theclosure member714. In some examples, theposition sensor734 may include an encoder configured to provide a series of pulses to thecontrol circuit710 as theclosure member714 translates distally and proximally. Thecontrol circuit710 may track the pulses to determine the position of theclosure member714. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of theclosure member714. Also, in some examples, theposition sensor734 may be omitted. Where any of the motors704a-704eis a stepper motor, thecontrol circuit710 may track the position of theclosure member714 by aggregating the number and direction of steps that the motor704 has been instructed to execute. Theposition sensor734 may be located in theend effector702 or at any other portion of the instrument. The outputs of each of the motors704a-704einclude a torque sensor744a-744eto sense force and have an encoder to sense rotation of the drive shaft.
In one aspect, thecontrol circuit710 is configured to drive a firing member such as theclosure member714 portion of theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708a, which provides a drive signal to themotor704a. The output shaft of themotor704ais coupled to atorque sensor744a. Thetorque sensor744ais coupled to a transmission706awhich is coupled to theclosure member714. The transmission706acomprises movable mechanical elements such as rotating elements and a firing member to control the movement of theclosure member714 distally and proximally along a longitudinal axis of theend effector702. In one aspect, themotor704amay be coupled to the knife gear assembly, which includes a knife gear reduction set that includes a first knife drive gear and a second knife drive gear. Atorque sensor744aprovides a firing force feedback signal to thecontrol circuit710. The firing force signal represents the force required to fire or displace theclosure member714. Aposition sensor734 may be configured to provide the position of theclosure member714 along the firing stroke or the position of the firing member as a feedback signal to thecontrol circuit710. Theend effector702 may includeadditional sensors738 configured to provide feedback signals to thecontrol circuit710. When ready to use, thecontrol circuit710 may provide a firing signal to themotor control708a. In response to the firing signal, themotor704amay drive the firing member distally along the longitudinal axis of theend effector702 from a proximal stroke start position to a stroke end position distal to the stroke start position. As theclosure member714 translates distally, theclamp arm716 closes towards theultrasonic blade718.
In one aspect, thecontrol circuit710 is configured to drive a closure member such as theclamp arm716 portion of theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708b, which provides a drive signal to themotor704b. The output shaft of themotor704bis coupled to atorque sensor744b. Thetorque sensor744bis coupled to a transmission706bwhich is coupled to theclamp arm716. The transmission706bcomprises movable mechanical elements such as rotating elements and a closure member to control the movement of theclamp arm716 from the open and closed positions. In one aspect, themotor704bis coupled to a closure gear assembly, which includes a closure reduction gear set that is supported in meshing engagement with the closure spur gear. Thetorque sensor744bprovides a closure force feedback signal to thecontrol circuit710. The closure force feedback signal represents the closure force applied to theclamp arm716. Theposition sensor734 may be configured to provide the position of the closure member as a feedback signal to thecontrol circuit710.Additional sensors738 in theend effector702 may provide the closure force feedback signal to thecontrol circuit710. Thepivotable clamp arm716 is positioned opposite theultrasonic blade718. When ready to use, thecontrol circuit710 may provide a closure signal to themotor control708b. In response to the closure signal, themotor704badvances a closure member to grasp tissue between theclamp arm716 and theultrasonic blade718.
In one aspect, thecontrol circuit710 is configured to rotate a shaft member such as theshaft740 to rotate theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708c, which provides a drive signal to themotor704c. The output shaft of themotor704cis coupled to atorque sensor744c. Thetorque sensor744cis coupled to atransmission706cwhich is coupled to theshaft740. Thetransmission706ccomprises movable mechanical elements such as rotating elements to control the rotation of theshaft740 clockwise or counterclockwise up to and over 360°. In one aspect, themotor704cis coupled to the rotational transmission assembly, which includes a tube gear segment that is formed on (or attached to) the proximal end of the proximal closure tube for operable engagement by a rotational gear assembly that is operably supported on the tool mounting plate. Thetorque sensor744cprovides a rotation force feedback signal to thecontrol circuit710. The rotation force feedback signal represents the rotation force applied to theshaft740. Theposition sensor734 may be configured to provide the position of the closure member as a feedback signal to thecontrol circuit710.Additional sensors738 such as a shaft encoder may provide the rotational position of theshaft740 to thecontrol circuit710.
In one aspect, thecontrol circuit710 is configured to articulate theend effector702. Thecontrol circuit710 provides a motor set point to amotor control708d, which provides a drive signal to themotor704d. The output shaft of themotor704dis coupled to atorque sensor744d. Thetorque sensor744dis coupled to atransmission706dwhich is coupled to anarticulation member742a. Thetransmission706dcomprises movable mechanical elements such as articulation elements to control the articulation of theend effector702±65°. In one aspect, themotor704dis coupled to an articulation nut, which is rotatably journaled on the proximal end portion of the distal spine portion and is rotatably driven thereon by an articulation gear assembly. Thetorque sensor744dprovides an articulation force feedback signal to thecontrol circuit710. The articulation force feedback signal represents the articulation force applied to theend effector702.Sensors738, such as an articulation encoder, may provide the articulation position of theend effector702 to thecontrol circuit710.
In another aspect, the articulation function of the roboticsurgical system700 may comprise two articulation members, or links,742a,742b. Thesearticulation members742a,742bare driven by separate disks on the robot interface (the rack) which are driven by the twomotors708d,708e. When theseparate firing motor704ais provided, each ofarticulation links742a,742bcan be antagonistically driven with respect to the other link in order to provide a resistive holding motion and a load to the head when it is not moving and to provide an articulation motion as the head is articulated. Thearticulation members742a,742battach to the head at a fixed radius as the head is rotated. Accordingly, the mechanical advantage of the push-and-pull link changes as the head is rotated. This change in the mechanical advantage may be more pronounced with other articulation link drive systems.
In one aspect, the one or more motors704a-704emay comprise a brushed DC motor with a gearbox and mechanical links to a firing member, closure member, or articulation member. Another example includes electric motors704a-704ethat operate the movable mechanical elements such as the displacement member, articulation links, closure tube, and shaft. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies, and friction on the physical system. Such outside influence can be referred to as drag, which acts in opposition to one of electric motors704a-704e. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.
In one aspect, theposition sensor734 may be implemented as an absolute positioning system. In one aspect, theposition sensor734 may comprise a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor734 may interface with thecontrol circuit710 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.
In one aspect, thecontrol circuit710 may be in communication with one ormore sensors738. Thesensors738 may be positioned on theend effector702 and adapted to operate with the roboticsurgical instrument700 to measure the various derived parameters such as the gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors738 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a load cell, a pressure sensor, a force sensor, a torque sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector702. Thesensors738 may include one or more sensors. Thesensors738 may be located on theclamp arm716 to determine tissue location using segmented electrodes. The torque sensors744a-744emay be configured to sense force such as firing force, closure force, and/or articulation force, among others. Accordingly, thecontrol circuit710 can sense (1) the closure load experienced by the distal closure tube and its position, (2) the firing member at the rack and its position, (3) what portion of theultrasonic blade718 has tissue on it, and (4) the load and position on both articulation rods.
In one aspect, the one ormore sensors738 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in theclamp arm716 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. Thesensors738 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between theclamp arm716 and theultrasonic blade718. Thesensors738 may be configured to detect impedance of a tissue section located between theclamp arm716 and theultrasonic blade718 that is indicative of the thickness and/or fullness of tissue located therebetween.
In one aspect, thesensors738 may be implemented as one or more limit switches, electromechanical devices, solid-state switches, Hall-effect devices, magneto-resistive (MR) devices, giant magneto-resistive (GMR) devices, magnetometers, among others. In other implementations, thesensors738 may be implemented as solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, thesensors738 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.
In one aspect, thesensors738 may be configured to measure forces exerted on theclamp arm716 by the closure drive system. For example, one ormore sensors738 can be at an interaction point between the closure tube and theclamp arm716 to detect the closure forces applied by the closure tube to theclamp arm716. The forces exerted on theclamp arm716 can be representative of the tissue compression experienced by the tissue section captured between theclamp arm716 and theultrasonic blade718. The one ormore sensors738 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to theclamp arm716 by the closure drive system. The one ormore sensors738 may be sampled in real time during a clamping operation by the processor of thecontrol circuit710. Thecontrol circuit710 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to theclamp arm716.
In one aspect, acurrent sensor736 can be employed to measure the current drawn by each of the motors704a-704e. The force required to advance any of the movable mechanical elements such as theclosure member714 corresponds to the current drawn by one of the motors704a-704e. The force is converted to a digital signal and provided to thecontrol circuit710. Thecontrol circuit710 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move theclosure member714 in theend effector702 at or near a target velocity. The roboticsurgical instrument700 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, a linear-quadratic (LQR), and/or an adaptive controller, for example. The roboticsurgical instrument700 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example. Additional details are disclosed in U.S. patent application Ser. No. 15/636,829, titled CLOSED LOOP VELOCITY CONTROL TECHNIQUES FOR ROBOTIC SURGICAL INSTRUMENT, filed Jun. 29, 2017, which is herein incorporated by reference in its entirety.
FIG. 18 illustrates a schematic diagram of asurgical instrument750 configured to control the distal translation of a displacement member according to one aspect of this disclosure. In one aspect, thesurgical instrument750 is programmed to control the distal translation of a displacement member such as theclosure member764. Thesurgical instrument750 comprises anend effector752 that may comprise aclamp arm766, aclosure member764, and anultrasonic blade768 coupled to anultrasonic transducer769 driven by anultrasonic generator771.
The position, movement, displacement, and/or translation of a linear displacement member, such as theclosure member764, can be measured by an absolute positioning system, sensor arrangement, andposition sensor784. Because theclosure member764 is coupled to a longitudinally movable drive member, the position of theclosure member764 can be determined by measuring the position of the longitudinally movable drive member employing theposition sensor784. Accordingly, in the following description, the position, displacement, and/or translation of theclosure member764 can be achieved by theposition sensor784 as described herein. Acontrol circuit760 may be programmed to control the translation of the displacement member, such as theclosure member764. Thecontrol circuit760, in some examples, may comprise one or more microcontrollers, microprocessors, or other suitable processors for executing instructions that cause the processor or processors to control the displacement member, e.g., theclosure member764, in the manner described. In one aspect, a timer/counter781 provides an output signal, such as the elapsed time or a digital count, to thecontrol circuit760 to correlate the position of theclosure member764 as determined by theposition sensor784 with the output of the timer/counter781 such that thecontrol circuit760 can determine the position of theclosure member764 at a specific time (t) relative to a starting position. The timer/counter781 may be configured to measure elapsed time, count external events, or time external events.
Thecontrol circuit760 may generate a motor setpoint signal772. The motor setpoint signal772 may be provided to amotor controller758. Themotor controller758 may comprise one or more circuits configured to provide amotor drive signal774 to themotor754 to drive themotor754 as described herein. In some examples, themotor754 may be a brushed DC electric motor. For example, the velocity of themotor754 may be proportional to themotor drive signal774. In some examples, themotor754 may be a brushless DC electric motor and themotor drive signal774 may comprise a PWM signal provided to one or more stator windings of themotor754. Also, in some examples, themotor controller758 may be omitted, and thecontrol circuit760 may generate themotor drive signal774 directly.
Themotor754 may receive power from anenergy source762. Theenergy source762 may be or include a battery, a super capacitor, or any other suitable energy source. Themotor754 may be mechanically coupled to theclosure member764 via atransmission756. Thetransmission756 may include one or more gears or other linkage components to couple themotor754 to theclosure member764. Aposition sensor784 may sense a position of theclosure member764. Theposition sensor784 may be or include any type of sensor that is capable of generating position data that indicate a position of theclosure member764. In some examples, theposition sensor784 may include an encoder configured to provide a series of pulses to thecontrol circuit760 as theclosure member764 translates distally and proximally. Thecontrol circuit760 may track the pulses to determine the position of theclosure member764. Other suitable position sensors may be used, including, for example, a proximity sensor. Other types of position sensors may provide other signals indicating motion of theclosure member764. Also, in some examples, theposition sensor784 may be omitted. Where themotor754 is a stepper motor, thecontrol circuit760 may track the position of theclosure member764 by aggregating the number and direction of steps that themotor754 has been instructed to execute. Theposition sensor784 may be located in theend effector752 or at any other portion of the instrument.
Thecontrol circuit760 may be in communication with one ormore sensors788. Thesensors788 may be positioned on theend effector752 and adapted to operate with thesurgical instrument750 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector752. Thesensors788 may include one or more sensors.
The one ormore sensors788 may comprise a strain gauge, such as a micro-strain gauge, configured to measure the magnitude of the strain in theclamp arm766 during a clamped condition. The strain gauge provides an electrical signal whose amplitude varies with the magnitude of the strain. Thesensors788 may comprise a pressure sensor configured to detect a pressure generated by the presence of compressed tissue between theclamp arm766 and theultrasonic blade768. Thesensors788 may be configured to detect impedance of a tissue section located between theclamp arm766 and theultrasonic blade768 that is indicative of the thickness and/or fullness of tissue located therebetween.
Thesensors788 may be is configured to measure forces exerted on theclamp arm766 by a closure drive system. For example, one ormore sensors788 can be at an interaction point between a closure tube and theclamp arm766 to detect the closure forces applied by a closure tube to theclamp arm766. The forces exerted on theclamp arm766 can be representative of the tissue compression experienced by the tissue section captured between theclamp arm766 and theultrasonic blade768. The one ormore sensors788 can be positioned at various interaction points along the closure drive system to detect the closure forces applied to theclamp arm766 by the closure drive system. The one ormore sensors788 may be sampled in real time during a clamping operation by a processor of thecontrol circuit760. Thecontrol circuit760 receives real-time sample measurements to provide and analyze time-based information and assess, in real time, closure forces applied to theclamp arm766.
Acurrent sensor786 can be employed to measure the current drawn by themotor754. The force required to advance theclosure member764 corresponds to the current drawn by themotor754. The force is converted to a digital signal and provided to thecontrol circuit760.
Thecontrol circuit760 can be configured to simulate the response of the actual system of the instrument in the software of the controller. A displacement member can be actuated to move aclosure member764 in theend effector752 at or near a target velocity. Thesurgical instrument750 can include a feedback controller, which can be one of any feedback controllers, including, but not limited to a PID, a state feedback, LQR, and/or an adaptive controller, for example. Thesurgical instrument750 can include a power source to convert the signal from the feedback controller into a physical input such as case voltage, PWM voltage, frequency modulated voltage, current, torque, and/or force, for example.
The actual drive system of thesurgical instrument750 is configured to drive the displacement member, cutting member, orclosure member764, by a brushed DC motor with gearbox and mechanical links to an articulation and/or knife system. Another example is theelectric motor754 that operates the displacement member and the articulation driver, for example, of an interchangeable shaft assembly. An outside influence is an unmeasured, unpredictable influence of things like tissue, surrounding bodies and friction on the physical system. Such outside influence can be referred to as drag which acts in opposition to theelectric motor754. The outside influence, such as drag, may cause the operation of the physical system to deviate from a desired operation of the physical system.
Various example aspects are directed to asurgical instrument750 comprising anend effector752 with motor-driven surgical sealing and cutting implements. For example, amotor754 may drive a displacement member distally and proximally along a longitudinal axis of theend effector752. Theend effector752 may comprise apivotable clamp arm766 and, when configured for use, anultrasonic blade768 positioned opposite theclamp arm766. A clinician may grasp tissue between theclamp arm766 and theultrasonic blade768, as described herein. When ready to use theinstrument750, the clinician may provide a firing signal, for example by depressing a trigger of theinstrument750. In response to the firing signal, themotor754 may drive the displacement member distally along the longitudinal axis of theend effector752 from a proximal stroke begin position to a stroke end position distal of the stroke begin position. As the displacement member translates distally, theclosure member764 with a cutting element positioned at a distal end, may cut the tissue between theultrasonic blade768 and theclamp arm766.
In various examples, thesurgical instrument750 may comprise acontrol circuit760 programmed to control the distal translation of the displacement member, such as theclosure member764, for example, based on one or more tissue conditions. Thecontrol circuit760 may be programmed to sense tissue conditions, such as thickness, either directly or indirectly, as described herein. Thecontrol circuit760 may be programmed to select a control program based on tissue conditions. A control program may describe the distal motion of the displacement member. Different control programs may be selected to better treat different tissue conditions. For example, when thicker tissue is present, thecontrol circuit760 may be programmed to translate the displacement member at a lower velocity and/or with lower power. When thinner tissue is present, thecontrol circuit760 may be programmed to translate the displacement member at a higher velocity and/or with higher power.
In some examples, thecontrol circuit760 may initially operate themotor754 in an open loop configuration for a first open loop portion of a stroke of the displacement member. Based on a response of theinstrument750 during the open loop portion of the stroke, thecontrol circuit760 may select a firing control program. The response of the instrument may include, a translation distance of the displacement member during the open loop portion, a time elapsed during the open loop portion, energy provided to themotor754 during the open loop portion, a sum of pulse widths of a motor drive signal, etc. After the open loop portion, thecontrol circuit760 may implement the selected firing control program for a second portion of the displacement member stroke. For example, during the closed loop portion of the stroke, thecontrol circuit760 may modulate themotor754 based on translation data describing a position of the displacement member in a closed loop manner to translate the displacement member at a constant velocity. Additional details are disclosed in U.S. patent application Ser. No. 15/720,852, titled SYSTEM AND METHODS FOR CONTROLLING A DISPLAY OF A SURGICAL INSTRUMENT, filed Sep. 29, 2017, which is herein incorporated by reference in its entirety.
FIG. 19 is a schematic diagram of asurgical instrument790 configured to control various functions according to one aspect of this disclosure. In one aspect, thesurgical instrument790 is programmed to control distal translation of a displacement member such as theclosure member764. Thesurgical instrument790 comprises anend effector792 that may comprise aclamp arm766, aclosure member764, and anultrasonic blade768 which may be interchanged with or work in conjunction with one or more RF electrodes796 (shown in dashed line). Theultrasonic blade768 is coupled to anultrasonic transducer769 driven by anultrasonic generator771.
In one aspect,sensors788 may be implemented as a limit switch, electromechanical device, solid-state switches, Hall-effect devices, MR devices, GMR devices, magnetometers, among others. In other implementations, the sensors638 may be solid-state switches that operate under the influence of light, such as optical sensors, IR sensors, ultraviolet sensors, among others. Still, the switches may be solid-state devices such as transistors (e.g., FET, junction FET, MOSFET, bipolar, and the like). In other implementations, thesensors788 may include electrical conductorless switches, ultrasonic switches, accelerometers, and inertial sensors, among others.
In one aspect, theposition sensor784 may be implemented as an absolute positioning system comprising a magnetic rotary absolute positioning system implemented as an AS5055EQFT single-chip magnetic rotary position sensor available from Austria Microsystems, AG. Theposition sensor784 may interface with thecontrol circuit760 to provide an absolute positioning system. The position may include multiple Hall-effect elements located above a magnet and coupled to a CORDIC processor, also known as the digit-by-digit method and Volder's algorithm, that is provided to implement a simple and efficient algorithm to calculate hyperbolic and trigonometric functions that require only addition, subtraction, bitshift, and table lookup operations.
In some examples, theposition sensor784 may be omitted. Where themotor754 is a stepper motor, thecontrol circuit760 may track the position of theclosure member764 by aggregating the number and direction of steps that the motor has been instructed to execute. Theposition sensor784 may be located in theend effector792 or at any other portion of the instrument.
Thecontrol circuit760 may be in communication with one ormore sensors788. Thesensors788 may be positioned on theend effector792 and adapted to operate with thesurgical instrument790 to measure the various derived parameters such as gap distance versus time, tissue compression versus time, and anvil strain versus time. Thesensors788 may comprise a magnetic sensor, a magnetic field sensor, a strain gauge, a pressure sensor, a force sensor, an inductive sensor such as an eddy current sensor, a resistive sensor, a capacitive sensor, an optical sensor, and/or any other suitable sensor for measuring one or more parameters of theend effector792. Thesensors788 may include one or more sensors.
AnRF energy source794 is coupled to theend effector792 and is applied to theRF electrode796 when theRF electrode796 is provided in theend effector792 in place of theultrasonic blade768 or to work in conjunction with theultrasonic blade768. For example, the ultrasonic blade is made of electrically conductive metal and may be employed as the return path for electrosurgical RF current. Thecontrol circuit760 controls the delivery of the RF energy to theRF electrode796.
Additional details are disclosed in U.S. patent application Ser. No. 15/636,096, titled SURGICAL SYSTEM COUPLABLE WITH STAPLE CARTRIDGE AND RADIO FREQUENCY CARTRIDGE, AND METHOD OF USING SAME, filed Jun. 28, 2017, which is herein incorporated by reference in its entirety.
Generator HardwareIn various aspects smart ultrasonic energy devices may comprise adaptive algorithms to control the operation of the ultrasonic blade. In one aspect, the ultrasonic blade adaptive control algorithms are configured to identify tissue type and adjust device parameters. In one aspect, the ultrasonic blade control algorithms are configured to parameterize tissue type. An algorithm to detect the collagen/elastic ratio of tissue to tune the amplitude of the distal tip of the ultrasonic blade is described in the following section of the present disclosure. Various aspects of smart ultrasonic energy devices are described herein in connection withFIGS. 12-19, for example. Accordingly, the following description of adaptive ultrasonic blade control algorithms should be read in conjunction withFIGS. 12-19 and the description associated therewith.
In certain surgical procedures it would be desirable to employ adaptive ultrasonic blade control algorithms. In one aspect, adaptive ultrasonic blade control algorithms may be employed to adjust the parameters of the ultrasonic device based on the type of tissue in contact with the ultrasonic blade. In one aspect, the parameters of the ultrasonic device may be adjusted based on the location of the tissue within the jaws of the ultrasonic end effector, for example, the location of the tissue between the clamp arm and the ultrasonic blade. The impedance of the ultrasonic transducer may be employed to differentiate what percentage of the tissue is located in the distal or proximal end of the end effector. The reactions of the ultrasonic device may be based on the tissue type or compressibility of the tissue. In another aspect, the parameters of the ultrasonic device may be adjusted based on the identified tissue type or parameterization. For example, the mechanical displacement amplitude of the distal tip of the ultrasonic blade may be tuned based on the ration of collagen to elastin tissue detected during the tissue identification procedure. The ratio of collagen to elastin tissue may be detected used a variety of techniques including infrared (IR) surface reflectance and emissivity. The force applied to the tissue by the clamp arm and/or the stroke of the clamp arm to produce gap and compression. Electrical continuity across a jaw equipped with electrodes may be employed to determine what percentage of the jaw is covered with tissue.
FIG. 20 is asystem800 configured to execute adaptive ultrasonic blade control algorithms in a surgical data network comprising a modular communication hub, in accordance with at least one aspect of the present disclosure. In one aspect, thegenerator module240 is configured to execute the adaptive ultrasonic blade control algorithm(s)802. In another aspect, the device/instrument235 is configured to execute the adaptive ultrasonic blade control algorithm(s)804. In another aspect, both thegenerator module240 and the device/instrument235 are configured to execute the adaptive ultrasonicblade control algorithms802,804.
Thegenerator module240 may comprise a patient isolated stage in communication with a non-isolated stage via a power transformer. A secondary winding of the power transformer is contained in the isolated stage and may comprise a tapped configuration (e.g., a center-tapped or a non-center-tapped configuration) to define drive signal outputs for delivering drive signals to different surgical instruments, such as, for example, an ultrasonic surgical instrument, an RF electrosurgical instrument, and a multifunction surgical instrument which includes ultrasonic and RF energy modes that can be delivered alone or simultaneously. In particular, the drive signal outputs may output an ultrasonic drive signal (e.g., a 420V root-mean-square (RMS) drive signal) to an ultrasonicsurgical instrument241, and the drive signal outputs may output an RF electrosurgical drive signal (e.g., a 100V RMS drive signal) to an RFelectrosurgical instrument241. Aspects of thegenerator module240 are described herein with reference toFIGS. 21-22.
Thegenerator module240 or the device/instrument235 or both are coupled themodular control tower236 connected to multiple operating theater devices such as, for example, intelligent surgical instruments, robots, and other computerized devices located in the operating theater, as described with reference toFIGS. 8-11, for example.
FIG. 21 illustrates an example of agenerator900, which is one form of a generator configured to couple to an ultrasonic instrument and further configured to execute adaptive ultrasonic blade control algorithms in a surgical data network comprising a modular communication hub as shown inFIG. 20. Thegenerator900 is configured to deliver multiple energy modalities to a surgical instrument. Thegenerator900 provides RF and ultrasonic signals for delivering energy to a surgical instrument either independently or simultaneously. The RF and ultrasonic signals may be provided alone or in combination and may be provided simultaneously. As noted above, at least one generator output can deliver multiple energy modalities (e.g., ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others) through a single port, and these signals can be delivered separately or simultaneously to the end effector to treat tissue. Thegenerator900 comprises aprocessor902 coupled to awaveform generator904. Theprocessor902 andwaveform generator904 are configured to generate a variety of signal waveforms based on information stored in a memory coupled to theprocessor902, not shown for clarity of disclosure. The digital information associated with a waveform is provided to thewaveform generator904 which includes one or more DAC circuits to convert the digital input into an analog output. The analog output is fed to anamplifier1106 for signal conditioning and amplification. The conditioned and amplified output of theamplifier906 is coupled to apower transformer908. The signals are coupled across thepower transformer908 to the secondary side, which is in the patient isolation side. A first signal of a first energy modality is provided to the surgical instrument between the terminals labeled ENERGY1and RETURN. A second signal of a second energy modality is coupled across acapacitor910 and is provided to the surgical instrument between the terminals labeled ENERGY2and RETURN. It will be appreciated that more than two energy modalities may be output and thus the subscript “n” may be used to designate that up to n ENERGYnterminals may be provided, where n is a positive integer greater than 1. It also will be appreciated that up to “n” return paths RETURNnmay be provided without departing from the scope of the present disclosure.
A firstvoltage sensing circuit912 is coupled across the terminals labeled ENERGY1and the RETURN path to measure the output voltage therebetween. A secondvoltage sensing circuit924 is coupled across the terminals labeled ENERGY2and the RETURN path to measure the output voltage therebetween. Acurrent sensing circuit914 is disposed in series with the RETURN leg of the secondary side of thepower transformer908 as shown to measure the output current for either energy modality. If different return paths are provided for each energy modality, then a separate current sensing circuit should be provided in each return leg. The outputs of the first and secondvoltage sensing circuits912,924 are provided torespective isolation transformers916,922 and the output of thecurrent sensing circuit914 is provided to another isolation transformer918. The outputs of theisolation transformers916,928,922 in the on the primary side of the power transformer908 (non-patient isolated side) are provided to a one ormore ADC circuit926. The digitized output of theADC circuit926 is provided to theprocessor902 for further processing and computation. The output voltages and output current feedback information can be employed to adjust the output voltage and current provided to the surgical instrument and to compute output impedance, among other parameters. Input/output communications between theprocessor902 and patient isolated circuits is provided through aninterface circuit920. Sensors also may be in electrical communication with theprocessor902 by way of theinterface circuit920.
In one aspect, the impedance may be determined by theprocessor902 by dividing the output of either the firstvoltage sensing circuit912 coupled across the terminals labeled ENERGY1/RETURN or the secondvoltage sensing circuit924 coupled across the terminals labeled ENERGY2/RETURN by the output of thecurrent sensing circuit914 disposed in series with the RETURN leg of the secondary side of thepower transformer908. The outputs of the first and secondvoltage sensing circuits912,924 are provided to separateisolations transformers916,922 and the output of thecurrent sensing circuit914 is provided to anotherisolation transformer916. The digitized voltage and current sensing measurements from theADC circuit926 are provided theprocessor902 for computing impedance. As an example, the first energy modality ENERGY1may be ultrasonic energy and the second energy modality ENERGY2may be RF energy. Nevertheless, in addition to ultrasonic and bipolar or monopolar RF energy modalities, other energy modalities include irreversible and/or reversible electroporation and/or microwave energy, among others. Also, although the example illustrated inFIG. 21 shows a single return path RETURN may be provided for two or more energy modalities, in other aspects, multiple return paths RETURNnmay be provided for each energy modality ENERGYn. Thus, as described herein, the ultrasonic transducer impedance may be measured by dividing the output of the firstvoltage sensing circuit912 by thecurrent sensing circuit914 and the tissue impedance may be measured by dividing the output of the secondvoltage sensing circuit924 by thecurrent sensing circuit914.
As shown inFIG. 21, thegenerator900 comprising at least one output port can include apower transformer908 with a single output and with multiple taps to provide power in the form of one or more energy modalities, such as ultrasonic, bipolar or monopolar RF, irreversible and/or reversible electroporation, and/or microwave energy, among others, for example, to the end effector depending on the type of treatment of tissue being performed. For example, thegenerator900 can deliver energy with higher voltage and lower current to drive an ultrasonic transducer, with lower voltage and higher current to drive RF electrodes for sealing tissue, or with a coagulation waveform for spot coagulation using either monopolar or bipolar RF electrosurgical electrodes. The output waveform from thegenerator900 can be steered, switched, or filtered to provide the frequency to the end effector of the surgical instrument. The connection of an ultrasonic transducer to thegenerator900 output would be preferably located between the output labeled ENERGY1and RETURN as shown inFIG. 21. In one example, a connection of RF bipolar electrodes to thegenerator900 output would be preferably located between the output labeled ENERGY2and RETURN. In the case of monopolar output, the preferred connections would be active electrode (e.g., pencil or other probe) to the ENERGY2output and a suitable return pad connected to the RETURN output.
Additional details are disclosed in U.S. Patent Application Publication No. 2017/0086914, titled TECHNIQUES FOR OPERATING GENERATOR FOR DIGITALLY GENERATING ELECTRICAL SIGNAL WAVEFORMS AND SURGICAL INSTRUMENTS, which published on Mar. 30, 2017, which is herein incorporated by reference in its entirety.
As used throughout this description, the term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some aspects they might not. The communication module may implement any of a number of wireless or wired communication standards or protocols, including but not limited to W-Fi (IEEE 802.11 family), WMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, Ethernet derivatives thereof, as well as any other wireless and wired protocols that are designated as 3G, 4G, 5G, and beyond. The computing module may include a plurality of communication modules. For instance, a first communication module may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication module may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
As used herein a processor or processing unit is an electronic circuit which performs operations on some external data source, usually memory or some other data stream. The term is used herein to refer to the central processor (central processing unit) in a system or computer systems (especially systems on a chip (SoCs)) that combine a number of specialized “processors.”
As used herein, a system on a chip or system on chip (SoC or SOC) is an integrated circuit (also known as an “IC” or “chip”) that integrates all components of a computer or other electronic systems. It may contain digital, analog, mixed-signal, and often radio-frequency functions—all on a single substrate. A SoC integrates a microcontroller (or microprocessor) with advanced peripherals like graphics processing unit (GPU), W-Fi module, or coprocessor. A SoC may or may not contain built-in memory.
As used herein, a microcontroller or controller is a system that integrates a microprocessor with peripheral circuits and memory. A microcontroller (or MCU for microcontroller unit) may be implemented as a small computer on a single integrated circuit. It may be similar to a SoC; a SoC may include a microcontroller as one of its components. A microcontroller may contain one or more core processing units (CPUs) along with memory and programmable input/output peripherals. Program memory in the form of Ferroelectric RAM, NOR flash or OTP ROM is also often included on chip, as well as a small amount of RAM. Microcontrollers may be employed for embedded applications, in contrast to the microprocessors used in personal computers or other general purpose applications consisting of various discrete chips.
As used herein, the term controller or microcontroller may be a stand-alone IC or chip device that interfaces with a peripheral device. This may be a link between two parts of a computer or a controller on an external device that manages the operation of (and connection with) that device.
Any of the processors or microcontrollers described herein, may be implemented by any single core or multicore processor such as those known under the trade name ARM Cortex by Texas Instruments. In one aspect, the processor may be an LM4F230H5QR ARM Cortex-M4F Processor Core, available from Texas Instruments, for example, comprising on-chip memory of 256 KB single-cycle flash memory, or other non-volatile memory, up to 40 MHz, a prefetch buffer to improve performance above 40 MHz, a 32 KB single-cycle serial random access memory (SRAM), internal read-only memory (ROM) loaded with StellarisWare® software, 2 KB electrically erasable programmable read-only memory (EEPROM), one or more pulse width modulation (PWM) modules, one or more quadrature encoder inputs (QEI) analog, one or more 12-bit Analog-to-Digital Converters (ADC) with 12 analog input channels, details of which are available for the product datasheet.
In one aspect, the processor may comprise a safety controller comprising two controller-based families such as TMS570 and RM4x known under the trade name Hercules ARM Cortex R4, also by Texas Instruments. The safety controller may be configured specifically for IEC 61508 and ISO 26262 safety critical applications, among others, to provide advanced integrated safety features while delivering scalable performance, connectivity, and memory options.
Modular devices include the modules (as described in connection withFIGS. 3 and 9, for example) that are receivable within a surgical hub and the surgical devices or instruments that can be connected to the various modules in order to connect or pair with the corresponding surgical hub. The modular devices include, for example, intelligent surgical instruments, medical imaging devices, suction/irrigation devices, smoke evacuators, energy generators, ventilators, insufflators, and displays. The modular devices described herein can be controlled by control algorithms. The control algorithms can be executed on the modular device itself, on the surgical hub to which the particular modular device is paired, or on both the modular device and the surgical hub (e.g., via a distributed computing architecture). In some exemplifications, the modular devices' control algorithms control the devices based on data sensed by the modular device itself (i.e., by sensors in, on, or connected to the modular device). This data can be related to the patient being operated on (e.g., tissue properties or insufflation pressure) or the modular device itself (e.g., the rate at which a knife is being advanced, motor current, or energy levels). For example, a control algorithm for a surgical stapling and cutting instrument can control the rate at which the instrument's motor drives its knife through tissue according to resistance encountered by the knife as it advances.
FIG. 22 illustrates one form of asurgical system1000 comprising agenerator1100 and varioussurgical instruments1104,1106,1108 usable therewith, where thesurgical instrument1104 is an ultrasonic surgical instrument, thesurgical instrument1106 is an RF electrosurgical instrument, and the multifunctionsurgical instrument1108 is a combination ultrasonic/RF electrosurgical instrument. Thegenerator1100 is configurable for use with a variety of surgical instruments. According to various forms, thegenerator1100 may be configurable for use with different surgical instruments of different types including, for example, ultrasonicsurgical instruments1104, RFelectrosurgical instruments1106, and multifunctionsurgical instruments1108 that integrate RF and ultrasonic energies delivered simultaneously from thegenerator1100. Although in the form ofFIG. 22 thegenerator1100 is shown separate from thesurgical instruments1104,1106,1108 in one form, thegenerator1100 may be formed integrally with any of thesurgical instruments1104,1106,1108 to form a unitary surgical system. Thegenerator1100 comprises aninput device1110 located on a front panel of thegenerator1100 console. Theinput device1110 may comprise any suitable device that generates signals suitable for programming the operation of thegenerator1100. Thegenerator1100 may be configured for wired or wireless communication.
Thegenerator1100 is configured to drive multiplesurgical instruments1104,1106,1108. The first surgical instrument is an ultrasonicsurgical instrument1104 and comprises a handpiece1105 (HP), anultrasonic transducer1120, ashaft1126, and anend effector1122. Theend effector1122 comprises anultrasonic blade1128 acoustically coupled to theultrasonic transducer1120 and aclamp arm1140. Thehandpiece1105 comprises a trigger1143 to operate theclamp arm1140 and a combination of thetoggle buttons1134a,1134b,1134cto energize and drive theultrasonic blade1128 or other function. Thetoggle buttons1134a,1134b,1134ccan be configured to energize theultrasonic transducer1120 with thegenerator1100.
Thegenerator1100 also is configured to drive a secondsurgical instrument1106. The secondsurgical instrument1106 is an RF electrosurgical instrument and comprises a handpiece1107 (HP), ashaft1127, and anend effector1124. Theend effector1124 comprises electrodes inclamp arms1142a,1142band return through an electrical conductor portion of theshaft1127. The electrodes are coupled to and energized by a bipolar energy source within thegenerator1100. Thehandpiece1107 comprises atrigger1145 to operate theclamp arms1142a,1142band anenergy button1135 to actuate an energy switch to energize the electrodes in theend effector1124.
Thegenerator1100 also is configured to drive a multifunctionsurgical instrument1108. The multifunctionsurgical instrument1108 comprises a handpiece1109 (HP), ashaft1129, and anend effector1125. Theend effector1125 comprises anultrasonic blade1149 and aclamp arm1146. Theultrasonic blade1149 is acoustically coupled to theultrasonic transducer1120. Thehandpiece1109 comprises atrigger1147 to operate theclamp arm1146 and a combination of thetoggle buttons1137a,1137b,1137cto energize and drive theultrasonic blade1149 or other function. Thetoggle buttons1137a,1137b,1137ccan be configured to energize theultrasonic transducer1120 with thegenerator1100 and energize theultrasonic blade1149 with a bipolar energy source also contained within thegenerator1100.
Thegenerator1100 is configurable for use with a variety of surgical instruments. According to various forms, thegenerator1100 may be configurable for use with different surgical instruments of different types including, for example, the ultrasonicsurgical instrument1104, theRF electrosurgical instrument1106, and the multifunctionsurgical instrument1108 that integrates RF and ultrasonic energies delivered simultaneously from thegenerator1100. Although in the form ofFIG. 22 thegenerator1100 is shown separate from thesurgical instruments1104,1106,1108, in another form thegenerator1100 may be formed integrally with any one of thesurgical instruments1104,1106,1108 to form a unitary surgical system. As discussed above, thegenerator1100 comprises aninput device1110 located on a front panel of thegenerator1100 console. Theinput device1110 may comprise any suitable device that generates signals suitable for programming the operation of thegenerator1100. Thegenerator1100 also may comprise one ormore output devices1112. Further aspects of generators for digitally generating electrical signal waveforms and surgical instruments are described in US patent publication US-2017-0086914-A1, which is herein incorporated by reference in its entirety.
Situational AwarenessAlthough an “intelligent” device including control algorithms that respond to sensed data can be an improvement over a “dumb” device that operates without accounting for sensed data, some sensed data can be incomplete or inconclusive when considered in isolation, i.e., without the context of the type of surgical procedure being performed or the type of tissue that is being operated on. Without knowing the procedural context (e.g., knowing the type of tissue being operated on or the type of procedure being performed), the control algorithm may control the modular device incorrectly or suboptimally given the particular context-free sensed data. For example, the optimal manner for a control algorithm to control a surgical instrument in response to a particular sensed parameter can vary according to the particular tissue type being operated on. This is due to the fact that different tissue types have different properties (e.g., resistance to tearing) and thus respond differently to actions taken by surgical instruments. Therefore, it may be desirable for a surgical instrument to take different actions even when the same measurement for a particular parameter is sensed. As one specific example, the optimal manner in which to control a surgical stapling and cutting instrument in response to the instrument sensing an unexpectedly high force to close its end effector will vary depending upon whether the tissue type is susceptible or resistant to tearing. For tissues that are susceptible to tearing, such as lung tissue, the instrument's control algorithm would optimally ramp down the motor in response to an unexpectedly high force to close to avoid tearing the tissue. For tissues that are resistant to tearing, such as stomach tissue, the instrument's control algorithm would optimally ramp up the motor in response to an unexpectedly high force to close to ensure that the end effector is clamped properly on the tissue. Without knowing whether lung or stomach tissue has been clamped, the control algorithm may make a suboptimal decision.
One solution utilizes a surgical hub including a system that is configured to derive information about the surgical procedure being performed based on data received from various data sources and then control the paired modular devices accordingly. In other words, the surgical hub is configured to infer information about the surgical procedure from received data and then control the modular devices paired to the surgical hub based upon the inferred context of the surgical procedure.FIG. 23 illustrates a diagram of a situationally awaresurgical system5100, in accordance with at least one aspect of the present disclosure. In some exemplifications, thedata sources5126 include, for example, the modular devices5102 (which can include sensors configured to detect parameters associated with the patient and/or the modular device itself), databases5122 (e.g., an EMR database containing patient records), and patient monitoring devices5124 (e.g., a blood pressure (BP) monitor and an electrocardiography (EKG) monitor). Thesurgical hub5104 can be configured to derive the contextual information pertaining to the surgical procedure from the data based upon, for example, the particular combination(s) of received data or the particular order in which the data is received from the data sources5126. The contextual information inferred from the received data can include, for example, the type of surgical procedure being performed, the particular step of the surgical procedure that the surgeon is performing, the type of tissue being operated on, or the body cavity that is the subject of the procedure. This ability by some aspects of thesurgical hub5104 to derive or infer information related to the surgical procedure from received data can be referred to as “situational awareness.” In one exemplification, thesurgical hub5104 can incorporate a situational awareness system, which is the hardware and/or programming associated with thesurgical hub5104 that derives contextual information pertaining to the surgical procedure from the received data.
The situational awareness system of thesurgical hub5104 can be configured to derive the contextual information from the data received from thedata sources5126 in a variety of different ways. In one exemplification, the situational awareness system includes a pattern recognition system, or machine learning system (e.g., an artificial neural network), that has been trained on training data to correlate various inputs (e.g., data fromdatabases5122,patient monitoring devices5124, and/or modular devices5102) to corresponding contextual information regarding a surgical procedure. In other words, a machine learning system can be trained to accurately derive contextual information regarding a surgical procedure from the provided inputs. In another exemplification, the situational awareness system can include a lookup table storing pre-characterized contextual information regarding a surgical procedure in association with one or more inputs (or ranges of inputs) corresponding to the contextual information. In response to a query with one or more inputs, the lookup table can return the corresponding contextual information for the situational awareness system for controlling themodular devices5102. In one exemplification, the contextual information received by the situational awareness system of thesurgical hub5104 is associated with a particular control adjustment or set of control adjustments for one or moremodular devices5102. In another exemplification, the situational awareness system includes a further machine learning system, lookup table, or other such system, which generates or retrieves one or more control adjustments for one or moremodular devices5102 when provided the contextual information as input.
Asurgical hub5104 incorporating a situational awareness system provides a number of benefits for thesurgical system5100. One benefit includes improving the interpretation of sensed and collected data, which would in turn improve the processing accuracy and/or the usage of the data during the course of a surgical procedure. To return to a previous example, a situationally awaresurgical hub5104 could determine what type of tissue was being operated on; therefore, when an unexpectedly high force to close the surgical instrument's end effector is detected, the situationally awaresurgical hub5104 could correctly ramp up or ramp down the motor of the surgical instrument for the type of tissue.
As another example, the type of tissue being operated can affect the adjustments that are made to the compression rate and load thresholds of a surgical stapling and cutting instrument for a particular tissue gap measurement. A situationally awaresurgical hub5104 could infer whether a surgical procedure being performed is a thoracic or an abdominal procedure, allowing thesurgical hub5104 to determine whether the tissue clamped by an end effector of the surgical stapling and cutting instrument is lung (for a thoracic procedure) or stomach (for an abdominal procedure) tissue. Thesurgical hub5104 could then adjust the compression rate and load thresholds of the surgical stapling and cutting instrument appropriately for the type of tissue.
As yet another example, the type of body cavity being operated in during an insufflation procedure can affect the function of a smoke evacuator. A situationally awaresurgical hub5104 could determine whether the surgical site is under pressure (by determining that the surgical procedure is utilizing insufflation) and determine the procedure type. As a procedure type is generally performed in a specific body cavity, thesurgical hub5104 could then control the motor rate of the smoke evacuator appropriately for the body cavity being operated in. Thus, a situationally awaresurgical hub5104 could provide a consistent amount of smoke evacuation for both thoracic and abdominal procedures.
As yet another example, the type of procedure being performed can affect the optimal energy level for an ultrasonic surgical instrument or radio frequency (RF) electrosurgical instrument to operate at. Arthroscopic procedures, for example, require higher energy levels because the end effector of the ultrasonic surgical instrument or RF electrosurgical instrument is immersed in fluid. A situationally awaresurgical hub5104 could determine whether the surgical procedure is an arthroscopic procedure. Thesurgical hub5104 could then adjust the RF power level or the ultrasonic amplitude of the generator (i.e., “energy level”) to compensate for the fluid filled environment. Relatedly, the type of tissue being operated on can affect the optimal energy level for an ultrasonic surgical instrument or RF electrosurgical instrument to operate at. A situationally awaresurgical hub5104 could determine what type of surgical procedure is being performed and then customize the energy level for the ultrasonic surgical instrument or RF electrosurgical instrument, respectively, according to the expected tissue profile for the surgical procedure. Furthermore, a situationally awaresurgical hub5104 can be configured to adjust the energy level for the ultrasonic surgical instrument or RF electrosurgical instrument throughout the course of a surgical procedure, rather than just on a procedure-by-procedure basis. A situationally awaresurgical hub5104 could determine what step of the surgical procedure is being performed or will subsequently be performed and then update the control algorithms for the generator and/or ultrasonic surgical instrument or RF electrosurgical instrument to set the energy level at a value appropriate for the expected tissue type according to the surgical procedure step.
As yet another example, data can be drawn fromadditional data sources5126 to improve the conclusions that thesurgical hub5104 draws from onedata source5126. A situationally awaresurgical hub5104 could augment data that it receives from themodular devices5102 with contextual information that it has built up regarding the surgical procedure fromother data sources5126. For example, a situationally awaresurgical hub5104 can be configured to determine whether hemostasis has occurred (i.e., whether bleeding at a surgical site has stopped) according to video or image data received from a medical imaging device. However, in some cases the video or image data can be inconclusive. Therefore, in one exemplification, thesurgical hub5104 can be further configured to compare a physiologic measurement (e.g., blood pressure sensed by a BP monitor communicably connected to the surgical hub5104) with the visual or image data of hemostasis (e.g., from a medical imaging device124 (FIG. 2) communicably coupled to the surgical hub5104) to make a determination on the integrity of the staple line or tissue weld. In other words, the situational awareness system of thesurgical hub5104 can consider the physiological measurement data to provide additional context in analyzing the visualization data. The additional context can be useful when the visualization data may be inconclusive or incomplete on its own.
Another benefit includes proactively and automatically controlling the pairedmodular devices5102 according to the particular step of the surgical procedure that is being performed to reduce the number of times that medical personnel are required to interact with or control thesurgical system5100 during the course of a surgical procedure. For example, a situationally awaresurgical hub5104 could proactively activate the generator to which an RF electrosurgical instrument is connected if it determines that a subsequent step of the procedure requires the use of the instrument. Proactively activating the energy source allows the instrument to be ready for use a soon as the preceding step of the procedure is completed.
As another example, a situationally awaresurgical hub5104 could determine whether the current or subsequent step of the surgical procedure requires a different view or degree of magnification on the display according to the feature(s) at the surgical site that the surgeon is expected to need to view. Thesurgical hub5104 could then proactively change the displayed view (supplied by, e.g., a medical imaging device for the visualization system108) accordingly so that the display automatically adjusts throughout the surgical procedure.
As yet another example, a situationally awaresurgical hub5104 could determine which step of the surgical procedure is being performed or will subsequently be performed and whether particular data or comparisons between data will be required for that step of the surgical procedure. Thesurgical hub5104 can be configured to automatically call up data screens based upon the step of the surgical procedure being performed, without waiting for the surgeon to ask for the particular information.
Another benefit includes checking for errors during the setup of the surgical procedure or during the course of the surgical procedure. For example, a situationally awaresurgical hub5104 could determine whether the operating theater is setup properly or optimally for the surgical procedure to be performed. Thesurgical hub5104 can be configured to determine the type of surgical procedure being performed, retrieve the corresponding checklists, product location, or setup needs (e.g., from a memory), and then compare the current operating theater layout to the standard layout for the type of surgical procedure that thesurgical hub5104 determines is being performed. In one exemplification, thesurgical hub5104 can be configured to compare the list of items for the procedure (scanned by a scanner, for example) and/or a list of devices paired with thesurgical hub5104 to a recommended or anticipated manifest of items and/or devices for the given surgical procedure. If there are any discontinuities between the lists, thesurgical hub5104 can be configured to provide an alert indicating that a particularmodular device5102,patient monitoring device5124, and/or other surgical item is missing. In one exemplification, thesurgical hub5104 can be configured to determine the relative distance or position of themodular devices5102 andpatient monitoring devices5124 via proximity sensors, for example. Thesurgical hub5104 can compare the relative positions of the devices to a recommended or anticipated layout for the particular surgical procedure. If there are any discontinuities between the layouts, thesurgical hub5104 can be configured to provide an alert indicating that the current layout for the surgical procedure deviates from the recommended layout.
As another example, a situationally awaresurgical hub5104 could determine whether the surgeon (or other medical personnel) was making an error or otherwise deviating from the expected course of action during the course of a surgical procedure. For example, thesurgical hub5104 can be configured to determine the type of surgical procedure being performed, retrieve the corresponding list of steps or order of equipment usage (e.g., from a memory), and then compare the steps being performed or the equipment being used during the course of the surgical procedure to the expected steps or equipment for the type of surgical procedure that thesurgical hub5104 determined is being performed. In one exemplification, thesurgical hub5104 can be configured to provide an alert indicating that an unexpected action is being performed or an unexpected device is being utilized at the particular step in the surgical procedure.
Overall, the situational awareness system for thesurgical hub5104 improves surgical procedure outcomes by adjusting the surgical instruments (and other modular devices5102) for the particular context of each surgical procedure (such as adjusting to different tissue types) and validating actions during a surgical procedure. The situational awareness system also improves surgeons' efficiency in performing surgical procedures by automatically suggesting next steps, providing data, and adjusting displays and othermodular devices5102 in the surgical theater according to the specific context of the procedure.
Modular Energy SystemORs everywhere in the world are a tangled web of cords, devices, and people due to the amount of equipment required to perform surgical procedures. Surgical capital equipment tends to be a major contributor to this issue because most surgical capital equipment performs a single, specialized task. Due to their specialized nature and the surgeons' needs to utilize multiple different types of devices during the course of a single surgical procedure, an OR may be forced to be stocked with two or even more pieces of surgical capital equipment, such as energy generators. Each of these pieces of surgical capital equipment must be individually plugged into a power source and may be connected to one or more other devices that are being passed between OR personnel, creating a tangle of cords that must be navigated. Another issue faced in modern ORs is that each of these specialized pieces of surgical capital equipment has its own user interface and must be independently controlled from the other pieces of equipment within the OR. This creates complexity in properly controlling multiple different devices in connection with each other and forces users to be trained on and memorize different types of user interfaces (which may further change based upon the task or surgical procedure being performed, in addition to changing between each piece of capital equipment). This cumbersome, complex process can necessitate the need for even more individuals to be present within the OR and can create danger if multiple devices are not properly controlled in tandem with each other. Therefore, consolidating surgical capital equipment technology into singular systems that are able to flexibly address surgeons' needs to reduce the footprint of surgical capital equipment within ORs would simplify the user experience, reduce the amount of clutter in ORs, and prevent difficulties and dangers associated with simultaneously controlling multiple pieces of capital equipment. Further, making such systems expandable or customizable would allow for new technology to be conveniently incorporated into existing surgical systems, obviating the need to replace entire surgical systems or for OR personnel to learn new user interfaces or equipment controls with each new technology.
As described inFIGS. 1-11, asurgical hub106 can be configured to interchangeably receive a variety of modules, which can in turn interface with surgical devices (e.g., a surgical instrument or a smoke evacuator) or provide various other functions (e.g., communications). In one aspect, asurgical hub106 can be embodied as amodular energy system2000, which is illustrated in connection withFIGS. 24-30. Themodular energy system2000 can include a variety ofdifferent modules2001 that are connectable together in a stacked configuration. In one aspect, themodules2001 can be both physically and communicably coupled together when stacked or otherwise connected together into a singular assembly. Further, themodules2001 can be interchangeably connectable together in different combinations or arrangements. In one aspect, each of themodules2001 can include a consistent or universal array of connectors disposed along their upper and lower surfaces, thereby allowing anymodule2001 to be connected to anothermodule2001 in any arrangement (except that, in some aspects, a particular module type, such as theheader module2002, can be configured to serve as the uppermost module within the stack, for example). In an alternative aspect, themodular energy system2000 can include a housing that is configured to receive and retain themodules2001, as is shown inFIGS. 3 and 4. Themodular energy system2000 can also include a variety of different components or accessories that are also connectable to or otherwise associatable with themodules2001. In another aspect, themodular energy system2000 can be embodied as agenerator module140,240 (FIGS. 3 and 10) of asurgical hub106. In yet another aspect, themodular energy system2000 can be a distinct system from asurgical hub106. In such aspects, themodular energy system2000 can be communicably couplable to asurgical hub206 for transmitting and/or receiving data therebetween.
Themodular energy system2000 can be assembled from a variety ofdifferent modules2001, some examples of which are illustrated inFIG. 24. Each of the different types ofmodules2001 can provide different functionality, thereby allowing themodular energy system2000 to be assembled into different configurations to customize the functions and capabilities of themodular energy system2000 by customizing themodules2001 that are included in eachmodular energy system2000. Themodules2001 of themodular energy system2000 can include, for example, a header module2002 (which can include a display screen2006), anenergy module2004, atechnology module2040, and avisualization module2042. In the depicted aspect, theheader module2002 is configured to serve as the top or uppermost module within the modular energy system stack and can thus lack connectors along its top surface. In another aspect, theheader module2002 can be configured to be positioned at the bottom or the lowermost module within the modular energy system stack and can thus lack connectors along its bottom surface. In yet another aspect, theheader module2002 can be configured to be positioned at an intermediate position within the modular energy system stack and can thus include connectors along both its bottom and top surfaces. Theheader module2002 can be configured to control the system-wide settings of eachmodule2001 and component connected thereto throughphysical controls2011 thereon and/or a graphical user interface (GUI)2008 rendered on thedisplay screen2006. Such settings could include the activation of themodular energy system2000, the volume of alerts, the footswitch settings, the settings icons, the appearance or configuration of the user interface, the surgeon profile logged into themodular energy system2000, and/or the type of surgical procedure being performed. Theheader module2002 can also be configured to provide communications, processing, and/or power for themodules2001 that are connected to theheader module2002. Theenergy module2004, which can also be referred to as agenerator module140,240 (FIGS. 3 and 10), can be configured to generate one or multiple energy modalities for driving electrosurgical and/or ultrasonic surgical instruments connected thereto, such as is described above in connection with thegenerator900 illustrated inFIG. 21. Thetechnology module2040 can be configured to provide additional or expanded control algorithms (e.g., electrosurgical or ultrasonic control algorithms for controlling the energy output of the energy module2004). Thevisualization module2042 can be configured to interface with visualization devices (i.e., scopes) and accordingly provide increased visualization capabilities.
Themodular energy system2000 can further include a variety ofaccessories2029 that are connectable to themodules2001 for controlling the functions thereof or that are otherwise configured to work on conjunction with themodular energy system2000. Theaccessories2029 can include, for example, a single-pedal footswitch2032, a dual-pedal footswitch2034, and acart2030 for supporting themodular energy system2000 thereon. Thefootswitches2032,2034 can be configured to control the activation or function of particular energy modalities output by theenergy module2004, for example.
By utilizing modular components, the depictedmodular energy system2000 provides a surgical platform that grows with the availability of technology and is customizable to the needs of the facility and/or surgeons. Further, themodular energy system2000 supports combo devices (e.g., dual electrosurgical and ultrasonic energy generators) and supports software-driven algorithms for customized tissue effects. Still further, the surgical system architecture reduces the capital footprint by combining multiple technologies critical for surgery into a single system.
The various modular components utilizable in connection with themodular energy system2000 can include monopolar energy generators, bipolar energy generators, dual electrosurgical/ultrasonic energy generators, display screens, and various other modules and/or other components, some of which are also described above in connection withFIGS. 1-11.
Referring now toFIG. 25A, theheader module2002 can, in some aspects, include adisplay screen2006 that renders aGUI2008 for relaying information regarding themodules2001 connected to theheader module2002. In some aspects, theGUI2008 of thedisplay screen2006 can provide a consolidated point of control of all of themodules2001 making up the particular configuration of themodular energy system2000. Various aspects of theGUI2008 are discussed in fuller detail below in connection withFIG. 30. In alternative aspects, theheader module2002 can lack thedisplay screen2006 or thedisplay screen2006 can be detachably connected to thehousing2010 of theheader module2002. In such aspects, theheader module2002 can be communicably couplable to an external system that is configured to display the information generated by themodules2001 of themodular energy system2000. For example, in robotic surgical applications, themodular energy system2000 can be communicably couplable to a robotic cart or robotic control console, which is configured to display the information generated by themodular energy system2000 to the operator of the robotic surgical system. As another example, themodular energy system2000 can be communicably couplable to a mobile display that can be carried or secured to a surgical staff member for viewing thereby. In yet another example, themodular energy system2000 can be communicably couplable to asurgical hub2100 or another computer system that can include adisplay2104, as is illustrated inFIG. 29. In aspects utilizing a user interface that is separate from or otherwise distinct from themodular energy system2000, the user interface can be wirelessly connectable with themodular energy system2000 as a whole or one ormore modules2001 thereof such that the user interface can display information from theconnected modules2001 thereon.
Referring still toFIG. 25A, theenergy module2004 can include aport assembly2012 including a number of different ports configured to deliver different energy modalities to corresponding surgical instruments that are connectable thereto. In the particular aspect illustrated inFIGS. 24-30, theport assembly2012 includes abipolar port2014, a firstmonopolar port2016a, a second monopolar port2018b, a neutral electrode port2018 (to which a monopolar return pad is connectable), and acombination energy port2020. However, this particular combination of ports is simply provided for illustrative purposes and alternative combinations of ports and/or energy modalities may be possible for theport assembly2012.
As noted above, themodular energy system2000 can be assembled into different configurations. Further, the different configurations of themodular energy system2000 can also be utilizable for different surgical procedure types and/or different tasks. For example,FIGS. 25A and 25B illustrate a first illustrative configuration of themodular energy system2000 including a header module2002 (including a display screen2006) and anenergy module2004 connected together. Such a configuration can be suitable for laparoscopic and open surgical procedures, for example.
FIG. 26A illustrates a second illustrative configuration of themodular energy system2000 including a header module2002 (including a display screen2006), afirst energy module2004a, and asecond energy module2004bconnected together. By stacking twoenergy modules2004a,2004b, themodular energy system2000 can provide a pair ofport assemblies2012a,2012bfor expanding the array of energy modalities deliverable by themodular energy system2000 from the first configuration. The second configuration of themodular energy system2000 can accordingly accommodate more than one bipolar/monopolar electrosurgical instrument, more than two bipolar/monopolar electrosurgical instruments, and so on. Such a configuration can be suitable for particularly complex laparoscopic and open surgical procedures.FIG. 26B illustrates a third illustrative configuration that is similar to the second configuration, except that theheader module2002 lacks adisplay screen2006. This configuration can be suitable for robotic surgical applications or mobile display applications, as noted above.
FIG. 27 illustrates a fourth illustrative configuration of themodular energy system2000 including a header module2002 (including a display screen2006), afirst energy module2004a, asecond energy module2004b, and atechnology module2040 connected together. Such a configuration can be suitable for surgical applications where particularly complex or computation-intensive control algorithms are required. Alternatively, thetechnology module2040 can be a newly released module that supplements or expands the capabilities of previously released modules (such as the energy module2004).
FIG. 28 illustrates a fifth illustrative configuration of themodular energy system2000 including a header module2002 (including a display screen2006), afirst energy module2004a, asecond energy module2004b, atechnology module2040, and avisualization module2042 connected together. Such a configuration can be suitable for endoscopic procedures by providing a dedicatedsurgical display2044 for relaying the video feed from the scope coupled to thevisualization module2042. It should be noted that the configurations illustrated inFIGS. 25A-29 and described above are provided simply to illustrate the various concepts of themodular energy system2000 and should not be interpreted to limit themodular energy system2000 to the particular aforementioned configurations.
As noted above, themodular energy system2000 can be communicably couplable to an external system, such as asurgical hub2100 as illustrated inFIG. 29. Such external systems can include adisplay screen2104 for displaying a visual feed from an endoscope (or a camera or another such visualization device) and/or data from themodular energy system2000. Such external systems can also include acomputer system2102 for performing calculations or otherwise analyzing data generated or provided by themodular energy system2000, controlling the functions or modes of themodular energy system2000, and/or relaying data to a cloud computing system or another computer system. Such external systems could also coordinate actions between multiplemodular energy systems2000 and/or other surgical systems (e.g., avisualization system108 and/or arobotic system110 as described in connection withFIGS. 1 and 2).
Referring now toFIG. 30, in some aspects, theheader module2002 can include or support adisplay2006 configured for displaying aGUI2008, as noted above. Thedisplay screen2006 can include a touchscreen for receiving input from users in addition to displaying information. The controls displayed on theGUI2008 can correspond to the module(s)2001 that are connected to theheader module2002. In some aspects, different portions or areas of theGUI2008 can correspond toparticular modules2001. For example, a first portion or area of theGUI2008 can correspond to a first module and a second portion or area of theGUI2008 can correspond to a second module. As different and/oradditional modules2001 are connected to the modular energy system stack, theGUI2008 can adjust to accommodate the different and/or additional controls for each newly addedmodule2001 or remove controls for eachmodule2001 that is removed. Each portion of the display corresponding to a particular module connected to theheader module2002 can display controls, data, user prompts, and/or other information corresponding to that module. For example, inFIG. 30, a first orupper portion2052 of the depictedGUI2008 displays controls and data associated with anenergy module2004 that is connected to theheader module2002. In particular, thefirst portion2052 of theGUI2008 for theenergy module2004 providesfirst widget2056acorresponding to thebipolar port2014, asecond widget2056bcorresponding to the firstmonopolar port2016a, athird widget2056ccorresponding to the secondmonopolar port2016b, and afourth widget2056dcorresponding to thecombination energy port2020. Each of these widgets2056a-dprovides data related to its corresponding port of theport assembly2012 and controls for controlling the modes and other features of the energy modality delivered by theenergy module2004 through the respective port of theport assembly2012. For example, the widgets2056a-dcan be configured to display the power level of the surgical instrument connected to the respective port, change the operational mode of the surgical instrument connected to the respective port (e.g., change a surgical instrument from a first power level to a second power level and/or change a monopolar surgical instrument from a “spray” mode to a “blend” mode), and so on.
In one aspect, theheader module2002 can include variousphysical controls2011 in addition to or in lieu of theGUI2008. Suchphysical controls2011 can include, for example, a power button that controls the activation of eachmodule2001 that is connected to theheader module2002 in themodular energy system2000. Alternatively, the power button can be displayed as part of theGUI2008. Therefore, theheader module2002 can serve as a single point of contact and obviate the need to individually activate and deactivate eachindividual module2001 from which themodular energy system2000 is constructed.
In one aspect, theheader module2002 can display still images, videos, animations, and/or information associated with thesurgical modules2001 of which themodular energy system2000 is constructed or the surgical devices that are communicably coupled to themodular energy system2000. The still images and/or videos displayed by theheader module2002 can be received from an endoscope or another visualization device that is communicably coupled to themodular energy system2000. The animations and/or information of theGUI2008 can be overlaid on or displayed adjacent to the images or video feed.
In one aspect, themodules2001 other than theheader module2002 can be configured to likewise relay information to users. For example, theenergy module2004 can includelight assemblies2015 disposed about each of the ports of theport assembly2012. Thelight assemblies2015 can be configured to relay information to the user regarding the port according to their color or state (e.g., flashing). For example, thelight assemblies2015 can change from a first color to a second color when a plug is fully seated within the respective port. In one aspect, the color or state of thelight assemblies2015 can be controlled by theheader module2002. For example, theheader module2002 can cause thelight assembly2015 of each port to display a color corresponding to the color display for the port on theGUI2008.
FIG. 31 is a block diagram of a stand-alone hub configuration of amodular energy system3000, in accordance with at least one aspect of the present disclosure andFIG. 32 is a block diagram of a hub configuration of amodular energy system3000 integrated with asurgical control system3010, in accordance with at least one aspect of the present disclosure. As depicted inFIGS. 31 and 32, themodular energy system3000 can be either utilized as stand-alone units or integrated with asurgical control system3010 that controls and/or receives data from one or more surgical hub units. In the examples illustrated inFIGS. 31 and 32, the integrated header/UI module3002 of themodular energy system3000 includes a header module and a UI module integrated together as a singular module. In other aspects, the header module and the UI module can be provided as separate components that are communicatively coupled though adata bus3008.
As illustrated inFIG. 31, an example of a stand-alonemodular energy system3000 includes an integrated header module/user interface (UI)module3002 coupled to anenergy module3004. Power and data are transmitted between the integrated header/UI module3002 and theenergy module3004 through apower interface3006 and adata interface3008. For example, the integrated header/UI module3002 can transmit various commands to theenergy module3004 through thedata interface3008. Such commands can be based on user inputs from the UI. As a further example, power may be transmitted to theenergy module3004 through thepower interface3006.
InFIG. 32, a surgical hub configuration includes amodular energy system3000 integrated with acontrol system3010 and aninterface system3022 for managing, among other things, data and power transmission to and/or from themodular energy system3000. The modular energy system depicted inFIG. 32 includes an integrated header module/UI module3002, afirst energy module3004, and asecond energy module3012. In one example, a data transmission pathway is established between thesystem control unit3024 of thecontrol system3010 and thesecond energy module3012 through thefirst energy module3004 and the header/UI module3002 through adata interface3008. In addition, a power pathway extends between the integrated header/UI module3002 and thesecond energy module3012 through thefirst energy module3004 through apower interface3006. In other words, in one aspect, thefirst energy module3004 is configured to function as a power and data interface between thesecond energy module3012 and the integrated header/UI module3002 through thepower interface3006 and thedata interface3008. This arrangement allows themodular energy system3000 to expand by seamlessly connecting additional energy modules toenergy modules3004,3012 that are already connected to the integrated header/UI module3002 without the need for dedicated power and energy interfaces within the integrated header/UI module3002.
Thesystem control unit3024, which may be referred to herein as a control circuit, control logic, microprocessor, microcontroller, logic, or FPGA, or various combinations thereof, is coupled to thesystem interface3022 viaenergy interface3026 andinstrument communication interface3028. Thesystem interface3022 is coupled to thefirst energy module3004 via afirst energy interface3014 and a firstinstrument communication interface3016. Thesystem interface3022 is coupled to thesecond energy module3012 via asecond energy interface3018 and a secondinstrument communication interface3020. As additional modules, such as additional energy modules, are stacked in themodular energy system3000, additional energy and communications interfaces are provided between thesystem interface3022 and the additional modules.
As described in more detail hereinbelow, theenergy modules3004,3012 are connectable to a hub and can be configured to generate electrosurgical energy (e.g., bipolar or monopolar), ultrasonic energy, or a combination thereof (referred to herein as an “advanced energy” module) for a variety of energy surgical instruments. Generally, theenergy modules3004,3012 include hardware/software interfaces, an ultrasonic controller, an advanced energy RF controller, bipolar RF controller, and control algorithms executed by the controller that receives outputs from the controller and controls the operation of thevarious energy modules3004,3012 accordingly. In various aspects of the present disclosure, the controllers described herein may be implemented as a control circuit, control logic, microprocessor, microcontroller, logic, or FPGA, or various combinations thereof.
FIGS. 33-35 are block diagrams of various modular energy systems connected together to form a hub, in accordance with at least one aspect of the present disclosure.FIGS. 33-35 depict various diagrams (e.g., circuit or control diagrams) of hub modules. Themodular energy system3000 includes multiple energy modules3004 (FIG. 34),3012 (FIG. 35), a header module3150 (FIG. 35), a UI module3030 (FIG. 33), and a communications module3032 (FIG. 33), in accordance with at least one aspect of the present disclosure. TheUI module3030 includes atouch screen3046 displaying various relevant information and various user controls for controlling one or more parameters of themodular energy system3000. TheUI module3030 is attached to thetop header module3150, but is separately housed so that it can be manipulated independently of theheader module3150. For example, theUI module3030 can be picked up by a user and/or reattached to theheader module3150. Additionally, or alternatively, theUI module3030 can be slightly moved relative to theheader module3150 to adjust its position and/or orientation. For example, theUI module3030 can be tilted and/or rotated relative to theheader module3150.
In some aspects, the various hub modules can include light piping around the physical ports to communicate instrument status and also connect on-screen elements to corresponding instruments. Light piping is one example of an illumination technique that may be employed to alert a user to a status of a surgical instrument attached/connected to a physical port. In one aspect, illuminating a physical port with a particular light directs a user to connect a surgical instrument to the physical port. In another example, illuminating a physical port with a particular light alerts a user to an error related an existing connection with a surgical instrument.
Turning toFIG. 33, there is shown a block diagram of a user interface (UI)module3030 coupled to acommunications module3032 via a pass-throughhub connector3034, in accordance with at least one aspect of the present disclosure. TheUI module3030 is provided as a separate component from a header module3150 (shown inFIG. 35) and may be communicatively coupled to theheader module3150 via acommunications module3032, for example. In one aspect, theUI module3030 can include aUI processor3040 that is configured to represent declarative visualizations and behaviors received from other connected modules, as well as perform other centralized UI functionality, such as system configuration (e.g., language selection, module associations, etc.). TheUI processor3040 can be, for example, a processor or system on module (SOM) running a framework such as Qt, .NET WPF, Web server, or similar.
In the illustrated example, theUI module3030 includes atouchscreen3046, a liquid crystal display3048 (LCD), and audio output3052 (e.g., speaker, buzzer). TheUI processor3040 is configured to receive touchscreen inputs from atouch controller3044 coupled between thetouch screen3046 and theUI processor3040. TheUI processor3040 is configured to output visual information to theLCD display3048 and to output audio information theaudio output3052 via anaudio amplifier3050. TheUI processor3040 is configured to interface to thecommunications module3032 via aswitch3042 coupled to the pass-throughhub connector3034 to receive, process, and forward data from the source device to the destination device and control data communication therebetween. DC power is supplied to theUI module3030 via DC/DC converter modules3054. The DC power is passed through the pass-throughhub connector3034 to thecommunications module3032 through thepower bus3006. Data is passed through the pass-throughhub connector3034 to thecommunications module3032 through thedata bus3008.Switches3042,3056 receive, process, and forward data from the source device to the destination device.
Continuing withFIG. 33, thecommunications module3032, as well as various surgical hubs and/or surgical systems can include agateway3058 that is configured to shuttle select traffic (i.e., data) between two disparate networks (e.g., an internal network and/or a hospital network) that are running different protocols. Thecommunications module3032 includes a first pass-throughhub connector3036 to couple thecommunications module3032 to other modules. In the illustrated example, thecommunications module3032 is coupled to theUI module3030. Thecommunications module3032 is configured to couple to other modules (e.g., energy modules) via a second pass-throughhub connector3038 to couple thecommunications module3032 to other modules via aswitch3056 disposed between the first and second pass-throughhub connectors3036,3038 to receive, process, and forward data from the source device to the destination device and control data communication therebetween. Theswitch3056 also is coupled to agateway3058 to communicate information between external communications ports and theUI module3030 and other connected modules. Thegateway3058 may be coupled to various communications modules such as, for example, anEthernet module3060 to communicate to a hospital or other local network, a universal serial bus (USB)module3062, aWFi module3064, and aBluetooth module3066, among others. The communications modules may be physical boards located within thecommunications module3032 or may be a port to couple to remote communications boards.
In some aspects, all of the modules (i.e., detachable hardware) are controlled by asingle UI module3030 that is disposed on or integral to a header module.FIG. 35 shows a standalone header module3150 to which theUI module3030 can be attached.FIGS. 31, 32, and36 show an integrated header/UI Module3002. Returning now toFIG. 33, in various aspects, by consolidating all of the modules into a single,responsive UI module3002, the system provides a simpler way to control and monitor multiple pieces of equipment at once. This approach drastically reduces footprint and complexity in an operating room (OR).
Turning toFIG. 34, there is shown a block diagram of anenergy module3004, in accordance with at least one aspect of the present disclosure. The communications module3032 (FIG. 33) is coupled to theenergy module3004 via the second pass-throughhub connector3038 of thecommunications module3032 and a first pass-throughhub connector3074 of theenergy module3004. Theenergy module3004 may be coupled to other modules, such as asecond energy module3012 shown inFIG. 35, via a second pass-throughhub connector3078. Turning back toFIG. 34, aswitch3076 disposed between the first and second pass-throughhub connectors3074,3078 receives, processes, and forwards data from the source device to the destination device and controls data communication therebetween. Data is received and transmitted through thedata bus3008. Theenergy module3032 includes acontroller3082 to control various communications and processing functions of theenergy module3004.
DC power is received and transmitted by theenergy module3004 through thepower bus3006. Thepower bus3006 is coupled to DC/DC converter modules3138 to supply power toadjustable regulators3084,3107 and isolated DC/DC converter ports3096,3112,3132.
In one aspect, theenergy module3004 can include an ultrasonicwideband amplifier3086, which in one aspect may be a linear class H amplifier that is capable of generating arbitrary waveforms and drive harmonic transducers at low total harmonic distortion (THD) levels. The ultrasonicwideband amplifier3086 is fed by a buckadjustable regulator3084 to maximize efficiency and controlled by thecontroller3082, which may be implemented as a digital signal processor (DSP) via a direct digital synthesizer (DDS), for example. The DDS can either be embedded in the DSP or implemented in the field-programmable gate array (FPGA), for example. Thecontroller3082 controls the ultrasonicwideband amplifier3086 via a digital-to-analog converter3106 (DAC). The output of the ultrasonicwideband amplifier3086 is fed to anultrasonic power transformer3088, which is coupled to an ultrasonic energy output portion of anadvanced energy receptacle3100. Ultrasonic voltage (V) and current (I) feedback (FB) signals, which may be employed to compute ultrasonic impedance, are fed back to thecontroller3082 via an ultrasonicVI FB transformer3092 through an input portion of theadvanced energy receptacle3100. The ultrasonic voltage and current feedback signals are routed back to thecontroller3082 through an analog-to-digital converter3102 (A/D). Also coupled to thecontroller3082 through theadvanced energy receptacle3100 is the isolated DC/DC converter port3096, which receives DC power from thepower bus3006, and a mediumbandwidth data port3098.
In one aspect, theenergy module3004 can include a widebandRF power amplifier3108, which in one aspect may be a linear class H amplifier that is capable of generating arbitrary waveforms and drive RF loads at a range of output frequencies. The widebandRF power amplifier3108 is fed by anadjustable buck regulator3107 to maximize efficiency and controlled by thecontroller3082, which may be implemented as DSP via a DDS. The DDS can either be embedded in the DSP or implemented in the FPGA, for example. Thecontroller3082 controls thewideband RF amplifier3086 via aDAC3122. The output of the widebandRF power amplifier3108 can be fed through RF selection relays3124. The RF selection relays3124 are configured to receive and selectively transmit the output signal of the widebandRF power amplifier3108 to various other components of theenergy module3004. In one aspect, the output signal of the widebandRF power amplifier3108 can be fed through RF selection relays3124 to anRF power transformer3110, which is coupled to an RF output portion of a bipolarRF energy receptacle3118. Bipolar RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via an RFVI FB transformer3114 through an input portion of the bipolarRF energy receptacle3118. The RF voltage and current feedback signals are routed back to thecontroller3082 through an A/D3120. Also coupled to thecontroller3082 through the bipolarRF energy receptacle3118 is the isolated DC/DC converter port3112, which receives DC power from thepower bus3006, and a lowbandwidth data port3116.
As described above, in one aspect, theenergy module3004 can include RF selection relays3124 driven by the controller3082 (e.g., FPGA) at rated coil current for actuation and can also be set to a lower hold-current via pulse-width modulation (PWM) to limit steady-state power dissipation. Switching of the RF selection relays3124 is achieved with force guided (safety) relays and the status of the contact state is sensed by thecontroller3082 as a mitigation for any single fault conditions. In one aspect, the RF selection relays3124 are configured to be in a first state, where an output RF signal received from an RF source, such as the widebandRF power amplifier3108, is transmitted to a first component of theenergy module3004, such as theRF power transformer3110 of thebipolar energy receptacle3118. In a second aspect, the RF selection relays3124 are configured to be in a second state, where an output RF signal received from an RF source, such as the widebandRF power amplifier3108, is transmitted to a second component, such as anRF power transformer3128 of amonopolar energy receptacle3136, described in more detail below. In a general aspect, the RF selection relays3124 are configured to be driven by thecontroller3082 to switch between a plurality of states, such as the first state and the second state, to transmit the output RF signal received from theRF power amplifier3108 between different energy receptacles of theenergy module3004.
As described above, the output of the widebandRF power amplifier3108 can also fed through the RF selection relays3124 to the widebandRF power transformer3128 of theRF monopolar receptacle3136. Monopolar RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via an RFVI FB transformer3130 through an input portion of the monopolarRF energy receptacle3136. The RF voltage and current feedback signals are routed back to thecontroller3082 through an A/D3126. Also coupled to thecontroller3082 through the monopolarRF energy receptacle3136 is the isolated DC/DC converter port3132, which receives DC power from thepower bus3006, and a lowbandwidth data port3134.
The output of the widebandRF power amplifier3108 can also fed through the RF selection relays3124 to the widebandRF power transformer3090 of theadvanced energy receptacle3100. RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via an RFVI FB transformer3094 through an input portion of theadvanced energy receptacle3100. The RF voltage and current feedback signals are routed back to thecontroller3082 through an A/D3104.
FIG. 35 is a block diagram of asecond energy module3012 coupled to aheader module3150, in accordance with at least one aspect of the present disclosure. Thefirst energy module3004 shown inFIG. 34 is coupled to thesecond energy module3012 shown inFIG. 35 by coupling the second pass-throughhub connector3078 of thefirst energy module3004 to a first pass-throughhub connector3074 of thesecond energy module3012. In one aspect, thesecond energy module3012 can a similar energy module to thefirst energy module3004, as is illustrated inFIG. 35. In another aspect, thesecond energy module2012 can be a different energy module compared to the first energy module, such as an energy module illustrated inFIG. 37, described in more detail. The addition of thesecond energy module3012 to thefirst energy module3004 adds functionality to themodular energy system3000.
Thesecond energy module3012 is coupled to theheader module3150 by connecting the pass-throughhub connector3078 to the pass-throughhub connector3152 of theheader module3150. In one aspect, theheader module3150 can include aheader processor3158 that is configured to manage apower button function3166, software upgrades through theupgrade USB module3162, system time management, and gateway to external networks (i.e., hospital or the cloud) via anEthernet module3164 that may be running different protocols. Data is received by theheader module3150 through the pass-throughhub connector3152. Theheader processor3158 also is coupled to aswitch3160 to receive, process, and forward data from the source device to the destination device and control data communication therebetween. Theheader processor3158 also is coupled to anOTS power supply3156 coupled to a mainspower entry module3154.
FIG. 36 is a block diagram of a header/user interface (UI)module3002 for a hub, such as the header module depicted inFIG. 33, in accordance with at least one aspect of the present disclosure. The header/UI module3002 includes aheader power module3172, aheader wireless module3174, aheader USB module3176, a header audio/screen module3178, a header network module3180 (e.g., Ethernet), abackplane connector3182, a headerstandby processor module3184, and aheader footswitch module3186. These functional modules interact to provide the header/UI3002 functionality. A header/UI controller3170 controls each of the functional modules and the communication therebetween including safety criticalcontrol logic modules3230,3232 coupled between the header/UI controller3170 and anisolated communications module3234 coupled to theheader footswitch module3186. Asecurity co-processor3188 is coupled to the header/UI controller3170.
Theheader power module3172 includes a mainspower entry module3190 coupled to an OTS power supply unit3192 (PSU). Low voltage direct current (e.g., 5V) standby power is supplied to the header/UI module3002 and other modules through a lowvoltage power bus3198 from theOTS PSU3192. High voltage direct current (e.g., 60V) is supplied to the header/UI module3002 through ahigh voltage bus3200 from theOTS PSU3192. The high voltage DC supplies DC/DC converter modules3196 as well as isolated DC/DC converter modules3236. Astandby processor3204 of the header/standby module3184 provides a PSU/enablesignal3202 to theOTS PSU3192.
Theheader wireless module3174 includes aWFi module3212 and aBluetooth module3214. Both theWiFi module3212 and theBluetooth module3214 are coupled to the header/UI controller3170. TheBluetooth module3214 is used to connect devices without using cables and the Wi-Fi module3212 provides high-speed access to networks such as the Internet and can be employed to create a wireless network that can link multiple devices such as, for examples, multiple energy modules or other modules and surgical instruments, among other devices located in the operating room. Bluetooth is a wireless technology standard that is used to exchange data over short distances, such as, less than 30 feet.
Theheader USB module3176 includes aUSB port3216 coupled to the header/UI controller3170. TheUSB module3176 provides a standard cable connection interface for modules and other electronics devices over short-distance digital data communications. TheUSB module3176 allows modules comprising USB devices to be connected to each other with and transfer digital data over USB cables.
The header audio/screen module3178 includes atouchscreen3220 coupled to atouch controller3218. Thetouch controller3218 is coupled to the header/UI controller3170 to read inputs from thetouchscreen3220. The header/UI controller3170 drives anLCD display3224 through a display/portvideo output signal3222. The header/UI controller3170 is coupled to anaudio amplifier3226 to drive one ormore speakers3228.
In one aspect, the header/UI module3002 provides atouchscreen3220 user interface configured to control modules connected to one control orheader module3002 in amodular energy system3000. Thetouchscreen3220 can be used to maintain a single point of access for the user to adjust all modules connected within themodular energy system3000. Additional hardware modules (e.g., a smoke evacuation module) can appear at the bottom of the userinterface LCD display3224 when they become connected to the header/UI module3002, and can disappear from the userinterface LCD display3224 when they are disconnected from the header/UI module3002.
Further, theuser touchscreen3220 can provide access to the settings of modules attached to themodular energy system3000. Further, the userinterface LCD display3224 arrangement can be configured to change according to the number and types of modules that are connected to the header/UI module3002. For example, a first user interface can be displayed on theLCD display3224 for a first application where one energy module and one smoke evacuation module are connected to the header/UI module3002, and a second user interface can be displayed on theLCD display3224 for a second application where two energy modules are connected to the header/UI module3002. Further, the user interface can alter its display on theLCD display3224 as modules are connected and disconnected from themodular energy system3000.
In one aspect, the header/UI module3002 provides a userinterface LCD display3224 configured to display on the LCD display coloring corresponds to the port lighting. In one aspect, the coloring of the instrument panel and the LED light around its corresponding port will be the same or otherwise correspond with each other. Each color can, for example, convey a unique meaning. This way, the user will be able to quickly assess which instrument the indication is referring to and the nature of the indication. Further, indications regarding an instrument can be represented by the changing of color of the LED light lined around its corresponding port and the coloring of its module. Still further, the message on screen and hardware/software port alignment can also serve to convey that an action must be taken on the hardware, not on the interface. In various aspects, all other instruments can be used while alerts are occurring on other instruments. This allows the user to be able to quickly assess which instrument the indication is referring to and the nature of the indication.
In one aspect, the header/UI module3002 provides a user interface screen configured to display on theLCD display3224 to present procedure options to a user. In one aspect, the user interface can be configured to present the user with a series of options (which can be arranged, e.g., from broad to specific). After each selection is made, themodular energy system3000 presents the next level until all selections are complete. These settings could be managed locally and transferred via a secondary means (such as a USB thumb drive). Alternatively, the settings could be managed via a portal and automatically distributed to all connected systems in the hospital.
The procedure options can include, for example, a list of factory preset options categorized by specialty, procedure, and type of procedure. Upon completing a user selection, the header module can be configured to set any connected instruments to factory-preset settings for that specific procedure. The procedure options can also include, for example, a list of surgeons, then subsequently, the specialty, procedure, and type. Once a user completes a selection, the system may suggest the surgeon's preferred instruments and set those instrument's settings according to the surgeon's preference (i.e., a profile associated with each surgeon storing the surgeon's preferences).
In one aspect, the header/UI module3002 provides a user interface screen configured to display on theLCD display3224 critical instrument settings. In one aspect, each instrument panel displayed on theLCD display3224 of the user interface corresponds, in placement and content, to the instruments plugged into themodular energy system3000. When a user taps on a panel, it can expand to reveal additional settings and options for that specific instrument and the rest of the screen can, for example, darken or otherwise be de-emphasized.
In one aspect, the header/UI module3002 provides an instrument settings panel of the user interface configured to comprise/display controls that are unique to an instrument and allow the user to increase or decrease the intensity of its output, toggle certain functions, pair it with system accessories like a footswitch connected toheader footswitch module3186, access advanced instrument settings, and find additional information about the instrument. In one aspect, the user can tap/select an “Advanced Settings” control to expand the advanced settings drawer displayed on the userinterface LCD display3224. In one aspect, the user can then tap/select an icon at the top right-hand corner of the instrument settings panel or tap anywhere outside of the panel and the panel will scale back down to its original state. In these aspects, the user interface is configured to display on theLCD display3224 only the most critical instrument settings, such as power level and power mode, on the ready/home screen for each instrument panel. This is to maximize the size and readability of the system from a distance. In some aspects, the panels and the settings within can be scaled proportionally to the number of instruments connected to the system to further improve readability. As more instruments are connected, the panels scale to accommodate a greater amount of information.
Theheader network module3180 includes a plurality ofnetwork interfaces3264,3266,3268 (e.g., Ethernet) to network the header/UI module3002 to other modules of themodular energy system3000. In the illustrated example, onenetwork interface3264 may be a 3rd party network interface, anothernetwork interface3266 may be a hospital network interface, and yet anothernetwork interface3268 may be located on the backplanenetwork interface connector3182.
The headerstandby processor module3184 includes astandby processor3204 coupled to an On/Off switch3210. Thestandby processor3204 conducts an electrical continuity test by checking to see if electrical current flows in acontinuity loop3206. The continuity test is performed by placing a small voltage across thecontinuity loop3206. Aserial bus3208 couples thestandby processor3204 to thebackplane connector3182.
Theheader footswitch module3186 includes a controller3240 coupled to a plurality ofanalog footswitch ports3254,3256,3258 through a plurality of corresponding presence/ID and switchstate modules3242,3244,3246, respectively. The controller3240 also is coupled to anaccessory port3260 via a presence/ID and switchstate module3248 and atransceiver module3250. Theaccessory port3260 is powered by anaccessory power module3252. The controller3240 is coupled to header/UI controller3170 via anisolated communication module3234 and first and second safetycritical control modules3230,3232. Theheader footswitch module3186 also includes DC/DC converter modules3238.
In one aspect, the header/UI module3002 provides a user interface screen configured to display on theLCD display3224 for controlling a footswitch connected to any one of theanalog footswitch ports3254,3256,3258. In some aspects, when the user plugs in a non hand-activated instrument into any one of theanalog footswitch ports3254,3256,3258, the instrument panel appears with a warning icon next to the footswitch icon. The instrument settings can be, for example, greyed out, as the instrument cannot be activated without a footswitch.
When the user plugs in a footswitch into any one of theanalog footswitch ports3254,3256,3258, a pop-up appears indicating that a footswitch has been assigned to that instrument. The footswitch icon indicates that a footswitch has been plugged in and assigned to the instrument. The user can then tap/select on that icon to assign, reassign, unassign, or otherwise change the settings associated with that footswitch. In these aspects, the system is configured to automatically assign footswitches to non hand-activated instruments using logic, which can further assign single or double-pedal footswitches to the appropriate instrument. If the user wants to assign/reassign footswitches manually there are two flows that can be utilized.
In one aspect, the header/UI module3002 provides a global footswitch button. Once the user taps on the global footswitch icon (located in the upper right of the user interface LCD display3224), the footswitch assignment overlay appears and the contents in the instrument modules dim. A (e.g., photo-realistic) representation of each attached footswitch (dual or single-pedal) appears on the bottom if unassigned to an instrument or on the corresponding instrument panel. Accordingly, the user can drag and drop these illustrations into, and out of, the boxed icons in the footswitch assignment overlay to assign, unassign, and reassign footswitches to their respective instruments.
In one aspect, the header/UI module3002 provides a user interface screen displayed on theLCD display3224 indicating footswitch auto-assignment, in accordance with at least one aspect of the present disclosure. As discussed above, themodular energy system3000 can be configured to auto-assign a footswitch to an instrument that does not have hand activation. In some aspects, the header/UI module3002 can be configured to correlate the colors displayed on the userinterface LCD display3224 to the lights on the modules themselves as means of tracking physical ports with user interface elements.
In one aspect, the header/UI module3002 may be configured to depict various applications of the user interface with differing number of modules connected to themodular energy system3000. In various aspects, the overall layout or proportion of the user interface elements displayed on theLCD display3224 can be based on the number and type of instruments plugged into the header/UI module3002. These scalable graphics can provide the means to utilize more of the screen for better visualization.
In one aspect, the header/UI module3002 may be configured to depict a user interface screen on theLCD display3224 to indicate which ports of the modules connected to themodular energy system3000 are active. In some aspects, the header/UI module3002 can be configured to illustrate active versus inactive ports by highlighting active ports and dimming inactive ports. In one aspect, ports can be represented with color when active (e.g., monopolar tissue cut with yellow, monopolar tissue coagulation with blue, bipolar tissue cut with blue, advanced energy tissue cut with warm white, and so on). Further, the displayed color will match the color of the light piping around the ports. The coloring can further indicate that the user cannot change settings of other instruments while an instrument is active. As another example, the header/UI module3002 can be configured to depict the bipolar, monopolar, and ultrasonic ports of a first energy module as active and the monopolar ports of a second energy module as likewise active.
In one aspect, the header/UI module3002 can be configured to depict a user interface screen on theLCD display3224 to display a global settings menu. In one aspect, the header/UI module3002 can be configured to display a menu on theLCD display3224 to control global settings across any modules connected to themodular energy system3000. The global settings menu can be, for example, always displayed in a consistent location (e.g., always available in upper right hand corner of main screen).
In one aspect, the header/UI module3002 can be configured to depict a user interface screen on theLCD display3224 configured to prevent changing of settings while a surgical instrument is in use. In one example, the header/UI module3002 can be configured to prevent settings from being changed via a displayed menu when a connected instrument is active. The user interface screen can include, for example, an area (e.g., the upper left hand corner) that is reserved for indicating instrument activation while a settings menu is open. In one aspect, a user has opened the bipolar settings while monopolar coagulation is active. In one aspect, the settings menu could then be used once the activation is complete. In one aspect, the header/UI module3002 can be is configured to never overlay any menus or other information over the dedicated area for indicating critical instrument information in order to maintain display of critical information.
In one aspect, the header/UI module3002 can be configured to depict a user interface screen on theLCD display3224 configured to display instrument errors. In one aspect, instrument error warnings may be displayed on the instrument panel itself, allowing user to continue to use other instruments while a nurse troubleshoots the error. This allows users to continue the surgery without the need to stop the surgery to debug the instrument.
In one aspect, the header/UI module3002 can be configured to depict a user interface screen on theLCD display3224 to display different modes or settings available for various instruments. In various aspects, the header/UI module3002 can be configured to display settings menus that are appropriate for the type or application of surgical instrument(s) connected to the stack/hub. Each settings menu can provide options for different power levels, energy delivery profiles, and so on that are appropriate for the particular instrument type. In one aspect, the header/UI module3002 can be configured to display different modes available for bipolar, monopolar cut, and monopolar coagulation applications.
In one aspect, the header/UI module3002 can be configured to depict a user interface screen on theLCD display3224 to display pre-selected settings. In one aspect, the header/UI module3002 can be configured to receive selections for the instrument/device settings before plugging in instruments so that themodular energy system3000 is ready before the patient enters the operating room. In one aspect, the user can simply click a port and then change the settings for that port. In the depicted aspect, the selected port appears as faded to indicate settings are set, but no instrument is plugged into that port.
FIG. 37 is a block diagram of anenergy module3270 for a hub, such as the energy module depicted inFIGS. 31, 32, 34, and 35, in accordance with at least one aspect of the present disclosure. Theenergy module3270 is configured to couple to a header module, header/UI module, and other energy modules via the first and second pass-throughhub connectors3272,3276. Aswitch3076 disposed between the first and second pass-throughhub connectors3272,3276 receives, processes, and forwards data from the source device to the destination device and controls data communication therebetween. Data is received and transmitted through thedata bus3008. Theenergy module3270 includes acontroller3082 to control various communications and processing functions of theenergy module3270.
DC power is received and transmitted by theenergy module3270 through thepower bus3006. Thepower bus3006 is coupled to the DC/DC converter modules3138 to supply power toadjustable regulators3084,3107 and isolated DC/DC converter ports3096,3112,3132.
In one aspect, theenergy module3270 can include an ultrasonicwideband amplifier3086, which in one aspect may be a linear class H amplifier that is capable of generating arbitrary waveforms and drive harmonic transducers at low total harmonic distortion (THD) levels. The ultrasonicwideband amplifier3086 is fed by a buckadjustable regulator3084 to maximize efficiency and controlled by thecontroller3082, which may be implemented as a digital signal processor (DSP) via a direct digital synthesizer (DDS), for example. The DDS can either be embedded in the DSP or implemented in the field-programmable gate array (FPGA), for example. Thecontroller3082 controls the ultrasonicwideband amplifier3086 via a digital-to-analog converter3106 (DAC). The output of the ultrasonicwideband amplifier3086 is fed to anultrasonic power transformer3088, which is coupled to an ultrasonic energy output portion of theadvanced energy receptacle3100. Ultrasonic voltage (V) and current (I) feedback (FB) signals, which may be employed to compute ultrasonic impedance, are fed back to thecontroller3082 via an ultrasonicVI FB transformer3092 through an input portion of theadvanced energy receptacle3100. The ultrasonic voltage and current feedback signals are routed back to thecontroller3082 through ananalog multiplexer3280 and a dual analog-to-digital converter3278 (A/D). In one aspect, the dual A/D3278 has a sampling rate of 80 MSPS. Also coupled to thecontroller3082 through theadvanced energy receptacle3100 is the isolated DC/DC converter port3096, which receives DC power from thepower bus3006, and a mediumbandwidth data port3098.
In one aspect, theenergy module3270 can include a plurality of widebandRF power amplifiers3108,3286,3288, among others, which in one aspect, each of the widebandRF power amplifiers3108,3286,3288 may be linear class H amplifiers capable of generating arbitrary waveforms and drive RF loads at a range of output frequencies. Each of the widebandRF power amplifiers3108,3286,3288 are fed by anadjustable buck regulator3107 to maximize efficiency and controlled by thecontroller3082, which may be implemented as DSP via a DDS. The DDS can either be embedded in the DSP or implemented in the FPGA, for example. Thecontroller3082 controls the first widebandRF power amplifier3108 via aDAC3122.
Unlike theenergy modules3004,3012 shown and described inFIGS. 34 and 35, theenergy module3270 does not include RF selection relays configured to receive an RF output signal from theadjustable buck regulator3107. In addition, unlike theenergy modules3004,3012 shown and described inFIGS. 34 and 35, theenergy module3270 includes a plurality of widebandRF power amplifiers3108,3286,3288 instead of a single RF power amplifier. In one aspect, theadjustable buck regulator3107 can switch between a plurality of states, in which theadjustable buck regulator3107 outputs an output RF signal to one of the plurality of widebandRF power amplifiers3108,3286,3288 connected thereto. Thecontroller3082 is configured to switch theadjustable buck regulator3107 between the plurality of states. In a first state, the controller drives theadjustable buck regulator3107 to output an RF energy signal to the first widebandRF power amplifier3108. In a second state, the controller drives theadjustable buck regulator3107 to output an RF energy signal to the second widebandRF power amplifier3286. In a third state, the controller drives theadjustable buck regulator3107 to output an RF energy signal to the third widebandRF power amplifier3288.
The output of the first widebandRF power amplifier3108 can be fed to anRF power transformer3090, which is coupled to an RF output portion of anadvanced energy receptacle3100. RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via RFVI FB transformers3094 through an input portion of theadvanced energy receptacle3100. The RF voltage and current feedback signals are routed back to thecontroller3082 through the RFVI FB transformers3094, which are coupled to ananalog multiplexer3284 and a dual A/D3282 coupled to thecontroller3082. In one aspect, the dual A/D3282 has a sampling rate of 80 MSPS.
The output of the second RFwideband power amplifier3286 is fed through anRF power transformer3128 of theRF monopolar receptacle3136. Monopolar RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via RFVI FB transformers3130 through an input portion of the monopolarRF energy receptacle3136. The RF voltage and current feedback signals are routed back to thecontroller3082 through theanalog multiplexer3284 and the dual A/D3282. Also coupled to thecontroller3082 through the monopolarRF energy receptacle3136 is the isolated DC/DC converter port3132, which receives DC power from thepower bus3006, and a lowbandwidth data port3134.
The output of the third RFwideband power amplifier3288 is fed through anRF power transformer3110 of abipolar RF receptacle3118. Bipolar RF voltage (V) and current (I) feedback (FB) signals, which may be employed to compute RF impedance, are fed back to thecontroller3082 via RFVI FB transformers3114 through an input portion of the bipolarRF energy receptacle3118. The RF voltage and current feedback signals are routed back to thecontroller3082 through theanalog multiplexer3280 and the dual A/D3278. Also coupled to thecontroller3082 through the bipolarRF energy receptacle3118 is the isolated DC/DC converter port3112, which receives DC power from thepower bus3006, and a lowbandwidth data port3116.
Acontact monitor3290 is coupled to anNE receptacle3292. Power is fed to the NE receptacle3292 from themonopolar receptacle3136.
In one aspect, with reference toFIGS. 31-37, themodular energy system3000 can be configured to detect instrument presence in areceptacle3100,3118,3136 via a photo-interrupter, magnetic sensor, or other non-contact sensor integrated into thereceptacle3100,3118,3136. This approach prevents the necessity of allocating a dedicated presence pin on the MTD connector to a single purpose and instead allows multi-purpose functionality for MTD signal pins6-9 while continuously monitoring instrument presence.
In one aspect, with reference toFIGS. 31-37, the modules of themodular energy system3000 can include an optical link allowing high speed communication (10-50 Mb/s) across the patient isolation boundary. This link would carry device communications, mitigation signals (watchdog, etc.), and low bandwidth run-time data. In some aspects, the optical link(s) will not contain real-time sampled data, which can be done on the non-isolated side.
In one aspect, with reference toFIGS. 31-37, the modules of themodular energy system3000 can include a multi-function circuit block which can: (i) read presence resistor values via A/D and current source, (ii) communicate with legacy instruments via hand switch Q protocols, (iii) communicate with instruments via local bus 1-Wre protocols, and (iv) communicate with CAN FD-enabled surgical instruments. When a surgical instrument is properly identified by an energy generator module, the relevant pin functions and communications circuits are enabled, while the other unused functions are disabled and set to a high impedance state.
In one aspect, with reference toFIGS. 31-37, the modules of themodular energy system3000 can include an amplifier pulse/stimulation/auxiliary DC amplifier. This is a flexible-use amplifier based on a full-bridge output and incorporates functional isolation. This allows its differential output to be referenced to any output connection on the applied part (except, in some aspects, a monopolar active electrode). The amplifier output can be either small signal linear (pulse/stim) with waveform drive provided by a DAC or a square wave drive at moderate output power for DC applications such as DC motors, illumination, FET drive, etc. The output voltage and current are sensed with functionally isolated voltage and current feedback to provide accurate impedance and power measurements to the FPGA. Paired with a CAN FD-enabled instrument, this output can offer motor/motion control drive, while position or velocity feedback is provided by the CAN FD interface for closed loop control.
Device Detection Upon Insertion to PortBefore explaining various aspects of surgical devices and generators in detail, it should be noted that the illustrative examples are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative examples may be implemented or incorporated in other aspects, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative examples for the convenience of the reader and are not for the purpose of limitation thereof. Also, it will be appreciated that one or more of the following-described aspects, expressions of aspects, and/or examples, can be combined with any one or more of the other following-described aspects, expressions of aspects and/or examples.
The present disclosure relates to various surgical systems, including modular electrosurgical and/or ultrasonic surgical systems. Operating rooms (ORs) are in need of streamlined capital solutions because ORs are a tangled web of cords, devices, and people due to the number of different devices that are needed to complete each surgical procedure. This is a reality of every OR in every market throughout the globe. Capital equipment is a major offender in creating clutter within ORs because most capital equipment performs one task or job, and each type of capital equipment requires unique techniques or methods to use and has a unique user interface. Accordingly, the system described in U.S. Provisional Patent Application No. 62/826,588, titled MODULAR ENERGY SYSTEM INSTRUMENT COMMUNICATION TECHNIQUES, filed on Mar. 29, 2019, addresses the consumer need for the consolidation of capital equipment and other surgical technology, a decrease in equipment footprint within the OR, a streamlined equipment interface, and a more efficient surgical procedure by which the number of devices that surgical staff members need to interact with is reduced.
However, as electrosurgical and/or ultrasonic surgical systems become more modular and capital equipment becomes increasingly more streamlined, the number of ports by which various pieces of equipment can be connected is decreasing. Additionally, each port is required to accommodate a variety of different types of equipment. Thus, there exists an even greater need for surgical systems that automatically detect, identify, and manage auxiliary equipment upon connection to a hub. Accordingly, in various non-limiting aspects of the present disclosure, apparatuses are provided for detecting an instrument's presence on monopolar and bipolar energy ports of electrosurgical generators.
In various aspects, the present disclosure provides a modular energy system2000 (FIGS. 24-30) comprising a variety ofdifferent modules2001 that are connectable together in a stacked configuration. Themodules2001 of themodular energy system2000 can include, for example, a header module2002 (which can include a display screen2006), anenergy module2004, atechnology module2040, and avisualization module2042. Energy modules3004 (FIG. 34),3012 (FIG. 35), and3270 (FIG. 37) illustrate theenergy module2004 with more particularity. Accordingly, for conciseness and clarity of disclosure, reference herein to theenergy module2004 should be understood to be a reference to any one of the energy modules3004 (FIG. 34),3012 (FIG. 35), and3270 (FIG. 37). An example of a communication protocol is described in commonly owned U.S. Pat. No. 9,226,766, which is herein incorporated by reference in its entirety.
It will be appreciated that theenergy module2004 may include a variety of electrosurgical/ultrasonic generators that need to be able to electrically identify and communicate with a wide variety of electrosurgical/ultrasonic instruments, such as, for example, thesurgical instruments1104,1106,1108 shown inFIG. 22, where thesurgical instrument1104 is an ultrasonic surgical instrument, thesurgical instrument1106 is an RF electrosurgical instrument, and the multifunctionsurgical instrument1108 is a combination ultrasonic/RF electrosurgical instrument. Theenergy modules2004 and the electrosurgical/ultrasonic instruments1104,1106,1108 may have vastly different communication needs in terms of such things as data bandwidth, latency, circuit cost, power requirements, cybersecurity robustness, and noise immunity. Accordingly, there is a need for themodular energy system2000, and in particular theenergy modules2004 of themodular energy system2000, to support multiple communication protocols. At the same time, ergonomic and cost concerns dictate that the total number of conductors in an electrosurgical/ultrasonic instrument cable be kept to a minimum.
In various general aspects, the present disclosure provides a modular energy system with multiple separate modules and a header that automatically detects the presence of a device inserted into a port. In one aspect, the energy module may store actual and/or default device settings are temporarily within the modular energy system so that they automatically follow the device to additional ports if it is unplugged and re-inserted to a different port. In one aspect, an alert message may be provided to notify a user that a device has been reinserted and the default settings for the device are different than the last used settings. This functionality may be enabled by providing communication protocols, data storage, instrument tracking, and device detection functionality in the modular energy system. In another aspect, the device user preferences may be uploaded into the modular energy system, and device settings may be populated based on user preference data automatically when the device is detected in a port. Accordingly, in one general aspect, the present disclosure provides an energy module comprising a control circuit, a port, a sensor coupled to the port and the control circuit, and an interface circuit coupled to the port, the sensor, and the control circuit, wherein the sensor is configured to detect presence of a surgical instrument coupled to the port. Various example implementations of such detection circuits and techniques are described hereinbelow.
Referring toFIG. 38, various ports of anenergy module19000 component of a modular energy system2000 (FIGS. 24-30) where theenergy module19000 is configured to detect presence of a connector are illustrated in accordance with at least one non-limiting aspect of the present disclosure. In various aspects, theenergy module19000 comprisesoptical sensing ports19001,mechanical ports19002, andforce sensing ports19003. In some non-limiting aspects, theenergy module19000 may be configured for either monopolar, bipolar electrosurgery, ultrasonic surgery, or combinations thereof. The various presence detecting ports disclosed below may vary in configuration depending on whether theenergy module19000 is configured for monopolar or bipolar electrosurgery, and both configurations are contemplated by the present disclosure. For example, in one non-limiting aspect, theenergy module19000 includes ports that are universally configured for both monopolar and bipolar instruments. In other non-limiting aspects, theenergy module19000 includes ports that are exclusively configured for either monopolar or bipolar instruments. Still other non-limiting aspects include a combination of ports exclusively configured for monopolar instruments and ports exclusively configured for bipolar instruments. All of the ports depicted inFIG. 38 are configured to mechanically and/or electrically engage with an instrument plug to facilitate the electrical connection of an instrument to theenergy module19000, and include varying sensor configurations—which will be discussed in detail below—to detect the presence of the instrument plug, identify the specific type of instrument, and manage it accordingly.
In some non-limiting aspects of the present disclosure, data associated with a specific instrument might be stored on a data storage device in communication with theenergy module19000. For example, the data storage device in communication with theenergy module19000 can be volatile including various forms of random access memory (RAM), or non-volatile including a mechanical hard drive, a solid-state hard drive, a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or an electrically erasable programmable read-only memory (EEPROM). Additionally, the data storage device can be internal to theenergy module19000, or remotely located and in wireless communication with theenergy module19000, such as a cloud-based storage device. Accordingly, when an instrument is connected to aport19001,19002,19003 of theenergy module19000, a control circuit of the energy module is configured to detect its presence. Upon detection, the control circuit is further configured to identify the specific instrument connected, and access the data storage device to assess whether any data associated with the specific instrument is available for review and management. For example, data associated with the instrument may include instrument specific settings, requirements, usage metrics, errors, and/or the like. If no data associated with the specific instrument is stored, the control circuit is further configured to create and store such data accordingly. Furthermore, the control circuit is configured to generate new data regarding the specific instrument's settings and real time usage to be stored on the data storage device and accessed in the future. The control circuit can be configured to generate such data automatically, or in response to a user's input. Accordingly, when a specific instrument is connected to adifferent port19001,19002,19003 of theenergy module19000, the control circuit will identify it, access the data associated with the instrument, communicate to the user that it has been reconnected, and alert the user that different settings should be applied prior to use. In some aspects, the control circuit might be further configured to automatically adjust the settings in accordance with the data associated with the instrument. In still further aspects, the control circuit communicates an error message to the user if a required piece of equipment is not properly connected, or presents data associated with the historical use of the instrument to the user. In still another aspect, the data storage device is remotely located, enabling similar functionality to be applied tomultiple energy modules19000 with access to the data storage device. Thus, the same instruments to be used across an entire hospital or region, with the control circuits automatically accessing the specific settings, requirements, and usage metrics upon detection and identification of the instrument.
Referring now toFIG. 39, a perspective view of anoptical sensing port19001 is depicted in accordance with at least one non-limiting aspect of the present disclosure. Here, theenergy module19000 ofFIG. 39 is anenergy module19004. Theoptical sensing port19001 ofFIG. 39 has a thru-beam configuration including at least one pair of break-beam sensors19005. According to the thru-beam configuration ofFIG. 39, the pair of break-beam sensors19005 include anemitter19006 and areceiver19007. However, other non-limiting aspects of the thru-beam configuration19004 may include alternate break-beam sensors19005, such as photoelectric sensors, lasers, proximity sensors, and/or the like. Theemitter19006 is configured to transmit a beam ofenergy19008, and thereceiver19007 is configured to receive the beam ofenergy19008. Although the thru-beam configuration19002 ofFIG. 41 includes beam ofenergy19008 of infrared wavelength (e.g. 700 nanometers to 1 millimeter), other non-limiting aspects may use a beam ofenergy19008 of alternate wavelengths as preferred. For example, alternate wavelengths may include ultrasonic, microwave, both short and long-wave radio frequencies, and/or the like.
In further reference to the non-limiting aspect ofFIG. 39, theoptical sensing port19001 further includes one or moreelectrical contacts19009, which may be arranged to accommodate a variety of different instrument plug configurations and establish an electrical connection between a circuit card of theenergy module19004 and an instrument. When an instrument is plugged into theoptical sensing port19001, its presence is detected based on the resulting interference of the beam ofenergy19008. For example, when an instrument is connected to theoptical sensing port19001, the instrument plug interferes with the beam ofenergy19007, thereby preventing thereceiver19007 from receiving the beam ofenergy19008. Thus, when a control circuit of the energy module19000 (as depicted inFIG. 38) initiates the emission of a beam ofenergy19008 from theemitter19005 and does not subsequently receive the beam ofenergy19008 via thereceiver19006, it detects the presence of the instrument plug and reacts accordingly.
Optical sensing ports19001 may further include various means for port illumination and identification. For example, theoptical sensing port19001 ofFIG. 39 includes one or more light emitting diodes (LEDs)19010, and alight pipe19011. Aside from illuminating the port, theLED19010 andlight pipe19011 configuration may emit various colors that identify the port and provide a visual status of the connection. For example, in the non-limiting aspect of anenergy module19004 ofFIG. 47, the LED's19010 andlight tubes19011 can be illuminated a particular color to communicate which port is active when multiple instruments are plugged into theenergy module19004 at the same time. Additionally, the LED's19010 andlight tubes19011 can be lit one or more colors to indicate to the user that an error exists in association with the instrument connected to eachport19001. For example, if a user forgot to connect a grounding pad, the LED's19010 andlight tube19011 might illuminate red, indicating that a required instrument has not been connected to the electrosurgical
Referring now toFIG. 40, theoptical sensing port19001 ofFIG. 39 is depicted in top view. InFIG. 40, amonopolar instrument plug19012 is connected to theoptical sensing port19001 ofFIG. 40. However, in other non-limiting aspects, theoptical sensing port19001 is further configured to accommodate a bipolar instrument plug. Themonopolar instrument plug19012 is inserted into theexterior face19013 of theenergy module19004, and prongs19014 of themonopolar instrument plug19012 traverse through the port interface and engage theelectrical contacts19009, thereby establishing an electrical connection between the instrument and a control circuit of theenergy module19004. When themonopolar instrument plug19012 is properly connected to theenergy module19004, theprongs19014 of themonopolar instrument plug19012 traverse aninterior plane19015 of theenergy module19004 on which the pair of break-beam sensors19005 is mounted and exist in a beam path between theemitter19006 and thereceiver19007. InFIG. 40, theemitter19006 has initiated the emission of a beam ofenergy19008. However, because theprongs19014 of themonopolar instrument plug19012 exist in the beam path between theemitter19006 and thereceiver19007, they create a mechanical interference of the beam ofenergy19008. Thus, thereceiver19007 does not receive the beam ofenergy19008, and theenergy module19004 detects the presence of themonopolar instrument plug19012.
Alternate thru-beam configurations of anoptical sensing port19001 may include two or more pairs of break-beam sensors to detect and identify different types of instrument plugs. For example,FIG. 41 illustrates another non-limiting aspect of anoptical sensing port19001 with two pairs of break-beam sensors in front view. Here, theoptical sensing port19001 includes afirst emitter19016 and afirst receiver19017 configured in a first direction D1, and asecond emitter19018 and asecond receiver19019 configured in a second direction D2. Although first direction D1 and second direction D2 ofFIG. 41 are depicted as substantially perpendicular to one another, the configuration is application specific. Accordingly, the present disclosure contemplates other non-limiting aspects ofoptical sensing ports19001 that include two or more pairs of break-beam sensors in different configurations to accommodate for instrument plugs of varying designs.
In the non-limiting aspect of theoptical sensing port19001 ofFIG. 41, thesecond emitter19018 andsecond receiver19019 are used by the control circuit of theenergy module19004 to supplement thefirst emitter19016 andfirst receiver19017 and to determine more information about the physical presence and particular configuration of an instrument plug connected to theoptical sensing port19001. For example, a hand or robotically controller instrument may have a different instrument plug configuration than a lap instrument, and the control circuit may use signals received from the second pair of break-beam sensors to identify that the instrument that has been connected to the energy module19004 (as depicted inFIG. 41) is either one or the other. Thus, the second pair of break-beam sensors enhances the detection and identification of a specific type of instrument plug and/or instrument connected to theenergy module19004. Subsequent to the detection and identification, the control circuit is configured to react accordingly.
Referring now toFIG. 42, anotheroptical sensing port19001 is depicted in accordance with at least one non-limiting aspect of the present disclosure. Theoptical sensing port19001 ofFIG. 42 includes a reflective configuration instead of the thru-beam configurations depicted inFIGS. 39-41. The reflective configuration includes aphotoelectric emitter19020 and aphototransistor19021. Theoptical sensing port19001 ofFIG. 42 further includes one or moreelectrical contacts19009, which may be arranged to accommodate a variety of different instrument plug configurations and establish an electrical connection between a control circuit of the energy module and instrument.
Similar to the thru-beam configurations ofFIGS. 39-41, the reflective configuration ofFIG. 42 is used to detect the presence of an instrument plug in theoptical sensing port19001. Thephotoelectric emitter19013 emits light in the form of photons and thephototransistor19014 is activated when exposed to a beam ofphotons19022. In the non-limiting aspect of a reflective configuration ofFIG. 42, both theemitter19020 andphototransistor19021 are located on the same side of theoptical sensing port19001. Amonopolar instrument plug19012 is connected to theoptical sensing port19001. However, in other non-limiting aspects, theoptical sensing port19001 is further configured to accommodate a bipolar instrument plug. When themonopolar instrument plug19012 is inserted into theoptical sensing port19001,prongs19014 of themonopolar instrument plug19012 traverse through the port interface and engage theelectrical contacts19009, thereby establishing an electrical connection between the instrument and a control circuit of theenergy module19004.
As is depicted inFIG. 42, when themonopolar instrument plug19012 is properly connected to theoptical sensing port19001, theprongs19014 of themonopolar instrument plug19012 traverse aninterior plane19015 of theoptical sensing port19001 on which thephotoelectric emitter19020 and aphototransistor19021 are mounted and exist in a beam path of thephotoelectric emitter19020. InFIG. 42, thephotoelectric emitter19020 has initiated the emission of a beam ofphotons19022. When properly connected to theoptical sensing port19001, theprongs19014 of themonopolar instrument plug19012 exist in the beam path of thephotoelectric emitter19020, they reflect the beam ofphotons19022 back towards thephototransistor19021. When the beam ofphotons19022 hit thephototransistor19021, thephototransistor19021 is activated and theoptical sensing port19001 detects the presence of themonopolar instrument plug19012. Accordingly, when nomonopolar instrument plug19012 is connected, theprongs19014 do not reflect the beam ofphotons19022 emitted byphotoelectric emitter19020 and theoptical sensing port19001 recognizes that the no instrument is connected.
According to the non-limiting aspect ofFIG. 42, both theemitter19020 andphototransistor19021 are located on the same side of theoptical sensing port19001. However, in other non-limiting aspects of the reflective configuration, a diffuse-reflective sensor phototransistor19021 is located on the opposite side of thephotoelectric emitter19020 and is configured to sense a difference between an uninterrupted beam ofphotons19022 and a beam ofphotons19022 that has been diffused by theprongs19014 of themonopolar instrument plug19012. Furthermore, although the reflective configuration ofFIG. 42 includes just onephotoelectric emitter19020 and onephototransistor19021, alternate configurations and quantities are contemplated by the present disclosure to enhance the detection and identification of varying instruments. For example, multiplephotoelectric emitters19020 and onephototransistors19021 can be used to accommodate for instrument plugs of varying configurations similar to the break-beam configuration ofFIG. 41.
In some non-limiting aspects of the present disclosure, the aforementionedoptical sensing ports19001 ofFIGS. 38-42 include printed circuit boards (PCBs) upon which the sensing components are mounted. In some non-limiting aspects, the sensors are configured to measure the aforementioned physical parameters (e.g., beam of energy, beam of photons) and output an analog signal, which may be sent to a control circuit implemented by a field programmable gate array (FPGA), discrete logic, microcontroller, microprocessor, or combinations thereof. In one aspect, the control circuit may be specifically configured to process the signal and compare it to a programmed threshold for subsequent handling by a control circuit of theenergy module19000. In other non-limiting aspects of the present disclosure, the sensors are configured to directly convert the measured parameter into a digital output (e.g., a binary signal) which is transmitted directly to the control circuit. Still other non-limiting aspects of the present disclosure include both sensors configured for analog output and signals configured for digital output. The selection of sensors is customizable and application specific.
Referring now toFIGS. 43A and 43B, amechanical sensing port19001 is depicted in accordance with at least one non-limiting aspect of the present disclosure.FIGS. 43A-43B illustrate a mechanicalsensing port receptacle16930 comprising adepressible switch16934. In one aspect, with reference toFIG. 25A for context, anenergy module2004 can include aport assembly2012 including a number of different ports configured to deliver different energy modalities to corresponding surgical instruments that are connectable thereto. In the particular aspect illustrated inFIGS. 24-30, theport assembly2012 includes abipolar port2014, a firstmonopolar port2016a, a second monopolar port2018b, a neutral electrode port2018 (to which a monopolar return pad is connectable), and acombination energy port2020. However, this particular combination of ports is simply provided for illustrative purposes and alternative combinations of ports and/or energy modalities may be possible for theport assembly2012. Any one of the ports of the ports of theport assembly2012 may include the mechanicalsensing port receptacle16930 configured to detect the presence of a surgical instrument plugged into theenergy module2004.
In one aspect, the mechanicalsensing port receptacle16930 defining anaperture16932 to form a socket that includes a sliding contact configuration for receiving aplug16936 of the surgical instrument. Thedepressible switch16934 is disposed within theaperture16932. The mechanicalsensing port receptacle16930 may further include one or more electrical contacts arranged to accommodate a variety of different instrument plug configurations and establish an electrical connection between the energy module2004 (FIGS. 24-30) and the surgical instrument. Although the mechanicalsensing port receptacle16930 ofFIG. 43A is depicted as having a cylindrical configuration, other configurations are contemplated by the present disclosure to accommodate instrument plugs of various shapes and sizes. According to the non-limiting aspect ofFIG. 43A, thedepressible switch16934 is embedded in an inner region of theaperture16932 defined by the mechanicalsensing port receptacle16930 such that thedepressible switch16934 is actuated when a force F is applied to anactuator16935 portion of thedepressible switch16934. Thedepressible switch19024 is also configured to transition from an open state (unactuated) where it is in an undepressed (seeFIG. 43A), to a closed state (actuated) where it is depressed (seeFIG. 43B) when a force F is applied by the slidingplug16936. The mechanicalsensing port receptacle16930 is further configured to send a binary signal to a control circuit of theenergy module2004 to indicate whether thedepressible switch16934 is in an open state or a closed state.
According to the non-limiting aspect ofFIG. 43A, thedepressible switch16934 is depicted in an undepressed unactuated condition because no prong of aninstrument plug16936 is inserted within theaperture16932 of the mechanicalsensing port receptacle16930. Thus, thedepressible switch16934 ofFIG. 43A is shown in an open state and a binary signal is provided to the control circuit indicating that noinstrument plug16936 is inserted or connected to the energy module2004 (FIGS. 24-30).FIG. 43B depicts theinstrument plug16936 inserted into theaperture16932 of the mechanicalsensing port receptacle16930. As depicted inFIG. 43B, theplug16936 of the surgical instrument mechanically engages theactuator16935 of thedepressible switch16934 and applies a force F to theactuator16935 to depress theactuator16935 to transition thedepressible switch16934 to the closed state. Accordingly, the mechanicalsensing port receptacle16930 provides a binary signal to a control circuit of theenergy module2004 to indicate that aninstrument plug16936 is connected to theenergy module2004.
Referring now toFIGS. 44A and 44B, anothermechanical sensing port19001 is depicted in accordance with at least one non-limiting aspect of the present disclosure.FIGS. 44A-44B illustrate a mechanicalsensing port receptacle16938 comprising apush button switch16942, in accordance with another aspect of the present disclosure. The mechanicalsensing port receptacle16938 ofFIG. 44A includes a push button configuration. Similar to the sliding contact configuration ofFIGS. 43A-43B, any one of the ports of theport assembly2012 shown inFIGS. 24-30 may include the mechanicalsensing port receptacle16938 ofFIGS. 44A-44B configured to detect the presence of a surgical instrument plugged into the energy module2004 (FIGS. 24-30).
In lieu of thedepressible switch16934, the push button switch configuration includes apush button switch16942 comprising anactuator16944. The mechanicalsensing port receptacle16938 defines anaperture16932 to form a socket for receiving aninstrument plug16936. According to a non-limiting aspect of the mechanicalsensing port receptacle16938 depicted inFIGS. 44A-44B, thepush button switch16942 is located distal to the mechanicalsensing port receptacle16938 such that theactuator16944 of thepush button switch16942 is proximate a distal end of theaperture16940. Theactuator16944 of thepush button switch16942 is configured to actuate when the distal end of theinstrument plug16936 applies a force F to theactuator16944 causing it to transition from an open state where it is in an undepressed (seeFIG. 44A) to a closed state where it is depressed (seeFIG. 44B). The mechanicalsensing port receptacle16938 is further configured to send a binary signal to a control circuit of the energy module2004 (FIGS. 24-30) to indicate whether thepush button switch16942 is in an open state or a closed state.
According to the non-limiting aspect ofFIG. 44A, thepush button switch16942 is depicted in an undepressed unactuated condition because theinstrument plug16936 is not yet inserted within theaperture16940 of the mechanicalsensing port receptacle16938 and thus no force F is applied to theactuator16944. Thus, thepush button switch16942 ofFIG. 44A is in an open state and the mechanicalsensing port receptacle16938 provides a binary signal to a control circuit indicating that theinstrument plug16936 is not connected to the energy module2004 (FIGS. 24-30). Alternatively,FIG. 44B depicts aninstrument plug16936 inserted into theaperture16940 of the mechanicalsensing port receptacle16938. As depicted inFIG. 44B, theinstrument plug16936 mechanically engages and applies a force F to theactuator16944 of thepush button switch16942 to depress and actuate thepush button switch16942, thus transitioning thepush button switch16942 to the closed state. Accordingly, the mechanicalsensing port receptacle16938 provides a binary signal to a control circuit of theenergy module2004 indicating that aninstrument plug16936 is connected to theenergy module2004.
Referring now toFIGS. 45A and 45B, anothermechanical sensing port19001 is depicted in accordance with at least one non-limiting aspect of the present disclosure.FIGS. 45A-45B illustrate an electricalsensing port receptacle16946 comprising a non-contact proximity switch, in accordance with one aspect of the present disclosure. The electricalsensing port receptacle16946 includes a non-contact proximity switch configuration comprising aninductive sensor16948, for example, to provide a contact-less short-range sensing configuration for sensing conductive targets such as theinstrument plug16936. The electricalsensing port receptacle16946 defines anaperture16950 to form a socket for receiving theinstrument plug16936. Theinductive sensor16948 ofFIGS. 45A-45B is configured to sense the proximity of a metal object, such as theinstrument plug16936. Theinductive sensor16948 includes an induction loop or detector coil, such as those found in typical inductance-to-digital converter, coil magnetometers, and/or the like. When power is applied to the detector coil, anelectromagnetic field16952 is generated. As themetal instrument plug16936 approaches the proximity of theelectromagnetic field16952, themetal instrument plug16936 interacts with theelectromagnetic field16952 and theinductive sensor16948 transitions from an open state, wherein theinstrument plug16936 is not inserted into theaperture16950 of the electricalsensing port receptacle16946, to a closed state, wherein theinstrument plug16936 is inserted into theaperture16950 of the electricalsensing port receptacle16946. The electricalsensing port receptacle16946 is further configured to provide a binary signal to a control circuit of the energy module2004 (FIGS. 24-30) to indicate whether theinductive sensor16948 is in an open state or a closed state.
According to the non-limiting aspect ofFIG. 45A, theinstrument plug16936 is not inserted within theaperture16950 of the electricalsensing port receptacle16946 and accordingly, does not interact with theelectromagnetic field16952. Thus, theinductive sensor16948 ofFIG. 45A is in an open state and the electricalsensing port receptacle16946 provides a binary signal to a control circuit of the energy module2004 (FIGS. 24-30) to indicate that theinstrument plug16936 is not connected to theenergy module2004. Alternatively, as theinstrument plug16936 is inserted into theaperture16950 of the electricalsensing port receptacle16946 it will interact with theelectromagnetic field16952, thus transitioning theinductive sensor16948 to the closed state. Accordingly, the electricalsensing port receptacle16946 provides a binary signal to the control circuit of theenergy module2004 to indicate that theinstrument plug16936 is connected to theenergy source2004. In some non-limiting aspects, the binary signal might be subsequently processed via software to mitigate the effects of noise associated with activation. Still other non-limiting aspects are configured to filter out certain radio frequency (RF) signals of to mitigate the effect of electrical noise and unintended interference with theelectromagnetic field16952.
In one aspect, theinductive sensor16948 may be an inductance-to-digital converter LDC1000 provided by Texas Instruments. The inductance-to-digital converter is a contact-less short-range sensor that enables sensing of conductive targets. Using a coil as a sensing element, the inductance-to-digital converter precise measurement of linear/angular position, displacement, motion, compression, vibration, metal composition, and many other applications.
Various combinations of aforementioned mechanical/electricalsensing port receptacles16930,16938,16946 shownFIGS. 43A-45B can be used to detect and identify different types of instrument plugs. For example, two or more separate switches, including a depressible switch, a push button, and/or an inductive proximity switch, can be used to distinguish whether the instrument is a lap or hand tool is connected to the port. The mechanical/electricalsensing port receptacles16930,16938,16946 then provide a signal to a control circuit of the energy module2004 (FIGS. 24-30) indicating the specific type of instrument that is connected to theenergy module2004, and the control circuit reacts accordingly. It will be appreciated that theswitches16394,16942 and the non-contact proximity switch described in connection withFIGS. 43A-45B may optionally be operated in a normally opened or normally closed configuration. Accordingly, although the present disclosure may describe theswitches16394,16942 and the non-contact proximity switch as being open in their nominal state, theswitches16394,16942 and the non-contact proximity switch may be configured as normally closed and the system could detect an open state, for example.
Referring now toFIG. 46, aforce sensing port19003 is depicted in accordance with at least one non-limiting aspect of the present disclosure. Theforce sensing port19003 ofFIG. 46 includes a forcesensitive resistor19030 embedded into an inner surface of theforce sensing port19003. In the non-limiting aspect ofFIG. 46, the forcesensitive resistor19030 uses aresistive touch film19031. However, other non-limiting aspects of aforce sensing port19003 according to the present disclosure include capacitive touch sensors, projected capacitive sensors, surface acoustic wave (SAW) sensors, infrared touch sensors, and/or the like. According to theforce sensing port19003 ofFIG. 46, theresistive touch film19031 includes one or more layers of film which, in an unbiased condition, are separated from an underlyingelectrical circuit19032. However, theresistive touch film19031 is moveably configured relative to the electrical circuit in response to an applied force such that the one or more layers come into contact with the underlyingelectrical circuit19032, thereby altering an electrical parameter of theelectrical circuit19032. For example, the electrical parameter may be resistance, current, voltage, and/or the like. In some non-limiting aspects, the forcesensitive resistor19030 is further configured to generate a specific coordinate location of where on theresistive touch film19031 the force was specifically applied, based at least in part on the altered electrical parameter. Theforce sensing port19003 ofFIG. 46 further includes one or moreelectrical contacts19009, which may be arranged to accommodate a variety of different instrument plug configurations and establish an electrical connection between a control circuit of anenergy module19000 and an instrument. Although theforce sensing port19003 ofFIG. 46 is rectangular, other configurations are contemplated by the present disclosure to accommodate instrument plugs of various shapes and sizes.
According to the non-limiting aspect ofFIG. 46, theforce sensing port19003 is configured to detect an instrument plug when it comes into physical contact with the forcesensitive resistor19030. Specifically, when no instrument plug is connected to theforce sensing port19003, theresistive touch film19031 is in an unbiased state and electrical parameters of the underlyingelectrical circuit19032 remain unaltered. Thus, theforce sensing port19003 sends a signal to the control circuit indicating that no instrument plug is connected to theenergy module19000. Alternatively, when an instrument plug is connected to theforce sensing port19003, the instrument plug applies a force to theresistive touch film19031 in a particular location towards the electrical circuit, thereby moving it towards the underlyingelectrical circuit19032 and altering an electrical parameter. Accordingly, theforce sensing port19003 sends a signal to the control circuit indicating that an instrument plug is connected to theenergy module19000. In some non-limiting aspects, the signal includes the specific coordinate location of where on theresistive touch film19031 the force was specifically applied.
Instruments that are connected to theenergy module19000 may vary in instrument plug size, shape, and overall configuration. For example, a hand instrument may have a different instrument plug configuration than a lap instrument. Accordingly, the force sensing port may be configured to enhance the detection and identification of a specific instrument connected to the energy module. For example, some non-limiting aspects of a force sensitive port include two or more surface regions with embedded force sensitive resistors of varying geometries, with each region configured to sense different forces applied by an instrument plug and send a discrete signal to the control circuit. Each signal is used to provide the control circuit with additional information about the geometry of the instrument plug, thereby enhancing the detection and identification of an instrument connected to the force sensing port of theenergy module19000. Still other non-limiting aspects of a force sensitive port include just one surface region with an embedded force sensitive resistor, and the force sensitive resistor is configured to generate two or more specific coordinate location which are sent as two or more discrete signals which are used to provide the control circuit with additional information about the geometry of the instrument plug, thereby enhancing the detection and identification of an instrument connected to the force sensing port of theenergy module19000.
Referring now toFIG. 47, theenergy module19000 is depicted in accordance with at least one aspect of the present disclosure. Theenergy module19004 includes several force sensing ports of varying configurations and functions. Specifically, theenergy module19004 ofFIG. 47 includes a force sensing port configured forbipolar instruments19034, two force sensing ports configured formonopolar instruments19035, a port configured for aneutral electrode return19036, and an advancedenergy combination port19038. Each of thebipolar port19034 andmonopolar ports19035 is configured as aforce sensing port19003 and includes a forcesensitive resistor19030 and aresistive touch film19031. The neutralelectrode return port19036 further includes a contact configured to electrically engage and electrically erasable programmable read-only memory (EEPROM) that might be included in the connected instrument. If instrument specific EEPROM is detected, acontrol circuit19033 of theenergy module19004 will read and write to the EEPROM as appropriate.
Theenergy module19004 ofFIG. 47 further includes an embeddedLED19010 andlight pipe19011 configuration to illuminate the port. TheLEDs19010 andlight pipe19011 may emit various colors that identify the port and provide a visual status of the connection. For example, in the non-limiting aspect of anenergy module19004 ofFIG. 47, the LED's19010 andlight tubes19011 can be illuminated a particular color to communicate which port is active when multiple instruments are plugged into theenergy module19004 at the same time. Additionally, the LED's19010 andlight tubes19011 can be lit one or more colors to indicate to the user that an error exists in association with the instrument connected to eachport19001. For example, if a user forgot to connect a grounding pad, the LED's19010 andlight tube19011 might illuminate red, indicating that a required instrument has not been connected to theenergy module19004. Theenergy module19004 further includes a control circuit in the form of adaughter board19033, which is in electrical communication with each of theforce sensing ports19003. Each of theforce sensing ports19003 further includes one or moreelectrical contacts19009 configured to engage an instrument plug.
Referring now toFIG. 48, a logic diagram of a process depicting a control program or a logic configuration for detecting, identifying, and managing instruments connected to various ports of anenergy module19039 is depicted in accordance with at least one aspect of the present disclosure. First, the control circuit uses at least one of the ports ofFIGS. 38-47 to detect that an instrument has been connected19040. The control circuit then identifies the specific type of instrument that has been connected to the energy module based on signals received from thenumerous port configurations19041. For example, if a hand instrument or lap instrument are connected, the respective instrument connectors engage with the ports differently, thereby sending different signals to the control circuit. The control circuit then commands the energy module to display prompts on a user interface corresponding to the specific type of instrument that has been connected to theenergy module19042. Once the user follows all of the corresponding prompts, the control circuit commands the port to illuminate, thereby communicating that it is active, or inactive. If it is inactive, the lights are used to visually communicate any associated error to theuser19043. For example, the port might illuminate red if monopolar instrument is detected but no corresponding neutral electrode is detected. The control circuit then checks for the presence of any instrumentspecific EEPROM19044. If instrument specific EEPROM is detected, thecontrol circuit19033 of theenergy module19004 will read and write to the EEPROM as appropriate. If no instrument specific EEPROM is detected, the control circuit commands energy module into astandard instrument mode19045.
Referring now toFIGS. 49A-49E, a block diagram of a system for detecting instruments to aenergy module19000 using radio frequency identification (RFID) circuits is depicted in accordance with at least one aspect of the present disclosure. A user initiates the detection sequence via a display of auser interface19050 of the RFID enabledenergy module19000 by selecting apairing mode option19051, as is depicted inFIG. 49A. Selecting thepairing mode option19051 will transition theuser interface19050 to another display which prompts the user to pair a device, as is further depicted inFIG. 49B. According to the non-limiting aspect ofFIG. 49C, anRFID circuit19046 is affixed to an RFID enabledinstrument19047, and anRFID scanner19048 is affixed to an RFID enabledenergy module19000. Having initiated the pairing mode, the user positions theRFID circuit19046 affixed to the RFID enabledinstrument19047 in proximity to theRFID scanner19048 of the RFID enabledenergy module19000, as is depicted inFIG. 49C. Additionally or alternatively, anRFID circuit19046 could be affixed toinventory management paperwork19049 associated with theinstrument19047, as is depicted inFIG. 49D. Accordingly, a user could initiate pairing mode and position theRFID circuit19046 of theinventory management paperwork19049 in proximity to theRFID scanner19048 of the RFID enabled energy module, thereby pairing the RFID enabledinstrument19047 to the RFID enabledenergy module19000. Upon scanning theinstrument19047 orpaperwork19049 to thereader19048 of theenergy module19004, theuser interface19050 of the RFID enabledenergy module19000 will provide a visual confirmation19058 that the RFID enabledinstrument19047 has been successfully detected by and paired to the RFID enabledenergy module19000, as is depicted inFIG. 49E. Once the RFID enabledinstrument19047 is detected, the control circuit will subsequently identify the RFID enabledinstrument19047 and communicate any relevant messages to the user.
In some non-limiting aspects, the RFID circuits store data associated with each particular RFID enabled instrument. For example, the RFID circuits might store data associated with the instrument's use, including a number of runs performed, the amount of time the device has been used, and/or the like. Accordingly, the RFID enabled energy module might be programmed to preclude the pairing of RFID enabled instruments that have exceeded a predetermined use threshold. Further non-limiting aspects include RFID circuits include data associated with the instrument's compatibility. Accordingly, RFID enabled energy module will preclude the pairing of RFID enabled instruments that cannot, or should not, be connected via the aforementioned port configurations. Still other non-limiting aspects of an RFID enabled energy module that includes an RFID circuit within the energy module itself. For example, the RFID circuit can be used to track anenergy module19000 throughout the hospital. Similarly, other non-limiting aspects include RFID circuits that are further configured to interact with an inventory management system. For example, the RFID circuits could be used to track the utilization of each RFID enabled instrument and energy module. In such non-limiting aspects, when the number of useable instruments falls below a minimum threshold determined by the hospital, the inventory management system is configured to order more instruments.
Referring now toFIGS. 50A-50E, a block diagram of a system for detecting instruments to aenergy module19000 using a battery installation process is depicted in accordance with at least one aspect of the present disclosure. A wirelessly enabledinstrument19054 includes awireless communication module19052, as is depicted inFIG. 50C, and a wirelessly enabledenergy module19000 includes wireless receiver configured to receive a wireless signal. Thewireless module19052 can be configured to communicate via wireless local access network (WLAN), radio frequency (RF), Bluetooth, microwave, and/or cellular network; although other forms of wireless communication are contemplated by the present disclosure. The wirelessly enabledinstrument19054 ofFIG. 50C is configured to accommodate aremovable battery19056, as is depicted inFIG. 50D. When theremovable battery19056 is installed, the wirelessly enabledinstrument19054 establishes an electrical communication with thewireless communication module19052. For example, the instrument depicted inFIG. 50C includes a cavity in the back designed to accommodate theremovable battery19056. However, alternate configurations of the wirelessly enabledinstrument19054 andremovable battery19056 are also contemplated by the present disclosure.
As is depicted inFIG. 50A, a user initiates the detection sequence via auser interface19050 of the wirelessly enabled energy module by selecting apairing mode option19051. The selection of thepairing mode option19051 commences the process of pairing, as is further depicted inFIG. 50B. Having initiated the pairing mode, the user installs aremovable battery19056 into the cavity wirelessly enabledinstrument19054, as depicted inFIG. 50C. When the battery is installed, electrical communication is established and thewireless communication module19052 is activated, as depicted inFIG. 50D. Once thewireless communication module19052 is activated, it sends a wireless signal to the wireless receiver of the wirelessly enabled energy module, thereby pairing the wirelessly enabledinstrument19054. Accordingly, theuser interface19050 of the wirelessly enabled energy module will provide a visual confirmation19058 that the wirelessly enabledinstrument19054 has been successfully detected by and paired to the wirelessly enabled energy module, as is depicted inFIG. 50E. Once the wirelessly enabledinstrument19054 is detected, the control circuit will subsequently identify the wirelessly enabledinstrument19054 and communicate any relevant messages to the user.
Referring now toFIG. 51, a circuit diagram of an electrical circuit configured to detect whether an instrument is connected to aenergy module19000 is depicted in accordance with at least one aspect of the present disclosure. According to the aspect ofFIG. 51, theenergy module19000 includes a patientisolated side19066 and asecondary side19068. Theenergy module19000 has afirst port receptacle19070 and asecond port receptacle19072, each of which are serve as the termination point of a respective half of a logic circuit. Thefirst port receptacle19070 andsecond port receptacle19072 further constitute opposing ends of an open switch configured to receive apin19074 of an instrument. The circuit diagram ofFIG. 51 includes afirst logic gate19078 and asecond logic gate19079. Although thelogic gates19078 depicted in the logic flow diagram ofFIG. 51 are “AND gates,” the present disclosure further contemplates aspects that include “OR gates,” “NOT gates,” “NAND gates,” “NOR gates,” “EOR gates,” and/or the like. Afirst power supply19076 is configured to provide each of thefirst logic gate19078 andsecond logic gate19079 with a first input that is “high” when theenergy module19000 is active. Although thefirst power supply19076 depicted inFIG. 51 is 6V, the specific value can vary depending on the preferred application. A first half of the logic circuit connected to thefirst port receptacle19070 includes a pull-down resistor19080, and a poweractive ground19082. A second half of the logic circuit connected to thesecond port receptacle19072 includes asecond power supply19084, and a pull-upresistor19086. Although thesecond power supply19084 depicted inFIG. 51 is 12V, the specific value can vary depending on the preferred application. Both the pull upresistor19086 and pull downresistor19080 are each specifically configured to define a second input of each thelogic gates19078,19079 in the absence of a driving signal. Accordingly, the specific values of the pull upresistor19086 and pull downresistor19080 can vary depending on the preferred application.
According to the non-limiting aspect ofFIG. 51, when no instrument is connected to theenergy module19000, the switch remains open and the pull upresistor19086 and pull downresistor19080 both produce a second input that is “low” to each of thelogic gates19078,19079, respectively. However, when an instrument is connected to theenergy module19000, thepin19074 of the instrument establishes an electrical connectivity between thefirst port receptacle19070 andsecond port receptacle19072, thereby shorting the logic circuit and closing the switch. Once the switch is closed, thesecond power supply19084 is able to provide a second input that is “high” to each of thelogic gates19078,19079. When both the first and second input of each of thelogic gates19078,19079 are “high,” the requisite logic condition of each of thelogic gates19078,19079 is satisfied and an output signal is sent by each of thelogic gates19078,19079 in response. In the circuit ofFIG. 51, thefirst logic gate19078 sends an output signal indicating the presence of thepin19074 to a control circuit such as amicroprocessor19090. Thesecond logic gate19078 sends an output signal indicating that a “cut” button of the instrument has been pressed to themicroprocessor19092. Each of the output signals are sent through an opto-isolator19088, which is used to transfer the resulting electrical signal to the control circuit. Opto-isolators19088 use light to transmit the signal, thus protecting thecontrol circuit19090 and other components of theenergy module19000 from high voltages that might adversely affect the system. However, other non-limiting aspects of the present disclosure exclude opto-isolators19088. In response to receiving the either output signal from the opto-isolator19088, the control circuit is configured to detect the presence of the instrument within the port, and may identify and manage it accordingly. Additionally, the circuit ofFIG. 51 is further configured to detect the presence of an instrument when a “cut” button is pressed on the instrument. When a user presses a “cut” button on the instrument, a cutting voltage (VCUT) is sent as a “high” input to thelogic gate19079 compared to the 6V provided by thefirst power source19076, thereby satisfying the requisite logic condition of thelogic gate19078 and sending an output signal to themicroprocessor19092 indicating that an instrument is present.
Referring now toFIG. 52, a circuit diagram of an electrical circuit configured to detect whether an instrument is connected to aenergy module19000 is depicted in accordance with another aspect of the present disclosure. The circuit ofFIG. 52 is similar to the circuit ofFIG. 51, includingfirst port receptacle19070, asecond port receptacle19072, afirst logic gate19078, asecond logic gate19079, afirst power supply19076, a pull-down resistor19080, a poweractive ground19082, asecond power supply19084, and a pull-upresistor19086. However, the circuit ofFIG. 52 further includes a separateintegrated circuit19094 on the patient isolatedside19066 of theenergy module19000, configured to receive both output signals provided by thefirst logic gate19078 andsecond logic gate19079, respectively. For example, theintegrated circuit19094 can be a microprocessor, an FPGA, or an ASIC, and/or the like. Theintegrated circuit19066 of the circuit ofFIG. 52 is incorporated onto the patient isolatedside19066 of theenergy module19000. Accordingly, the integrated circuit can be independently receive and process signals from thefirst logic gate19078 andsecond logic gate19079, before they are sent for further processing by themicroprocessor19090. Therefore, themicroprocessor19090 receives a previously processed signal regarding the detection and identification of the instrument connected to theenergy module19000 and manage it accordingly.
Referring now toFIG. 53, a circuit diagram of an electrical circuit configured to detect whether an instrument is connected to aenergy module19000 is depicted in accordance with still another aspect of the present disclosure. The circuit ofFIG. 53 differs from those ofFIGS. 51 and 52 in that it includes only afirst logic gate19068, and a “cut” or “coagulate button”19096. Afirst power supply19076 is configured to provide thefirst logic gate19078 with a first input that is “high” when theenergy module19000 is active. Although thefirst power supply19076 depicted inFIG. 51 is 6V, the specific value can vary depending on the preferred application. Additionally, the circuit includes asecond power supply19084, and a pull-upresistor19086. Although thesecond power supply19084 depicted inFIG. 51 is 12V, the specific value can vary depending on the preferred application. The pull upresistor19086 is specifically configured to define a second input of each thefirst logic gate19078 in the absence of a driving signal. Accordingly, the specific value of the pull upresistor19086 can vary depending on the preferred application.
According to the non-limiting aspect ofFIG. 53, when the “cut” or “coagulate” button19096 is not pressed, the switch remains open and the pull upresistor19086 produces a second input that is “low” to thefirst logic gate19078. However, when a user presses the “cut” or “coagulate” button19096, the switch is closed. Once the switch is closed, thesecond power supply19084 is able to provide a second input that is “high” to each of thelogic gates19078,19079. When both the first and second input of each of thefirst logic gate19078 is “high,” the requisite logic condition of each of thefirst logic gate19078 is satisfied and an output signal is sent by thefirst logic gate19078 in response. In the circuit ofFIG. 53, thefirst logic gate19078 sends an output signal indicating that a “cut” button of the instrument has been pressed to themicroprocessor19092. The output signals are sent through an opto-isolator19088, which is used to transfer the resulting electrical signal to the control circuit. Opto-isolators19088 use light to transmit the signal, thus protecting thecontrol circuit19090 and other components of theenergy module19000 from high voltages that might adversely affect the system. However, other non-limiting aspects of the present disclosure exclude opto-isolators19088. In response to receiving the either output signal from the opto-isolator19088, the control circuit is configured to detect the presence of the instrument within the port, and may identify and manage it accordingly. Additionally, the circuit ofFIG. 51 is further configured to detect the presence of an instrument when a “cut” button is pressed on the instrument. When a user presses a “cut” button on the instrument, a cutting voltage (VCUT) is sent as a “high” input to thelogic gate19079 compared to the 6V provided by thefirst power source19076, thereby satisfying the requisite logic condition of thelogic gate19078 and sending an output signal to themicroprocessor19092 indicating that an instrument is present.
Referring now toFIG. 54, a block diagram of a system for detecting instruments to anenergy module19004 using a wireless capital equipment key is depicted in accordance with at least one aspect of the present disclosure. According to the non-limiting aspect ofFIG. 54, a wirelessly enabledinstrument19054 includes awireless communication module19052, and a wirelessly enabledenergy module19004 includes wirelesskey port19098 into which the user may connect awireless key19100 configured to receive a wireless signal. Thewireless key19100 further includes with a port on its end configured to accommodate anotherelectrosurgical instrument19101. Thus, use of thewireless key19100 enables the user to connect a first electrosurgical instrument wirelessly and a second electrosurgical instrument through a single port of the energy module. For example, the secondelectrosurgical instrument19101 ofFIG. 54 is a wired advanced energy instrument connected through thewireless key19100. Thewireless module19052 can be configured to communicate with thewireless key19100 via wireless local access network (WLAN), radio frequency (RF), Bluetooth, microwave, and/or cellular network; although other forms of wireless communication are contemplated by the present disclosure. Thewireless key19100 might further include an external facing port to facilitate the connection of a wired instrument. Alternatively, the wirelessly enabledenergy module19004 may include a universal serial bus (USB)port19102 and thewireless key19100 might include aUSB dongle19104. Thus, the user can wirelessly connect a first electrosurgical instrument through the USB port, and a second electrosurgical instrument through an instrument port of theenergy module19004.
According to the block diagram ofFIG. 54, a user initiates the detection sequence by connecting thewireless key19100 to the wirelesskey port19098. Once thewireless communication module19052 is activated, it sends a wireless signal to thewireless key19100 connected to the wirelesskey port19098 of the wirelessly enabled energy module, thereby detecting the wirelessly enabledinstrument19054. Once the wirelessly enabledinstrument19054 is detected, the control circuit will subsequently identify the wirelessly enabledinstrument19054 and communicate any relevant messages to the user.
Referring now toFIG. 55, a block diagram of a system for detecting instruments to anenergy module19004 using a wireless mesh network is depicted in accordance with at least one aspect of the present disclosure. According to the non-limiting aspect ofFIG. 55, a wirelessly enabledenergy module19004 is configured to establish a wireless mesh network via awireless router19106. When activated, the wirelessly enabledenergy module19004 broadcasts a mesh network toancillary wireless routers19106 and wireless repeaters19108, each configured to distribute the network within a wide range, thereby creating nodes. For example,wireless routers19106 and wireless repeaters19108 might be independently distributed throughout the OR as standalone devices. Alternatively, various other pieces of capital equipment might includeintegrated wireless routers19106 and wireless repeaters19108, and be configured to receive and redistribute the wireless signal received from the wirelessly enabledenergy module19004. For example, in one non-limiting aspect, thewireless routers19106 and repeaters19108 are integrated into thenodal instruments19110. Thus, the system is advantageous over traditional networks, because each of theancillary wireless routers19106 and repeaters19108 propagates the original signal from thecentral wireless router19106 of the wirelessly enabledenergy module19004, thereby enhancing the strength received by each ancillary device andnodal instrument19110. The resulting mesh network may be scaled while maintaining signal strength and the ability to send and receive data, due to its decentralized nature which improves the user's ability to streamline the OR.
According to the non-limiting aspect ofFIG. 55, a user initiates the detection sequence by activating the wirelessly enabledenergy module19004 and thus, thewireless router19106. Once thewireless router19106 of the wirelessly enabledenergy module19004 is activated, it sends a wireless signal to theancillary wireless routers19106 and repeaters19108, which in turn retransmit the signal to theother wireless routers19106 and repeaters19108, thereby creating a mesh network of surrounding nodes. When anodal instrument19110 receives the wireless signal from the mesh network, it communicates a confirmation signal including data associated with thenodal instrument19110 to the wirelessly enabledenergy module19004. Non-limiting examples of data associated with thenodal instrument19110 include information identifying the specific type ofnodal instrument19110, information identifying any specific connection requirements associated with thenodal instrument19110, and any additional connections that are required prior to using thenodal instrument19110. Upon receiving the confirmation signal, the wirelessly enabledenergy module19004 detects thenodal instrument19054. Upon detection, the control circuit will subsequently identify thenodal instrument19110 and communicate any relevant messages to the user.
EXAMPLESVarious aspects of the subject matter described herein are set out in the following numbered examples:
Example 1An energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises a sensor configured to detect the engagement of the electrical connector, wherein the port is further configured to detect the engagement of the electrical connector, send a detection signal to the control circuit, and supply electrical power from the energy module to the instrument; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to establish communication between the port and the control circuit.
Example 2The energy module of example 1, wherein the port further comprises an emitter configured to sense power supply voltage or current and thereafter transmit a beam of energy.
Example 3The energy module of example 2, wherein the sensor is further configured to receive the beam of energy from the emitter, wherein the electrical connector of the instrument is configured to prevent the sensor from receiving the beam energy when the electrical connector is engaged with the port, and wherein the sensor is configured to detect the engagement of the electrical connector when it does not receive the beam of energy.
Example 4The energy module of any one of examples 1 to 3, wherein the beam of energy has a wavelength in an infrared bandwidth.
Example 5The energy module of any one of examples 1 to 3, wherein the port further comprises a plurality of sensors and a plurality of emitters, wherein each of the plurality of sensors and each of the plurality of emitters is configured to detect a different configuration of electrical connectors.
Example 6The energy module of any one of examples 1 to 3, wherein the control circuit is further configured to access data from the data storage device, wherein the data is associated with an instrument detected by the sensor.
Example 7The energy module of example 6, wherein the control circuit is further configured to communicate a message based on the data associated with the instrument detected by the sensor.
Example 8The energy module of example 7, wherein the port further comprises an illumination element configured to emit light based on the message.
Example 9The energy module of example 7, wherein the message comprises an indication to change a setting of the energy module prior to using the instrument detected by the sensor.
Example 10The energy module of example 9, wherein the control circuit is further configured to automatically change the setting of the energy module based on the data associated with the instrument detected by the sensor.
Example 11The energy module of any one of examples 1 to 10, further comprising a plurality of ports defined within the housing, and wherein the control circuit is further configured to identify a specific type of instrument engaged with each of the plurality of ports.
Example 12The energy module of example 11, wherein at least one port of the plurality of ports is configured to engage with a monopolar laparoscopic instrument.
Example 13The energy module of any one of examples 11 to 12, wherein at least one port of the plurality of ports is configured to engage with a monopolar hand-switch activated instrument.
Example 14The energy module of any one of examples 11 to 13, wherein at least one port of the plurality of ports is configured to engage with a bipolar instrument.
Example 15The energy module of any one of examples 11 to 14, wherein the plurality of ports comprises a thru-beam configuration, a reflective configuration, or a diffuse-reflective configuration, or any combinations thereof.
Example 16An energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises: an emitter configured to transmit a beam of energy; an optical sensor configured to receive the beam of energy from the emitter, wherein the optical sensor is further configured detect the interruption of the beam of energy transmitted by the emitter and not received by the optical sensor, detect the engagement of the electrical connector, and send a detection signal to the control circuit when the optical sensor detects the engagement of the electrical connector; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to establish communication between the port and the control circuit.
Example 17The energy module of example 16, wherein the control circuit is further configured to access data from the data storage device, wherein the data is associated with the instrument detected by the optical sensor, and wherein the control circuit is further configured to communicate a message based on the data associated with the instrument detected by the optical sensor.
Example 18The energy module of any one of examples 16 to 18, wherein the message comprises an indication to change a setting of the energy module prior to using the instrument detected by the optical instrument.
Example 19The energy module of example 18, wherein the control circuit is further configured to automatically change the setting of the energy module based on the data associated with the instrument detected by the optical sensor.
Example 20An energy module, comprising: a housing; a control circuit positioned within the housing, wherein the control circuit is configured to communicate with a data storage device; a port defined within the housing, wherein the port is configured to engage an electrical connector of an instrument, wherein the port comprises: an emitter configured to transmit a beam of energy; an optical sensor configured to receive the beam of energy from the emitter, wherein the optical sensor is further configured to detect the interruption of the beam of energy transmitted by the emitter and not received by the optical sensor, detect the engagement of the electrical connector, and send a detection signal to the control circuit when the optical sensor detects the engagement of the electrical connector; and an illumination element, wherein the illumination element is configured to emit light when the port receives a message from the control circuit; and an interface circuit positioned within the housing, wherein the interface circuit is coupled to the port and the control circuit, and wherein the interface circuit is configured to receive a detection signal from the port and establish communication between the port and the control circuit; wherein the control circuit is further configured to access data associated with the instrument from the data storage device, and wherein the message indicates to change a setting of the energy module prior to using the instrument.
Example 21The energy module of example 20, wherein the control circuit is further configured to automatically change the setting of the energy module based on the data associated with the instrument detected by the optical sensor.
While several forms have been illustrated and described, it is not the intention of Applicant to restrict or limit the scope of the appended claims to such detail. Numerous modifications, variations, changes, substitutions, combinations, and equivalents to those forms may be implemented and will occur to those skilled in the art without departing from the scope of the present disclosure. Moreover, the structure of each element associated with the described forms can be alternatively described as a means for providing the function performed by the element. Also, where materials are disclosed for certain components, other materials may be used. It is therefore to be understood that the foregoing description and the appended claims are intended to cover all such modifications, combinations, and variations as falling within the scope of the disclosed forms. The appended claims are intended to cover all such modifications, variations, changes, substitutions, modifications, and equivalents.
The foregoing detailed description has set forth various forms of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such block diagrams, flowcharts, and/or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. Those skilled in the art will recognize that some aspects of the forms disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as one or more program products in a variety of forms, and that an illustrative form of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution.
Instructions used to program logic to perform various disclosed aspects can be stored within a memory in the system, such as dynamic random access memory (DRAM), cache, flash memory, or other storage. Furthermore, the instructions can be distributed via a network or by way of other computer readable media. Thus a machine-readable medium may include any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer), but is not limited to, floppy diskettes, optical disks, compact disc, read-only memory (CD-ROMs), and magneto-optical disks, read-only memory (ROMs), random access memory (RAM), erasable programmable read-only memory (EPROM), electrically erasable programmable read-only memory (EEPROM), magnetic or optical cards, flash memory, or a tangible, machine-readable storage used in the transmission of information over the Internet via electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.). Accordingly, the non-transitory computer-readable medium includes any type of tangible machine-readable medium suitable for storing or transmitting electronic instructions or information in a form readable by a machine (e.g., a computer).
As used in any aspect herein, the term “control circuit” may refer to, for example, hardwired circuitry, programmable circuitry (e.g., a computer processor including one or more individual instruction processing cores, processing unit, processor, microcontroller, microcontroller unit, controller, digital signal processor (DSP), programmable logic device (PLD), programmable logic array (PLA), or field programmable gate array (FPGA)), state machine circuitry, firmware that stores instructions executed by programmable circuitry, and any combination thereof. The control circuit may, collectively or individually, be embodied as circuitry that forms part of a larger system, for example, an integrated circuit (IC), an application-specific integrated circuit (ASIC), a system on-chip (SoC), desktop computers, laptop computers, tablet computers, servers, smart phones, etc. Accordingly, as used herein “control circuit” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment). Those having skill in the art will recognize that the subject matter described herein may be implemented in an analog or digital fashion or some combination thereof.
As used in any aspect herein, the term “logic” may refer to an app, software, firmware and/or circuitry configured to perform any of the aforementioned operations. Software may be embodied as a software package, code, instructions, instruction sets and/or data recorded on non-transitory computer readable storage medium. Firmware may be embodied as code, instructions or instruction sets and/or data that are hard-coded (e.g., nonvolatile) in memory devices.
As used in any aspect herein, the terms “component,” “system,” “module” and the like can refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.
As used in any aspect herein, an “algorithm” refers to a self-consistent sequence of steps leading to a desired result, where a “step” refers to a manipulation of physical quantities and/or logic states which may, though need not necessarily, take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It is common usage to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. These and similar terms may be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities and/or states.
A network may include a packet switched network. The communication devices may be capable of communicating with each other using a selected packet switched network communications protocol. One example communications protocol may include an Ethernet communications protocol which may be capable permitting communication using a Transmission Control Protocol/Internet Protocol (TCP/IP). The Ethernet protocol may comply or be compatible with the Ethernet standard published by the Institute of Electrical and Electronics Engineers (IEEE) titled “IEEE 802.3 Standard”, published in December, 2008 and/or later versions of this standard. Alternatively or additionally, the communication devices may be capable of communicating with each other using an X.25 communications protocol. The X.25 communications protocol may comply or be compatible with a standard promulgated by the International Telecommunication Union-Telecommunication Standardization Sector (ITU-T). Alternatively or additionally, the communication devices may be capable of communicating with each other using a frame relay communications protocol. The frame relay communications protocol may comply or be compatible with a standard promulgated by Consultative Committee for International Telegraph and Telephone (CCITT) and/or the American National Standards Institute (ANSI). Alternatively or additionally, the transceivers may be capable of communicating with each other using an Asynchronous Transfer Mode (ATM) communications protocol. The ATM communications protocol may comply or be compatible with an ATM standard published by the ATM Forum titled “ATM-MPLS Network Interworking 2.0” published August 2001, and/or later versions of this standard. Of course, different and/or after-developed connection-oriented network communication protocols are equally contemplated herein.
Unless specifically stated otherwise as apparent from the foregoing disclosure, it is appreciated that, throughout the foregoing disclosure, discussions using terms such as “processing,” “computing,” “calculating,” “determining,” “displaying,” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
One or more components may be referred to herein as “configured to,” “configurable to,” “operable/operative to,” “adapted/adaptable,” “able to,” “conformable/conformed to,” etc. Those skilled in the art will recognize that “configured to” can generally encompass active-state components and/or inactive-state components and/or standby-state components, unless context requires otherwise.
The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
Those skilled in the art will recognize that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to claims containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations.
In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that typically a disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms unless context dictates otherwise. For example, the phrase “A or B” will be typically understood to include the possibilities of “A” or “B” or “A and B.”
With respect to the appended claims, those skilled in the art will appreciate that recited operations therein may generally be performed in any order. Also, although various operational flow diagrams are presented in a sequence(s), it should be understood that the various operations may be performed in other orders than those which are illustrated, or may be performed concurrently. Examples of such alternate orderings may include overlapping, interleaved, interrupted, reordered, incremental, preparatory, supplemental, simultaneous, reverse, or other variant orderings, unless context dictates otherwise. Furthermore, terms like “responsive to,” “related to,” or other past-tense adjectives are generally not intended to exclude such variants, unless context dictates otherwise.
It is worthy to note that any reference to “one aspect,” “an aspect,” “an exemplification,” “one exemplification,” and the like means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect,” “in an aspect,” “in an exemplification,” and “in one exemplification” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.
Any patent application, patent, non-patent publication, or other disclosure material referred to in this specification and/or listed in any Application Data Sheet is incorporated by reference herein, to the extent that the incorporated materials is not inconsistent herewith. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.
In summary, numerous benefits have been described which result from employing the concepts described herein. The foregoing description of the one or more forms has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the precise form disclosed. Modifications or variations are possible in light of the above teachings. The one or more forms were chosen and described in order to illustrate principles and practical application to thereby enable one of ordinary skill in the art to utilize the various forms and with various modifications as are suited to the particular use contemplated. It is intended that the claims submitted herewith define the overall scope.