Movatterモバイル変換


[0]ホーム

URL:


US20200074233A1 - Automatically generating training data for a lidar using simulated vehicles in virtual space - Google Patents

Automatically generating training data for a lidar using simulated vehicles in virtual space
Download PDF

Info

Publication number
US20200074233A1
US20200074233A1US16/560,018US201916560018AUS2020074233A1US 20200074233 A1US20200074233 A1US 20200074233A1US 201916560018 AUS201916560018 AUS 201916560018AUS 2020074233 A1US2020074233 A1US 2020074233A1
Authority
US
United States
Prior art keywords
environment
vehicle
virtual
layer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/560,018
Inventor
Benjamin Englard
Miguel Alexander Peake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luminar Technologies Inc
Original Assignee
Luminar Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luminar Technologies IncfiledCriticalLuminar Technologies Inc
Priority to US16/560,018priorityCriticalpatent/US20200074233A1/en
Assigned to LUMINAR TECHNOLOGIES, INC.reassignmentLUMINAR TECHNOLOGIES, INC.ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS).Assignors: PEAKE, MIGUEL ALEXANDER, ENGLARD, BENJAMIN
Publication of US20200074233A1publicationCriticalpatent/US20200074233A1/en
Abandonedlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Automated training dataset generators that generate feature training datasets for use in real-world autonomous driving applications based on virtual environments are disclosed herein. The feature training datasets may be associated with training a machine learning model to control real-world autonomous vehicles. In some embodiments, an occupancy grid generator is used to generate an occupancy grid indicative of an environment of an autonomous vehicle from an imaging scene that depicts the environment. The occupancy grid is used to control the vehicle as the vehicle moves through the environment. In further embodiments, a sensor parameter optimizer may determine parameter settings for use by real-world sensors in autonomous driving applications. The sensor parameter optimizer may determine, based on operation of the autonomous vehicle, an optimal parameter setting of the parameter setting where the optimal parameter setting may be applied to a real-world sensor associated with real-world autonomous driving applications.

Description

Claims (20)

What is claimed is:
1. A non-transitory computer-readable medium storing thereon instructions executable by one or more processors to implement an occupancy grid generator for generating an occupancy grid indicative of an environment of a vehicle from an imaging scene that depicts the environment, the occupancy grid generator comprising:
a normal layer component configured to generate a normal layer based on the imaging scene, the normal layer defining a two-dimensional (2D) view of the imaging scene,
a label layer component configured to generate a label layer, the label layer being mapped to the normal layer and encoded with a first channel set, and the first channel set being associated with one or more text-based or state-based values of one or more objects of the environment; and
a velocity layer component configured to generate a velocity layer, the velocity layer being mapped to the normal layer, the velocity layer being encoded with a second channel set, and the second channel set being associated with one or more velocity values of one or more objects of the environment,
wherein the occupancy grid generator generates an occupancy grid based on the normal layer, the label layer, and the velocity layer, the occupancy grid being used to control the vehicle as the vehicle moves through the environment.
2. The non-transitory computer-readable medium ofclaim 1, wherein the normal layer is a top-down graphical view of the virtual environment.
3. The non-transitory computer-readable medium ofclaim 1, wherein the first channel set includes a plurality of first channels of a pixel.
4. The non-transitory computer-readable medium ofclaim 3, wherein the plurality of first channels of the pixel include red (R), green (G), and blue (B) channels.
5. The non-transitory computer-readable medium ofclaim 3, wherein each of the plurality of first channels of the pixel indicates a particular text-based or state-based value.
6. The non-transitory computer-readable medium ofclaim 1, wherein the one or more text-based or state-based values define one or more classifications or one or more states of the one or more objects of the environment.
7. The non-transitory computer-readable medium ofclaim 1, wherein the second channel set includes a plurality of second channels of a pixel.
8. The non-transitory computer-readable medium ofclaim 7, wherein the plurality of second channels of the pixel include a red (R) channel, a green (G) channel, and a blue (B) channel.
9. The non-transitory computer-readable medium ofclaim 8, wherein the R channel defines a first component for the velocity layer, the G channel defines a second component for the velocity layer, and the B channel defines a third component for the velocity layer.
10. The non-transitory computer-readable medium ofclaim 7, wherein each of the plurality of second channels of the pixel indicates a particular velocity value.
11. The non-transitory computer-readable medium ofclaim 1, wherein the one or more velocity values define corresponding one or more velocities of one or more vehicles moving within the environment.
12. The non-transitory computer-readable medium ofclaim 1, wherein the occupancy grid generator further comprises a height layer component configured to generate a height layer, the height layer mapped to the normal layer, the height layer encoded with a third channel set, the third channel set associated with one or more height values.
13. The non-transitory computer-readable medium ofclaim 12, wherein the third channel set includes a plurality of third channels of a pixel.
14. The non-transitory computer-readable medium ofclaim 13, wherein the plurality of third channels of the pixel include red (R), green (G), and blue (B) channels.
15. The non-transitory computer-readable medium ofclaim 13, wherein each of the plurality of third channels of the pixel indicates a particular height value.
16. The non-transitory computer-readable medium ofclaim 1, wherein the imaging scene of the virtual environment is a frame in a set of frames, the set of frames defining the operation of the virtual vehicle within the virtual environment.
17. The non-transitory computer-readable medium ofclaim 16, wherein the set of frames form a video of the virtual vehicle operating in the virtual environment.
18. The non-transitory computer-readable medium ofclaim 1, wherein the environment is a virtual environment.
19. The non-transitory computer-readable medium ofclaim 1, wherein the environment is a real-world environment.
20. An occupancy grid generation method for generating an occupancy grid indicative of an environment of a vehicle from an imaging scene that depicts the environment, the occupancy grid generation method comprising:
generating a normal layer based on the imaging scene, the normal layer defining a two-dimensional (2D) view of the imaging scene,
generating a label layer, the label layer being mapped to the normal layer and encoded with a first channel set, and the first channel set being associated with one or more text-based or state-based values of one or more objects of the environment;
generating a velocity layer, the velocity layer being mapped to the normal layer, the velocity layer being encoded with a second channel set, and the second channel set being associated with one or more velocity values of one or more objects of the environment; and
generating an occupancy grid based on the normal layer, the label layer, and the velocity layer, the occupancy grid being used to control the vehicle as the vehicle moves through the environment.
US16/560,0182018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual spaceAbandonedUS20200074233A1 (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
US16/560,018US20200074233A1 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US201862726841P2018-09-042018-09-04
US16/560,018US20200074233A1 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space

Publications (1)

Publication NumberPublication Date
US20200074233A1true US20200074233A1 (en)2020-03-05

Family

ID=69639924

Family Applications (3)

Application NumberTitlePriority DateFiling Date
US16/560,018AbandonedUS20200074233A1 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space
US16/559,945Active2041-03-05US11521009B2 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space
US16/560,046AbandonedUS20200074230A1 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space

Family Applications After (2)

Application NumberTitlePriority DateFiling Date
US16/559,945Active2041-03-05US11521009B2 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space
US16/560,046AbandonedUS20200074230A1 (en)2018-09-042019-09-04Automatically generating training data for a lidar using simulated vehicles in virtual space

Country Status (1)

CountryLink
US (3)US20200074233A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11126891B2 (en)*2019-09-112021-09-21Toyota Research Institute, Inc.Systems and methods for simulating sensor data using a generative model
US11126199B2 (en)*2018-04-162021-09-21Baidu Usa LlcLearning based speed planner for autonomous driving vehicles
US11216669B1 (en)*2020-01-162022-01-04Outsight SASingle frame motion detection and three-dimensional imaging using free space information
US20220315036A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcObject tracking by generating velocity grids
US20220315049A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcMachine learning algorithm predicton of movements of simulated objects by using a velocity grid created in a simulation
US20220413126A1 (en)*2021-06-242022-12-29ForSight Technologies Inc.Terahertz sensors and related systems and methods
US11727169B2 (en)*2019-09-112023-08-15Toyota Research Institute, Inc.Systems and methods for inferring simulated data
DE102023201982A1 (en)2023-03-062024-09-12Robert Bosch Gesellschaft mit beschränkter Haftung Method for machine learning-based development of optimized sensors

Families Citing this family (153)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2017118907A1 (en)*2016-01-052017-07-13Mobileye Vision Technologies Ltd.Systems and methods for estimating future paths
US20190155291A1 (en)*2016-12-232019-05-23Faraday&Future Inc.Methods and systems for automated driving system simulation, validation, and implementation
WO2018176000A1 (en)2017-03-232018-09-27DeepScale, Inc.Data synthesis for autonomous control systems
US11157441B2 (en)2017-07-242021-10-26Tesla, Inc.Computational array microprocessor system using non-consecutive data formatting
US11893393B2 (en)2017-07-242024-02-06Tesla, Inc.Computational array microprocessor system with hardware arbiter managing memory requests
US11409692B2 (en)2017-07-242022-08-09Tesla, Inc.Vector computational unit
US10671349B2 (en)2017-07-242020-06-02Tesla, Inc.Accelerated mathematical engine
US11334762B1 (en)*2017-09-072022-05-17Aurora Operations, Inc.Method for image analysis
US10877476B2 (en)*2017-11-302020-12-29Tusimple, Inc.Autonomous vehicle simulation system for analyzing motion planners
US12307350B2 (en)2018-01-042025-05-20Tesla, Inc.Systems and methods for hardware-based pooling
JP7133926B2 (en)*2018-01-152022-09-09キヤノン株式会社 Information processing device, system, information processing method
US11561791B2 (en)2018-02-012023-01-24Tesla, Inc.Vector computational unit receiving data elements in parallel from a last row of a computational array
US10877152B2 (en)*2018-03-272020-12-29The Mathworks, Inc.Systems and methods for generating synthetic sensor data
US10884422B2 (en)*2018-04-162021-01-05Baidu Usa LlcMethod for generating trajectories for autonomous driving vehicles (ADVS)
US10839262B2 (en)*2018-04-242020-11-17Here Global B.V.Machine learning a feature detector using synthetic training data
US11215999B2 (en)2018-06-202022-01-04Tesla, Inc.Data pipeline and deep learning system for autonomous driving
US11361457B2 (en)2018-07-202022-06-14Tesla, Inc.Annotation cross-labeling for autonomous control systems
US10768629B2 (en)2018-07-242020-09-08Pony Ai Inc.Generative adversarial network enriched driving simulation
US11636333B2 (en)2018-07-262023-04-25Tesla, Inc.Optimizing neural network structures for embedded systems
US11562231B2 (en)2018-09-032023-01-24Tesla, Inc.Neural networks for embedded devices
US11508049B2 (en)*2018-09-132022-11-22Nvidia CorporationDeep neural network processing for sensor blindness detection in autonomous machine applications
WO2020069517A2 (en)2018-09-302020-04-02Strong Force Intellectual Capital, LlcIntelligent transportation systems
IL316003A (en)2018-10-112024-11-01Tesla IncSystems and methods for training machine models with augmented data
US10754030B2 (en)*2018-10-232020-08-25Baidu Usa LlcMethods and systems for radar simulation and object classification
US11196678B2 (en)2018-10-252021-12-07Tesla, Inc.QOS manager for system on a chip communications
US10861176B2 (en)*2018-11-272020-12-08GM Global Technology Operations LLCSystems and methods for enhanced distance estimation by a mono-camera using radar and motion data
US12001764B2 (en)2018-11-302024-06-04BlueOwl, LLCSystems and methods for facilitating virtual vehicle operation corresponding to real-world vehicle operation
US11593539B2 (en)*2018-11-302023-02-28BlueOwl, LLCSystems and methods for facilitating virtual vehicle operation based on real-world vehicle operation data
US11816585B2 (en)2018-12-032023-11-14Tesla, Inc.Machine learning models operating at different frequencies for autonomous vehicles
US11537811B2 (en)2018-12-042022-12-27Tesla, Inc.Enhanced object detection for autonomous vehicles based on field view
US11610117B2 (en)2018-12-272023-03-21Tesla, Inc.System and method for adapting a neural network model on a hardware platform
CN109858369A (en)*2018-12-292019-06-07百度在线网络技术(北京)有限公司Automatic Pilot method and apparatus
US11656620B2 (en)*2018-12-312023-05-23Luminar, LlcGenerating environmental parameters based on sensor data using machine learning
US11332007B2 (en)*2019-01-032022-05-17Toyota Motor Engineering & Manufacturing North America, Inc.Vehicle speed control using speed maps
US10997461B2 (en)2019-02-012021-05-04Tesla, Inc.Generating ground truth for machine learning from time series elements
US11150664B2 (en)2019-02-012021-10-19Tesla, Inc.Predicting three-dimensional features for autonomous driving
US10829114B2 (en)*2019-02-062020-11-10Ford Global Technologies, LlcVehicle target tracking
US11567514B2 (en)2019-02-112023-01-31Tesla, Inc.Autonomous and user controlled vehicle summon to a target
US10860878B2 (en)*2019-02-162020-12-08Wipro LimitedMethod and system for synthesizing three-dimensional data
US10956755B2 (en)2019-02-192021-03-23Tesla, Inc.Estimating object properties using visual image data
US11440471B2 (en)*2019-03-212022-09-13Baidu Usa LlcAutomated warning system to detect a front vehicle slips backwards
US11016496B2 (en)2019-04-102021-05-25Argo AI, LLCTransferring synthetic LiDAR system data to real world domain for autonomous vehicle training applications
EP3736741B1 (en)2019-05-062025-02-12Dassault SystèmesExperience learning in virtual world
EP3736740B1 (en)*2019-05-062025-02-12Dassault SystèmesExperience learning in virtual world
US11254312B2 (en)2019-06-072022-02-22Tusimple, Inc.Autonomous vehicle simulation system
DE102019209535A1 (en)*2019-06-282020-12-31Robert Bosch Gmbh Method for providing a digital road map
US11453404B2 (en)*2019-09-052022-09-27Baidu Usa LlcGear based vehicle load inference system
JP7414434B2 (en)*2019-09-102024-01-16株式会社日立製作所 Recognition model distribution system and recognition model update method
US20210097731A1 (en)*2019-09-262021-04-01Apple Inc.Presenting environment based on physical dimension
EP3822913B1 (en)*2019-11-142024-09-25Continental Autonomous Mobility Germany GmbHSpatial aware object detection by flash lidar and camera fusion based super-resolution
EP3832525A1 (en)*2019-12-032021-06-09Aptiv Technologies LimitedVehicles, systems, and methods for determining an entry of an occupancy map of a vicinity of a vehicle
US11276179B2 (en)*2019-12-182022-03-15Zoox, Inc.Prediction on top-down scenes based on object motion
CN111144015A (en)*2019-12-302020-05-12吉林大学Method for constructing virtual scene library of automatic driving automobile
CN113128303A (en)*2019-12-312021-07-16华为技术有限公司Automatic driving method, related equipment and computer readable storage medium
WO2021150497A1 (en)2020-01-202021-07-29BlueOwl, LLCApplying occurrence outcomes to virtual character telematics
US11170568B2 (en)*2020-01-232021-11-09Rockwell Collins, Inc.Photo-realistic image generation using geo-specific data
US11042369B1 (en)2020-02-032021-06-22Architecture Technology CorporationSystems and methods for modernizing and optimizing legacy source code
US11670190B1 (en)*2020-02-032023-06-06Architecture Technology CorporationTraining apparatus using augmented and virtual reality
JP2021131652A (en)*2020-02-192021-09-09株式会社トプコン Data structures, recording media, programs, and systems
US11347968B2 (en)*2020-02-252022-05-31Ford Global Technologies, LlcImage enhancement for realism
US12367086B2 (en)*2020-03-112025-07-22Aurora Operations, Inc.Generating autonomous vehicle simulation data from logged data
US12204823B1 (en)2020-03-112025-01-21Aurora Operations, Inc.Generating perception scenarios for an autonomous vehicle from simulation data
US11966673B2 (en)*2020-03-132024-04-23Nvidia CorporationSensor simulation and learning sensor models with generative machine learning methods
US12269462B1 (en)*2020-03-162025-04-08Zoox, Inc.Spatial prediction
US11493625B2 (en)*2020-03-162022-11-08Nio Technology (Anhui) Co., Ltd.Simulated LiDAR devices and systems
US12001958B2 (en)*2020-03-192024-06-04Nvidia CorporationFuture trajectory predictions in multi-actor environments for autonomous machine
WO2021195059A1 (en)2020-03-272021-09-30BlueOwl, LLCSystems and methods for providing renewing carbon offsets for a user driving period
US11314495B2 (en)*2020-03-302022-04-26Amazon Technologies, Inc.In-vehicle synthetic sensor orchestration and remote synthetic sensor service
US12275427B1 (en)*2020-04-212025-04-15Google LlcEvaluating driving data using autonomous vehicle control system
KR20210132496A (en)*2020-04-272021-11-04한국전자기술연구원Image-based lane detection and ego-lane recognition method and apparatus
US11443138B2 (en)*2020-05-072022-09-13Intel CorporationSystems and methods for virtual camera configuration
CN111581887B (en)*2020-05-162023-04-07郑州轻工业大学Unmanned vehicle intelligent training method based on simulation learning in virtual environment
CN111812674B (en)*2020-06-082024-04-05北京经纬恒润科技股份有限公司Laser radar simulation method and device
US12422791B2 (en)*2020-06-122025-09-23Massachusetts Institute Of TechnologySimulation-based training of an autonomous vehicle
GB2596080A (en)*2020-06-162021-12-22Sony Europe BvApparatus, method and computer program product for predicting whether an object moving across a surface will reach a target destination
US20200324794A1 (en)*2020-06-252020-10-15Intel CorporationTechnology to apply driving norms for automated vehicle behavior prediction
US11989020B1 (en)*2020-07-142024-05-21Aurora Operations, Inc.Training machine learning model(s), in simulation, for use in controlling autonomous vehicle(s)
CN111624583B (en)*2020-07-302020-10-30之江实验室 A Fast Numerical Simulation Method for Lidar Ranging Considering Velocity Factors
EP3951673A1 (en)*2020-08-042022-02-09Aptiv Technologies LimitedMethod and system of collecting training data suitable for training an autonomous driving system of a vehicle
US11810364B2 (en)*2020-08-102023-11-07Volvo Car CorporationAutomated road damage detection
CN116324735A (en)*2020-08-242023-06-23西门子工业软件有限责任公司Real-world scene based verification software driving system
US11938957B2 (en)2020-08-242024-03-26Motional Ad LlcDriving scenario sampling for training/tuning machine learning models for vehicles
JP2022044383A (en)*2020-09-072022-03-17本田技研工業株式会社Model parameter learning method and movement mode parameter determination method
US12289200B2 (en)2020-09-082025-04-29Amazon Technologies, Inc.Virtual vehicle domain control unit (DCU) service and orchestration environments
WO2022063774A1 (en)*2020-09-232022-03-31Continental Automotive GmbhA continuously, adaptive detection computer-implemented method of environment features in autonomous and assisted driving of an ego-vehicle
US11270164B1 (en)*2020-09-242022-03-08Ford Global Technologies, LlcVehicle neural network
CN112347851B (en)*2020-09-302023-02-21山东理工大学 Construction method of multi-target detection network, multi-target detection method and device
CN112269385B (en)*2020-10-232021-09-07北京理工大学 Cloud unmanned vehicle dynamics control system and method
KR20220060404A (en)*2020-11-042022-05-11현대자동차주식회사Method and apparatus for generating test case for dynamic verification of autonomous driving system
US11654550B1 (en)*2020-11-132023-05-23X Development LlcSingle iteration, multiple permutation robot simulation
US11216752B1 (en)*2020-12-012022-01-04OctoML, Inc.Optimizing machine learning models
DE102020215535A1 (en)*2020-12-092022-06-09Robert Bosch Gesellschaft mit beschränkter Haftung Comparison of digital representations of driving situations of a vehicle
US12158524B2 (en)2020-12-142024-12-03Luminar Technologies, Inc.Generating scan patterns using cognitive lidar
US11731652B2 (en)*2020-12-152023-08-22Woven Planet North America, Inc.Systems and methods for reactive agent simulation
CN114692289A (en)*2020-12-312022-07-01华为技术有限公司Automatic driving algorithm testing method and related equipment
CN112734923B (en)*2021-01-182024-05-24国汽智控(北京)科技有限公司Automatic driving three-dimensional virtual scene construction method, device, equipment and storage medium
US20220242441A1 (en)*2021-02-022022-08-04Toyota Research Institute, Inc.Systems and methods for updating the parameters of a model predictive controller with learned operational and vehicle parameters generated using simulations and machine learning
US11975725B2 (en)2021-02-022024-05-07Toyota Research Institute, Inc.Systems and methods for updating the parameters of a model predictive controller with learned external parameters generated using simulations and machine learning
CN116917759A (en)*2021-02-112023-10-20索尼半导体解决方案公司Configuration control circuit and configuration control method
US12090672B2 (en)*2021-03-042024-09-17Google LlcJoint training of a narrow field of view sensor with a global map for broader context
GB2604381A (en)*2021-03-042022-09-07Airbus Operations LtdA method of training a neural network to control an aircraft system
US20220289217A1 (en)*2021-03-102022-09-15Ohio State Innovation FoundationVehicle-in-virtual-environment (vve) methods and systems for autonomous driving system
EP4308424A4 (en)*2021-03-152024-09-11Motional AD LLCBrake arbitration
EP4309040A4 (en)*2021-03-152024-10-02Motional AD LLC REAL-TIME INTEGRITY CHECKING OF GPU-ACCELERATED NEURAL NETWORK
US11743334B2 (en)2021-03-312023-08-29Amazon Technologies, Inc.In-vehicle distributed computing environment
CN115205610A (en)*2021-04-082022-10-18阿里巴巴新加坡控股有限公司Training method and training device for perception model and electronic equipment
CN113608172B (en)*2021-06-232023-12-29西安电子科技大学Airborne multifunctional radar working mode identification method based on improved K nearest neighbor
DE102021117086A1 (en)*2021-07-022023-01-05cogniBIT GmbH Simulation of road users with emotions
CN113436293B (en)*2021-07-132022-05-03浙江大学 A Conditional Generative Adversarial Network-Based Method for Generating Intelligent Grab Images
US11960292B2 (en)2021-07-282024-04-16Argo AI, LLCMethod and system for developing autonomous vehicle training simulations
WO2023009926A1 (en)*2021-07-282023-02-02Argo AI, LLCMethod and system for developing autonomous vehicle training simulations
JP7746058B2 (en)*2021-07-282025-09-30株式会社Nttデータオートモビリジェンス研究所 Simulator, learning device, and vehicle control device
WO2023010540A1 (en)*2021-08-062023-02-09深圳市大疆创新科技有限公司Method and apparatus for verifying scanning result of laser radar, and device and storage medium
US12005928B2 (en)*2021-08-102024-06-11Gm Cruise Holdings LlcDangerous road user detection and response
US12290751B2 (en)2021-08-172025-05-06Quanata, LlcSystems and methods for generating virtual maps in virtual games
US11504622B1 (en)2021-08-172022-11-22BlueOwl, LLCSystems and methods for generating virtual encounters in virtual games
US11969653B2 (en)2021-08-172024-04-30BlueOwl, LLCSystems and methods for generating virtual characters for a virtual game
US11896903B2 (en)2021-08-172024-02-13BlueOwl, LLCSystems and methods for generating virtual experiences for a virtual game
US11697069B1 (en)2021-08-172023-07-11BlueOwl, LLCSystems and methods for presenting shared in-game objectives in virtual games
US20230080178A1 (en)*2021-09-022023-03-16Northeastern UniversityAutomated assessment of cracks using lidar and camera data
CN115272994B (en)*2021-09-292023-07-25上海仙途智能科技有限公司Automatic driving prediction model training method, device, terminal and medium
KR102617418B1 (en)*2021-09-292023-12-27네이버랩스 주식회사Method, computer system, and computer program for reinforcement learning-based navigation adaptable to sensor configuration and robot shape
US12026229B2 (en)*2021-10-292024-07-02Volkswagen AktiengesellschaftGenerating synthetic training data for perception machine learning models using simulated environments
US11977385B2 (en)*2021-11-112024-05-07Gm Cruise Holdings LlcObstacle detection based on other vehicle behavior
US20230159033A1 (en)*2021-11-192023-05-25Motional Ad LlcHigh fidelity data-driven multi-modal simulation
US12393837B2 (en)*2021-11-292025-08-19Guangzhou Automobile Group Co., Ltd.Vehicle control method, electronic device and medium
US11790604B2 (en)*2021-12-142023-10-17Gm Cruise Holdings LlcMapping data to generate simulation road paint geometry
CN114359658A (en)*2021-12-152022-04-15深圳市优必选科技股份有限公司 Method, device, terminal device and storage medium for generating training data
US20230195970A1 (en)*2021-12-222023-06-22Gm Cruise Holdings LlcEstimating object kinematics using correlated data pairs
US20230205951A1 (en)*2021-12-232023-06-29Baidu Usa LlcSimulation obstacle vehicles with driving styles
US20230229826A1 (en)*2022-01-142023-07-20Argo Al, LLCMethod for assigning a lane relationship between an autonomous vehicle and other actors near an intersection
CN114162146B (en)*2022-02-092022-04-29苏州浪潮智能科技有限公司 Driving strategy model training method and automatic driving control method
US20230281354A1 (en)*2022-03-072023-09-07Woven By Toyota, Inc.System and method for providing autonomous driving simulation architecture with switchable models
DE102023104342A1 (en)2022-03-072023-09-07Woven By Toyota, Inc. Apparatus and method for modifying ground truth to check the accuracy of a machine learning model
US20230311932A1 (en)*2022-03-312023-10-05Zoox, Inc.Merging object and background radar data for autonomous driving simulations
US11574002B1 (en)*2022-04-042023-02-07Mindtech Global LimitedImage tracing system and method
CN114814871B (en)*2022-04-282024-11-08中国电子科技集团公司第五十四研究所 A collaborative localization method based on scene perception element semantics and knowledge base
US20230377348A1 (en)*2022-05-202023-11-23Tesla, Inc.Supplementing vision-based system training with simulated content
US12430236B2 (en)2022-07-292025-09-30Volkswagen Group of America Investments, LLCSystems and methods for monitoring progression of software versions and detection of anomalies
CN115390082B (en)*2022-08-302025-01-24同济大学 A global positioning method and system based on virtual descriptor
US20240092356A1 (en)*2022-09-142024-03-21Woven By Toyota, Inc.System and method for training a policy using closed-loop weighted empirical risk minimization
EP4365745A1 (en)*2022-11-042024-05-08AImotive Kft.Interface for processing of simulated sensor data
WO2024098163A1 (en)*2022-11-112024-05-16Waabi Innovation Inc.Neural hash grid based multi-sensor simulation
US12249028B2 (en)*2022-11-282025-03-11Velodyne Lidar Usa, Inc.Lidar scene generation for training machine learning models
GB2624926A (en)*2022-12-012024-06-05Continental Autonomous Mobility Germany GmbHA computer-implemented method for reducing false positives in a computer vision task and application thereof to motor vehicle exterior monitoring
KR20240098564A (en)*2022-12-212024-06-28현대오토에버 주식회사Apparatus and method for generating testcase for advanced driver assistance system
CN116091533B (en)*2023-01-032024-05-31中国人民解放军海军航空大学Laser radar target demonstration and extraction method in Qt development environment
EP4439488A1 (en)*2023-03-312024-10-02GEOTAB Inc.Systems and methods for detecting vehicle following distance
US11989949B1 (en)2023-03-312024-05-21Geotab Inc.Systems for detecting vehicle following distance
US12423864B2 (en)2023-03-312025-09-23Geotab Inc.Systems for detecting vehicle following distance
WO2025101342A1 (en)*2023-11-072025-05-15Nec Laboratories America, Inc.Detection of rare and unseen traffic participants and scene elements
JP2025110297A (en)*2024-01-152025-07-28三菱重工機械システム株式会社 Three-dimensional data estimation device and data processing algorithm evaluation device
US20250244452A1 (en)*2024-01-302025-07-31Hong Kong Applied Science And Technology Research Institute Co., Ltd.Method of Automatically Determining Sensor Placement in a Target Environment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10183679B2 (en)*2016-06-282019-01-22Volkswagen AktiengesellschaftApparatus, system and method for personalized settings for driver assistance systems
US10139823B2 (en)2016-09-132018-11-27Toyota Motor Engineering & Manufacturing North America, Inc.Method and device for producing vehicle operational data based on deep learning techniques
WO2018176000A1 (en)*2017-03-232018-09-27DeepScale, Inc.Data synthesis for autonomous control systems
DE112018002566T5 (en)2017-05-192020-01-30Movidius Ltd. METHODS, SYSTEMS AND DEVICES FOR IMPROVING THE FOLDING EFFICIENCY
US11256983B2 (en)*2017-07-272022-02-22Waymo LlcNeural networks for vehicle trajectory planning
US10970553B2 (en)2017-11-152021-04-06Uatc, LlcSemantic segmentation of three-dimensional data
WO2019152888A1 (en)2018-02-022019-08-08Nvidia CorporationSafety procedure analysis for obstacle avoidance in autonomous vehicle
WO2019191306A1 (en)*2018-03-272019-10-03Nvidia CorporationTraining, testing, and verifying autonomous machines using simulated environments
EP3561727A1 (en)2018-04-232019-10-30Aptiv Technologies LimitedA device and a method for extracting dynamic information on a scene using a convolutional neural network

Cited By (15)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US11126199B2 (en)*2018-04-162021-09-21Baidu Usa LlcLearning based speed planner for autonomous driving vehicles
US11126891B2 (en)*2019-09-112021-09-21Toyota Research Institute, Inc.Systems and methods for simulating sensor data using a generative model
US11727169B2 (en)*2019-09-112023-08-15Toyota Research Institute, Inc.Systems and methods for inferring simulated data
US11216669B1 (en)*2020-01-162022-01-04Outsight SASingle frame motion detection and three-dimensional imaging using free space information
US20220315048A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcObject tracking by generating velocity grids
US20220317300A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcObject tracking by generating velocity grids
US20220315049A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcMachine learning algorithm predicton of movements of simulated objects by using a velocity grid created in a simulation
US20220315036A1 (en)*2021-03-312022-10-06Gm Cruise Holdings LlcObject tracking by generating velocity grids
US11801865B2 (en)*2021-03-312023-10-31Gm Cruise Holdings LlcObject tracking by generating velocity grids
US11897502B2 (en)*2021-03-312024-02-13Gm Cruise Holdings LlcObject tracking by generating velocity grids
US11904891B2 (en)*2021-03-312024-02-20Gm Cruise Holdings LlcObject tracking by generating velocity grids
US11904892B2 (en)*2021-03-312024-02-20Gm Cruise Holdings LlcMachine learning algorithm predicton of movements of simulated objects by using a velocity grid created in a simulation
US20220413126A1 (en)*2021-06-242022-12-29ForSight Technologies Inc.Terahertz sensors and related systems and methods
US12436256B2 (en)*2021-06-242025-10-07Teradar, Inc.Terahertz sensors and related systems and methods
DE102023201982A1 (en)2023-03-062024-09-12Robert Bosch Gesellschaft mit beschränkter Haftung Method for machine learning-based development of optimized sensors

Also Published As

Publication numberPublication date
US20200074266A1 (en)2020-03-05
US11521009B2 (en)2022-12-06
US20200074230A1 (en)2020-03-05

Similar Documents

PublicationPublication DateTitle
US11521009B2 (en)Automatically generating training data for a lidar using simulated vehicles in virtual space
US20230251656A1 (en)Generating environmental parameters based on sensor data using machine learning
US11554785B2 (en)Driving scenario machine learning network and driving environment simulation
US12020476B2 (en)Data synthesis for autonomous control systems
US11312372B2 (en)Vehicle path prediction
JP7239703B2 (en) Object classification using extraterritorial context
US11150660B1 (en)Scenario editor and simulator
US10657391B2 (en)Systems and methods for image-based free space detection
US10175697B1 (en)Object identification and labeling tool for training autonomous vehicle controllers
US10745009B2 (en)Electronic apparatus for determining a dangerous situation of a vehicle and method of operating the same
US11275673B1 (en)Simulated LiDAR data
US20200160598A1 (en)Systems and Methods for Generating Synthetic Light Detection and Ranging Data via Machine Learning
US20220402521A1 (en)Autonomous path generation with path optimization
JP2021534484A (en) Procedural world generation
US10872228B1 (en)Three-dimensional object detection
US12044535B2 (en)Map selection for vehicle pose system
US12260573B2 (en)Adversarial approach to usage of lidar supervision to image depth estimation
US20240176930A1 (en)Increase simulator performance using multiple mesh fidelities for different sensor modalities
US11808582B1 (en)System processing scenario objects during simulation
US12298431B1 (en)Radar data masks in autonomous vehicle simulations
NL2039550B1 (en)Multi-view augmented reality
PaniA new benchmark for Anomaly Segmentation in driving scenes, using the CARLA simulator

Legal Events

DateCodeTitleDescription
ASAssignment

Owner name:LUMINAR TECHNOLOGIES, INC., FLORIDA

Free format text:ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ENGLARD, BENJAMIN;PEAKE, MIGUEL ALEXANDER;SIGNING DATES FROM 20180907 TO 20190925;REEL/FRAME:050567/0152

STPPInformation on status: patent application and granting procedure in general

Free format text:NON FINAL ACTION MAILED

STCBInformation on status: application discontinuation

Free format text:ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION


[8]ページ先頭

©2009-2025 Movatter.jp