CROSS-REFERENCE TO RELATED APPLICATIONSThis application claims the benefit of U.S. Provisional Application Ser. No. 62/440,208, filed 29 Dec. 2016, and U.S. application Ser. No. 15/856,971, filed 28 Dec. 2017, which is hereby incorporated by reference herein.
BACKGROUND OF THE INVENTIONThe disclosure relates generally to illumination, and more particularly, to control systems for a disinfecting light emitting diode (LED) lighting system and methods of regulating operations of the disinfecting LED lighting systems.
Light-emitting devices are a primary requirement in most indoor occupied environments to provide illumination of the area, of tasks being completed in the area, and of the area's occupants and objects. Alternative light sources have been created with additional performance factors in mind that utilize emitted light in different manners. Lighting fixtures and devices for horticulture, health, warmth, and disinfection have been demonstrated. In addition to being tuned for luminous efficacy of radiation, these lighting fixtures and devices are tuned to provide increased outputs of certain regions of radiation to accomplish the additional performance factor. In these lighting fixtures and devices that emit light for multiple functions, the light emissions can be balanced to achieve an acceptable level of each function. One of the functions can be general illumination (e.g., when the multiple-function lighting fixtures and devices are used in spaces occupied by humans), in which case, achieving a relatively high luminous efficacy of the emitted light is balanced not only against achieving desirable color characteristics of the emitted light, but also of achieving the one or more other functions to an acceptable or desired level. New laws and regulations around energy efficiency in residential and commercial spaces means that these multiple function light sources must also have control systems to balance energy efficiency in addition to their desired effects.
One new function of lighting is disinfecting, e.g. using blue light in combination with other light to emit what is perceived as white light. Unlike ultraviolet light (UV), white disinfecting light can be used on 24 hour/7 days without harming the occupants of a room. UV systems require extensive safety measures to prevent accidental exposure or unknown occupants and have emergency shut off switches in situations of accidental occupancy. UV systems include remote controlled robots and lockable rooms, which can only be used when a room is not occupied, which is not always feasible. Disinfecting white light does not require such safety features.
BRIEF DESCRIPTION OF THE INVENTIONA first aspect of the disclosure provides a control system for a disinfecting light system including a disinfecting light fixture, the control system including: a controller operably coupled to the disinfecting light fixture, the disinfecting light fixture illuminating a space, where the controller regulates an operation of the disinfecting light fixture by performing processes including at least one of: adjusting an amount of disinfecting energy provided to the space by the disinfecting light fixture in response to at least one of: determining an amount of disinfecting energy provided to the space by the disinfecting light fixture does not meet a disinfecting energy threshold, determining a sensed bacterial load of the space does not meet a bacterial load threshold, or determining the amount of disinfecting energy provided to the space by the disinfecting light fixture does not meet a preferred amount of disinfecting energy associated with a detected, environmental characteristic of the space; or adjusting an amount of illuminating light provided to the space by the disinfecting light fixture in response to determining the amount of illuminating light provided to the space by the disinfecting light fixture does not meet a preferred amount of illuminating light.
A second aspect of the disclosure provides a method of regulating operations of a disinfecting light fixture of a disinfecting light system, the method including: obtaining data relating to a space illuminated by the disinfecting light fixture, the data including at least one of: an amount of disinfecting energy provided to the space by the disinfecting light fixture, a bacterial load of the space illuminated by the disinfecting light fixture, or an environmental characteristic of the space; and adjusting at least one of: the amount of disinfecting energy provided to the space by the disinfecting light fixture in response to at least one of: determining the amount of disinfecting energy provided to the space by the disinfecting light fixture does not meet a disinfecting energy threshold, determining the bacterial load of the space does not meet a bacterial load threshold, or determining the amount of disinfecting energy provided to the space by the disinfecting light fixture does not meet a preferred amount of disinfecting energy associated with the environmental characteristic of the space; or an amount of illuminating light provided to the space by the disinfecting light fixture in response to determining the amount of illuminating light provided to the space by the disinfecting light fixture does not meet a preferred amount of illuminating light.
The illustrative aspects of the present disclosure are designed to solve the problems herein described and/or other problems not discussed.
BRIEF DESCRIPTION OF THE DRAWINGSThese and other features of this disclosure will be more readily understood from the following detailed description of the various aspects of the disclosure taken in conjunction with the accompanying drawings that depict various embodiments of the disclosure, in which:
FIG. 1 shows a schematic view of an illustrative environment including a disinfecting light system and a control system, according to embodiments of the disclosure.
FIG. 2 shows a flow chart of example processes for regulating disinfecting energy generated by a disinfecting light system within a space, according to embodiments of the disclosure.
FIG. 3 shows a flow chart of example additional processes for regulating disinfecting energy generated by a disinfecting light system within a space as shown inFIG. 2, according to embodiments of the disclosure.
FIG. 4 shows a flow chart of example processes for regulating illuminating light generated by a disinfecting light system within a space, according to embodiments of the disclosure.
FIG. 5 shows a flow chart of example processes for regulating disinfecting energy generated by a disinfecting light system within a space, according to additional embodiments of the disclosure.
FIG. 6 shows a schematic view of a disinfecting light system including a control system, according to embodiments of the disclosure.
FIG. 7 shows a schematic view of a control system including a controller that regulates disinfecting energy generated by a disinfecting light system, according to embodiments of the disclosure.
FIG. 8 shows a schematic view of an illustrative environment including a disinfecting light system and a control system, according to additional embodiments of the disclosure.
FIG. 9 shows a schematic view of an illustrative environment including a disinfecting light system, a control system and a single sensor, according to embodiments of the disclosure.
FIGS. 10 and 11 show schematic views of an illustrative environment including a disinfecting light system providing distinct amounts of disinfecting energy and/or illuminating light, according to embodiments of the disclosure.
FIGS. 12 and 13 show schematic views of an illustrative environment including a disinfecting light system providing distinct amounts of disinfecting energy and/or illuminating light, according to additional embodiments of the disclosure.
FIG. 14 shows a schematic view of an illustrative environment made up of a plurality of spaces in a single room of the environment, according to embodiments of the disclosure. The environment also includes a light system, a control system and a plurality of sensors.
FIG. 15 shows a schematic view of an illustrative environment made up of a plurality of spaces in two distinct rooms of the environment, according to embodiments of the disclosure. The environment also includes a light system, a control system and a plurality of sensors.
It is noted that the drawings of the disclosure are not to scale. The drawings are intended to depict only typical aspects of the disclosure, and therefore should not be considered as limiting the scope of the disclosure. In the drawings, like numbering represents like elements between the drawings.
DETAILED DESCRIPTION OF THE INVENTIONAs an initial matter, in order to clearly describe the current disclosure it will become necessary to select certain terminology when referring to and describing relevant components within the disclosure. When doing this, if possible, common industry terminology will be used and employed in a manner consistent with its accepted meaning. Unless otherwise stated, such terminology should be given a broad interpretation consistent with the context of the present application and the scope of the appended claims. Those of ordinary skill in the art will appreciate that often a particular component may be referred to using several different or overlapping terms. What may be described herein as being a single part may include and be referenced in another context as consisting of multiple components. Alternatively, what may be described herein as including multiple components may be referred to elsewhere as a single part.
As indicated above, the disclosure relates generally to illumination, and more particularly, to control systems for a disinfecting light emitting diode (LED) lighting system and methods of regulating operations of the disinfecting LED lighting systems.
These and other embodiments are discussed below with reference toFIGS. 1-15. However, those skilled in the art will readily appreciate that the detailed description given herein with respect to these Figures is for explanatory purposes only and should not be construed as limiting.
FIG. 1 shows a schematic view of an illustrative environment including a disinfecting light system and a control system. Specifically,FIG. 1 showsenvironment10 and a disinfectinglight system100 that may be at least partially positioned within and/or may interact withenvironment10. In the non-limiting example shown inFIG. 1,environment10 may be a room within a building. As discussed herein, disinfectinglight system100 may illuminateenvironment10, as well as provide disinfecting energy withinenvironment10 in order to disinfectenvironment10. It is understood that the term “environment” and “room” may be used interchangeably when discussing the non-limiting examples herein. Additionally, although shown as only a single room, it is understood thatenvironment10 may include a plurality of rooms and/or distinct areas that include disinfectinglight system100.
As shown in the non-limiting example ofFIG. 1,environment10 may include at least one of the items and/or objects included therein. Specifically, and at least partially dependent on the type of environment10 (e.g., room),environment10 may include a plurality of items and/or objects positioned withinenvironment10. For example,environment10 formed as a room may include awindow12 formed in one of a plurality ofwalls18 of environment. As such inFIG. 1, the window may provide an opening toenvironment10 which may allow sunlight or natural light20 to enter and/or be emitted intoenvironment10. Additionally, in non-limiting examples,environment10 may also include adoor22 to allow user(s) (FIGS. 12 and 13) to accessenvironment10 and/or the items or objects positioned therein. Additionally,environment10 may also include achair24, desk or workstation26 (hereafter, “workstation26”), andcabinets28. In a non-limiting example,workstation26 may be a “clean” or “sterile” workstation or area that may be used for specific, sterile procedures and/or processing (e.g., sterile table for microchip inspection). As discussed herein, the items and/or objects (e.g.,window12,chair24,workstation26, and so on) may be accounted for when regulating the operations of disinfectinglight system100, and more specifically, regulating the disinfecting energy and/or illuminating light provided toenvironment10 by disinfectinglight system100. Additionally, characteristics and/or properties ofenvironment10 may also be accounted for and/or may affect the regulation of operations of disinfectinglight system100, and more specifically the regulation of the disinfecting energy and/or illuminating light provided toenvironment10, as discussed herein. For example, and as discussed in detail herein, the color of paint onwalls18/door22, the amount of sun exposure forenvironment10 based onwindow12, the size ofenvironment10, and so on, may be accounted for and/or may affect the regulation of the disinfecting energy and/or illuminating light provided toenvironment10 by disinfectinglight system100.
Environment10 may include one or more spaces defined therein. For example,environment10 may include and/or be “divided” into a plurality ofdistinct spaces30,32. Specifically, and as shown in the non-limiting example ofFIG. 1, environment10 (e.g., room) may include afirst space30 and asecond space32. In this non-limiting example,second space32 may be included withinfirst space30. However, and as discussed herein,second space32 may be defined as distinct and/or unique fromfirst space30 by disinfectinglight system100. That is, thespaces30,32 ofenvironment10 may be based on and/or may be defined by, at least in part, disinfectinglight system100 ofenvironment10 and its various components (e.g., light fixtures), as discussed herein. Additionally, or alternatively, the plurality ofspaces30,32 ofenvironment10 may be based on and/or may be defined by, at least in part, items and/or objects of environment10 (e.g., sterile workstation26), and/or characteristics and/or properties ofenvironment10, as discussed herein (see,FIGS. 14 and 15).
The number ofspaces30,32 shown inFIG. 1 and included withinenvironment10 are merely illustrative. As such, although twospaces30,32 are shown and discussed herein, it is understood thatenvironment10 may include more or less spaces. In other non-limiting examples whereenvironment10 includes a plurality of rooms, spaces ofenvironment10 may be defined as each individual room making up environment10 (see,FIG. 15). Additionally, or alternatively in the non-limiting examples, each of the plurality of rooms ofenvironment10 may include one or more spaces similar to those discussed herein with respect toFIG. 1 (see,FIG. 14).
Disinfectinglight system100 included and/or operating withinenvironment10 may include at least one disinfectinglight fixture102,104. Disinfecting light fixture(s)102,104 may be positioned within, exposed to, illuminate and/or may provide (light) energy toenvironment10. That is, and as discussed herein, disinfecting light fixture(s)102,104 may be positioned within and/or exposed toenvironment10 to provide illuminating light and/or disinfecting energy toenvironment10. As shown in the non-limiting example ofFIG. 1, a firstdisinfecting light fixture102 may be positioned withinenvironment10 and may be coupled to aceiling34 ofenvironment10. Additionally, a seconddisinfecting light fixture104 may be positioned withinenvironment10 and may be coupled tocabinets28,adjacent workstation26. As discussed herein, the plurality of disinfecting light fixture(s)102,104 withinenvironment10 may define, at least in part, space(s)30,32 ofenvironment10. Specifically, the position of each of disinfecting light fixture(s)102,104 withinenvironment10 and/or the area of environment in which the plurality of disinfecting light fixtures(s)102,104 may illuminate and/or provide disinfecting energy may, at least in part, define space(s)30,32 ofenvironment10. First disinfectinglight fixture102 coupled toceiling34 ofenvironment10 may illuminate and/or provide disinfecting energy to substantially all of environment10 (e.g., room). Therefore, the light emitted by first disinfectinglight fixture102 may define, at least in part,first space30. Additionally, second disinfectinglight fixture104 coupled tocabinet28 ofenvironment10 may illuminate and/or provide disinfecting energy toworkstation26. As such, the light emitted by second disinfectinglight fixture104 may define, at least in part,second space32.
The plurality of disinfecting light fixture(s)102,104 of disinfectinglight system100 may be any suitable light fixture, component, or assembly that is capable of providing a spectral range of light energy, illumination, and/or illuminating light, as well as, disinfecting energy toenvironment10. Additionally, the plurality of disinfecting light fixture(s)102,104 may be any suitable light fixture, component, or assembly that is capable of providing only illuminating light (e.g., disinfecting light fixture output=100% illuminating light), only disinfecting energy (e.g., disinfecting light fixture output=100% disinfecting energy), or both illuminating light and disinfecting energy simultaneously (e.g., disinfecting light fixture output=approximately 70-90% illuminating light, approximately 10-30% disinfecting energy). Additionally, the plurality of disinfecting light fixture(s)102,104 may be any suitable light fixture, component, or assembly that is capable of switching between providing only illuminating light, only disinfecting energy, or both illuminating light and disinfecting energy simultaneously. For example, the plurality of disinfecting light fixture(s)102,104 of disinfectinglight system100 may include light fixtures similar to those described in U.S. Pat. No. 9,333,274, U.S. Pat. No. 9,439,989, and U.S. Pat. Pub. No. 2017/0030555 the entirety of which is hereby incorporated herein by reference. Additionally, or alternatively in another non-limiting example discussed herein, the plurality of disinfecting light fixture(s)102,104 of disinfectinglight system100 may also be any suitable light fixture, component, or assembly that is capable of adjusting and/or varying the brightness or lumen output of the illuminating light and/or the operational function, output, dosage, and/or intensity (hereafter, “operational intensity”) of the disinfecting energy during operation of disinfecting light fixture(s)102,104. That is, and as discussed herein, the plurality of disinfecting light fixture(s)102,104 may be configured to and/or capable of adjusting the lumen output of the illuminating light and/or the operational intensity of the disinfecting energy provided toenvironment10.
In the non-limiting example shown inFIG. 1, first disinfectinglight fixture102 may emit only light energy and/or illuminating light106 (hereafter, “illuminating light106”) tofirst space30 ofenvironment10. Additionally in the non-limiting example shown inFIG. 1, seconddisinfecting light fixture104 may emit both illuminating light106, as well as, disinfectingenergy108 tosecond space32 ofenvironment10. As discussed herein, the output (e.g., illuminating light106, disinfecting energy108) of each of the plurality of disinfecting light fixture(s)102,104 may be based on sensed or measured characteristics of space(s)30,32 ofenvironment10, characteristics and/or properties of space(s)30,32 ofenvironment10, and/or predetermined information (e.g., scheduled outputs) forenvironment10.
The number of disinfecting light fixture(s)102,104 included withinenvironment10, as shown in the non-limiting example ofFIG. 1, is understood to be illustrative. As such, although disinfectinglight system100 is shown to include two disinfecting light fixture(s)102,104, it is understood that disinfectinglight system100 may include more or less disinfecting light fixture(s). Additionally, the position of disinfecting light fixture(s)102,104 included withinenvironment10, as shown in the non-limiting example ofFIG. 1, is understood to be illustrative. Disinfecting light fixture(s)102,104 of disinfectinglight system100 may be positioned anywhere within, adjacent to, and/or exposed toenvironment10 to provide illuminating light106 and/or disinfectingenergy108 to a defined space withinenvironment10, as discussed herein.
Furthermore, and as discussed in detail in U.S. Pat. No. 9,333,274, U.S. Pat. No. 9,439,989, and U.S. Pat. Pub. No. 2017/0030555 incorporated herein by reference, illuminating light106 may generate visible light energy within the spectral range of approximately 380 nanometers (nm) to approximately 750 nm, and disinfectingenergy108 may be a disinfecting energy within the spectral range of approximately 380 nm to approximately 420 nm (e.g., 405 nm). That is, illuminating light106 may include visible light energy within a spectral range that may illuminate and/or provide light to space(s)30,32 ofenvironment10. Additionally, disinfectingenergy108 generated by disinfecting light fixture(s)102,104 (see, second disinfecting light fixture104) may include disinfecting energy within the spectral range that may alter, adjust, and/or control the bacterial load, bioburden, and/or microbial load (e.g., disinfect, or sterilize) within space(s)30,32 receiving disinfecting energy108 (e.g., violet light). In another non-limiting example, disinfectingenergy108 may include ultraviolent (UV) light having disinfecting properties and including a spectral range of approximately 100 nm to approximately 400 nm.
In a non-limiting example, and as discussed herein, during operation of the plurality of disinfecting light fixture(s)102,104 illuminating light106 and/or disinfectingenergy108 may be varied and/or adjusted. Specifically, the plurality of disinfecting light fixture(s)102,104 may be capable of varying and/or adjusting the lumen output of illuminating light106 and/or the operational intensity of disinfecting light108 during operation of disinfecting light fixture(s)102,104 of disinfectinglight system100. For example, during operation of disinfecting light fixture(s)102,104, the lumen output of illuminating light106 may be adjusted to increase or decrease the brightness of illuminating light106, and the operational intensity of disinfectingenergy108 may be adjusted to increase or decrease the amount of disinfectingenergy108 provided to space(s)30,32. The lumen output of illuminating light106 may be varied between approximately 0% of the total lumen output, brightness, and/or illuminating capabilities of illuminating light106 (e.g., 0%=no illuminating light106), and approximately 100% of the total lumen output, brightness, and/or illuminating capabilities of illuminating light106 (e.g., 100%=illuminating light106 at maximum brightness or lumen output). Additionally, the operational intensity of disinfectingenergy108 may be varied between approximately 0% of the total operational intensity of disinfecting energy, and/or disinfecting capabilities of disinfecting energy108 (e.g., 0%=no disinfecting energy), and approximately 100% of the total operational intensity of disinfecting energy, and/or disinfecting capabilities of disinfecting energy108 (e.g., 100%=disinfectingenergy108 at maximum operational intensity or output). Regardless of the variation or change in lumen output and/or operational intensity, illuminating light106 may be emitted within the spectral range of approximately 380 nm to approximately 750 nm, and disinfectingenergy108 may be emitted within the spectral range of approximately 380 nm to approximately 420 nm, or alternatively approximately 100 nm to approximately 420 nm. Additionally in a non-limiting example, the illuminating light106 and/or disinfectingenergy108 may be adjusted and/or varied independent of the function and/or operation of one another. For example, disinfecting light fixture(s)102,104 may adjust the lumen output of the emitted illuminating light106 when disinfecting light fixture(s)102,104 is not emitting disinfectingenergy108, or alternatively, without adjusting or varying the operational intensity of the emitted disinfectingenergy108 when disinfecting light fixture(s)102,104 is emitting disinfectingenergy108 along with illuminating light106. Additionally, disinfecting light fixture(s)102,104 may adjust the operational intensity of the emitted disinfectingenergy108 when disinfecting light fixture(s)102,104 is not emitting illuminating light106, or alternatively, without adjusting or varying the lumen output of the emitted illuminating light when disinfecting light fixture(s)102,104 is emitting illuminating light106 along with disinfectingenergy108. Furthermore in the non-limiting example where both illuminating light106 and disinfectingenergy108 are both being emitted by disinfecting light fixture(s)102,104, the lumen output of illuminating light106 and the operational intensity of disinfectingenergy108 may be adjusted and/or varied simultaneously. In this non-limiting example, the lumen output of illuminating light106 and the operational intensity of disinfectingenergy108 may be adjusted and/or varied independent of one another (e.g., increase in the lumen output of illuminating light106, decrease in the operational intensity of disinfecting energy108). The lumen output of illuminating light106 and the operational intensity of disinfectingenergy108 may be adjusted and/or varied based on sensed or measured characteristics of space(s)30,32 ofenvironment10, characteristics and/or properties of space(s)30,32 ofenvironment10, and/or predetermined information (e.g., scheduled outputs) forenvironment10.
Furthermore, and as a result of adjusting the lumen output of illuminating light106 and/or the operational intensity of disinfectingenergy108, a quality of visible light generated by and/or provided to space(s)30,32 by disinfectinglight fixtures102,104 may be affected. For example, when disinfectinglight fixtures102,104 is providing both illuminating light106 and disinfectingenergy108 an output ratio may be between approximately 70-90% of illuminating light106 and approximately 10-30% disinfecting energy108. In these non-limiting examples, a user of space(s)30,32 may not detect any change in quality (e.g., color rendering) in illuminating light106 based on the inclusion or emission of disinfecting energy108 (e.g., violet light). However, when disinfectingenergy108 is adjusted (e.g., increased beyond 30%, increased operational intensity) the quality of light provided to space(s)30,32 by illuminating light106 may be affected. For example, where disinfectingenergy108 is increased, the violet light may become more apparent and/or visible to a user of space(s)30,32, and/or certain colors forming illuminating light106 may be come over or under saturated by violet light of disinfectingenergy108. As discussed herein, certain circumstances and/or situations for space(s)30,32 (e.g., task(s) being performed in first space30) may require more or less illuminating light106 and/or disinfectingenergy108, and may be performed or carried out within space(s)30,32 withless disinfecting energy108 and high light quality, or alternatively, may be performed withmore disinfecting energy108 and low light quality.
As shown inFIG. 1, disinfectingenergy system100 can include acontrol system109 including at least onecontroller110 configured to control operation of disinfecting light fixture(s)102,104. That is,controller110 ofcontrol system109 may be configured to regulate illuminating light106 and disinfecting energy108 (e.g., vary/adjust lumen output/operational intensity) provided to space(s)30,32 ofenvironment10 via disinfecting light fixture(s)102,104.Controller110 can be hard-wired and/or wirelessly connected to, operably coupled to, and/or in communication with disinfecting light fixture(s)102,104 via any suitable electronic and/or mechanical communication component or technique.Controller110, and its various components discussed herein (see,FIG. 7), may be a single stand-alone system that functions separate from another system (e.g., computing device) (not shown) that may control and/or adjust operations or functions of other portions of environment10 (e.g., HVAC system). Alternatively,controller110 may be integrally formed within, in communication with and/or formed as a part of a larger control system (e.g., computing device) (not shown) that may control and/or adjust operations or functions ofenvironment10. For example,controller110 ofcontrol system109 may be configured or formed as a microcontroller or similarly embedded system on a chip (SOC) component running a real-time operating system (RTOS).
Additionally, in the non-limiting example shown inFIG. 1,control system109 for disinfectinglight system100 may also include one ormore sensors112,118,120A,120B,120C,122,124 operably coupled to and/or in communication withcontroller110 for aidingcontroller110 in controlling the operation of disinfecting light fixture(s)102,104. As discussed herein,controller110 may utilize data, real-time information, and/or environment characteristics of space(s)30,32 ofenvironment10, as determined by sensor(s)112,118,120A,120B,120C,122,124, to control the operation of disinfecting light fixture(s)102,104 to ultimately regulate illuminating light106 and disinfectingenergy108 provided to space(s)30,32 ofenvironment10.
As shown inFIG. 1,controller110 ofcontrol system109 may be operably coupled to, in electrical and/or mechanical communication with sensor(s)112,118,120A,120B,120C,122,124 positioned throughout environment10 (e.g., one shown). Additionally, and as shown in the non-limiting example ofFIG. 1,controller110 may be wirelessly connected to, and/or in communication with sensor(s)112,118,120A,120B,120C,122,124. Sensor(s)112,118,120A,120B,120C,122,124 may be positioned in various locations and/or throughoutenvironment10, and more specifically space(s)30,32. The position and/or location of sensor(s)112,118,120A,120B,120C,122,124 within space(s)30,32 ofenvironment10 may be dependent, at least in part, on the type of sensor, and/or the data, information, and/or characteristic of space(s)30,32 the sensor is measuring, detecting, and/or sensing. Sensor(s)112,118,120A,120B,120C,122,124 in communication withcontroller110 ofcontrol system109 may be any suitable sensor or device configured to detect and/or determine data, information, and/or characteristics relating toenvironment10. For example, and as discussed in detail herein, sensor(s)112,118,120A,120B,120C,122,124 positioned within space(s)30,32 may be any suitable sensor configured to detect, measure, sense, and/or determine an amount of disinfectingenergy108 provided to space(s)30,32 by disinfecting light fixture(s)102,104, a bacterial load for space(s)30,32, and/or environmental characteristics (e.g., occupancy, daylight) for space(s)30,32.
In the non-limiting example shown inFIG. 1,environment10 may include afirst sensor112. Specifically,first space30 ofenvironment10 may includefirst sensor112 positioned therein and in (wireless) communication with and/or operably connected tocontroller110 ofcontrol system109. In the non-limiting example,first sensor112 may be positioned on and/or coupled toceiling34 withinfirst space30.First sensor112 may be configured as any suitable sensor capable of measuring an amount of disinfectingenergy108 provided tospace30 by first disinfectinglight fixture102 of disinfectinglight system100. For example,first sensor112 of disinfectinglight system100 may include or be formed as a spectrometer, a photodiode, a watt meter, or any other suitable sensor that may be capable of measuring and/or detecting the amount of disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102.
The amount of disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102, as measured byfirst sensor112, may be provided or transmitted tocontroller110 to aid in controller's regulation of disinfectingenergy108 generated by first disinfectinglight fixture102 of disinfectinglight system100. As discussed herein,controller110 may compare the measured amount of disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 to a disinfecting energy threshold, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102. Although shown as being coupled toceiling34 withinfirst space30 ofenvironment10, it is understood thatfirst sensor112 may be positioned anywhere withinfirst space30 so long asfirst sensor112 is capable of measuring the amount of disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102.
As shown inFIG. 1,environment10 may also include asecond sensor118. Specifically,first space30 ofenvironment10 may includesecond sensor118 positioned therein and in (wireless) communication with and/or operably connected tocontroller110 ofcontrol system109. In the non-limiting example,second sensor118 may be positioned on and/or coupled to wall18 withinfirst space30.Second sensor118 may be configured as any suitable sensor capable of sensing a bacterial load ofspace30. More specifically,second sensor118 may be any suitable sensor capable of sensing bacterial load, bioburden, and/or microbial load withinspace30 ofenvironment10. For example,second sensor118 of disinfectinglight system100 may include or be formed as an optical sensor, oxygen-depletion sensor, luminometer, or any other suitable sensor that may be capable of sensing a bacterial load withinfirst space30. In non-limiting examples,second sensor118 may sense the bacterial load offirst space30 by measuring the bacterial load of the air withinfirst space30, and/or measuring the bacterial load on a surface of an object or item (e.g.,window12, wall20,door22,chair24, and so on) positioned withinfirst space30.
In other non-limiting examples, the bacterial load offirst space30 may be based on a correlated measurement. The correlated measurement may be a calculated or determined bacterial load based on collected data that may be correlated to a bacterial load measurement. That is, data collected, measured, determined, and/or sensed bysecond sensor118 may be provided tocontroller110, which in turn may process and/or utilize the data fromsecond sensor118 to calculate or determined the bacterial load forming the correlated measurement. In non-limiting examples, the data collected bysecond sensor118 may not be data including and/or pertaining directly to bacteria, microbial, and/or bioburden data, but rather may be data that can be utilized to calculate or determined the bacterial load, as discussed herein.
The bacterial load offirst space30 may change based on changes withinfirst space30. For example, the bacterial load offirst space30 may increase as a result of increased room occupancy by users, when new items or objects are introduced tofirst space30 ofenvironment10, and/or over a period of time where first disinfectinglight fixture102 is not providing disinfectingenergy108 tofirst space30. The bacterial load ofspace30, sensed bysecond sensor118, may be provided or transmitted tocontroller110 to aid in controller's regulation of disinfectingenergy108 generated by first disinfectinglight fixture102 of disinfectinglight system100. As discussed herein,controller110 may compare the sensed bacterial load offirst space30 to a bacterial load threshold, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102. That is, the bacterial load sensed bysecond sensor118 withinfirst space30 may be directly affected and/or impacted by the amount of disinfectingenergy108 provided to space by first disinfectinglight fixture102. Although shown as being coupled to wall18 withinspace30 ofenvironment10, it is understood thatsecond sensor118 may be positioned anywhere withinspace30 so long assecond sensor118 is capable of sensing the bacterial load offirst space30.
First space30 ofenvironment10 may also include at least one additional,third sensor120A,120B,120C positioned therein and in (wireless) communication with and/or operably connected tocontroller110 ofcontrol system109. In the non-limiting example,control system109 may include a plurality ofthird sensors120A,120B,120C positioned throughoutfirst space30 ofenvironment10. Each of the plurality ofthird sensors120A,120B,120C may be configured as environmental characteristic sensors, and/or may be sensors configured to measure or detect environmental characteristics offirst space30 ofenvironment10. As discussed herein, a preferred amount of disinfecting energy for and/or to be provided tofirst space30 may be associated with the environmental characteristics detected bythird sensors120A,120B,120C withinfirst space30. Additionally,controller110 may compare the measured amount of disinfectingenergy108 within first space30 (e.g., first sensor) with the preferred amount of disinfecting energy associated with detected environmental characteristics offirst space30, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102.
Also discussed herein, each of the environmental characteristics detected bythird sensors120A,120B,120C may include a preferred amount or level of illuminating light that may be associated with the detected environmental characteristic(s). That is, a preferred amount of illuminating light for and/or to be provided tofirst space30 may be associated with the environmental characteristics detected bythird sensors120A,120B,120C withinfirst space30. Additionally,controller110 may compare a measured amount of illuminating light106 provided to first space30 (e.g., third sensor, disinfecting light fixture) with the preferred amount of illuminating light associated with detected environmental characteristics offirst space30, and may adjust the amount of illuminating light106 provided tospace30 by adjusting the output of first disinfectinglight fixture102. In the non-limiting example shown inFIG. 1, and discussed herein, the plurality ofthird sensors120A,120B,120C configured to detect environmental characteristics offirst space30 may all be the distinct types of sensors and/or may detect distinct environmental characteristics offirst space30. In another non-limiting example, the plurality ofthird sensors120A,120B,120C may all be the same type of sensor and/or may detect the same environmental characteristics offirst space30.
Third sensor120A may be positioned on and/or coupled to awall36 withinfirst space30. Additionally,third sensor120A may be coupled towall36, abovecabinet28 included withinfirst space30.Third sensor120A may be configured as any suitable sensor capable of measuring or detecting an occupancy level (e.g., environmental characteristic) forfirst space30. The detected occupancy level forfirst space30 may include whether or notfirst space30 is being occupied and/or includes a user(s) positioned therein, the number of users that may occupyfirst space30 and/or a (real-time) change in occupancy forfirst space30. In non-limiting examples,third sensor120A ofcontrol system109 may include or be formed as an infrared sensor, an automated camera system (e.g., image processing with camera based sensors), radar sensor, Lidar sensor, audio sensor, (tomographic) motion sensor, microwave sensor, ultrasonic sensor, or any other suitable sensor that may be capable of detecting an occupancy level offirst space30.
The occupancy level offirst space30, as detected bythird sensor120A, may be provided or transmitted tocontroller110 to aid in controller's regulation of disinfectingenergy108 generated by first disinfectinglight fixture102 of disinfectinglight system100. As discussed herein,controller110 may receive the occupancy level offirst space30 fromthird sensor120A, along with a preferred amount of disinfecting energy associated with the occupancy level offirst space30. Additionally,controller110 may compare the measured amount of disinfectingenergy108 of first space30 (e.g., first sensor112) with the preferred amount of disinfecting energy associated with the occupancy level offirst space30 detected bythird sensor120A, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102. Furthermore, and similar to the preferred amount of disinfecting light,controller110 may adjust the amount of illuminating light106 provided tospace30 by adjusting the output of first disinfectinglight fixture102 based on the preferred amount of illuminating light that may be associated with the detected, occupancy level offirst space30. Although shown as being coupled to wall36 withinfirst space30 ofenvironment10, it is understood thatthird sensor120A may be positioned anywhere withinfirst space30 so long asthird sensor120A is capable of detecting the occupancy level offirst space30.
Third sensor120B may be positioned on and/or coupled tofloor38 ofenvironment10. Specifically,third sensor120B may be coupled tofloor38 withfirst space30, substantially adjacent, aligned with, below and/or within proximity ofwindow12 included withinfirst space30 ofenvironment10. Additionally, as shown inFIG. 1,third sensor120B may be positioned substantially below, aligned with, and/or within proximity of first disinfectinglight fixture102 of disinfectinglight system100.Third sensor120B may be configured as any suitable sensor capable of detecting an amount of visible light (e.g., illuminating light106, natural light) infirst space30. In non-limiting examples,third sensor120B ofcontrol system109 may include or be formed as a spectrometer, a photodiode, a watt meter, or any other suitable sensor that may be capable of sensing an amount of visible light (e.g., illuminating light106, natural light) withinfirst space30.
In a non-limiting example,third sensor120B may be configured as a daylight sensor that may sense an amount of natural light20 included withinfirst space30. The amount of natural light20 offirst space30, as sensed bythird sensor120B, may be provided or transmitted tocontroller110 to aid in controller's regulation of disinfectingenergy108 generated by first disinfectinglight fixture102 of disinfectinglight system100. As discussed herein,controller110 may receive the amount of natural light20 offirst space30 fromthird sensor120B, along with a preferred amount of disinfecting energy associated with the detected amount of natural light20 offirst space30. Additionally,controller110 may compare the measured amount of disinfectingenergy108 of first space30 (e.g., first sensor112) with the preferred amount of disinfecting energy associated with the amount of natural light20 offirst space30 detected bythird sensor120B, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102.
Additionally, the amount of natural light20 sensed bythird sensor120B may also include a known, calculated, predetermined, and/or measurable amount of natural disinfecting energy40 (e.g., spectral energy of approximately 405 nm), which may be provided tofirst space30. In one non-limiting example,third sensor120B ofcontrol system109 may be configured to measure an amount of natural disinfecting energy40 provided tofirst space30 along with natural light20. In another non-limiting example, the amount of natural disinfecting energy40 from natural light20 may be calculated or determined based on a variety of factors including, but not limited to, the time of day, the date, the position offirst space30 and/or window12 (e.g., facing east), and characteristics of window12 (e.g., double-pane, blue light blocker, tinted, and so on). In a non-limiting example,controller110 ofcontrol system109 may receive the measured amount of natural disinfecting energy40, or determine the amount of natural disinfecting energy40, provided tofirst space30 via natural light20 sensed bythird sensor120B, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102.
In another non-limiting example,third sensor120B may be configured as a visible light sensor that may sense the amount of illuminating light106 provided tofirst space30 by first disinfectinglight fixture102. In the non-limiting example, the amount of illuminating light106 provided tofirst space30 by first disinfectinglight fixture102, and sensed bythird sensor120B, may be provided or transmitted tocontroller110 to aid in the controller's regulation of illuminating light106 generated by first disinfectinglight fixture102. As discussed herein,controller110 may receive the amount of illuminatinglight106 offirst space30 fromthird sensor120B, along with a preferred amount of illuminating light associated withfirst space30. The preferred amount of illuminating light may be based on sensed or measured characteristics of first space30 (e.g., occupancy level, amount of natural light20, task(s), and so on), characteristics and/or properties offirst space30, and/or predetermined information (e.g., scheduled outputs) forfirst space30. Additionally,controller110 may compare the measured amount of illuminatinglight106 offirst space30 with the preferred amount of illuminating light forfirst space30, and may adjust the amount of illuminating light106 provided tofirst space30 by adjusting the output of first disinfectinglight fixture102.
In an additional non-limiting example,third sensor120B may be configured as a visible light sensor that may sense a total amount of visible light (e.g., combination or sum of illuminating light106 and natural light20) withinfirst space30, as well as sense natural light20 provided tofirst space30, as discussed herein. In this non-limiting example,third sensor120B may provide the total amount of visible light and natural light20 provided tofirst space30, and sensed bythird sensor120B, tocontroller110. In the non-limiting example,controller110 may analyze and/or compare the total amount of visible light and natural light20 provided tofirst space30 to determine the amount of illuminating light106 provided tofirst space30 by first disinfectinglight fixture102.Controller110 may then compare the determined amount of illuminatinglight106 offirst space30 with a preferred amount of illuminating light forfirst space30, and may adjust the amount of illuminating light106 provided tofirst space30 by adjusting the output of first disinfectinglight fixture102. Although shown as being positioned onfloor38 offirst space30, it is understood thatthird sensor120B may be positioned anywhere withinfirst space30 so long asthird sensor120B is capable of sensing the amount of natural light20 forfirst space30.
As shown in the non-limiting example ofFIG. 1,third sensor120C ofcontrol system109 may be positioned withinfirst space30 ofenvironment10. Specifically,third sensor120C may be coupled todoor22 withinfirst space30.Third sensor120C may be configured as any suitable sensor capable of identifying at least one task being carried out infirst space30. That is,third sensor120C may be a task-identifying sensor that may detect, sense, and/or identify task(s) being carried out and/or performed withinfirst space30 ofenvironment10. The identified task being carried out and/or performed within thefirst space30 may require a predetermined or preferred amount of illuminating light106 and/or disinfectingenergy108 to be provided tofirst space30 by first disinfectinglight fixture102 when performing the task. In non-limiting examples,third sensor120C ofcontrol system109 may include or be formed as a camera sensor (e.g., image processing with camera based sensors) and/or a scanner sensor that may detect certain work pieces and/or users associated with a predetermined task are positioned or located withinfirst space30. Additionally in another non-limiting,third sensor120C may be formed as a component-detection sensor, which may be configured to identify when an object, and/or item (e.g., microscope (not shown)) offirst space30 that is associated with and/or used specifically for a certain task is being utilized withinfirst space30.
Controller110 may identify that a task(s) is being carried out infirst space30, viathird sensor120C, and may adjust the amount of disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102. That is,controller110 may receive the task(s) being carried out infirst space30, as identified bythird sensor120C, along with a preferred amount of disinfecting energy associated with the identified task being carried out infirst space30. Additionally,controller110 may compare the measured amount of disinfectingenergy108 of first space30 (e.g., first sensor112) with the preferred amount of disinfecting energy associated with the identified task(s) offirst space30, identified bythird sensor120C, and may adjust the amount of disinfectingenergy108 tospace30 by adjusting the output by first disinfectinglight fixture102.
Furthermore, and similar to the preferred amount of disinfecting light,controller110 may adjust the amount of illuminating light106 provided tospace30 by adjusting the output of first disinfectinglight fixture102 based on the preferred amount of illuminating light that may be associated with the detected, task(s) being carried out infirst space30. That is, a preferred amount of illuminating light for and/or to be provided tofirst space30 may be associated with the task(s) to be performed infirst space30, and detected by third sensor102C. Additionally,controller110 may compare a measured amount of illuminating light106 provided to first space30 (e.g.,third sensor120B, disinfecting light fixture) with the preferred amount of illuminating light associated with the detected task(s) forfirst space30, and may adjust the amount of illuminating light106 provided tospace30 by adjusting the output of first disinfectinglight fixture102. Although shown as being coupled todoor24 withinfirst space30 ofenvironment10, it is understood thatthird sensor120C may be positioned anywhere withinfirst space30 so long asthird sensor120C is capable of that a task(s) is being carried out withinfirst space30.
The number ofsensors112,118,120A,120B,120C included withincontrol system109 forfirst space30, as shown in the non-limiting example ofFIG. 1, is understood to be illustrative. As such, althoughcontrol system109 of disinfectinglight system100 is shown to include fivesensors112,118,120A,120B,120C withinfirst space30, it is understood thatcontrol system109 may include more or less sensors for providing data and/or information to controller110 (see,FIGS. 8-13). Additionally, althoughfirst space30 is shown to include fivesensors112,118,120A,120B,120C, it is understood thatcontroller110 may adjust the amount of illuminating light106 and/or disinfectingenergy108 provided tospace30 by adjusting the output of first disinfectinglight fixture102 based on only a portion of the fivesensors112,118,120A,120B,120C. In one non-limiting example,control system109 may includefirst sensor112 and one or morethird sensors120A,120B,120C. In another non-limiting example,control system109 may includefirst sensor112 andsecond sensor118. In an additional non-limiting example,control system109 may includesecond sensor118 and one or morethird sensors120A,120B,120C.
Furthermore, although discussed herein as being positioned and/or included within space(s)30,32 ofenvironment10, it is understood that some ofsensors112,118,120A,120B,120C may be positioned outside of space(s)30,32, when applicable. Additionally wheresensors112,118,120A,120B,120C are positioned outside of space(s)30,32,control system109 may utilize additional components to aid in the measuring, sensing, and/or detected of characteristics relating to space(s)30,32, as discussed herein. For example, and as discussed in detail herein with respect toFIG. 8,third sensor120A configured to detect an occupancy level of space(s)30,32 ofenvironment10 may be configured as a video surveillance system that may monitor activity within space(s)30,32, and may be utilized to provide data tothird sensor120A regarding the occupancy level, which in turn may be provided tocontroller110 ofcontrol system109, as similarly discussed herein.
Additionally, although discussed herein assensors112,118,120A,120B,120C providing or transmitting data and/or information relating to disinfectinglight system100 and/or space(s)30,32 tocontroller110, it is understood that some of the data may be provided from distinct components within disinfectinglight system100. For example, and as discussed in detail herein with respect toFIG. 8, data and/or information relating to an amount of illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 may be provided tocontroller110 by first disinfectinglight fixture102 of disinfectinglight system100.
In the non-limiting example shown inFIG. 1,control system109 of disinfectinglight system100 may also include at least oneaccess control component126. As shown inFIG. 1,access control component126 may be positioned withinfirst space30 ofenvironment10. Specifically,access control component126 may be positioned onwall42,adjacent door22, withinfirst space30.Access control component126 may be operably coupled to and/or in communication withcontroller110 for providing data, information, and/or input to controller for controlling the operation of disinfecting light fixture(s)102 and more specifically, regulating illuminating light106 and disinfectingenergy108 provided tofirst space30 ofenvironment10. For example,access control component126 may provide an override selector or option that may be configured to temporarily permit switchingcontroller110 off and/or suspending the operational processes performed bycontroller110 ofcontrol system109. In this non-limiting example, a user(s) may utilizeaccess control component126 to manually adjust the operation ofcontroller110 for controlling illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102, independent of the data provided tocontroller110 bysensors112,118,120A,120B,120C. As discussed herein, overriding the operation ofcontroller110 may result in firstdisinfecting light fixture102 maintaining a continuous disinfectingenergy108 withinfirst space30, or alternatively, maintaining an average disinfection level or amount of disinfectingenergy108 infirst space30 at a minimum level. Thecontinuous disinfecting energy108 or average disinfection level of disinfectingenergy108 may be maintained despite changes infirst space30 objects or items (e.g., moving chair24), changes infirst space30 characteristics (e.g., changingwall18 paint reflectivity, opening/closing curtains on window12), and/or detected and/or sensed data (e.g., change in bacterial load sensed bysecond sensor118, occupancy level detected bythird sensor120A).
In another non-limiting example,access control component126 may provide a user(s) located infirst space30 the option to manually input a predetermined task to be carried out withinfirst space30. In this non-limiting example,third sensor120C may not be included withinfirst space30, or alternatively,third sensor120C may not be able to detect the task to be carried out infirst space30 due to circumstances surrounding the task; for example, a workpiece for the task is not yet withinfirst space30, orfirst space30 needs to have a detected amount of disinfectingenergy108 before a workpiece is brought intofirst space30 for the task. As such, when a user(s) manually enters a task usingaccess control component126, the operation ofcontroller110 for controlling illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by disinfectinglight system102 may be adjusted independent of the data provided tocontroller110 bythird sensors120C. That is, user(s) may manually adjust illuminating light106 and/or disinfectingenergy108 usingaccess control component126, based on a detected or identified task(s) to be performed withfirst space30, independent of the data obtained, sensed, measured, and/or detected by thesensors112,118,120A,120B,120C ofcontrol system109, as discussed herein.
In an additional non-limiting example,access control component126 may include a security access system to allow users access tofirst space30 ofenvironment10. In the non-limiting example, a code associated with a user(s), such as an input code or keycard, may be input, detected, and/or registered withaccess control component126, and may provide information, data and/or input fromaccess control component126 tocontroller110 relating tofirst space30. For example, when a user inputs their code inaccess control component126,access control component126 may provide information or data relating to an occupancy level offirst space30 based on the user's accessingfirst space30 tocontroller110. In another example, user(s) may be associated with a specific task to be performed withinfirst space30. As discussed herein, the specific task associated with the user to be performed in thefirst space30 may require a predetermined amount of illuminating light106 and/or disinfectingenergy108 to be provided tofirst space30 by first disinfectinglight fixture102 when performing the task. As such, when user inputs their code in or provides an access key to accesscontrol component126,access control component126 may provide the user information and/or data tocontroller110, which may include the specific task associated with the user, andcontroller110 may adjust illuminating light106 and/or disinfectingenergy108 accordingly, as discussed herein.
In a further non-limiting example,access control component126 may include and/or be formed as an operational schedule system forfirst space30 ofenvironment10. More specifically,access control component126 may include and/or be formed as an operational schedule system and/or a system capable of providing a predetermined, operational schedule tocontroller110 for controlling the operation of first disinfectinglight fixture102 and/or adjusting illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102. The predetermined, operational schedule provided tocontroller110 fromaccess control component126 may be defined or created by a user(s) and/or operator of disinfecting light system100 (e.g., building owner or maintenance person for the building include the room forming environment10).
Additionally, the predetermined operational schedule, which determines howcontroller110 adjusts illuminating light106 and/or disinfectingenergy108 to be provided tofirst space30, may be based on a plurality of data, factors, information, and/or operational scenarios surrounding the operation of disinfectinglight system100. For example, the predetermined operational schedule provided tocontroller110 may be defined and/or created based on schedule data which includes a time of day and/or a day in a week. That is,controller110 may adjust illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 based on the time of day (e.g., day vs. night), and/or the day in the week (e.g., weekday vs. weekend). The schedule data, information, and/or operational scenarios for the predetermined operational scheduled may also include associated, scheduled amounts of disinfecting energy to be provided tofirst space30. The scheduled amounts of disinfecting energy to be provided tofirst space30 may include, for example, a minimum operational dosage or output of disinfectingenergy108 to be provided tofirst space30, and/or an average amount of disinfecting energy108 (e.g., daily joule dosage, 6 joules per day) to be maintained over a predetermined period of time. For example, during evening hours (e.g., 10:00 PM to 4:00 AM) or on weekends when user(s) are not located infirst space30, as established by the predetermined operational schedule provided byaccess control component126,controller110 may control first disinfectinglight fixture102 such that first disinfectinglight fixture102 does not emit, or alternatively emits a low dosage or lumen output (e.g., 10% brightness) of illuminating light106. Additionally in the non-limiting example,controller110 may control first disinfectinglight fixture102 such that output from first disinfectinglight fixture102 is made up and/or includes a minimal percentage of illuminating light106 (e.g., disinfectinglight fixture102 output=approximately 10% illuminating light106). The output of illuminating light106 may be minimal when compared to a total or combined amount of output (e.g., illuminating light106 and disinfecting energy108) from first disinfectinglight fixture102. Furthermore in this non-limiting example, and based on the predetermined operational schedule provided byaccess control component126,controller110 may control first disinfectinglight fixture102 such that first disinfectinglight fixture102 emits a maximum operational dosage and/or output (e.g., 100% intensity) or a high operational intensity (e.g., between approximately 75% to approximately 90% intensity) disinfecting energy108 (e.g., scheduled amount of disinfecting energy). In other non-limiting examples,controller110 may control first disinfectinglight fixture102 such that first disinfectinglight fixture102 emits a smaller, predetermined operational intensity (e.g., between approximately 10% to approximately 40% intensity) of disinfectingenergy108. In either non-limiting example above, and regardless of the operational intensity of disinfectingenergy108,controller110 may control first disinfectinglight fixture102 such that output from first disinfectinglight fixture102 is made up and/or includes the remaining percentage of disinfectingenergy108. That is, wherecontroller110 adjusts the output of illuminating light106 to be minimal (e.g., disinfectinglight fixture102 output=approximately 10% illuminating light106),controller110 may control first disinfectinglight fixture102 such that output from first disinfectinglight fixture102 is made up and/or includes the remaining percentage of disinfecting energy108 (e.g., disinfectinglight fixture102 output=approximately 90% disinfecting energy108).
Additionally in this example,controller110 may adjust illuminating light106 and/or disinfectingenergy108 based on the predetermined operational schedule provided byaccess control component126 to maintain appropriate illuminating light106 whenfirst space30 is in use, and maintain a minimum dosage of disinfectingenergy108 with first space30 (e.g., at night whenfirst space30 is not being used) (e.g., scheduled amount of disinfecting energy). Furthermore, by adjusting the amount of disinfectingenergy108 whenfirst space30 is not occupied, an average amount of disinfecting energy108 (e.g., daily joule dosage, 6 joules per day) can be maintained over a predetermined period of time while also maintaining illuminating light106 as needed for use of first space30 (e.g., scheduled amount of disinfecting energy). Continuing the example above,controller110 may control first disinfectinglight fixture102 during evening hours such that first disinfectinglight fixture102 emits a predetermined amount of disinfectingenergy108 at a specific intensity during the evening hours to maintain a minimum dosage of disinfectingenergy108 infirst space30. In the non-limiting example,controller110 may control first disinfectinglight fixture102 to emit disinfectingenergy108 at a minimum of 10% operational dosage intensity during the evening hours. Additionally, or alternatively,controller110 may control first disinfectinglight fixture102 during evening hours such that first disinfectinglight fixture102 emits a predeterminedamount disinfecting energy108 at a specific or determined intensity during the evening hours to maintain an amount of disinfectingenergy108 over the predetermined amount of time. For example, the amount of disinfectingenergy108 over the predetermined amount of time is 6 joules per day. Additionally in the example, it may be determined that during 18-usage hours forfirst space30, first disinfectinglight fixture102 may emit disinfectingenergy108 at a 10% intensity to generate 3 joules of energy. As a result, and in order to maintain the amount of disinfectingenergy108 over the predetermined amount of time (e.g., 6 joules per day) forfirst space30,controller110 may control first disinfectinglight fixture102 to emit disinfectingenergy108 at a determined intensity over the next or remaining 6 hours to meet the amount of disinfectingenergy108 over the predetermined amount of time. That is,controller110 may control first disinfectinglight fixture102 to adjust the disinfectingenergy108, and specifically the intensity of disinfectingenergy108 emitted tofirst space30, over the remaining 6 hours to ensurefirst space30 receives 6 joules of energy within the day (e.g., amount of disinfectingenergy108 over the predetermined amount of time). Since a 10% operational intensity of disinfectingenergy108 over 18 hours resulted in 3 joules of energy being provided tofirst space30,controller110 may adjust the intensity of disinfectingenergy108 to approximately 30% operational intensity during the remaining 6 hours of the day to ensurefirst space30 receives 6 joules of energy within a day.
Although discussed in the example above as averaging the operational intensity of the disinfectingenergy108 to meet the amount of disinfectingenergy108 over the predetermined amount of time (e.g., 10% for 18 hours+30% for 6 hours=6 joules per day),controller110 may also stagger the intensity to account for potential or possible interruptions to thefirst space30 and/or first disinfectinglight fixture102. That is, in another non-limiting example,controller110 may control or adjust the operation of first disinfectinglight fixture102 to meet the amount of disinfectingenergy108 over the predetermined amount of time before the predetermined amount of time has expired or past. Continuing the example above, the amount of disinfectingenergy108 over the predetermined amount of time is 6 joules per day, and it may be determined that during 18-usage hours forfirst space30, first disinfectinglight fixture102 may emit disinfectingenergy108 at a 10% intensity to generate 3 joules of energy. Rather than providing the remaining disinfectingenergy108 at a determined intensity over the remaining 6 hours (e.g., 30% intensity over 6 hours) to meet the amount of disinfectingenergy108 over the predetermined amount of time,controller110 may control or adjust the operation of first disinfectinglight fixture102 over a shorter period of time. For example,controller110 may adjust the intensity of disinfectingenergy108 to approximately 60% operational intensity during 3 hours of the remaining 6 hours of the day to ensurefirst space30 receives 6 joules of energy within a day. In this non-limiting example,controller110 may adjust or control the operation of first disinfectinglight fixture102 such that first disinfectinglight fixture102 emits disinfectingenergy108 at approximately 60% operational intensity for 3 hours, and approximately 0% operational intensity (e.g., no emitted disinfecting energy108) for the distinct 3 hours. Adjusting the operation of first disinfectinglight fixture102 in this manner may provide a fail-safe for meeting the amount of disinfectingenergy108 over the predetermined amount of time, and/or may compensate for unscheduled or unplanned interruptions tofirst space30 which may require a change in the operation of first disinfecting light fixture102 (e.g., janitor enters the room, unscheduled/emergency maintenance during evening hours). Additionally, and as discussed herein,controller110 may learn, adapt, and/or adjust data relating tofirst space30. As a result, and in the non-limiting example discussed herein,controller110 may anticipate and/or determine a probability or likeliness thatfirst space30 may experience an unscheduled or unplanned interruption over time. As such, it may be beneficial forcontroller110 to utilize the learned or anticipated information relating to the probability or likeliness thatfirst space30 may experience an unscheduled or unplanned interruption, and control the operation of first disinfectinglight fixture102 in the fail-safe manner discussed herein to meet the amount of disinfectingenergy108 over the predetermined amount of time.
In another example, the predetermined operational schedule provided tocontroller110 may be defined and/or created based on schedule data that includes the cost of electricity for operating first disinfectinglight fixture102. As such,controller110 may adjust illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 based on when electricity consumption for operating first disinfecting light fixture is at its highest (e.g., peak hours) and its lowest (e.g., off-peak hours).Controller110 may control operation and/or adjust first disinfectinglight fixture102 to operate (e.g., provide disinfecting energy108) at minimal power consumption when the electricity costs the most (e.g., peak hours), followed by increased operation (e.g., disinfecting energy108) when electricity costs the least (e.g., off-peak hours), to maintain an average amount of disinfecting energy108 (e.g., daily joule dosage) withinfree space30. Specifically, first disinfectinglight fixture102 may consume, and/or require more energy to provide disinfectingenergy108 than illuminating light106. As such, and especially during peak hours, it may be more costly to provide disinfectingenergy108 tofirst space30 than illuminating light106. As such, and based on the predetermined operational schedule including costs associated with electrical consumption periods (e.g., peak hours, off hours),control110 may control operation and/or adjust first disinfectinglight fixture102 to provide the majority of disinfectingenergy108 during off-peak hours. Continuing the example above, evening hours (e.g., 10:00 PM to 4:00 AM) may be considered off-peak hours for electrical consumption. As a result,control110 may control first disinfectinglight fixture102 to provide the majority of disinfectingenergy108 during evening hours to not only meet and/or maintain a minimum dosage of disinfectingenergy108 infirst space30, but also to meet and/or maintain an average amount of disinfectingenergy108 over the predetermined amount of time. This in turn may regulate disinfectingenergy108 provided tospace30, while also reducing the cost for operating disinfectinglight system100, as discussed herein.
Although discussed herein as adjusting the operation of first disinfectinglight fixture102 based on data and/or information determined by eachsensor112,118,120A,120B,120C and/oraccess control component126, it is understood thatcontroller110 ofcontrol system109 may adjust the operation of first disinfectinglight fixture102 based on a variety or plurality of data and/or information. In the non-limiting example shown inFIG. 1, and as similarly discussed herein,controller110 may receive and process the measured amount of disinfectingenergy108 fromfirst sensor112 and a corresponding disinfecting energy threshold, and the bacterial load forfirst space30 sensed bysecond sensor118 and a corresponding bacterial load threshold. Additionally,controller110 may receive and process environmental characteristic(s) (e.g., occupancy level, visible light, task(s), and so on) detected bythird sensors120A,120B,120C and a corresponding preferred amount of disinfecting energy for each of the detected environmental characteristic(s). Furthermore,controller110 may receive and process schedule data and scheduled amount of disinfecting energy associated with the schedule data fromaccess control component126. Oncecontroller110 receives the data and/or information from a plurality ofsensors112,118,120A,120B,120C and/oraccess control component126,controller110 may analyze, and/or prioritize all of the data and/or information prior to adjusting the operation of first disinfectinglight fixture102, as discussed herein. That is,controller110 may prioritize the data and/or information based on the type of data and/or information received and/or the type ofsensors112,118,120A,120B,120C, and/oraccess control component126 included withinfirst space30, and then may compare the prioritized data. For example,controller110 may prioritize the sensed bacterial load and corresponding bacterial load threshold (e.g., second sensor118) over or above the measured amount of disinfecting energy and disinfecting energy threshold (e.g., first sensor112), environmental characteristic(s) and corresponding preferred amount of disinfecting energy (e.g.,third sensors120A,120B,120C), and/or schedule data and the scheduled amount of disinfecting energy (e.g., access control component126). In the non-limiting example wherecontroller110 receives the plurality of data fromsensors112,118,120A,120B,120C, and/oraccess control component126, and prioritizes the data relating to the bacterial load sensed bysecond sensor118 and the corresponding bacterial load threshold,controller110 may adjust the operation of, and more specifically the amount of disinfectingenergy108 emitted by, first disinfectinglight fixture102 based solely on the sensed bacterial load and the bacterial load threshold, as discussed herein.
Additionally, or alternatively, oncecontroller110 prioritizes the data and/or information from a plurality ofsensors112,118,120A,120B,120C and/oraccess control component126,controller110 may compare the data and/or information. In a non-limiting example, the prioritized bacterial load threshold, and specifically the predetermined, preferred, or required disinfecting energy associated with the bacterial load threshold (e.g., second sensor118), may be compared to the disinfecting energy threshold (e.g., first sensor112), the preferred amount of disinfecting energy associated with the environmental characteristic(s) (e.g.,third sensor120A,120B,120C), and/or the scheduled amount of disinfecting energy associated with the schedule data (e.g., access control component126). In comparing the plurality of data and/or information,controller110 may determine how to adjust the operation, and more specifically adjust disinfectingenergy108, of first disinfectinglight fixture102. For example, the predetermined, preferred, or required disinfecting energy associated with the prioritized bacterial load threshold may be greater than the disinfecting energy threshold, the preferred amount of disinfecting energy associated with the environmental characteristic(s), and/or the scheduled amount of disinfecting energy associated with the schedule data. In this non-limiting example,controller110 may adjust disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 to equal and/or meet the predetermined, preferred, or required disinfecting energy associated with the prioritized bacterial load threshold. By adjusting disinfectingenergy108 emitted by first disinfectinglight fixture102 to equal and/or meet the predetermined, preferred, or required disinfecting energy associated with the prioritized bacterial load threshold, which may be greater than the remaining disinfecting energies associated with the received data and/or information, it may ensure that the other disinfectingenergy108 requirements are also met.
In another non-limiting example, the predetermined, preferred, or required disinfecting energy associated with the prioritized bacterial load threshold may be less than the disinfecting energy threshold, the preferred amount of disinfecting energy associated with the environmental characteristic(s), and/or the scheduled amount of disinfecting energy associated with the schedule data. In this non-limiting example,controller110 may adjust disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 to equal and/or meet the predetermined, preferred, or required disinfecting energy associated with the prioritized bacterial load threshold regardless of the other, greater disinfecting energies associated with the received data and/or information. Alternatively,controller110 may adjust disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 to equal and/or meet the disinfecting energy threshold, the preferred amount of disinfecting energy associated with the environmental characteristic(s), and/or the scheduled amount of disinfecting energy associated with the schedule data, rather than the disinfecting energy associated with the prioritized bacterial load threshold.Controller110 may do this, even though the disinfecting energy associated with the prioritized bacterial load threshold is prioritized over the other associated disinfecting energies. By adjusting disinfectingenergy108 emitted by first disinfectinglight fixture102 to equal and/or meet the disinfecting energy threshold, the preferred amount of disinfecting energy associated with the environmental characteristic(s), and/or the scheduled amount of disinfecting energy associated with the schedule data, it may ensure that both the disinfecting energy associated with the prioritized bacterial load threshold, as well as at least one additional, associated disinfecting energy is met.
Although discussed herein as being prioritized, and consequently adjusted, based on the bacterial load and associated disinfecting energy, it is understood thatcontroller110 may also consider additional information when prioritizing data and/or information for disinfectinglight system100. For example, in addition to prioritizing the data and/or information based on bacterial load and associated disinfecting energy,controller110 may also consider energy consumption and/or cost associated with electrical consumption periods when prioritizing the data and/or information. In another non-limiting example,controller110 may also consider illumination quality and/or lumen output by first disinfectinglight fixture102, in addition to bacterial load and associated disinfecting energy, when prioritizing the data and/or information received bycontroller110 relating to disinfectinglight system100.
Furthermore,controller110 configured to control and/or adjust the operation of first disinfecting light fixture102 (e.g., adjust illuminating light106, disinfecting energy108) may also be configured to store past data and/or information relating tofirst space30,sensors112,118,120A,120B,120C, and/oraccess control component126. Specifically,controller110 may store past data, learn/adapt/compare past data, and adjust data relating tofirst space30 based on the learned/adapted/compared past data. For example, and as discussed herein,controller110 may utilize the learned or anticipated information relating to the probability or likeliness thatfirst space30 may experience an unscheduled or unplanned interruption, and may control the operation of first disinfectinglight fixture102 in the fail-safe manner discussed herein to meet the amount of disinfectingenergy108 over the predetermined amount of time. In another non-limiting example,controller110 over time may identify or learn that a previously identified task bythird sensor120C may requiremore disinfecting energy108 than the preferred amount of disinfecting energy originally associated with the identified task.Controller110 may learn this over time by constantly determining that when the task is identified and the disinfectingenergy108 of first disinfectinglight fixture102 is adjusted to the preferred amount of disinfecting energy associated with the identified task, the sensed bacterial load is still above the bacterial load threshold. Alternatively,controller110 may learn that the preferred amount of disinfecting energy originally associated with the identified task is inadequate as a result of the user(s) performing the identified task infirst space30 consistently adjusting (e.g., increasing) the amount of disinfectingenergy108 usingaccess control component126. In non-limiting examples,controller110 may learn, as discussed herein, using various feedback loop possibilities including, but not limited to, proportional control algorithms, or a Proportional-Integral-Derivative (PID) feedback loop.
Although discussed herein with respect tofirst space30, and thesensors112,118,120A,120B,120C ofcontrol system109 positioned withinfirst space30, it is understood that the components of disinfectinglight system100 may function and/or operate substantially similar withinsecond space32. That is, and as shown in the non-limiting example ofFIG. 1,second space32 may include seconddisinfecting light fixture104 which may be configured to provide illuminating light106 and/or disinfectingenergy108 tosecond space32, and more specificallyworkstation26 included withinsecond space32. Additionally, second disinfectinglight fixture104 may be operably coupled tocontroller110 ofcontrol system109. As similarly discussed herein with respect to first disinfectinglight fixture102 andfirst space30,controller110 may receive data fromfourth sensor122 andfifth sensor124 included within second space32 (e.g., positioned on workstation26), and adjust illuminating light106 and/or disinfectingenergy108 provided tosecond space32 by second disinfectinglight fixture104.Fourth sensor122 andfifth sensor124 positioned withinsecond space32 may be substantially similar tofirst sensor112 andsecond sensor118, respectively, positioned withinfirst space30. That is,fourth sensor122 may be any suitable sensor capable of measuring an amount of disinfectingenergy108 provided tosecond space32 by second disinfectinglight fixture104 of disinfectinglight system100. Additionally,fifth sensor124 may be any suitable sensor capable of sensing bacterial load, bioburden, and/or microbial load withinsecond space32 ofenvironment10. Redundant explanation of these components has been omitted for clarity.
In the non-limiting example shown inFIG. 1,second space32 may not include anythird sensors120A,120B,120C configured as environmental characteristic sensors, and/or may be sensors configured to measure or detect environmental characteristics ofsecond space32 ofenvironment10. However, becausesecond space32 is included withinfirst space30,controller110, configured to adjust illuminating light106 and/or disinfectingenergy108 provided tosecond space32 by second disinfectinglight fixture104, may utilize environmental characteristic data measured, obtained, sensed, and/or identified bythird sensors120A,120B,120C positioned withinfirst space30. That is, the information obtained bythird sensors120A,120B,120C and provided tocontroller110 for adjusting illuminating light106 and/or disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 may also be utilized to bycontroller110 to adjust illuminating light106 and/or disinfectingenergy108 provided tosecond space32 by second disinfectinglight fixture104. This may be because environmental characteristics that apply to first space30 (e.g., occupancy level) may also affect and/or be the same forsecond space32. In another non-limiting example (not shown),second space32 may include at least one additional sixth sensor that is substantially similar tothird sensors120A,120B,120C offirst space30. That is, the sixth sensor(s) included withinsecond space32 may be configured as environmental characteristic sensors, and/or may be sensors configured to measure or detect environmental characteristics ofsecond space32 ofenvironment10.
FIG. 2 shows a flow diagram illustrating non-limiting example processes of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. These processes can be performed, e.g., by at least onecontroller110 ofcontrol system109 for disinfecting light system100 (see,FIG. 1), as described herein. In other cases, these processes can be performed according to a computer-implemented method of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. In still other embodiments, these processes can be performed by executing computer program code on a computing device(s), causing the computing device(s), and specificallycontroller110, to regulate disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. The processes shown in the flow diagram ofFIG. 2 are discussed in detail below.
In process P1, an amount of disinfecting energy in a space of an environment may be measured. Specifically, an amount of disinfecting energy provided to the space of the environment by a disinfecting light fixture of a disinfecting light system may be measured, sensed, detected and/or determined. The measured amount of energy provided to the space of the environment by the disinfecting light fixture of the disinfecting light system may be measured by at least one sensor positioned within the space receiving the disinfecting energy. In another non-limiting example, the measured amount of disinfecting energy provided to the space of the environment by the disinfecting light fixture of the disinfecting light system may be measured, sensed, provided, and/or determined by the disinfecting light fixture itself. That is, the disinfecting light fixture may sense, provide, and/or determine the amount of disinfecting energy it emits or provides to the space.
In process P2, the measured amount of disinfecting energy provided to the space of the environment may be compared to a predetermined disinfecting energy threshold to determine if the measured amount of disinfecting energy meets the disinfecting energy threshold. Specifically, it may be determined if the measured amount of disinfecting energy, provided to the space by the disinfecting light fixture of the disinfecting light system and measured or determined (e.g., sensor(s), disinfecting light fixture) within the space, meets the disinfecting energy threshold. The predetermined disinfecting energy threshold may be a predetermined or desired amount, level, minimum, and/or range of disinfecting energy to be provided to the space. That is, the predetermined disinfecting energy threshold may be based on maintaining the predetermined or desired amount, level, minimum, and/or range of disinfecting energy to be provided to the space. The predetermined or desired amount, level, minimum, and/or range of disinfecting energy to be provided to the space may be an instant or real-time desired amount of disinfecting energy, or alternatively, may be a desired amount of disinfecting energy provided over a predetermined period of time (e.g., daily dosage). In another non-limiting example, the predetermined disinfecting energy threshold may be configured to maintain a predetermined average disinfection amount, level and/or range of the disinfecting energy provided to space over a predetermined time.
In a non-limiting example, the measured amount of disinfecting energy meets the disinfecting energy threshold when it is equal to or within the range of the desired, disinfecting energy to be provided to the space. The controller of the control system for the disinfecting light system may determine if the measured amount of disinfecting energy meets the disinfecting energy threshold. If it is determined that the measured amount of disinfecting energy does not meet the disinfecting energy threshold (e.g., “NO” at process P2), the processes may proceed to process P3. Conversely, if it is determined that the measured amount of disinfecting energy does meet the disinfecting energy threshold (e.g., “YES” at process P2), the processes may proceed to process P4.
In response to determining the measured amount of disinfecting energy does not meet the disinfecting energy threshold (e.g., “NO” at process P2), the amount of disinfecting energy in the space may be adjusted in process P3. That is, in process P3, the amount of disinfecting energy provided to the space by the disinfecting light fixture of the disinfecting light system may be adjusted, changed, and/or altered. The amount of disinfecting energy provided to the space may be adjusted by altering the operation of the disinfecting light fixture to one of increase or decrease the amount of disinfecting energy generated by the disinfecting light fixture and provided to the space. In a non-limiting example, the controller of the control system for the disinfecting light system may be operably coupled to the disinfecting light fixture and may be configured to control the operation of disinfecting light fixture to adjust (e.g., increase, decrease) the amount of disinfecting energy generated by the disinfecting light fixture. The controller of the control system may adjust the amount of disinfecting energy generated by the disinfecting light fixture independent of the amount of illuminating light provided to the space by the disinfecting light fixture. That is, the amount of disinfecting energy generated by the disinfecting light fixture may be adjusted, while the amount of illuminating light provided to the space by the disinfecting light fixture remains substantially the same. The amount of disinfecting energy provided to the space may be adjusted by the controller of the control system to maintain a predetermined or desired amount, level, minimum, and/or range of disinfecting energy to be provided to the space over a predetermined period of time. Additionally, or alternatively, adjusting the amount of disinfecting energy provided to the space may include maintaining a predetermined average disinfection amount, level, and/or range of the disinfecting energy provided to space over a predetermined time. Furthermore, the amount of disinfecting energy generated by the disinfecting light fixture can be altered or adjusted by increasing or decreasing the brightness or dynamically changing the violet content of the illuminating light provided to the space by the disinfecting light fixture. That is, in another non-limiting example, the amount of disinfecting energy generated by the disinfecting light fixture may be adjusted by adjusting and/or changing the amount of illuminating light generated by the disinfecting light fixture.
In a non-limiting example where the measured amount of disinfecting energy is less than the disinfecting energy threshold, the controller may increase the amount of disinfecting energy provided to the space by the disinfecting light fixture until the measured amount of disinfecting energy meets the disinfecting energy threshold. Additionally in a non-limiting example where the measured amount of disinfecting energy is greater than the disinfecting energy threshold, the controller may decrease or maintain the amount of disinfecting energy provided to the space by the disinfecting light fixture until the measured amount of disinfecting energy meets the disinfecting energy threshold. Alternatively in the non-limiting example where the measured amount of disinfecting energy is greater than the disinfecting energy threshold, the controller may stop the disinfecting light fixture from generating and providing disinfecting energy to the space until the measured amount of disinfecting energy meets the disinfecting energy threshold. As discussed herein, the amount of disinfecting energy generated by the disinfecting light fixture may be adjusted and/or changed independent of the amount of illuminating light provided to the space by the disinfecting light fixture.
In response to determining the measured amount of disinfecting energy meets the disinfecting energy threshold (e.g., “YES” at process P2), a bacterial load of the space may be sensed in process P4. Specifically, a bacterial load of the space of the environment may be sensed, measured, detected, and/or determined. The sensed bacterial load of the space of the environment may be sensed and/or detected by at least one sensor positioned within the space. In another non-limiting example, the sensed bacterial load of the space of the environment may be determined and/or calculated using a correlated measurement.
In process P5, the sensed bacterial load of the space may be compared to a bacterial load threshold to determine if the sensed bacterial load meets the bacterial load threshold. Specifically, it may be determined if the sensed bacterial load for the space, as detected or sensed by the sensor(s) within the space, meets the predetermined bacterial load threshold. The predetermined, bacterial load threshold may be a predetermined or desired amount, level, maximum, and/or range for an acceptable bacterial load of the space. That is, the predetermined bacterial load threshold for the space may be based on maintaining the predetermined or desired amount, level, maximum, and/or range of bacterial load within the space. In another non-limiting example, the predetermined bacterial threshold may be based on maintaining a predetermined average bacterial load amount, level, and/or range of the space over a predetermined time.
In a non-limiting example, the sensed bacterial load meets the predetermined bacterial load threshold when it is equal to or within the range of the desired, bacterial load for the space. The controller of the control system for the disinfecting light system may determine if the sensed bacterial load meets the bacterial load threshold. If it is determined that the sensed bacterial load does not meet the bacterial load threshold (e.g., “NO” at process P5), the processes may proceed to process P3. Conversely, if it is determined that the sensed bacterial load does meet the bacterial load threshold (e.g., “YES” at process P5), the processes may proceed to process P6.
In response to determining the sensed bacterial load does not meet the bacterial load threshold (e.g., “NO” at process P5), the amount of disinfecting energy in the space may be adjusted in process P3. That is, in process P3, the amount of disinfecting energy provided to the space by the disinfecting light fixture of the disinfecting light system may be adjusted, changed, and/or altered. As similarly discussed herein, the controller of the control system for the disinfecting light system may be operably coupled to the disinfecting light fixture and may be configured to control the operation of disinfecting light fixture to adjust (e.g., increase, decrease) the amount of disinfecting energy generated by the disinfecting light fixture and provided to the space. As discussed herein, the disinfecting energy generated by the disinfecting light fixture may alter, adjust, and/or control the bacterial load, bioburden, and/or microbial load within the space receiving the disinfecting energy. In a non-limiting example where the sensed bacterial load is greater than the bacterial load threshold, the controller may increase the amount of disinfecting energy provided to the space by the disinfecting light fixture until the sensed bacterial load meets the bacterial load threshold. Additionally in a non-limiting example where the sensed bacterial load is less than the bacterial load threshold, the controller may decrease or maintain the amount of disinfecting energy provided to the space by the disinfecting light fixture until the sensed bacterial load meets the bacterial load threshold. Alternatively in the non-limiting example where the sensed bacterial load is less than the bacterial load threshold, the controller may stop the disinfecting light fixture from generating the disinfecting energy until the sensed bacterial load meets the bacterial load threshold. The amount of disinfecting energy generated by the disinfecting light fixture may be adjusted and/or changed independent of the amount of illuminating light provided to the space by the disinfecting light fixture.
In response to determining the sensed bacterial load meets the bacterial load threshold (e.g., “YES” at process P5), an environmental characteristic(s) of the space may be detected in process P6. Specifically in process P6, an environmental characteristic(s) related to and/or associated with the space including the disinfecting light system may be detected. The environmental characteristic(s) of the space may be sensed and/or detected by at least one sensor positioned within the space. In another non-limiting example, the environmental characteristic(s) of the space may be sensed and/or detected by additional components included within the environment and/or the control system including, but not limited to, an access control component. In an additional non-limiting example, the environmental characteristic(s) of the space may be determined and/or provided by a manual input provided by a user(s) of the space in the environment. The detected environmental characteristic may include and/or be based upon an occupancy level of the space (e.g., if the space is occupied, the number of users that may occupy the space, a change in user-occupancy for the space) being provided the disinfecting energy by the disinfecting light fixture. In another non-limiting example, the detected environmental characteristic may include and/or be based upon an amount of natural light in the space, and/or a predetermined amount of natural disinfecting energy associated with and/or included within or provided with the natural light. In an additional non-limiting example, the detected environmental characteristic may include and/or be based upon at least one task being carried out in the space.
In addition to detecting the environmental characteristic(s) in process P6, a preferred amount of disinfecting energy associated with the detected environmental characteristic(s) may be identified. That is, detecting the environmental characteristic(s) in process P6 may also include identifying a preferred amount of disinfecting energy associated with detected environmental characteristics that may be provided to the space by the disinfecting light fixture of the disinfecting light system. The preferred amount of disinfecting energy associated with the detected environmental characteristic(s) may be predefined and/or predetermined based on the environmental characteristic(s) and/or characteristics of the space provided the disinfecting energy. In non-limiting examples, the preferred amount of disinfecting energy associated with the detected environmental characteristic(s) may be stored on the controller of the control system, or may be provided to the controller from an external source (e.g., storage device), such that when the detected environmental characteristic(s) is provided to the controller of the control system, the preferred amount of disinfecting energy associated with detected environmental characteristics may also be provided to and/or recognized by the controller.
The preferred amount of disinfecting energy associated with detected environmental characteristics may be based on, related to, and/or associated with the space provided the disinfecting light. For example, the preferred amount of disinfecting energy associated with the detected occupancy level of the space may include various preferred amounts of disinfecting energy based upon distinct occupancy levels of the space. In another non-limiting example, the preferred amount of disinfecting energy associated with the detected natural light in the space and/or the amount of natural disinfecting energy associated with the natural light, may include various preferred amounts of disinfecting energy based upon the amount of natural light and/or natural disinfecting energy in the space. In an additional non-limiting example, the preferred amount of disinfecting energy associated with the detected task carried out in the space may include various preferred amounts of disinfecting energy based upon various tasks being carried out in the space.
In process P7, it may be determined if the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s). Specifically, it may be determined if the measured amount of disinfecting energy provided to the space by the disinfecting light system (e.g., process P1) meets the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., process P6). In a non-limiting example, the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) when it is equal to or within the range of the preferred amount of disinfecting energy associated with the detected, environmental characteristic. The controller of the control system for the disinfecting light system may determine if the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s). If it is determined that the measured amount of disinfecting energy provided to the space does not meet the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., “NO” at process P7), the processes may proceed to process P3. Conversely, if it is determined that the measured amount of disinfecting energy provided to the space does meet the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., “YES” at process P7), the processes repeat and/or may proceed back to process P1 and may begin again.
In response to determining the measured amount of disinfecting energy provided to the space does not meet the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., “NO” at process P6), the amount of disinfecting energy in the space may be adjusted in process P3. That is, in process P3, the amount of disinfecting energy provided to the space by the disinfecting light fixture of the disinfecting light system may be adjusted, changed, and/or altered. The amount of disinfecting energy provided to the space may be adjusted by altering the operation of the disinfecting light fixture to one of increase or decrease the amount of disinfecting energy generated by the disinfecting light fixture and provided to the space. In a non-limiting example, the controller of the control system for the disinfecting light system may be operably coupled to the disinfecting light fixture and may be configured to control the operation of disinfecting light fixture to adjust (e.g., increase, decrease) the amount of disinfecting energy generated by the disinfecting light fixture. In a non-limiting example where the measured amount of disinfecting energy is less than the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., occupancy level, natural light, natural disinfecting energy, task(s)), the controller may increase the amount of disinfecting energy provided to the space by the disinfecting light fixture until the measured amount of disinfecting energy meets the preferred amount of disinfecting energy. Additionally in a non-limiting example where the measured amount of disinfecting energy is greater than the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s) (e.g., occupancy level, natural light, natural disinfecting energy, task(s)), the controller may decrease or maintain the amount of disinfecting energy provided to the space by the disinfecting light fixture until the measured amount of disinfecting energy meets the preferred amount of disinfecting energy. Alternatively in the non-limiting example where the measured amount of disinfecting energy is greater than the preferred amount of disinfecting energy associated with the detected, environmental characteristic(s), the controller may stop the disinfecting light fixture from generating and providing disinfecting energy to the space until the measured amount of disinfecting energy meets the preferred amount of disinfecting energy. The amount of disinfecting energy generated by the disinfecting light fixture may be adjusted and/or changed independent of the amount of illuminating light provided to the space by the disinfecting light fixture.
Although shown in succession, it is understood that some of the processes illustrated inFIG. 2 for regulating the disinfecting energy generated by the disinfecting light system may be performed concurrently. For example, processes P1 and P4 may be performed concurrently, and subsequent processes P2 and P5 may also be performed concurrently after performing processes P1 and P4. Additionally, it is understood that the order in which at least some of the processes ofFIG. 2 for regulating the disinfecting energy are performed is illustrative. As such, some of the processes may be performed in a distinct order than that shown in the non-limiting example ofFIG. 2. For example, processes P4 and P5 may be performed prior to performing processes P1 and P2. Additionally, or alternatively, processes P6 and P7 may be performed prior to performing processes P4 and P5.
Additionally, the processes for regulating the disinfecting energy generated by the disinfecting light system may be performed independent of the operation and/or adjustment of the illuminating light generated by the disinfecting light system. That is, regulating the disinfecting energy by adjusting the amount of disinfecting energy provided to the space by the disinfecting light fixture may be performed independent of adjusting the amount of the illuminating light. The controller of the control system may adjust the amount of the illuminating light provided to space by the disinfecting light fixture based on the preferred amount of illuminating light that may be associated with the detected, environmental characteristics of the space and/or manually provided to the control system.
FIG. 3 shows a flow diagram illustrating additional non-limiting example processes of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. Specifically,FIG. 3 shows a flow diagram illustrating processes P8 and P9, which may be performed with process P1-P7 discussed herein with respect toFIG. 2. These processes can be performed, e.g., by at least onecontroller110 ofcontrol system109 for disinfecting light system100 (see,FIG. 1), as described herein. In other cases, these processes can be performed according to a computer-implemented method of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. In still other embodiments, these processes can be performed by executing computer program code on a computing device(s), causing the computing device(s), and specificallycontroller110, to regulate disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. The processes shown in the flow diagram ofFIG. 3 are discussed in detail below.
In response to the controller receiving and/or obtaining a variety or plurality of data and/or information from various sensors and/or components of the disinfecting light system, additionally processes may be performed before adjusting the amount of disinfecting energy provided to the space by the disinfecting light fixture. Specifically, and continuing from the non-limiting examples of processes P1-P7, the controller may receive and process the measured amount of the disinfecting energy from the first sensor, and the corresponding disinfecting energy threshold (e.g., processes P1 and P2), and the bacterial load for the space sensed by the second sensor and a corresponding bacterial load threshold (e.g., processes P4 and P5). Additionally, the controller may receive and process environmental characteristic(s) (e.g., occupancy level, visible light, task(s), and so on) detected by third sensor(s) and a corresponding preferred amount of disinfecting energy for each of the detected environmental characteristic(s). In this non-limiting example, and as shown inFIG. 3, process P8 may be performed before adjusting the amount of disinfecting energy provided to the space in process P3.
In process P8, the variety or plurality of data and/or information relating to the space may be prioritized. That is, the variety or plurality of data and/or information from various sensors and/or components of the disinfecting light system relating to the space may be prioritized, ordered, weighted, arranged, and/or ranked in process P8. In a non-limiting example, the controller may prioritize the data and/or information based on the type of data and/or information received and/or the type of sensors, and/or the component(s) included within thespace30, and/or by the importance of the data and/or information with respect to the disinfecting light system. For example, the controller may prioritize the sensed bacterial load and corresponding bacterial load threshold (e.g., processes P4 and P5) over, higher than, and/or above the measured amount of disinfecting energy and disinfecting energy threshold (e.g., processes P1 and P2), and/or the environmental characteristic(s) and corresponding preferred amount of disinfecting energy (e.g., processes P6 and P7). In a non-limiting example, once the controller prioritizes the data relating to the bacterial load and the corresponding bacterial load threshold above the other data and/or information relating to the space, the controller may adjust the amount of disinfecting energy as discussed herein with respect to process P3.
In process P9 (shown in phantom as optional), the prioritized variety or plurality of data and/or information relating to the space may be compared. That is, the prioritized variety or plurality of data and/or information from various sensors and/or components of the disinfecting light system relating to the space may be compared in one another in process P9 to determine if the prioritized data and/or information meets the other data and/or information. For example, the prioritized bacterial load threshold, and specifically the predetermined, preferred, or required disinfecting energy associated with the bacterial load threshold prioritized in process P8, may be compared to the disinfecting energy threshold and/or, the preferred amount of disinfecting energy associated with the environmental characteristic(s). In comparing the plurality of data and/or information, it may be determined how to adjust the disinfecting energy provided to the space in process P3. In a non-limiting example, the disinfecting energy associated with the prioritized bacterial load threshold may be greater than the disinfecting energy threshold, and/or the preferred amount of disinfecting energy associated with the environmental characteristic(s). In this non-limiting example, the disinfecting energy provided to the space by the disinfecting light fixture may be adjusted to equal and/or meet the disinfecting energy associated with the prioritized bacterial load threshold.
In another non-limiting example, the disinfecting energy associated with the prioritized bacterial load threshold may be less than the disinfecting energy threshold, and/or the preferred amount of disinfecting energy associated with the environmental characteristic(s). In this non-limiting example, the disinfecting energy provided to the space by the disinfecting light fixture may be adjusted to equal and/or meet the disinfecting energy associated with the prioritized bacterial load threshold regardless of the other, greater disinfecting energies associated with the received data and/or information. Alternatively in this non-limiting example, the disinfecting energy provided to the space by the disinfecting light fixture may be adjusted to equal and/or meet the disinfecting energy threshold, and/or the preferred amount of disinfecting energy associated with the environmental characteristic(s), rather than the disinfecting energy associated with the prioritized bacterial load threshold. The amount of disinfecting energy may be adjusted in this manner, even though the disinfecting energy associated with the prioritized bacterial load threshold is prioritized over the disinfecting energy threshold, and/or the preferred amount of disinfecting energy associated with the environmental characteristic(s). By adjusting the disinfecting energy emitted by the disinfecting light fixture to equal and/or meet the disinfecting energy threshold, and/or the preferred amount of disinfecting energy associated with the environmental characteristic(s), it may ensure that both the disinfecting energy associated with the prioritized bacterial load threshold, as well as at least one additional, associated disinfecting energy is met.
FIG. 4 shows a flow diagram illustrating non-limiting example processes of regulating illuminating light106 generated by a disinfectinglight system100 within space(s)30,32 of environment10 (see,FIG. 1). These processes can be performed, e.g., by at least onecontroller110 ofcontrol system109 for disinfecting light system100 (see,FIG. 1), as described herein. In other cases, these processes can be performed according to a computer-implemented method of regulating illuminating light106 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. In still other embodiments, these processes can be performed by executing computer program code on a computing device(s), causing the computing device(s), and specificallycontroller110, to regulate illuminating light106 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10.
In process P10, an amount of illuminating light in a space of an environment may be determined. Specifically, an amount of illuminating light provided to the space of the environment by a disinfecting light fixture of a disinfecting light system (and/or natural light) may be measured, sensed, detected, and/or determined. The measured amount of illuminating light provided to the space of the environment by the disinfecting light fixture of the disinfecting light system may be measured by at least one sensor positioned within the space receiving the illuminating light. In another non-limiting example, the measured amount of illuminating light provided to the space of the environment by the disinfecting light fixture of the disinfecting light system may be measured, sensed, provided, and/or determined by the disinfecting light fixture itself. That is, the disinfecting light fixture may sense, provide, and/or determine the amount of illuminating light it emits or provides to the space. Additionally, and where applicable, determining the amount of illuminating light in the space of the environment may include determining how much of a total visible light provided to the space is illuminating light provided by the disinfecting light fixture, and how of the total visible light is natural light provided to the space.
In addition to determining the amount of illuminating light in process P10, a preferred amount of illuminating light may be identified. That is, determining the amount of illuminating light provided to the space in process P10 may also include identifying a preferred amount of illuminating light. The preferred illuminating light may be based on sensed or measured characteristics of the space (e.g., occupancy level, amount of natural light/natural disinfecting light, task(s), and so on), characteristics and/or properties of the space, predetermined information (e.g., scheduled outputs) for space, and/or information or input manually provided by a user of the disinfecting light system. For example, detecting the environmental characteristic(s) in process P6 may also include identifying a preferred amount of illuminating light associated with detected environmental characteristics that may be provided to the space by the disinfecting light fixture of the disinfecting light system. The preferred amount of illuminating light associated with the detected environmental characteristic(s) may be predefined and/or predetermined based on the environmental characteristic(s) and/or characteristics of the space provided the illuminating light. In non-limiting examples, the preferred amount of illuminating light associated with the detected environmental characteristic(s) may be stored on the controller of the control system, or may be provided to the controller from an external source (e.g., storage device), such that when the detected environmental characteristic(s) is provided to the controller of the control system, the preferred amount of illuminating light associated with detected environmental characteristics may also be provided to and/or recognized by the controller.
The preferred amount of illuminating light associated with detected environmental characteristics may be based on, related to, and/or associated with the space provided the illuminating light. For example, the preferred amount of illuminating light associated with the detected natural light, natural disinfecting energy, illuminating light, and/or total visible light in the space, may include various preferred amounts of illuminating light based upon the amount of natural light, natural disinfecting energy, and current illuminating light being provided to the space. In an additional non-limiting example, the preferred amount of illuminating light associated with the detected task carried out in the space may include various preferred amounts of illuminating light based upon various tasks being carried out in the space.
In another non-limiting example where the preferred amount of illuminating light is based on a predetermined operational schedule, various preferred amounts of illuminating light may be provided based on a variety of information pertaining to the predetermined operational schedule. That is, various preferred amounts of illuminating light may be provided, and may be based on and/or associated with predetermined times of the day (e.g., evening hours), days of the week (e.g., weekends), and/or electrical consumption periods (e.g., peak hours, off-peak hours).
In process P11, it may be determined if the determined amount of illuminating light provided to the space by the disinfecting light system meets the preferred amount of illuminating light. Specifically, it may be determined if the determined amount of illuminating light provided to the space by the disinfecting light system (e.g., process P10) meets the preferred amount of illuminating light associated with, for example, the detected, environmental characteristic(s) and/or the predetermined operational schedule (e.g., process P6). In a non-limiting example, the determined amount of illuminating light provided to the space by the disinfecting light system meets the preferred amount of illuminating light when the determined amount of illuminating light is equal to or within the range of the preferred amount of illuminating light. The controller of the control system for the disinfecting light system may determine if the determined amount of illuminating light provided to the space by the disinfecting light system meets the preferred amount of illuminating light (e.g., predetermined or desired amount, level, minimum, and/or range of illuminating light to be provided to the space (real-time/predetermined period of time), average illuminating light amount, level and/or range provided to space over predetermined time). If it is determined that the determined amount of illuminating light provided to the space does not meet the preferred amount of illuminating light (e.g., “NO” at process P11), the processes may proceed to process P12. Conversely, if it is determined that the determined amount of illuminating light provided to the space does meet the preferred amount of illuminating light (e.g., “YES” at process P11), the processes may repeat and/or may proceed back to process P10 and may begin again.
In response to determining the determined amount of illuminating light provided to the space does not meet the preferred amount of illuminating light (e.g., “NO” at process P11), the amount of illuminating light in the space may be adjusted in process P12. That is, in process P12, the amount of illuminating light provided to the space by the disinfecting light fixture of the disinfecting light system may be adjusted, changed, and/or altered. The amount of illuminating light provided to the space may be adjusted by altering the operation of the disinfecting light fixture to one of increase or decrease the amount of illuminating light generated by the disinfecting light fixture and provided to the space. In a non-limiting example, the controller of the control system for the disinfecting light system may be operably coupled to the disinfecting light fixture and may be configured to control the operation of disinfecting light fixture to adjust (e.g., increase, decrease) the amount of illuminating light generated by the disinfecting light fixture. In a non-limiting example where the determined amount of illuminating light is less than the preferred amount of illuminating light, the controller may increase the amount of illuminating light provided to the space by the disinfecting light fixture until the determined amount of illuminating light meets the preferred amount of illuminating light. Additionally in a non-limiting example where the measured amount of illuminating light is greater than the preferred amount of illuminating light, the controller may decrease or maintain the amount of illuminating light provided to the space by the disinfecting light fixture until the measured amount of illuminating light meets the preferred amount of illuminating light. The amount of illuminating light generated by the disinfecting light fixture may be adjusted and/or changed independent of the amount of disinfecting energy provided to the space by the disinfecting light fixture.
As shown in the non-limiting example ofFIG. 4, the processes of regulating the illuminating light emitted by the disinfecting light fixture may be performed in succession with and/or after processes P1-P9 for regulating the disinfecting energy emitted by the disinfecting light fixture. Although shown in succession, it is understood that some of the processes illustrated inFIG. 4 for regulating the illuminating light generated by the disinfecting light system may be performed concurrently with the processes for regulating the disinfecting energy. For example, processes P10-P12 may be performed concurrently with processes P1-P9 discussed herein with respect toFIGS. 2 and 3. Alternatively, the processes for regulating the illuminating light generated by the disinfecting light fixtures of the disinfecting light system (e.g., processes P10-P12) may be performed in a separate and/or distinct flow process or procedure than the processes for regulating the disinfecting energy (e.g., processes P1-P9).
FIG. 5 shows a flow diagram illustrating additional, non-limiting example processes of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 of environment10 (see,FIG. 1). These processes can be performed, e.g., by at least onecontroller110 ofcontrol system109 for disinfecting light system100 (see,FIG. 1), as described herein. In other cases, these processes can be performed according to a computer-implemented method of regulating disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10. In still other embodiments, these processes can be performed by executing computer program code on a computing device(s), causing the computing device(s), and specificallycontroller110, to regulate disinfectingenergy108 generated by a disinfectinglight system100 within space(s)30,32 ofenvironment10.
Subsequent to measuring the amount of disinfecting energy provided to and/or within the space in process P1, and possibly performing processes P2 and P4-P12), real-time schedule data may be determined in process P13. That is, in process P13 the real-time schedule data may be determined, detected, and/or sensed. The real-time schedule data may relate to data and/or information associated with or pertaining to an operational schedule. That is, the determined real-time schedule data may be based on, associated with, and/or may include a determined time of the day (e.g., 10:00 PM), a determined day of the week (e.g., Saturday), and/or a determined electrical consumption period (e.g., peak hours, off-peak hours). The real-time schedule data may be determined, detected, and/or sensed by a component included within the environment and/or a component in communication with the control system of the disinfecting light system. In a non-limiting example, the real-time schedule data may be determined by an access control component positioned within the environment and in communication with the controller of the control system. In another non-limiting example, the real-time schedule data may be determined by an additional component and/or system utilized by and/or within the environment including, but not limited to, a surveillance system, a security system, an information technology (IT) system, and/or a building management system (BMS)/building automation system (BAS) controlling additional components or systems (e.g., heat, ventilation, and air conditioning (HVAC) systems) of the environment. In an additional non-limiting example, the real-time schedule data may be determined and/or provided by a manual input provided by a user(s) of the space in the environment.
In addition to determining the real-time schedule data in process P13, a scheduled amount of disinfecting energy associated with the real-time schedule data may be identified. That is, determining the real-time schedule data in process P13 may also include identifying a scheduled amount of disinfecting energy, associated with the determined real-time schedule data, which may be provided to the space by the disinfecting light fixture of the disinfecting light system. The scheduled amount of disinfecting energy associated with the determined real-time schedule data may be predefined and/or predetermined based on the predetermined operational schedule (e.g., time of day, day of week, electrical consumption periods, and the like). In a non-limiting example, where the determined real-time schedule data relates to a determined time of day, the scheduled amount of disinfecting energy associated with the real-time schedule data may include various scheduled amounts of disinfecting energy based upon distinct times of the day. In another non-limiting example, where the determined real-time schedule data relates to a determined day of the week, the scheduled amount of disinfecting energy associated with the real-time schedule data may include various scheduled amounts of disinfecting energy based upon each day of the week. In an additional non-limiting example, where the determined real-time schedule data relates to an electrical consumption period, the scheduled amount of disinfecting energy associated with the real-time schedule data may include a first scheduled amount of disinfecting energy corresponding to peak hours, and a second scheduled amount of disinfecting energy corresponding to off-peak hours. Additionally, it is understood that the scheduled amount of disinfecting energy associated with the real-time schedule data may include and/or be based on two (or more) determined data points (e.g., time of day, as well as, day of the week). The scheduled amount of disinfecting energy associated with the determined real-time schedule data may be stored on the controller of the control system, or may be provided to the controller from an external source (e.g., storage device). As such, when the determined real-time schedule data is provided to the controller of the control system, the scheduled amount of disinfecting energy associated with the real-time schedule data may also be provided to and/or recognized by the controller.
In process P14, it may be determined if the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the scheduled amount of disinfecting energy associated with the determined real-time schedule data. Specifically, it may be determined if the measured amount of disinfecting energy provided to the space by the disinfecting light system (e.g., process P1) meets the scheduled amount of disinfecting energy associated with the determined real-time schedule data (e.g., process P13). In a non-limiting example, the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the scheduled amount of disinfecting energy associated with the determined real-time schedule data when it is equal to or within the range of the scheduled amount of disinfecting energy associated with the determined real-time schedule data. The controller of the control system for the disinfecting light system may determine if the measured amount of disinfecting energy provided to the space by the disinfecting light system meets the scheduled amount of disinfecting energy associated with the determined real-time schedule data. If it is determined that the measured amount of disinfecting energy provided to the space does not meet the scheduled amount of disinfecting energy associated with the determined real-time schedule data (e.g., “NO” at process P14), the processes may proceed to process P3. Conversely, if it is determined that the measured amount of disinfecting energy provided to the space does meet the scheduled amount of disinfecting energy associated with the determined real-time schedule data (e.g., “YES” at process P14), the processes repeat and/or may proceed back to process P1 and may begin again.
In response to determining the measured amount of disinfecting energy does not meet the scheduled amount of disinfecting energy associated with the determined real-time schedule data (e.g., “NO” at process P14), the amount of disinfecting energy in the space may be adjusted in process P3. That is, in process P3, the amount of disinfecting energy provided to the space by the disinfecting light fixture of the disinfecting light system may be adjusted, changed, and/or altered. The amount of disinfecting energy in the space may be adjusted in process P3 shown inFIG. 5 in a similar manner and/or fashion as discussed herein with respect to process P3 ofFIG. 2. Redundant explanation of this process has been omitted for brevity.
As shown in the non-limiting example ofFIG. 5, the additional, non-limiting processes of regulating the disinfecting energy emitted by the disinfecting light fixture may be performed in succession with and/or after processes P1-P9. Although shown in succession, it is understood that some of the processes illustrated inFIG. 5 for regulating the disinfecting energy generated by the disinfecting light system may be performed concurrently with the processes P2 and P4-P7. That is for example, after performing process P1, processes P2 and P13 may be performed concurrently and/or simultaneously. Additionally as shown inFIG. 5, processes P2 and P4-P7 are shown in phantom as optional. In the non-limiting example discussed herein, processes P13 and P14 may be performed subsequent to and/or concurrently with processes P2 and P4-P7 to regulate the disinfecting energy emitted by the disinfecting light fixture of the disinfecting light system. In another non-limiting example, processes P2 and P4-P7 may be omitted, and the disinfecting energy emitted by the disinfecting light fixture may be regulated by only performing processes P1, P13, P14, and P3, in that order.
Additionally, although shown in three distinct flow charts, the processes P1-P14 shown and discussed herein with respect toFIGS. 2-5 may be performed to regulate the operation of the disinfecting light fixture of the disinfecting light system, as discussed herein. That is, the various processes discussed herein (e.g., processes P1-P14) may be performed as single continuous/successive processes, or alternatively simultaneous processes, for regulating the operation of the disinfecting light fixture of the disinfecting light system, as discussed herein.
Additionally in other non-limiting examples, the controller of the control system for the disinfecting light system may receive and process a variety of data and/or information from various sources (e.g., sensors, storage devices, and the like) before regulating the disinfecting energy. That is, the controller may receive and process a variety of distinct data and/or information, from various sources, before adjusting the amount of disinfecting energy generated by the disinfecting light fixture. Turning toFIG. 6, a non-limiting schematic view of disinfectinglight system100 includingcontrol system109 is shown. Specifically,FIG. 6 shows a schematic view of disinfectinglight system100 includingcontrol system109, and a flow process of data and/or information through the various components of disinfectinglight system100 and/orcontrol system109. It is understood that similarly numbered and/or named components may function in a substantially similar fashion. Redundant explanation of these components has been omitted for clarity.
In the non-limiting example shown inFIG. 6, a plurality ofsensors112,118,120A,120B ofcontrol system109 may provide sensor output and/or data tocontroller110 for aiding in the control of the operation of disinfectinglight fixture102 of disinfectinglight system100. In the non-limiting example, and as discussed herein with respect toFIG. 1,first sensor112 may provide data and/or information relating to a measured amount of disinfectingenergy108 provided to a space, for examplefirst space30, tocontroller110. Additionally,second sensor118 may provide data and/or information relating to a sensed bacterial load offirst space30,third sensor120A may provide data and/or information relating to a detected occupancy level offirst space30, andthird sensor120B may provide data and/or information relating to an amount of natural light20 and/or amount of natural disinfecting energy40 (see,FIG. 1) provided tofirst space30.
Additionally,controller110 may receive additional information and/or data from external sources and/or components, such as external storage devices, to aid in the control aiding in the control of the operation of disinfectinglight fixture102 of disinfectinglight system100. For example, and as shown inFIG. 6, a disinfectingenergy target component128 may provide data and/or information which aidscontroller110 in determining if disinfectingenergy108 provided tofirst space30 by first disinfectinglight fixture102 needs to be adjusted. That is, disinfectingenergy target component128 may provide data and/or information to determine if the amount of disinfectingenergy108 provided tofirst space30, and measured byfirst sensor112, is equal to or within the range of a predetermined or desired amount, level, minimum, and/or range of disinfectingenergy108 to be provided tofirst space30, as discussed herein. In one non-limiting example, disinfectingenergy target component128 may include data or information relating to the predetermined disinfecting energy threshold, similarly discussed herein with respect to processes P1 and P2 ofFIG. 2. Additionally in another non-limiting example, disinfectingenergy target component128 may include data or information relating to the preferred amount of disinfecting energy associated with detected environmental characteristics detected in first space30 (e.g., occupancy level, amount of natural light, amount of natural disinfecting energy, task(s)), similarly discussed herein with respect to processes P6 and P7 ofFIG. 2. Additionally, disinfectingenergy target component128 may also be configured to promptcontroller110 to determine if a dosage target for disinfectingenergy108 is met. That is, disinfectingenergy target component128 may also be configured to promptcontroller110 to determine if the amount of disinfectingenergy108 provided tofirst space30, and measured byfirst sensor112, is equal to or within the range of a predetermined or desired amount, level, minimum, and/or range of disinfectingenergy108 to be provided tofirst space30.
Also shown in the non-limiting example ofFIG. 6, an illuminatinglight target component130 may provide data and/or information which aidscontroller110 in determining if illuminating light106 provided tofirst space30 by first disinfectinglight fixture102 needs to be adjusted. In one non-limiting example, illuminatinglight target component130 may include data or information relating to a predetermined illuminating light threshold, which may be based on the range of a predetermined or desired amount, level, minimum, and/or range of illuminating light106 to be provided tofirst space30. Additionally in another non-limiting example, illuminatinglight target component130 may include data or information relating to the preferred amount of illuminating light associated with detected environmental characteristics detected in first space30 (e.g., occupancy level, amount of natural light, natural disinfecting energy, task(s)), similarly discussed herein with respect tothird sensors120A,120B,120C ofFIG. 1. As such, illuminatinglight target component130 may provide data and/or information tocontroller110 to determine if the amount of illuminating light106 provided tofirst space30 is equal to or within the range of the predetermined amount or range of illuminating light106, or alternatively the preferred amount of illuminating light, to be provided tofirst space30, as discussed herein. Additionally, illuminatinglight target component130 may also be configured to promptcontroller110 to determine if white light illumination (e.g., illuminating light106) is needed withinfirst space30. That is, illuminatinglight target component130 may also be configured to promptcontroller110 to determine if the amount of illuminating light106 provided tofirst space30 is equal to or within the range of the predetermined amount or range of illuminating light, or preferred amount of illuminating light associated with detected environmental characteristics, to be provided tofirst space30.
Illuminatinglight target component130 may also be in communication with and/or may receive data from an additional source or component before providing data and/or promptingcontroller110, as discussed herein. For example, and as shown inFIG. 6, an electricalcost storage device132 may be operably coupled to and/or in communication with illuminatinglight target component130. Electricalcost storage device132 may include data and/or information relating to the cost of electricity for operating first disinfectinglight fixture102 of disinfecting light system100 (e.g., peak hours, off-peak hours). As such, when promptingcontroller110 to determine if white light illumination (e.g., illuminating light106) is needed withinfirst space30, illuminatinglight target component130 may also provide and/or consider information relating the cost of electricity for operating first disinfectinglight fixture102 provided by electricalcost storage device132. Although shown as being operably coupled to and/or in communication with illuminatinglight target component130, it is understood that electricalcost storage device132 may also be operably coupled to and/or in communication with disinfectingenergy target component128. In this non-limiting example, when promptingcontroller110 to determine if a dosage target for disinfectingenergy108 is met, disinfectingenergy target component128 may also provide and/or consider information relating the cost of electricity for operating first disinfectinglight fixture102 provided by electricalcost storage device132.
Additionally in the non-limiting example shown inFIG. 6, aftercontroller110 determines that the amount of illuminating light106 and/or disinfectingenergy108 provided tospace30 may require adjustment,controller110 may provide input (e.g., a signal) to a light configuration data component133, which may aidcontroller110. That is, light configuration data component133 may include data and/or information relating to the operation and/or function of first disinfectinglight fixture102 of disinfectinglight system100. As such, whencontroller110 determines that the amount of illuminating light106 and/or disinfectingenergy108 provided tospace30 requires adjustment,controller110 may utilize light configuration data component133, including data and/or information relating to the operation and/or function of first disinfectinglight fixture102, to control the operation of first disinfectinglight fixture102.Controller110 may utilize light configuration data component133 to ensure that the amount of illuminating light106 and/or disinfectingenergy108 is adjusted, such that the amount of illuminating light106 and/or disinfectingenergy108 is equal to or within the range of the desired (e.g., predetermined or preferred) amount of illuminating light106 and/or disinfectingenergy108, as discussed herein.
FIG. 7 depicts a schematic view ofcontrol system109, and the various components included withincontrol system109. In the non-limiting example shown inFIG. 7,control system109 may include at least onecontroller110 that may be configured to aid in regulating disinfectingenergy108 generated by disinfectinglight system100 within space(s)30,32 by performing the processes P1-P9 discussed herein with respect toFIGS. 2 and 3. Controller(s)110 shown inFIG. 7 may be substantially similar tocontroller110 discussed herein with respect toFIGS. 1 and/or 4. It is understood that similarly numbered and/or named components may function in a substantially similar fashion. Redundant explanation of these components has been omitted for clarity.
It is understood that controller(s)110 may be implemented as a computer program product stored on a computer readable storage medium. The computer readable storage medium can be a tangible device that can retain and store instructions for use by an instruction execution device. The computer readable storage medium may be, for example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is not to be construed as being transitory signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g., light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.
Computer readable program instructions described herein can be downloaded to respective computing/processing devices from a computer readable storage medium or to an external computer or external storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission, routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in each computing/processing device receives computer readable program instructions from the network and forwards the computer readable program instructions for storage in a computer readable storage medium within the respective computing/processing device.
Computer readable program instructions for carrying out operations of the present invention may be assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent instructions, microcode, firmware instructions, state-setting data, or either source code or object code written in any combination of one or more programming languages, including an object oriented programming language such as Java, Python, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The computer readable program instructions may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or programmable logic arrays (PLA) may execute the computer readable program instructions by utilizing state information of the computer readable program instructions to personalize the electronic circuitry, in order to perform aspects of the present invention.
Aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer readable program instructions.
These computer readable program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. These computer readable program instructions may also be stored in a computer readable storage medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in a particular manner, such that the computer readable storage medium having instructions stored therein comprises an article of manufacture including instructions which implement aspects of the function/act specified in the flowchart and/or block diagram block or blocks.
The computer readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other device to cause a series of operational steps to be performed on the computer, other programmable apparatus or other device to produce a computer implemented process, such that the instructions which execute on the computer, other programmable apparatus, or other device implement the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods, and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of instructions, which comprises one or more executable instructions for implementing the specified logical function(s). In some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose hardware and computer instructions.
Control system109 may include any type of controller(s)110, which may include, for example, at least oneprocessor134, storage component136, input/output (I/O) component(s)138 (including users electronic devices discussed herein), and acommunications pathway140. In general, processor(s)134 execute program code which is at least partially fixed in storage component136. While executing program code, processor(s)134 can process data, which can result in reading and/or writing transformed data from/to storage component136 and/or I/O component(s)138 for further processing. Thepathway140 provides a communications link between each of the components in controller(s)110. I/O component138 can comprise one or more human I/O devices, which enables user(s)142 to interact with controller(s)110. Controller(s)110 may also be implemented in a distributed manner such that different components reside in different physical locations.
Storage component136 may also include modules, data and/or electronic information relating to various other aspects ofcontrol system109. Specifically, operational modules, information, and/or data relating to disinfectinglight system data144, disinfectingenergy data146,bacterial load data148, environmentalcharacteristic data150,space data152,task data154, andschedule data156. The operational modules and/or data may include the required information and/or may allowcontrol system109, and specificallycontroller110, to perform the processes discussed herein for regulating disinfectingenergy108 generated by disinfectinglight system100 within space(s)30,32. Additionally,sensors112,118,120A,120B,120C,122,124 may in communication withcontrol system109, and more specificallycontroller110 ofcontrol system109, to transmit measured, sensed, and/or detected data (e.g., sensed bacterial load, measure amount of disinfecting light in space(s)30,32, and the like) tocontroller110. Furthermore,controller110 may utilize the transmitted data fromsensors112,118,120A,120B,120C,122,124, and the operational modules, information, and/or data stored on storage component136 (e.g., disinfectinglight system data144, disinfectingenergy data146,bacterial load data148, and so on) to regulate disinfectingenergy108 generated by disinfectinglight system100 within space(s)30,32, as discussed herein.
Control system109, and specificallycontroller110 ofcontrol system109, may also be in communication with an external storage component158. External storage component158 may be configured to store various modules, data and/or electronic information relating to various other aspects ofcontrol system109, similar to storage component136 of controller(s)110. Additionally, external storage component158 may be configured to share (e.g., send and receive) data and/or electronic information with controller(s)110 ofcontrol system109. In the non-limiting example shown inFIG. 7, external storage component158 may include any or all of the operational modules and/or data shown to be stored on storage component136 (e.g., data144-156). In a non-limiting example, external storage component158 may be a cloud-based storage component or system.
Furthermore, it is understood that controller(s)110 ofcontrol system109 or relevant components thereof (such as an API component, agents, etc.) may also be automatically or semi-automatically deployed into a computer system by sending the components to a central server or a group of central servers. The components are then downloaded into a target computer that will execute the components. The components are then either detached to a directory or loaded into a directory that executes a program that detaches the components into a directory. Another alternative is to send the components directly to a directory on a client computer hard drive. When there are proxy servers, the process will select the proxy server code, determine on which computers to place the proxy servers' code, transmit the proxy server code, and then install the proxy server code on the proxy computer. The components will be transmitted to the proxy server and then it will be stored on the proxy server.
FIG. 8 shows another non-limiting example ofenvironment10 including disinfectinglight system100. As shown in the non-limiting example ofFIG. 8,environment10 may includemultiple spaces30,32, and disinfectinglight system100 may includecontrol system109, as similarly discussed herein with respect toFIG. 1.Control system109, and more specificallycontroller110, may be configured to regulate the operation of disinfectinglight fixtures102,104, as discussed herein. It is understood that similarly numbered and/or named components may function in a substantially similar fashion. Redundant explanation of these components has been omitted for clarity.
However, distinct from the non-limiting example discussed herein with respect toFIG. 1,control system109 shown inFIG. 8 may not include a single sensor (e.g.,sensors112,118,120A,120B,120C). That is,control system109 of disinfectinglight system100 shown inFIG. 8 may includecontroller110, but may not include a sensor(s) positioned withinenvironment10 and/or spaces(s)30,32. Rather in this non-limiting example, data, information, and/or characteristics relating toenvironment10 may be detected and/or determined by other components ofenvironment10 and subsequently provided tocontroller110 for regulating the operation of disinfectinglight fixtures102,104. For example, disinfectinglight fixtures102,104 of disinfectinglight system100 may be configured to provide data and/or information relating to an amount of illuminating light106 and/or disinfectingenergy108 tocontroller110 in place offirst sensor112 and/orthird sensor120A. That is, in place ofsensors112,120A, disinfectinglight fixtures102,104, in communication withcontroller110 ofcontrol system109, may be configured to determined and/or detect an amount of illuminating light106 and/or disinfectingenergy108 being provided withinenvironment10 by disinfectinglight fixtures102,104, and may transmits that information tocontroller110 to aid in regulating the operation of disinfectinglight fixtures102,104, as discussed herein. In this non-limiting example,controller110 may adjust illuminating light106 and/or disinfectingenergy108 provided tofirst spaces30,32 based on, at least in part, the data and/or information provided tocontroller110 directly from first disinfectinglight fixtures102,104.
Additionally as shown in the non-limiting example ofFIG. 8,environment10 may also include acamera159 positioned therein. For example,camera159 may be positioned on, and/or adjacent toceiling34 ofenvironment10. In a non-limiting example shown inFIG. 8,camera159 may be operably coupled to and/or in communication withcontroller110 ofcontrol system109 for disinfectinglight system100, and may provide visual data and/or information (e.g., real-time video data) forenvironment10, and more specificallyspaces30,32 ofenvironment10. In another non-limiting example,camera159 may be part of a video surveillance system forenvironment10, and may be configured to provide visual data and/or information (e.g., real-time video recording) forenvironment10, and more specificallyspaces30,32 ofenvironment10 to the video surveillance system, which in turn may provide the data tocontroller110. For example, camera159 (and video surveillance system) may obtain data relating to environmental characteristic(s) ofenvironment10 and/orspace30,32. Specifically,camera159 may be utilized to obtain data and/or information relating to an occupancy level ofspaces30,32 and/or task(s) being performed within space(s)30,32, and may provide the data and/or information tocontroller110 to aid in the regulation of disinfectinglight fixtures102,104 of disinfectinglight system100, as discussed herein. In this non-limiting example, camera159 (and video surveillance system) may replacesensors120B,120C previously included in the non-limiting example discussed herein with respect toFIG. 1.
Furthermore, and as shown in the non-limiting example ofFIG. 8,environment10, and more specificallyfirst space30, may or may not includeaccess control component126. That is,access control component126 is shown in phantom as optional.Access control component126 may aidcontroller110 in the regulation of disinfectinglight fixtures102,104 of disinfectinglight system100 by providing operational schedule information and/or allowing a user ofenvironment10 to manually input information for regulating and/or adjusting the operation of disinfectinglight fixtures102,104.
FIG. 9 shows an additional non-limiting example ofenvironment10 including and/or illuminated by disinfectinglight system100. As shown in the non-limiting example ofFIG. 9,environment10 may includemultiple spaces30,32, and disinfectinglight system100 may includecontrol system109, as similarly discussed herein with respect toFIG. 1. However distinct from the non-limiting example discussed herein with respect toFIG. 1,control system109 shown inFIG. 9 may only include asingle sensor112,118,120A,120B,120C. That is,control system109 may include asingle sensor112,118,120A,120B,120C configured to obtain data, information, and/or characteristics relating to environment10 (e.g., disinfecting energy, bacterial load, environmental characteristics, and so on), and subsequently provide the data, information, and/or characteristics tocontroller110 for regulating the operation of disinfectinglight fixtures102,104. In the non-limiting example shown inFIG. 9, thesingle sensor112,118,120A,120B,120C ofcontrol system109 for disinfectinglight system100 may be positioned on, and/or coupled toceiling34. The data, information, and/or characteristics obtained by thesingle sensor112,118,120A,120B,120C ofcontrol system109 may be dependent on the type or configuration ofsensor112,118,120A,120B,120C included withinenvironment10. For example, when the single sensor ofcontrol system109 is configured or formed asfirst sensor112, the single sensor ofcontrol system109 may measure an amount of disinfecting energy provided toenvironment10, and more specificallyspaces30,32, as previously discussed herein. Thesingle sensor112,118,120A,120B,120C ofcontrol system109 may aidcontroller110 in regulating the operation of disinfectinglight fixtures102,104 as similarly discussed with respect toFIGS. 1-5. Redundant explanation of the regulating processes has been omitted for brevity.
FIGS. 10 and 11 show additional non-limiting examples ofenvironment10 including and/or illuminated by disinfectinglight system100.Environment10 including and/or illuminated by disinfectinglight system100, as shown inFIGS. 10 and 11, may show substantially thesame space30/environment10 under distinct conditions (e.g., amount of natural light20, natural disinfecting energy40, disinfecting energy108), as discussed herein. In the non-limiting example,environment10 ofFIGS. 10 and 11 may only include a single space (e.g., first space30), a singledisinfecting light fixture102, and may have items removed (e.g.,door22,chair24,workstation26, and so on). These items are removed fromenvironment10 and/orfirst space30 for the sake of clarity of the figures. However, it is understood that these items may be included withinenvironment10 as previously discussed herein.
Controller110 may regulate and/or adjust the operation of disinfectinglight fixture102 based on data relating toenvironment10 and/orfirst space30. That is,controller110 may regulate and/or adjust the operation of disinfecting light fixture102 (e.g., emitted illuminating light106 and/or disinfecting energy108) based on obtained data, information, and/or characteristics relating to environment10 (e.g., disinfecting energy, bacterial load, environmental characteristics, and so on). For example, and as shown inFIGS. 10 and 11,controller110 may regulate and/or adjust the operation of disinfectinglight fixture102 based on obtained, sensed, measured, and/or determined data relating tonatural light20A,20B and/or natural disinfectingenergy40A,40B provided tofirst space30 viawindow12. As shown inFIGS. 10 and 11, and similarly discussed herein with respect toFIG. 1, the single sensor ofcontrol system109 may be formed asthird sensor120B, which may be configured to detect, determine, and/or measure an amount ofnatural light20A,20B, and natural disinfectingenergy40A,40B. In additional non-limiting examples,single sensor120B ofcontrol system109 may be configured to detect, determine, and/or measure an amount of disinfectingenergy108 emitted by disinfectinglight fixture102, or alternatively, disinfectinglight fixture102 itself may be configured to provide the amount of disinfectingenergy108 tocontroller110.
As shown in the non-limiting examples ofFIGS. 10 and 11, the intensity fornatural light20A,20B and natural disinfectingenergy40A,40B may vary. That is, a first intensity ofnatural light20A and a first intensity of natural disinfectingenergy40A, as shown inFIG. 10, may vary and/or be distinct from a second intensity ofnatural light20B and a second intensity of natural disinfectingenergy40B shown inFIG. 11. In the non-limiting example shown inFIGS. 10 and 11, the first intensity fornatural light20A may be greater than the second intensity fornatural light20B, and the first intensity for natural disinfectingenergy40A may be greater than the second intensity for natural disinfectingenergy40B. The change in intensity in thenatural light20A,20B and natural disinfectingenergy40A,40B may be a result of, for example, a change in the time of day (e.g., 12:00 PM (FIG. 10) to 5:00 PM (FIG. 11)), a change in weather (e.g., cloud coverage), or the (partial) covering of the window with a blind (not shown).
As a result of the change in intensity ofnatural light20A,20B and natural disinfectingenergy40A,40B infirst space30 ofenvironment10,controller110 may regulate and/or adjust the operation of disinfectinglight fixture102. That is, and as discussed herein with respect toFIGS. 1-5, because of the change in intensity ofnatural light20A,20B and natural disinfectingenergy40A,40B infirst space30controller110 may adjust the operational dosage intensity of illuminating light106A,106B and disinfectingenergy108A,108B provided tofirst space30 by disinfectinglight fixture102. In the non-limiting examples shown inFIGS. 10 and 11, disinfectinglight fixture102 may emit illuminating light106A,106B and disinfectingenergy108A,108B at two different operational dosage intensities. Specifically inFIG. 10, disinfectinglight fixture102 of disinfectinglight system100 may emit illuminating light106A at a first operational dosage intensity for illuminating light, and may emit disinfectingenergy108A at a first operational dosage intensity for disinfecting energy. Conversely as shown inFIG. 11, and with comparison toFIG. 10, disinfectinglight fixture102 of disinfectinglight system100 may emit illuminating light106B at a second operational dosage intensity for illuminating light, and may emit disinfectingenergy108B at a second operational dosage intensity for disinfecting energy. The first operational dosage intensity for illuminating light (e.g., illuminating light106A) may be distinct from the second operational dosage intensity for illuminating light (e.g., illuminating light106B). Similarly, the first operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108A) may be distinct from the second operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108B).
In the non-limiting example shown inFIGS. 10 and 11, the first operational dosage intensity for illuminating light (e.g., illuminating light106A) may be less than the second operational dosage intensity for illuminating light (e.g., illuminating light106B), and the first operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108A) may be less than the second operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108B). The difference in operational dosage intensities for illuminating light106A,106B and disinfectingenergy108A,108B may be dependent on the change in intensity ofnatural light20A,20B and natural disinfectingenergy40A,40B, as discussed herein. For example, when the intensity ofnatural light20A,20B and natural disinfectingenergy40A,40B decreases, the operational dosage intensity for illuminating light106A,106B, and the operational dosage intensity for disinfectingenergy108A,108B may increase. Specifically, whencontroller110 determines that the intensity ofnatural light20A,20B and natural disinfectingenergy40A,40B decreases, based on data or information determined bysensor120B,controller110 may increase the operational dosage intensity for illuminating light106A,106B, and disinfectingenergy108A,108B, respectively, by regulating and/or adjusting the operation of disinfectinglight fixture102.
FIGS. 12 and 13 show further non-limiting examples ofenvironment10 including disinfectinglight system100. Similar to the non-limiting examples shown inFIGS. 12 and 13,environment10 shown inFIGS. 12 and 13 may show substantially thesame space30/environment10 under distinct conditions (e.g., amount of natural light20, natural disinfecting energy40, disinfecting energy108), as discussed herein. Additionally, the non-limiting examples shown inFIGS. 12 and 12 may include substantially similar features and/or components as the non-limiting examples shown inFIGS. 10 and 11. It is understood that similarly numbered and/or named components may function in a substantially similar fashion. Redundant explanation of these components has been omitted for clarity.
In the non-limiting examples shown inFIGS. 12 and 13,controller110 may regulate and/or adjust the operation of disinfectinglight fixture102 based on obtained, sensed, measured, and/or determined data relating to an occupancy level offirst space30. Additionally in the non-limiting example shown inFIGS. 12 and 13, and similarly discussed herein with respect toFIG. 1, the single sensor ofcontrol system109 may be formed asthird sensor120A, which may be configured to detect, determine, and/or measure an occupancy level offirst space30, and provide the data relating to the occupancy level offirst space30 tocontroller110. When comparingFIGS. 12 and 13, occupancy level offirst space30 may change. That is,third sensor120A may determine that the occupancy level forfirst space30 initially includes oneuser142, as shown inFIG. 12, and may subsequently determine that the occupancy level forfirst space30 includes a plurality ofusers142 at a later time, as shown inFIG. 13. In addition to receiving data or information relating to the change in the occupancy level offirst space30,controller110 may also be provided with a preferred amount of disinfecting energy associated with each of the detected occupancy levels of first space30 (e.g.,single user142 inFIG. 12, plurality ofusers142 inFIG. 13).
As a result of the change in the occupancy level offirst space30 ofenvironment10,controller110 may regulate and/or adjust the operation of disinfectinglight fixture102. That is, and as discussed herein with respect toFIGS. 1-5, because of the change in occupancy level forfirst space30,controller110 may adjust the operational dosage intensity of illuminating light106A,106B and/or disinfectingenergy108A,108B provided tofirst space30 by disinfectinglight fixture102. In the non-limiting examples shown inFIGS. 12 and 13, and distinct from the non-limiting example discussed herein with respect toFIGS. 10 and 11, disinfectinglight fixture102 may emit illuminating light106A at a single operational dosage intensity. That is, regardless of the detected change in occupancy level forfirst space30, as detected bythird sensor120A,controller110 may not adjust the operation of disinfectinglight fixture102, and disinfectinglight fixture102 may emit illuminating light106A at a constant operational dosage intensity.
However as shown in the non-limiting examples ofFIGS. 12 and 13, and similar toFIGS. 10 and 11, disinfectinglight fixture102 may emit disinfectingenergy108A,108B at two different operational dosage intensities. Specifically inFIG. 12, disinfectinglight fixture102 of disinfectinglight system100 may emit disinfectingenergy108A at a first operational dosage intensity for disinfecting energy. Conversely as shown inFIG. 13, and with comparison toFIG. 12, disinfectinglight fixture102 of disinfectinglight system100 may emit disinfectingenergy108B at a second operational dosage intensity for disinfecting energy. The first operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108A) may be distinct from the second operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108B). For example, the first operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108A) may be less than the second operational dosage intensity for disinfecting energy (e.g., disinfectingenergy108B). The difference in operational dosage intensities for disinfectingenergy108A,108B may be dependent on the change in occupancy level forfirst space30, as discussed herein. For example, when the number ofusers142 located withinfirst space30 increases (e.g., change in occupancy levels), the operational dosage intensity for disinfectingenergy108A,108B may also increase. Specifically, whencontroller110 determines that the number ofusers142 located withinfirst space30 increases, based on the occupancy level detected bysensor120A,controller110 may increase the operational dosage intensity for disinfectingenergy108A,108B, by regulating and/or adjusting the operation of disinfectinglight fixture102. In this non-limiting example, the operational dosage for disinfectingenergy108A,108B may be adjusted, changed, and/or varied (e.g., increased) independent of the operation and/or operational dosage of illuminating light106A provided tofirst space30.
FIGS. 14 and 15 show additional, non-limiting examples ofenvironment10 including a plurality of spaces defined therein. Specifically in the non-limiting examples ofFIGS. 14 and 15,environment10 may include threedistinct spaces30,32,44. Eachspace30,32,44 may include and/or may be defined by disinfecting light fixture(s)102,104,160,162 of disinfectinglight system100. For example,first space30 may include, be defined by, and/or may be provided with illuminating light106 and/or disinfectingenergy108 from first disinfectinglight fixture102. Additionally,second space32 may include, be defined by, and/or may be provided with illuminating light106 and/or disinfectingenergy108 from second disinfectinglight fixture104. Furthermore,third space44 may include, be defined by, and/or may be provided with illuminating light106 and/or disinfectingenergy108 from third disinfectinglight fixture160 and fourth disinfectinglight fixture162, respectively. Additionally as shown in the non-limiting examples ofFIGS. 14 and 15, each of thedistinct spaces30,32,44 may include at least onesensor112,118,120A,120B,120C (not all shown) ofcontrol system109 for disinfectinglight system100. Each of thedistinct spaces30,32,44 may be provided illuminating light106 and/or disinfectingenergy108 from the corresponding disinfectinglight fixture102,104,160,162, andcontroller110 ofcontrol system109 may regulate and/or adjust the operation of each disinfectinglight fixture102,104,160,162.
InFIG. 14,environment10 may include a single room, similar to the example discussed herein with respect toFIG. 1. As such, eachspace30,32,44 may be a portion of the singleroom forming environment10. In the example shown inFIG. 14,environment10 may also include at least oneaccess control component126A,126B. Specifically,environment10 may includeaccess control component126A positioned withinfirst space30,adjacent door22. In one example,access control component126A may be configured to aidcontroller110 in regulating and/or adjusting the operation of each disinfectinglight fixture102,104,160,162 included withinspaces30,32,44 ofenvironment10. Additionally,environment10 may include a secondaccess control component126B. For example, a second, distinctaccess control component126B (shown in phantom) may be positioned withinthird space44. In one example,environment10 may include a second, distinctaccess control component126B inthird space44 because of its size and/or the increased number of disinfecting light fixtures (e.g., third disinfectinglight fixture160, fourth disinfecting light fixture162) that may provide illuminating light106 and/or disinfectingenergy108 tothird space44. In this example,access control component126A may be configured to aidcontroller110 in regulating and/or adjusting the operation of each disinfectinglight fixture102,104 included withinspaces30,32, and secondaccess control component126B may be configured to aidcontroller110 in regulating and/or adjusting the operation of each disinfectinglight fixture160,162 included withinspace44.
Distinct from the example shown inFIG. 14,environment10 shown inFIG. 15 may include a plurality of distinct rooms. That is, and as shown inFIG. 15,second space32 may be completely separate fromfirst space30 andthird space44, respectively. Additionally,third space44 may be substantially separated fromfirst space30 by the walls dividingfirst space30,second space32, andthird space44, respectively. However,third space44 may be accessible fromfirst space30 via an opening and/or breezeway46. Because of the separation and/or divide between thespaces30,32,44 of environment10 (e.g., distinct rooms),environment10 may include a plurality ofaccess control component126A,126B,126C. That is, a firstaccess control component126A may be positioned withinfirst space30,adjacent door22A, and a secondaccess control component126B (shown in phantom) may be positioned withinthird space44. Additionally, and becausesecond space32 is completely separate from and/or inaccessible fromfirst space30 and/orthird space44, a thirdaccess control component126C may be positioned withinsecond space32,adjacent door22B.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. “Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about,” “approximately” and “substantially,” are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise. “Approximately” as applied to a particular value of a range applies to both values, and unless otherwise dependent on the precision of the instrument measuring the value, may indicate +/−10% of the stated value(s).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present disclosure has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the disclosure in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the disclosure. The embodiment was chosen and described in order to best explain the principles of the disclosure and the practical application, and to enable others of ordinary skill in the art to understand the disclosure for various embodiments with various modifications as are suited to the particular use contemplated.