CROSS-REFERENCE TO RELATED APPLICATIONThis application claims the priority from Korean Patent Application Serial No. 10-2016-0178487, filed in the Korean Intellectual Property Office on Dec. 23, 2016, the entire content of which is hereby incorporated by reference.
BACKGROUNDThe present disclosure relates to a wireless power transmitter, an electronic device, and a control method thereof, and, more particularly, relates to a wireless power transmitter for wirelessly transmitting power to an electronic device, an electronic device for receiving power from a wireless power transmitter, and a control method thereof.
Portable digital communication devices have come essential to many people in modern times. Customers desire to receive various high-quality services anywhere and around the clock. In addition, recently various sensors, home appliances, communication devices or the like existing in our lives have been connected over a network through Internet of Things (IoT). A wireless power transmission system is required to smoothly operate the various sensors.
Wireless power transmission may include a magnetic induction scheme, a magnetic resonance scheme, and an electromagnetic wave scheme, and the electromagnetic wave scheme may be more useful than other schemes for long-distance power transmission such as long-distance power transmission over a distance of several meters.
The electromagnetic wave scheme is mainly used for the long-distance power transmission, and can most efficiently transfer power by recognizing the accurate location of a power receiver located at a long distance.
A related art electromagnetic wave scheme forms radio frequency (RF) waves in a plurality of directions in order to determine the location of a charging target, for example, an electronic device, receives power related information from the electronic device, and determines the location of the electronic device using the received information. However, it takes a long time to form RF waves in a plurality of directions and to receive power related information. In this instance, it is unsure if the electronic device is fixed at one location. Particularly, high power cannot be transmitted before a charging target is detected, since the high power may be harmful to human bodies.
SUMMARYVarious embodiments of the present disclosure are provided to solve the above described problem or other problems, and may provide a wireless power transmitter for more promptly detecting an electronic device corresponding to a charging target, a control method of the wireless power transmitter, an electronic device for operating in response to the wireless power transmitter, and a control method of the electronic device.
A power transmitter according to various embodiments of the present disclosure may include: an antenna for transmitting a plurality of detection powers, each of which includes direction information, in a plurality of directions, respectively; a communication circuit for receiving a communication signal including first direction information included in a first detection power from an electronic device which receives the first detection power among the plurality of detection powers; and a processor for controlling to transmit power for charging based on the first direction information included in the communication signal.
A control method of a power transmitter according to various embodiments of the present disclosure may include: transmitting a plurality of detection powers, each of which includes direction information, in a plurality of directions; receiving a communication signal including first direction information included in a first detection power, from an electronic device that receives the first detection power among the plurality of detection powers; and transmitting power for charging based on the first direction information included in the communication signal.
An electronic device according to various embodiments of the present disclosure may include: an antenna for receiving power including direction information; a processor for extracting the direction information from the received power; and a communication circuit for transmitting a communication signal including the extracted direction information.
A control method of an electronic device according to various embodiments of the present disclosure may include: receiving power including direction information; extracting the direction information from the received power; and transmitting a communication signal including the extracted direction information.
According to various embodiments of the present disclosure, there are provided a wireless power transmitter for more promptly detecting an electronic device which is a charging target, a control method of the wireless power transmitter, an electronic device for operating in response to the wireless power transmitter, and a control method of the electronic device.
BRIEF DESCRIPTION OF THE DRAWINGSThe above and other aspects, features, and advantages of the present disclosure will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a conceptual diagram illustrating a wireless power transmission system according to various embodiments of the present disclosure;
FIG. 2 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure;
FIGS. 3A, 3B, and 3C are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 4 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 5A is a diagram illustrating a waveform of power transmitted from a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 5B is a diagram illustrating an RF wave including direction information based on an FM scheme;
FIG. 6 is a block diagram illustrating a wireless power transmitter and a wireless power receiver according to various embodiments of the present disclosure;
FIGS. 7A and 7B are flowcharts illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 8 is a conceptual diagram illustrating formation of an RF wave by a wireless power transmitter according to various embodiments of the present disclosure;
FIGS. 9A and 9B are conceptual diagrams illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 10 is a conceptual diagram illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure;
FIGS. 11A, 11B, and 11C are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 12 is a conceptual diagram illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 13 is a conceptual diagram illustrating an operation of a wireless power transmitter for preventing cross connection according to various embodiments of the present disclosure;
FIG. 14 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 15 is a flowchart illustrating a control method of an electronic device according to various embodiments of the present disclosure;
FIG. 16 is a block diagram illustrating a modulation process by a wireless power transmitter according to various embodiments of the present disclosure;
FIG. 17 is a block diagram illustrating a demodulation process by an electronic device according to various embodiments of the present disclosure; and
FIGS. 18A and 18B are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure.
DETAILED DESCRIPTIONHereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments and the terms used therein are not intended to limit the technology disclosed herein to specific forms, and should be understood to include various modifications, equivalents, and/or alternatives to the corresponding embodiments. In describing the drawings, similar reference numerals may be used to designate similar constituent elements. A singular expression may include a plural expression unless they are definitely different in a context. As used herein, singular forms may include plural forms as well unless the context clearly indicates otherwise. The expression “a first”, “a second”, “the first”, or “the second” used in various embodiments of the present disclosure may modify various components regardless of the order and/or the importance but does not limit the corresponding components. When an element (e.g., first element) is referred to as being “(functionally or communicatively) connected,” or “directly coupled” to another element (second element), the element may be connected directly to the another element or connected to the another element through yet another element (e.g., third element).
The expression “configured to” as used in various embodiments of the present disclosure may be interchangeably used with, for example, “suitable for”, “having the capacity to”, “designed to”, “adapted to”, “made to”, or “capable of” in terms of hardware or software, according to circumstances. Alternatively, in some situations, the expression “device configured to” may mean that the device, together with other devices or components, “is able to”. For example, the phrase “processor adapted (or configured) to perform A, B, and C” may mean a dedicated processor (e.g., embedded processor) only for performing the corresponding operations or a generic-purpose processor (e.g., Central Processing Unit (CPU) or Application Processor (AP)) that can perform the corresponding operations by executing one or more software programs stored in a memory device.
An electronic device according to various embodiments of the present disclosure may include at least one of, for example, a smart phone, a tablet Personal Computer (PC), a mobile phone, a video phone, an electronic book reader (e-book reader), a desktop PC, a laptop PC, a netbook computer, a workstation, a server, a Personal Digital Assistant (PDA), a Portable Multimedia Player (PMP), a MPEG-1 audio layer-3 (MP3) player, a mobile medical device, a camera, and a wearable device. According to various embodiments, the wearable device may include at least one of an accessory type (e.g., a watch, a ring, a bracelet, an anklet, a necklace, a glasses, a contact lens, or a Head-Mounted Device (HMD)), a fabric or clothing integrated type (e.g., an electronic clothing), a body-mounted type (e.g., a skin pad, or tattoo), and a bio-implantable type (e.g., an implantable circuit). In some embodiments, A wireless power transmitter or an electronic device may include at least one of, for example, a television, a Digital Video Disk (DVD) player, an audio, a refrigerator, an air conditioner, a vacuum cleaner, an oven, a microwave oven, a washing machine, an air cleaner, a set-top box, a home automation control panel, a security control panel, a media box a game console, an electronic dictionary, an electronic key, a camcorder, and an electronic photo frame.
In other embodiments, the electronic device may include at least one of various medical devices (e.g., various portable medical measuring devices (a blood glucose monitoring device, a heart rate monitoring device, a blood pressure measuring device, a body temperature measuring device, etc.), a Magnetic Resonance Angiography (MRA), a Magnetic Resonance Imaging (MRI), a Computed Tomography (CT) machine, and an ultrasonic machine), a navigation device, a Global Positioning System (GPS) receiver, an Event Data Recorder (EDR), a Flight Data Recorder (FDR), a Vehicle Infotainment Devices, an electronic devices for a ship (e.g., a navigation device for a ship, and a gyro-compass), avionics, security devices, an automotive head unit, a robot for home or industry, an Automatic Teller's Machine (ATM) in banks, Point Of Sales (POS) in a shop, or internet device of things (e.g., a light bulb, various sensors, electric or gas meter, a sprinkler device, a fire alarm, a thermostat, a streetlamp, a toaster, a sporting goods, a hot water tank, a heater, a boiler, etc.). According to some embodiments, an electronic device may include at least one of a part of furniture or a building/structure, an electronic board, an electronic signature receiving device, a projector, and various types of measuring instruments (e.g., a water meter, an electric meter, a gas meter, a radio wave meter, and the like). According to various embodiments, a wireless power transmitter or an electronic device may be flexible, or may be a combination of two or more of the above described various devices. A wireless power transmitter or an electronic device according to various embodiments of the present disclosure may not be limited to the above described devices. In the present disclosure, the term “user” may indicate a person who uses an electronic device or a device (e.g., an artificial intelligence electronic device) that uses a wireless power transmitter or an electronic device.
FIG. 1 is a conceptual diagram illustrating a wireless power transmission system according to various embodiments of the present disclosure.
Awireless power transmitter100 may wirelessly transmit power to at least one amongelectronic devices150 and160. In various embodiments of the present disclosure, thewireless power transmitter100 may include one or more ofpatch antennas111 to126. Any antenna that is capable of generating an RF wave can be used as thepatch antenna111 to126. At least one of the amplitude and the phase of an RF wave generated by thepatch antenna111 to126 may be adjusted by thewireless power transmitter100. For ease of description, an RF wave generated by each of thepatch antennas111 to126 may be referred to as a sub-RF wave.
According to various embodiments of the present disclosure, thewireless power transmitter100 may adjust at least one of the amplitude and the phase of each of the sub-RF waves generated by thepatch antennas111 to126. The sub-RF waves may mutually interfere with one another. For example, the sub-RF waves may mutually create constructive interference at one point, and may mutually create destructive interference at another point. Thewireless power transmitter100 according to various embodiments of the present disclosure may adjust at least one of the amplitude and the phase of each of sub-RF waves generated by thepatch antennas111 to126 such that the sub-RF waves mutually create constructive interference at a first point (x1,y1,z1).
For example, thewireless power transmitter100 may determine that theelectronic device150 is disposed at the first point (x1,y1,z1). Here, the location of theelectronic device150 may be, for example, a point where a power reception antenna of theelectronic device150 is located. The architecture in which thewireless power transmitter100 determines the location of theelectronic device150 will be described in detail later. To enable theelectronic device150 to wirelessly receive power with high transmission efficiency, sub-RF waves need to create constructive interference at the first point (x1,y1,z1). Accordingly, thewireless power transmitter100 may control thepatch antennas111 to126 such that the sub-RF waves mutually create constructive interference at the first point (x1,y1,z1). Here, controlling thepatch antennas111 to126 may indicate controlling the magnitude of a signal input to thepatch antennas111 to126 or controlling the phase (or delay) of a signal input to thepatch antennas111 to126. Those skilled in the art may readily understand beamforming which is a technology for controlling RF waves to create constructive interference at a predetermined point. Additionally, those skilled in the art may readily understand that the type of beamforming used in the present disclosure is not limited. Various beamforming methods may be used, such as methods disclosed in U.S. Patent Application Publication No. 2016/0099611, U.S. Patent Application Publication No. 2016/0099755, U.S. Patent Application Publication No. 2016/0100124, and the like. The form of RF waves formed by beamforming may be referred to as pockets of energy.
Accordingly, anRF wave130 including sub-RF waves may have the maximum amplitude at the first point (x1,y1,z1) and, accordingly, theelectronic device150 may receive wireless power with high efficiency. Thewireless power transmitter100 may detect that theelectronic device160 is disposed at a second point (x2,y2,z2). Thewireless power transmitter100 may controlpatch antennas111 to126 such that sub-RF waves create constructive interference at the second point (x2,y2,z2), in order to charge theelectronic device160. Accordingly, anRF wave131 including sub-RF waves may have the maximum amplitude at the second point (x2,y2,z2) and, accordingly, theelectronic device160 may receive wireless power with high transmission efficiency.
More particularly, theelectronic device150 may be disposed relatively on the right side. In this instance, thewireless power transmitter100 may apply a relatively higher delay to sub-RF waves formed from patch antennas (e.g.,patch antennas114,118,122, and126) disposed relatively on the right side. That is, sub-RF waves may be generated from patch antennas (e.g.,patch antennas114,118,122, and126) disposed relatively on the right side a predetermined period of time after sub-RF waves are formed, which are formed by patch antennas (e.g.,patch antennas111,115,119, and123) disposed relatively on the left side. Accordingly, the sub-RF waves may simultaneously meet at a point relatively on the relatively right side. That is, the sub-RF waves may create constructive interference at the point relatively on the right side. When beamforming is performed at a relatively center point, thewireless power transmitter100 may apply substantially the same delay to the left side patch antennas (e.g.,patch antennas111,115,119, and123) and the right side patch antennas (e.g.,patch antennas114,118,122, and126). Also, when beamforming is performed at a point relatively on the left side, thewireless power transmitter100 may apply a higher delay to the left side patch antennas (e.g.,patch antennas111,115,119, and123) than to the right side patch antennas (e.g.,patch antennas114,118,122, and126). According to another embodiment, thewireless power transmitter100 may oscillate the sub-RF waves by all thepatch antennas111 to126 at substantially the same time, and may perform beamforming by adjusting a phase corresponding to the above described delay. That is, thewireless power transmitter100 may determine the degree of phase shifting corresponding to each patch antenna (e.g., the degree of delay for each patch antenna) that corresponds to the direction of an RF wave. Thewireless power transmitter100 may change the beamforming direction by adjusting the degree of phase shifting of each input electric signal for each patch antenna.
Thewireless power transmitter100 may change a beamforming distance by adjusting the amplitude of an electric signal input for each patch antenna. For example, thewireless power transmitter100 may fix the degree of phase shifting of each of the electric signals input for each patch antenna, that is, may fix a beamforming direction, and may increase or decrease the amplitude of an electric signal input for each patch antenna all together. When the amplitude of an electric signal input for each patch antenna is increased all together, a beam distance formed in the fixed beamforming direction may be increased. When the amplitude of an electric signal input for each patch antenna is decreased all together, a beam distance formed in the fixed beam forming direction may be decreased. That is, thewireless power transmitter100 according to various embodiments of the present disclosure may control the distance of a formed RF wave by adjusting the amplitude of an electric signal input for each patch antenna.
As described above, thewireless power transmitter100 may determine the location of theelectronic device150 and160, and may enable sub-RF waves to create constructive interference at the determined location, thereby performing wireless charging or wireless power transmission with high transmission efficiency. Only after accurately recognizing the location of theelectronic device150 and160, thewireless power transmitter100 can perform wireless charging or wireless power transmission with high transmission efficiency.
FIG. 2 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure. Hereinafter, the fact that the wireless power transmitter performs a predetermined operation indicates that a processor of the wireless power transmitter performs the predetermined operation or the processor may control another piece of hardware to perform the predetermined operation. Also, the fact that the wireless power transmitter stores predetermined information indicates that a memory included in the wireless power transmitter stores the predetermined information.
Inoperation210, the wireless power transmitter detects an electronic device. According to various embodiments of the present disclosure, the wireless power transmitter transmits detection RF waves in a plurality of directions. The wireless power transmitter may insert direction information into detection RF waves respectively corresponding to the plurality of directions, and may transmit the same. For example, when a detection RF wave is formed in a first direction, the wireless power transmitter may include information on the first direction in the detection RF wave, and may transmit the same. When a detection RF wave is formed in a second direction, the wireless power transmitter may include information on the second direction in the detection RF wave, and may transmit the same. The wireless power transmitter may modulate an RF wave using various modulation schemes, such as an amplitude modulation (AM), a frequency modulation (FM), or the like and, accordingly, may insert information on a direction into an RF wave and transmit the same. That is, the wireless power transmitter may use an RF wave as a subcarrier for information on a direction.
Inoperation220, the wireless power transmitter may determine the location of an electronic device. According to various embodiments of the present disclosure, the wireless power transmitter may determine a direction in which the electronic device is disposed. The architecture through which the wireless power transmitter determines a direction in which the electronic device is disposed or the location of the electronic device will be described in detail later.
Inoperation230, the wireless power transmitter may form an RF wave corresponding to the location of an electronic device. According to an embodiment, the wireless power transmitter may form an RF wave in a direction in which the electronic device is disposed. Here, the fact that the wireless power transmitter forms an RF wave in the direction in which the electronic device is disposed may indicate that the electronic device controls at least one of the phase and amplitude of each patch antenna such that sub-RF waves create constructive interference at one or more points in the direction in which the electronic device is disposed. The wireless power transmitter may receive, from the electronic device, reception power related information associated with power received by the electronic device and, accordingly, may maintain the formation of the RF wave or adjust the RF wave to reform an RF wave. For example, when the reception power related information satisfies a predetermined condition, the wireless power transmitter may maintain the formation of the RF wave. When the reception power related information does not satisfy the predetermined condition, the wireless power transmitter may reform an RF wave by adjusting the magnitude of power applied to a patch antenna. That is, until the reception power related information received from the electronic device satisfies the predetermined condition, the wireless power transmitter may adjust an RF wave. The reception power related information may indicate information associated with power received by the electronic device. For example, the electronic device may include a rectifier that rectifies wirelessly received power. When the magnitude of wirelessly received power is high, the voltage at an output end of the rectifier may be high. When the magnitude of wirelessly received power is low, the voltage at the output end of the rectifier may be low. That is, the magnitude of the voltage at the output end of the rectifier is associated with the magnitude of power received by the electronic device and thus, the voltage at the output end of the electronic device may be included in the reception power related information. The reception power related information may include any information that is associated with the magnitude of power that the electronic device receives, and may include electrical information associated with various locations, for example, the voltage at an input end of the rectifier, the current at the input end of the rectifier, the power at the input end of the rectifier, the voltage at the output end of the rectifier, the current at the output end of the rectifier, the power at the output end of the rectifier, or the like. According to other embodiments, the wireless power transmitter may directly determine the location of the electronic device. In this instance, the wireless power transmitter may control at least one of the phase and the amplitude of each of the patch antennas such that sub-RF waves create constructive interference at the location of the electronic device. Inoperation240, the wireless power transmitter may perform wireless charging or wireless power transmission using a formed RF wave.
FIGS. 3A to 3C are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure.
Referring toFIG. 3A, awireless power transmitter300 may form afirst RF wave311 including first direction information (direction ID#1) in a first direction. Thewireless power transmitter300 may form asecond RF wave312 including second direction information (direction ID#2) in a second direction. Thewireless power transmitter300 may form athird RF wave313 including third direction information (direction ID#3) in a third direction. According to various embodiments of the present disclosure, thewireless power transmitter300 may sequentially form thefirst RF wave311, thesecond RF wave312, and thethird RF wave313. According to another embodiment of the present disclosure, thewireless power transmitter300 may form at least two of thefirst RF wave311, thesecond RF wave312, and thethird RF wave313, at substantially the same time.
Thewireless power transmitter300 may receive acommunication signal303 from anelectronic device350 through acommunication circuit301 included separately from an antenna array. Theelectronic device350 may be located in a direction corresponding to, for example, thesecond RF wave312. Accordingly, theelectronic device350 may receive thesecond RF wave312 through a power reception antenna array. Theelectronic device350 may extract second direction information (direction ID#2) from thesecond RF wave312 received through an antenna array. Theelectronic device350 may transmit thecommunication signal303 including second direction information (direction ID#2) through acommunication circuit351. Thecommunication signal303 may include identification information of theelectronic device350. Thewireless power transmitter300 may extract the second direction information (direction ID #2) from the receivedcommunication signal303. Accordingly, thewireless power transmitter300 may form an RF wave in a direction corresponding to the second direction information (direction ID#2), that is, in the second direction. Accordingly, thewireless power transmitter300 may detect theelectronic device350 relatively promptly, and may wirelessly transmit power.
According to various embodiments of the present disclosure, as illustrated inFIG. 3B, thewireless power transmitter300 may include wireless power transmitter identification information and direction information in an RF wave, and may transmit the same. For example, thewireless power transmitter300 may form afirst RF wave321 including identification information (Tx id) of the wireless power transmitter and first direction information (direction ID #1), in a first direction. Thewireless power transmitter300 may form asecond RF wave322 including identification information (Tx id) of the wireless power transmitter and second direction information (direction ID #2), in a second direction. Thewireless power transmitter300 may form athird RF wave323 including identification information (Tx id) of the wireless power transmitter and third direction information (direction ID #3), in a third direction.
Thewireless power transmitter300 according to various embodiments of the present disclosure may wait for a communication signal from theelectronic device350 while forming thefirst RF wave321, thesecond RF wave322, and thethird RF wave323, and during a predetermined waiting time after the formation. According to a comparative example, a wireless power transmitter forms an RF wave in a first direction and waits for a communication signal during a predetermined waiting time. When the communication signal is not received during the waiting time, the wireless power transmitter forms an RF wave in a second direction. Accordingly, the wireless power transmitter according to the comparative example may require an amount of scanning time corresponding to a product of a waiting time and the number of directions in which RF waves are formed. The waiting time may be set as the amount of time taken when theelectronic device350 transmits a communication signal after driving, and may be, for example, 30 ms. The amount of time taken for forming an RF wave may use a unit corresponding to ns or μs. The amount of time taken for forming an RF wave may be a negligibly short amount of time when compared to the waiting time. When the wireless power transmitter according to the comparative example performs scanning, for example, in 100 directions, a total scanning time of 3 seconds may be taken. Thewireless power transmitter300 according to various embodiments of the present disclosure may receive a communication signal including direction information after forming RF waves including direction information in a plurality of directions, instead of waiting for a communication signal after forming a single RF wave. Accordingly, thewireless power transmitter300 may determine a direction in which theelectronic device350 is located. Preferably, a communication signal may be received during a single waiting time. For example, theelectronic device350 may sequentially form RF waves in 100 directions, and the amount of time taken for forming the RF waves may be a negligibly short amount of time. Theelectronic device350 may wait for a communication signal during a single waiting time, for example, during an amount of time corresponding to 30 ms, after forming RF waves and thus, may determine the direction in which theelectronic device350 is located during a relatively short amount of scanning time.
In this instance, theelectronic device350 may receive thesecond RF wave322 through a power reception antenna array. Theelectronic device350 may extract identification information (Tx id) of the wireless power transmitter and second direction information (direction ID#2) from thesecond RF wave322 received through the antenna array. Theelectronic device350 may transmit acommunication signal304 including identification information (Tx id) of the wireless power transmitter and second direction information (direction ID#2) through thecommunication circuit351. Thewireless power transmitter300 may extract the identification information (Tx id) of the wireless power transmitter and the second direction information (direction ID #2) from the receivedcommunication signal304. Accordingly, thewireless power transmitter300 may form an RF wave, that is, power for charging, in a direction corresponding to the second direction information (direction ID#2), that is, in the second direction. In addition, thewireless power transmitter300 may disregard an electronic device that receives power from another wireless power transmitter, which will be described in detail later. According to various embodiments of the present disclosure, thecommunication signal303 transmitted by theelectronic device350 may further include at least one of identification information of theelectronic device350, information related to the type ofelectronic device350, information related to an electric numerical value, reception power related information, protocol related information, and information related to the category of theelectronic device350, information related to the capability of theelectronic device350, hardware information of theelectronic device350, firmware information of theelectronic device350, and manufacturer information of theelectronic device350, in addition to direction information extracted from an RF wave. The identification information of theelectronic device350 is information for identifying theelectronic device350, for example, communication identification information for distinguishing theelectronic device350 in a communication network (e.g., BLE). The type of identification information may not be limited. The information associated with the type ofelectronic device350 may be information indicating the type of device, such as information indicating whether a receiver is a wireless power receiving device or whether the receiver is simply a Bluetooth communication-enabled headphone. The information related to an electric numerical value may be information associated with an allowed voltage or allowed power for theelectronic device350. For example, the information may include information associated with the maximum value of power allowed at an output end of a rectifier of theelectronic device350 or information related to voltage at the output end of the rectifier in various states. The reception power related information may be information indicating the magnitude of power that theelectronic device350 receives from thewireless power transmitter300. For example, the reception power related information may be a numerical value measured at various points in theelectronic device350, such as a voltage value measured at an output end of a rectifier, a current value measured at the output end of the rectifier, a power value measured at the output end of the rectifier, or the like, which will be described in detail later. The protocol related information may be information indicating the version of a protocol used by theelectronic device350. The information associated with the category of theelectronic device350 may be information indicating the category to which theelectronic device350 is classified among a plurality of categories. For example, electronic devices may be classified into various categories based on their capacities, and the information related to the category may be information indicating the category to which the correspondingelectronic device350 is classified. The information related to the capability of theelectronic device350 may include information indicating whether an NFC receiver is included, whether a power control algorithm is supported, whether power capability is adjustable, whether a function of maintaining a BLE communication connection is supported after power reception is completed, whether a function of testing thewireless power transmitter300 is supported, or the like. The hardware information of theelectronic device350 may be defined based on, for example, an OEM, and may include information related to hardware. The firmware information of theelectronic device350 may be defined based on, for example, an OEM, and may include information related to firmware. The manufacturer information of theelectronic device350 may include information for identifying a manufacturer.
According to another embodiment, theelectronic device350 may obtain direction information corresponding to each of a plurality of received powers and strength information corresponding thereto, as shown in Table 1.
| TABLE 1 |
| |
| Direction information | Strength (RSSI) |
| |
| first direction | A |
| second direction | B |
| third direction | C |
| |
Theelectronic device350 may include direction information, which is determined as direction information corresponding to the highest strength among direction information, in a communication signal, and may transmit the communication signal to the wireless power transmitter. Alternatively, theelectronic device350 may include both the received direction information and strength information corresponding thereto in a communication signal, and may transmit the communication signal to the wireless power transmitter. In this instance, thewireless power transmitter300 may transmit power for charging in a direction in which the strength is determined as the highest strength based on the received information.
Referring toFIG. 3C, thewireless power transmitter300 may form an RF wave including direction information and distance information. For example, thewireless power transmitter300 may form anRF wave331 in a first direction at a first distance, and may include first direction information (direction ID #1) and first distance information (distance ID#1) in the formedRF wave331. The first distance information (distance ID#1) may be information associated with a distance from thewireless power transmitter300, or information associated with the amplitude of an electric signal input to each of the patch antennas. Subsequently, thewireless power transmitter300 may form anRF wave332 in the first direction at a second distance, and may include the first direction information (direction ID #1) and second distance information (distance ID#2) in the formedRF wave332. For example, thewireless power transmitter300 may fix the degree of phase shifting corresponding to each of the patch antennas, and may increase the amplitude of an electric signal input to each of the patch antennas all together, thereby forming theRF wave332 at the second distance which is a relatively longer distance. In addition, thewireless power transmitter300 may form anRF wave333 in the first direction at a third distance, and may include the first direction information (direction ID #1) and third distance information (distance ID#3) in the formedRF wave333.
Subsequently, thewireless power transmitter300 may change the formation direction of an RF wave to a second direction. For example, thewireless power transmitter300 may change the formation direction of an RF wave from the first direction to the second direction by adjusting the degree of phase shifting corresponding to each patch antenna. In addition, thewireless power transmitter300 may decrease the amplitude of an electric signal input to each patch antenna all together, thereby changing the formation distance of the RF wave from the third distance to the first distance again. Accordingly, thewireless power transmitter300 may form anRF wave341 in the second direction at the first distance, and may include the second direction information (direction ID #2) and first distance information (distance ID#1) in the formedRF wave341. Thewireless power transmitter300 may fix the formation direction of an RF wave to the second direction, and may increase the amplitude of an electric signal input to each patch antenna all together. Accordingly, thewireless power transmitter300 may form anRF wave342 in the second direction at the second distance, and may include the second direction information (direction ID #2) and second distance information (distance ID#2) in the formedRF wave342. As describe above, thewireless power transmitter300 may form RF waves331,332,333,341,342,343,351,352, and353 in various directions (the first direction, the second direction, and the third direction) at various distances (the first distance, the second distance, and the third distance), and may include corresponding direction information (first direction information, second direction information, and third direction information) and corresponding distance information (first distance information, second distance information, and third distance information) in each of the RF waves331,332,333,341,342,343,351,352, and353.
Theelectronic device350 may extract distance information and direction information from a received RF wave. For example, theelectronic device350 may be located in the second direction at the third distance from thewireless power transmitter300. Theelectronic device350 may receive theRF wave343, and may extract the second direction information (direction ID#2) and the third distance information (distance ID #3) from theRF wave343. Theelectronic device350 may transmit acommunication signal361 including the second direction information (direction ID #2) and the third distance information (distance ID#3) to thewireless power transmitter300 through acommunication circuit351. Thewireless power transmitter300 may determine the direction information and the distance information of theelectronic device350 from thecommunication signal361, that is, the second direction information (direction ID #2) and the third distance information (distance ID#3). Thewireless power transmitter300 may form an RF wave for charging in the determined direction at the determined distance.
Theelectronic device350 may receive a plurality of RF waves. For example, theelectronic device350 may receive a plurality of RF waves341,342, and343 formed in the second direction. In this instance, theelectronic device350 may include, in thecommunication signal361, direction information and distance information corresponding to theRF wave343 received with the highest strength among the receivedRF waves341,342, and343, and may transmit thecommunication signal361. Alternatively, theelectronic device350 may transmit direction information and distance information of each of the plurality of received RF waves, and strength information of the RF waves in thecommunication signal361, and may transmit thecommunication signal361 to thewireless power transmitter300. Thewireless power transmitter300 may determine direction information and distance information corresponding to an RF wave having the highest strength included in a communication signal, as the direction and distance of theelectronic device350.
According to another embodiment of the present disclosure, thewireless power transmitter300 may form a plurality of RF waves in the fixed direction at different distances. In this instance, thewireless power transmitter300 may form RF waves including only distance information. For example, thewireless power transmitter300 may form a plurality of RF waves including direction information during a direction scanning period as illustrated inFIG. 3A, may receive a first communication signal from theelectronic device350, and may determine the direction in which theelectronic device350 is located based on the first communication signal. Subsequently, thewireless power transmitter300 may form a plurality of RF waves including distance information in the determined distance during a distance scanning period, may receive a second communication signal from theelectronic device350, and may determine a distance at which theelectronic device350 is located based on the second communication signal. Alternatively, thewireless power transmitter300 may detect the direction of theelectronic device350 using various different schemes, may form a plurality of RF waves including distance information in the detected direction, may receive a communication signal from theelectronic device350, and may determine a distance at which theelectronic device350 is located based on the communication signal.
FIG. 4 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure.
Inoperation410, thewireless power transmitter300 may transmit first power including first direction information, in a first direction. Here, transmitting the first power may indicate, for example, forming thefirst RF wave311 ofFIG. 3A. Inoperation420, thewireless power transmitter300 may transmit second power including second direction information, in a second direction. Thewireless power transmitter300 may wait for a communication signal from theelectronic device350 in the middle of transmitting power in a plurality of directions. A waiting time may be set in advance by taking into consideration power processing and transmission of a communication signal, and has no limitation.
Inoperation430, theelectronic device350 may receive the second power. Theelectronic device350 may be located in the second direction in which the second power is transmitted and, accordingly, may receive the second power. Inoperation440, theelectronic device350 may transmit a communication signal including second direction information. Theelectronic device350 may receive the first power. In this instance, theelectronic device350 is located in the second direction and thus, the magnitude of the received second power may be relatively higher and the magnitude of the first power may be relatively lower. When the magnitude of received power is greater than or equal to a predetermined threshold value, theelectronic device350 according to various embodiments of the present disclosure may extract direction information from the received power, and may transmit a communication signal including the direction information. Accordingly, theelectronic device350 may disregard the first power having a magnitude less than or equal to the threshold value, and may extract the second direction information from the second power having a magnitude greater than or equal to the threshold value.
Inoperation450, thewireless power transmitter300 may determine that theelectronic device350 is located in the second direction. Thewireless power transmitter300 may extract direction information from the received communication signal. Inoperation460, thewireless power transmitter300 may transmit power in the second direction. Inoperation470, theelectronic device350 may receive and process the power. For example, theelectronic device350 may rectify the received power and convert or regulate the rectified power. According to the above described process, thewireless power transmitter300 may detect an electronic device during a waiting time. A wireless power transmitter according to a comparative example uses a scheme that transmits power in a first direction, waits for a communication signal during a waiting time, transmits power in a second direction when a communication signal is not detected, and waits for a communication signal again during a waiting time. Accordingly, the wireless power transmitter corresponding to various embodiments may relatively promptly detect a charging target electronic device than the wireless power transmitter according to the comparative example.
FIG. 5A is a diagram illustrating a waveform of power transmitted from a wireless power transmitter according to various embodiments of the present disclosure.
A wireless power transmitter forms an RF wave including direction information based on, for example, an AM scheme. The wireless power transmitter may form an RF wave including, for example, first direction information of “010101010”. The wireless power transmitter may assign a relatively higher amplitude (B) to binary information of “1”, and may assign an amplitude that is A shorter than the amplitude B to binary information of “0”. The electronic device may receive an RF wave, and may extract the first direction information of “010101010” by modulating the received RF wave. The electronic device may transmit a communication signal including first direction information through a communication circuit. The above described AM modulation scheme is merely an example, and the wireless power transmitter may include direction information in an RF wave using various modulation schemes that use an RF wave as a subcarrier. The wireless power transmitter may modulate an RF wave using at least one of identification information, direction information, or position information.
FIG. 5B is a diagram illustrating an RF wave including direction information based on an FM scheme. The wireless power transmitter may modulate the first direction information of “01010101” based on an FM scheme. For example, the wireless power transmitter may allocate a frequency of f1 to binary information of “0”, and may allocate a frequency of f2 to binary information of “1”. The electronic device may receive an RF wave, and may extract the first direction information of “01010101” by modulating the received RF wave.
FIG. 6 is a block diagram illustrating a wireless power transmitter and a wireless power receiver according to various embodiments of the present disclosure.
Awireless power transmitter600 may include apower source601, a powertransmission antenna array610, amodulation circuit613, aprocessor620, amemory660, and acommunication circuit640. Any device capable of wirelessly receiving power can be used as a firstelectronic device650. The firstelectronic device650 may include apower reception antenna651, arectifier652, aconverter653, acharger654, aprocessor655, amemory656, acommunication circuit657, and ademodulation circuit659. Detailed elements of a secondelectronic device680 are not illustrated for ease of description. The secondelectronic device680 may include, for example, elements substantially the same as those of the firstelectronic device650.
Thepower source601 may provide power to be transmitted to the powertransmission antenna array610. Thepower source601 may provide, for example, direct current (DC) power. In this instance, an inverter (not illustrated), which converts DC power into AC power, and transfers the same to the powertransmission antenna array610, may be further included in thewireless power transmitter600. According to another embodiment, thepower source601 may provide AC power to the powertransmission antenna array610.
The powertransmission antenna array610 may include a plurality of patch antennas. For example, a plurality of patch antennas as illustrated inFIG. 1 may be included in the powertransmission antenna array610. There is no limit to the number of the plurality of patch antennas or arrangement thereof. The powertransmission antenna array610 may form an RF wave using power provided from thepower source601. The powertransmission antenna array610 may form an RF wave in a predetermined direction according to control of theprocessor620. Here, forming an RF wave in a predetermined direction indicates controlling at least one of the amplitudes and the phases of sub-RF waves such that the sub-RF waves create constructive interference at one point in the predetermined direction.
Theprocessor620 may perform control such that the powertransmission antenna array610 form a sub-RF wave, that is, a pilot signal, in each of the plurality of directions. The memory630 may store a program or an algorithm for generating a sub-RF wave, that is, a pilot signal, in each of the plurality of directions. Theprocessor620 may control at least one of the phase and the amplitude of each patch antenna of the powertransmission antenna array610 using the program or algorithm stored in the memory630.
Theprocessor620 may control amodulation circuit613 to modulate a signal provided from thepower source601. Theprocessor620 may control themodulation circuit613 to modulate a signal provided from thepower source601 using modulation information corresponding to at least one of direction information and distance information. For example, when afirst power611 is transmitted in a first direction, theprocessor620 may control themodulation circuit613 such that a signal provided from thepower source601 is modulated using modulation information corresponding to the first direction information. Whenpower612 is transmitted in a second direction, theprocessor620 may control themodulation circuit613 such that a signal provided from thepower source601 is modulated using modulation information corresponding to the second direction information. Thememory660 may include modulation information corresponding to a plurality of directions, and theprocessor620 may control themodulation circuit613 using the modulation information. Accordingly, the powertransmission antenna array610 may provide thepower612 to the secondelectronic device680. The power for detection may have a magnitude which is enough to wake up thecommunication circuit657 or thecommunication circuit657 and theprocessor655. According to various embodiments of the present disclosure, theprocessor620 and655 may include one or more of a central processing unit, an application processor, and a communication processor (CP). Theprocessor620 and655, for example, may carry out operations or data processing relating to the control and/or communication of at least one other element of thewireless power transmitter600 or the firstelectronic device650. Theprocessor620 may be embodied as a micro controlling unit (MCU), a mini computer, or an FPGA.
Thepower reception antenna651 of the firstelectronic device650 may receive thefirst power611. Thedemodulation circuit659 may demodulate thefirst power611, and theprocessor655 may obtain a demodulation result. Theprocessor655 may obtain at least one of direction information and distance information included in thefirst power611, from the demodulation result. Thedemodulation circuit659 may be disposed between the output end of therectifier652 and theprocessor655, depending on an embodiment. Theprocessor655 may transmit acommunication signal690 including at least one of direction information and distance information to thecommunication circuit640 of thewireless power transmitter600. Theprocessor620 of thewireless power transmitter600 may determine at least one of a direction and a distance in which the firstelectronic device650 is located based on the direction information included in thecommunication signal690, and may determine the formation direction and formation distance of an RF wave based on at least one of the determined direction and distance. That is, theprocessor620 may control patch antennas of the powertransmission antenna array610 that generates sub-RF waves such that the sub-RF waves create constructive interface at a point in the determined direction. For example, theprocessor620 controls patch antennas or a control means connected to the patch antennas, whereby at least one of the amplitude and the phase of a sub-RF wave generated from each of the patch antennas is controlled.
Theprocessor620 may control the powertransmission antenna array610 based on the direction of the firstelectronic device650, whereby an RF wave is formed in the direction of the firstelectronic device650. Theprocessor620 may identify the firstelectronic device650 using information in thecommunication signal690. Thecommunication signal690 may include a unique identifier or unique address of the electronic device. Thecommunication circuit640 may process thecommunication signal690 and may provide information to theprocessor620. Thecommunication circuit640 and a communication antenna (not illustrated) may be manufactured based on various communication schemes, such as Wi-Fi, Bluetooth, Zig-bee, near field communication (NFC), Bluetooth low energy (BLE), and the like, and the type of communication scheme is not limited. Thecommunication signal690 may include rated power information of the firstelectronic device650. Theprocessor620 may determine whether to charge the firstelectronic device650 based on at least one of a unique identifier, a unique address, and rated power information of the firstelectronic device650.
In addition, the communication signal may be used for a process in which thewireless power transmitter600 identifies the firstelectronic device650, a process of allowing power transmission to the firstelectronic device650, a process of requesting reception power related information from the firstelectronic device650, a process of receiving reception power related information from the firstelectronic device650, or the like. That is, the communication signal may be used for a subscription process, a command process, or a request process executed between thewireless power transmitter600 and the firstelectronic device650.
Any antenna capable of receiving an RF wave can be used as thepower reception antenna651. In addition, thepower reception antenna651 may be embodied in an array form including a plurality of antennas. AC power received by thepower reception antenna651 may be rectified into DC power by therectifier652. Theconverter653 may convert the DC power into a desired voltage, and provide the same to thecharger654. Thecharger654 may charge a battery (not illustrated). Although not illustrated, theconverter653 may provide converted power to a power management integrated circuit (PMIC) (not illustrated), and the PMIC (not illustrated) may provide power to various hardware of the firstelectronic device650.
Theprocessor655 may monitor the voltage at the output end of therectifier652. For example, a voltmeter connected to the output end of therectifier652 may be further included in the firstelectronic device650, and theprocessor655 may receive a voltage value from the voltmeter, and may monitor the voltage at the output end of therectifier652. Theprocessor655 may provide information including a voltage value at the output end of therectifier652 to thecommunication circuit657. Thecommunication circuit657 may transmit a communication signal including reception power related information using a communication antenna (not illustrated). The reception power related information may be information associated with the magnitude of received power, such as the voltage at the output end of therectifier652, and may include the magnitude value of the current at the output end of therectifier652. In this instance, those skilled in the art may readily understand that a voltmeter or an ammeter capable of measuring current at the output end of therectifier652 may be further included in the firstelectronic device650. The ammeter may be embodied in various forms, such as a DC ammeter, an AC ammeter, a digital ammeter, or the like, and the type of ammeter may not be limited. The voltmeter may be embodied in various forms, such as an electro dynamic instrument voltmeter, electrostatic voltmeter, a digital voltmeter, or the like, and the type of voltmeter may not be limited. In addition, the location where the reception power related information is measured is not limited, including the output end of therectifier652 and any point of the firstelectronic device650.
Furthermore, as described above, theprocessor655 may transmit thecommunication signal690 including identification information of the firstelectronic device650 to thewireless power transmitter600. Thememory656 may store a program or an algorithm capable of controlling various hardware of the firstelectronic device650.
FIGS. 7A and 7B are flowcharts illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure. The embodiment ofFIG. 7A will be described in more detail with reference toFIG. 8.FIG. 8 is a conceptual diagram illustrating formation of an RF wave by a wireless power transmitter according to various embodiments of the present disclosure.
As described inFIG. 8, inoperation710, awireless power transmitter800 may determine a direction in which anelectronic device850 is located based on a communication signal received from theelectronic device850. For example, thewireless power transmitter800 may extract direction information from the communication signal, and may determine the direction (θ,φ) of theelectronic device850 from the location of thewireless power transmitter800, based on the extracted direction information.
Inoperation720, thewireless power transmitter800 may transmit power in the direction of theelectronic device850. For example, as illustrated inFIG. 8, thewireless power transmitter800 may determine at least one of a phase and a amplitude for eachpatch antenna811 to826 such that a detection RF wave is formed in the direction (θ,φ) extracted from the communication signal. For example, when it is determined that theelectronic device850 is disposed relatively to the right side, a relatively high delay is applied to a patch antenna disposed relatively on the left side, whereby sub-RF waves from each of the plurality ofpatch antennas811 to826 may create constructive interference relatively on the right side. Also, when it is determined that theelectronic device850 is disposed relatively above thewireless power transmitter800, a relatively high delay is applied to a patch antenna disposed relatively on the upper side, whereby sub-RF waves from each of the plurality ofpatch antennas811 to826 may create constructive interference relatively on the upper side. Thewireless power transmitter800 may apply different delays to thepatch antennas811 to826 disposed in two dimensions, whereby the phases of RF waves generated respectively by thepatch antennas811 to826 may be formed to be different.
Thewireless power transmitter800 may determine the magnitude of power applied to eachpatch antenna811 to826 such that adetection RF wave831 is formed to correspond to a first test distance. According to various embodiments of the present disclosure, thewireless power transmitter800 may immediately determine the magnitude of a first test power provided to the plurality ofpatch antennas811 to826, without determining a distance. Here, the first test distance or the magnitude of the first test power may be a default value.
Thewireless power transmitter800 may form thedetection RF wave831 to correspond to the first test distance, using at least one of the determined phase and the determined amplitude of eachpatch antenna811 to826, and the determined power applied for eachpatch antenna811 to826.
Inoperation730, thewireless power transmitter800 may receive reception power related information from theelectronic device850. Inoperation740, thewireless power transmitter800 may determine whether the reception power related information satisfies a predetermined condition. For example, thewireless power transmitter800 may determine whether voltage at an output end of a rectifier of theelectronic device850, which corresponds to the reception power related information, exceeds a predetermined threshold value.
When it is determined that the reception power related information does not satisfy the predetermined condition, thewireless power transmitter800 may adjust the magnitude of power to be transmitted inoperation750. When the reception power related information does not satisfy the predetermined condition, thewireless power transmitter800 may adjust power applied for eachpatch antenna811 to826 such that adetection RF wave832 is formed to correspond to a subsequent test distance, whereby thedetection RF wave832 may be formed to correspond to the subsequent test distance. As described above, thewireless power transmitter800 may immediately determine the magnitude of a subsequent test power without determining a test distance, and may apply the same to eachpatch antenna811 to826. Although the embodiment ofFIG. 8 illustrates that thewireless power transmitter800 increases a test distance, this is merely an example. Thewireless power transmitter800 may decrease a test distance. Thewireless power transmitter800 may adjust the magnitude of power applied to eachpatch antenna811 to826 until reception power related information satisfies the predetermined condition. For example, thewireless power transmitter800 may adjust the magnitude of power applied to eachpatch antenna811 to826 until it is reported that voltage at the output end of the rectifier of theelectronic device850 has a numeric value exceeding a predetermined threshold value.
When the reception power related information satisfies the predetermined condition, thewireless power transmitter800 may maintain power applied to each patch antenna for transmitting an RF wave inoperation760, thereby performing wireless charging or wireless power transmission. In the embodiment ofFIG. 8, when adetection RF wave833 is formed at a third test distance, it may be determined that the reception power related information satisfies the predetermined condition. Thewireless power transmitter800 may maintain the magnitude of power applied to eachpatch antenna811 to826 such that thedetection RF wave833 is formed to correspond to the third test distance. Thewireless power transmitter800 may determine that the distance to theelectronic device850 is the third test distance (R), or may control only power applied to eachpatch antenna811 to826 without determining the distance to theelectronic device850.
Referring toFIG. 7B, inoperation761, thewireless power transmitter800 may determine the direction of theelectronic device850 based on a communication signal received from the electronic device. Inoperation763, thewireless power transmitter800 may transmit a plurality of detection RF waves ordetection powers831 to833 including distance information, in the direction where theelectronic device850 is located. For example, thewireless power transmitter800 may transmitdetection RF wave831 including first distance information,detection RF wave832 including second distance information, anddetection RF wave833 including third distance information. Theelectronic device850 may receive thedetection RF wave833, and may extract the third distance information from thedetection RF wave833. Theelectronic device850 may transmit a communication signal including the extracted distance information (e.g., the third distance information) to thewireless power transmitter800.
Inoperation765, thewireless power transmitter800 may receive the communication signal including the distance information. Inoperation767, thewireless power transmitter800 may transmit power based on the distance information extracted from the communication signal. Thewireless power transmitter800 may transmit thedetection RF wave833 to correspond to the extracted distance, as power for charging.
FIG. 9A is a conceptual diagram illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure. In the embodiment ofFIG. 9A, a wireless power transmitter900 may form RF waves921 and922 in a plurality of directions at substantially the same time. For example, the wireless power transmitter900 may include a plurality ofpatch antennas911 to926. The wireless power transmitter900 may form afirst RF wave921 in a first direction using afirst part911,912,915,916,919,920,923, and924 of the plurality ofpatch antennas911 to926. In addition, the wireless power transmitter900 may form asecond RF wave922 in a second direction using asecond part913,914,917,918,921,922,925, and926 of the plurality ofpatch antennas911 to926. The wireless power transmitter900 may include first direction information in thefirst RF wave921, and may include second direction information in thesecond RF wave922. A firstelectronic device901 may receive thefirst RF wave921 and extract the first direction information therefrom, and may transmit a first communication signal including the first direction information to the wireless power transmitter900. In addition, a secondelectronic device902 may receive thesecond RF wave922 and extract the second direction information therefrom, and may transmit a second communication signal including the second direction information to the wireless power transmitter900. The wireless power transmitter900 may use the first communication signal and the second communication signal, and may determine that the firstelectronic device901 is located in the first direction and the secondelectronic device902 is located in the second direction.
Referring toFIG. 9B, the wireless power transmitter900 may form RF waves931 to933 in the first direction using afirst part911,912,915,916,919,920,923, and924 of the plurality ofpatch antennas911 to926. For example, the wireless power transmitter900 may receive a communication signal including reception power related information from the firstelectronic device901. The wireless power transmitter900 may adjust the magnitude of power until the reception power related information included in the communication signal satisfies a predetermined condition. In addition, the wireless power transmitter900 may receive a communication signal including reception power related information from the secondelectronic device902. The wireless power transmitter900 may adjust the magnitude of power until the reception power related information included in the communication signal satisfies a predetermined condition. As described above, the wireless power transmitter900 according to various embodiments of the present disclosure may determine a direction in which a plurality ofelectronic devices901 and902 is located at substantially the same time, and may determine the distances to theelectronic devices901 and902, that is, more accurate locations.
According to another embodiment, the wireless power transmitter900 may include distance information in RF waves931,933, and933 in the first direction and RF waves941,942, and943 in the second direction, respectively. The wireless power transmitter900 may receive a communication signal including distance information from the firstelectronic device901, and may receive a communication signal including distance information from the secondelectronic device902. The wireless power transmitter900 may extract distance information from the received communication signal, and may transmit power for communication to the firstelectronic device901 and the secondelectronic device902.
FIG. 10 is a conceptual diagram illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure. Referring toFIG. 10, the firstelectronic device901 may distinguish a plurality ofpatch antennas911 to926 into agroup1010 for detecting an electronic device and agroup1020 for power transmission. For example, the firstelectronic device901 may set somepatch antennas911,912,913,914,915,919, and923 among the plurality ofpatch antennas911 to926 as thegroup1010 for detecting an electronic device, and may set somepatch antennas916,917,918,920,921,922,924,925, and926 among the plurality ofpatch antennas911 to926 as thegroup1020 for power transmission. The wireless power transmitter900 may charge the secondelectronic device902 of which the location has been identified, using thegroup1020 for power transmission. For example, the wireless power transmitter900 may detect secondelectronic device902 in advance, and may form asecond RF wave1021 for charging the detected secondelectronic device902.
The wireless power transmitter900 may formdetection RF waves1011,1012, and1013 in a plurality of directions using thegroup1010 for detection, in the middle of forming thesecond RF wave1021 to the secondelectronic device902. Accordingly, the wireless power transmitter900 may formdetection RF waves1011,1012, and1013 in the plurality of directions, sequentially or at substantially the same time. As described above, thedetection RF waves1011,1012, and1013 may include direction information. The firstelectronic device901 may receive, for example, the seconddetection RF wave1012, and may extract second direction information from the seconddetection RF wave1012. The firstelectronic device901 may transmit a communication signal including second direction information to the wireless power transmitter900. The wireless power transmitter900 may analyze the received communication signal, and may determine that the firstelectronic device901 is located in the second direction. The wireless power transmitter900 may also transmit power to the firstelectronic device901 newly detected by forming the RF wave in the second direction. The wireless power transmitter900 may transmit power to the first electronic device using thegroup1020 for power transmission. In this instance, the wireless power transmitter900 may transmit power to the firstelectronic device901 and the secondelectronic device902 according to a time division scheme. Alternatively, the wireless power transmitter900 may transmit power to the firstelectronic device901 using a first part of thegroup1020 for power transmission, and may transmit power to the secondelectronic device902 using a second part of thegroup1020 for power transmission. The wireless power transmitter900 may change the number of patch antennas classified as thegroup1020 for power transmission, as the number of charging target electronic devices changes.
FIGS. 11A to 11C are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure.FIG. 12 is a conceptual diagram illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure.
Referring toFIGS. 11A, 11B, and 11C, awireless power transmitter1100 may form afirst RF wave1131 including first direction information (direction ID#1) in a first direction during a first time period. Thewireless power transmitter1100 may form asecond RF wave1132 including second direction information (direction ID#2) in a second direction during a second time period. A firstelectronic device1110 may receive thesecond RF wave1132, and may extract the second direction information (direction ID #2) from thesecond RF wave1132. The firstelectronic device1110 may transmit acommunication signal1141 including the second direction information (direction ID#2) to acommunication circuit1101 of thewireless power transmitter1100 through acommunication circuit1111. Thewireless power transmitter1100 may form athird RF wave1133 including third direction information (direction ID#3) in a third direction during a third time period. A secondelectronic device1120 may receive thethird RF wave1133, and may extract the third direction information (direction ID #3) from thethird RF wave1133. The secondelectronic device1120 may transmit acommunication signal1142 including the third direction information (direction ID#3) to thecommunication circuit1101 of thewireless power transmitter1100 through acommunication circuit1121. Accordingly, thewireless power transmitter1100 may determine that the firstelectronic device1110 is located in the second direction, and the secondelectronic device1120 is located in the third direction.
Referring toFIG. 12, thewireless power transmitter1100 may determine the accurate locations of the firstelectronic device1110 and the secondelectronic device1120, the directions of which have been recognized. As described above, thewireless power transmitter1100 may receivecommunication signals1143 and1144 including reception power related information from the firstelectronic device1110 and the secondelectronic device1120. Thewireless power transmitter1100 may adjust the magnitude ofpower1151,1152,1153,1161,1162, and1163 to be transmitted, until the reception power related information included in the communication signals1143 and1144 satisfy a predetermined condition.
FIG. 13 is a conceptual diagram illustrating an operation of a wireless power transmitter for preventing cross connection according to various embodiments of the present disclosure.
A plurality ofwireless power transmitters1300 and1310 are positioned as illustrated inFIG. 13. Thewireless power transmitters1300 and1310 may respectively includecommunication circuits1301 and1313. In addition, the electronic device1320 may be located relatively closer to thewireless power transmitter1300, and may be located relatively further from anotherwireless power transmitter1310. In this instance, the electronic device1320 may be paired with thewireless power transmitter1300, whereby the efficiency in receiving power from thewireless power transmitter1300 is higher than the efficiency in receiving power from thewireless power transmitter1310. However, a distance that allows communication with acommunication circuit1301 of the anotherwireless power transmitter1310 through a communication circuit1321 of an electronic device1320 is a relatively long distance and thus, there exists the probability of pairing between the electronic device1320 and the anotherwireless power transmitter1310.
Thewireless power transmitter1300 according to various embodiments of the present disclosure may form anRF wave1311 including direction information (direction ID#1) and identification information (TX ID#1) of the wireless power transmitter. The anotherwireless power transmitter1310 may form anRF wave1312 including direction information (direction ID#2) and identification information (TX ID#2) of the wireless power transmitter. The electronic device1320 may receive theRF wave1311 including direction information (direction ID#1) and identification information (TX ID#1) of the wireless power transmitter. The electronic device1320 may extract the direction information (direction ID#1) and the identification information (TX ID#1) of the wireless power transmitter from theRF wave1311. The electronic device1320 may transmit acommunication signal1331 including direction information (direction ID#1) and identification information (TX ID#1) of the wireless power transmitter. Thewireless power transmitter1300 and the anotherwireless power transmitter1310 may receive thecommunication signal1331. Thewireless power transmitter1300 may transmit wireless power to the electronic device1320 based on the identification information (TX ID#1) of the wireless power transmitter included in thecommunication signal1331. The anotherwireless power transmitter1310 may disregard the electronic device1320 based on the identification information (TX ID#1) of the wireless power transmitter included in thecommunication signal1331. More particularly, the anotherwireless power transmitter1310 may disregard the electronic device1320 based on the fact that the identification information (TX ID#1) of the wireless power transmitter included in thecommunication signal1331 is different from its own identification information. Accordingly, a cross connection in which the electronic device1320 is connected to the anotherwireless power transmitter1310 which is located at a relatively long distance, may be avoided.
FIG. 14 is a flowchart illustrating a control method of a wireless power transmitter according to various embodiments of the present disclosure.
Inoperation1410, a wireless power transmitter may transmit a plurality of powers, each of which includes direction information and wireless power transmitter identification information, in a plurality of directions, respectively. Inoperation1420, the wireless power transmitter may receive a communication signal including direction information and wireless power transmitter identification information. The electronic device may extract direction information and wireless power transmitter identification information from received power, that is, an RF wave, and may transmit a communication signal including the extracted direction information.
Inoperation1430, the wireless power transmitter may determine whether the wireless power transmitter identification information in the communication signal is the same as the transmitted wireless power transmitter identification information. When it is determined that the wireless power transmitter identification information in the communication signal is the same as the transmitted wireless power transmitter identification information, the wireless power transmitter may transmit power to the electronic device based on the direction information included in the communication signal inoperation1440. That is, the wireless power transmitter affiliate the electronic device to a network managed by the wireless power transmitter, and may transmit power. When it is determined that the wireless power transmitter identification information in the communication signal is different from the transmitted wireless power transmitter identification information, the wireless power transmitter may disregard the electronic device that has transmitted the communication signal inoperation1450. That is, the wireless power transmitter may not affiliate the electronic device to a network managed by the wireless power transmitter.
FIG. 15 is a flowchart illustrating a control method of an electronic device according to various embodiments of the present disclosure.
Inoperation1510, an electronic device may receive power including at least one of direction information and wireless power transmitter identification information from a wireless power transmitter. The electronic device may receive power including at least one of direction information and wireless power transmitter identification information from the wireless power transmitter using a power reception antenna array. Inoperation1520, the electronic device may process the received power so as to obtain at least one of the direction information and the wireless power transmitter identification information. The electronic device may process the received power using a predetermined demodulation scheme, and may obtain at least one of the direction information and the wireless power transmitter identification information based on the demodulation result.
Inoperation1530, the electronic device may transmit a communication signal including at least one of the direction information and the wireless power transmitter identification information. The electronic device may transmit the communication signal including at least one of the direction information and the wireless power transmitter identification information through a communication circuit which is included separately from the power reception antenna array.
FIG. 16 is a conceptual diagram illustrating a modulation process by a wireless power transmitter according to various embodiments of the present disclosure.
A wireless power transmitter may include asignal modulation circuit1610, apower source1620, amixer1630, aphase shifter1640, an amplifier (AMP)1650, anantenna1660, acommunication circuit1670, acommunication antenna1671, aMCU1680, and ashift register1690.
TheMCU1680 may control thephase shifter1640 and theshift register1690 such that an RF wave is formed in a first direction. For example, a plurality of thephase shifters1640 and theshift registers1690 may be used, and theMCU1680 may output, to theshifter register1690, digital shifting information set in advance based on a direction. Theshift register1690 may provide the received shifting information to a plurality ofphase shifters1640. Each of the plurality ofphase shifters1640 may shift the phase of a signal input from themixer1630, based on the received shifting information. This may be expressed as delaying an input signal by thephase shifter1640. The phase shifting information of thephase shifters1640 may be different from one another and, accordingly, beamforming is performed at a point out of the center of theantenna1660. A hardware device such as HMC642, HMC1113, or the like may be used as thephase shifter1640. TheMCU1680 may control thesignal modulation circuit1610 such that a modulation signal corresponding to direction information is output. Thepower source1620 may generate a signal for power transmission. Themixer1630 may mix a modulation signal and a signal for power transmission. Accordingly, a modulation circuit including direction information may be provided from themixer1630 to thephase shifter1640. A phase shifted signal may be amplified by theamplifier1650, and may be input into each of a plurality of patch antennas of theantenna1660. Accordingly, an RF wave including direction information may be beamformed in a predetermined direction. A communication signal received through thecommunication antenna1671 may be processed through thecommunication circuit1670, and information included in the communication signal may be provided to theMCU1680. TheMCU1680 may obtain direction information included in the communication signal, whereby the direction of the electronic device may be determined.
FIG. 17 is a block diagram illustrating a demodulation process by an electronic device according to various embodiments of the present disclosure.
An electronic device may include anantenna1710, arectification circuit1720, a DC/DC converter1730, aload1740, a voltage/current sensing circuit1750, ademodulation circuit1760, anMCU1770, acommunication circuit1780, and acommunication antenna1781.
Theantenna1710 may receive power, that is, an RF wave, from a wireless power transmitter. Therectification circuit1720 may rectify an RF wave, and output the same. The voltage andcurrent sensing circuit1750 may sense at least one of the voltage and the current of a rectified power. Thedemodulation circuit1760 may perform demodulation using at least one of a voltage and a current. TheMCU1770 may determine direction information included in an RF wave using a demodulation result. TheMCU1770 may provide a communication signal including the direction information to thecommunication circuit1780, and thecommunication circuit1780 may transmit the communication signal including the direction information to the outside through thecommunication antenna1781. The DC/DC converter1730 may convert a rectified power to a predetermined voltage value, and may transfer the converted power to theload1740.
FIGS. 18A and 18B are conceptual diagrams illustrating an operation of a wireless power transmitter according to various embodiments of the present disclosure.
Referring toFIG. 18A, a plurality of wireless power transmitters, for example, a firstwireless power transmitter1800 and a secondwireless power transmitter1810 which may be disposed in one region. The first and secondwireless power transmitters1800 and1810 may includecommunication circuits1801 and1811, respectively. The firstwireless power transmitter1800 may transmit afirst power1831, asecond power1832, and athird power1833 in a first direction, a second direction, and a third direction, respectively. The secondwireless power transmitter1810 may transmit afourth power1841, afifth power1842, and asixth power1843 in a fourth direction, a fifth direction, and a sixth direction, respectively. In this instance, the areas covered by thethird power1833 and thefourth power1841 may overlap each other. Accordingly, a period in which the firstwireless power transmitter1800 applies thethird power1833 and a period in which the secondwireless power transmitter1810 applies thefourth power1841 may be set to not overlap each other. For example, the firstwireless power transmitter1800 may transmit, to thesecond power transmitter1810, information related to an application time of first tothird powers1831 to1833 as acommunication signal1821. The secondwireless power transmitter1810 may identify the application time of the received first tothird powers1831 to1833 of the firstwireless power transmitter1800, and may transmitpower1841 to1843 by evading the corresponding application time. Accordingly, thethird power1833 and thefourth power1841 may be prevented from being applied at the same time period.
According to another embodiment, amanagement device1850 capable of managing the first and secondwireless power transmitters1800 and1810 may manage a power application time of each of the plurality ofwireless power transmitters1800 and1810. For example, themanagement device1850 may determine such that the firstwireless power transmitter1800 applies first tothird powers1831 to1833 in a first time, and the secondwireless power transmitter1810 appliespower1841 to1843 in a second time. Themanagement device1850 may provideinformation1851 and1852 associated with a power application time of a wireless power transmitter to the first and secondwireless power transmitters1800 and1810, respectively. Themanagement device1850 may communicate with each of the first and secondwireless power transmitters1800 and1810, by wire or wirelessly. Each of thewireless power transmitters1800 and1810 may apply power at a corresponding time based on receivedinformation1851 and1852. Accordingly, thethird power1833 and thefourth power1841 may be prevented from being applied at the same time period.
A control method of a wireless power transmitter according to various embodiments of the present disclosure may include: transmitting a plurality of detection powers, each of which includes direction information, in a plurality of directions; receiving a communication signal including first direction information included in a first detection power, from an electronic device that receives the first detection power among the plurality of detection powers; and transmitting power for charging based on the first direction information included in the communication signal.
The operation of transmitting the plurality of detection powers, each of which includes direction information, in a plurality of directions, respectively, may include transmitting the plurality of detection powers sequentially or transmitting the plurality of detection powers at substantially the same time.
The operation of transmitting the power for charging based on the first direction information included in the communication signal according to various embodiments of the present disclosure may include controlling an antenna of the wireless power transmitter such that the power for charging is transmitted in a direction corresponding to the first direction information included in the communication signal, and the control method of the wireless power transmitter according to various embodiments of the present disclosure may further include receiving another communication signal including reception power related information from the electronic device.
The control method of the wireless power transmitter according to various embodiments of the present disclosure may further include: determining whether the reception power related information satisfies a predetermined condition; and adjusting a magnitude of the power for charging when the reception power related information does not satisfy the predetermined condition, or performing control such that a magnitude of the power for charging is maintained when the reception power related information satisfies the predetermined condition.
The control method of the wireless power transmitter according to various embodiments of the present disclosure may further include: generating a signal for the detection power; and modulating the signal for the detection power based on the direction information.
The operation of transmitting the plurality of detection powers, each of which includes direction information, in a plurality of directions, respectively, may include transmitting the first detection power including the first direction information in a first direction using a first part of the plurality of patch antennas of the wireless power transmitter, and transmitting a second detection power including second direction information in a second direction using a second part of the plurality of patch antennas.
The operation of transmitting the plurality of detection powers, each of which includes direction information, in a plurality of directions, respectively, may include transmitting each of the plurality of detection powers using a first part of the plurality of patch antennas of the wireless power transmitter, and the operation of transmitting the power for charging may include performing control such that the power for charging is transmitted using a second part of the plurality of patch antennas.
The operation of transmitting the plurality of detection powers, each of which includes direction information, in a plurality of directions, respectively, may include transmitting the plurality of detection powers, each of which includes direction information and identification information of the wireless power transmitter, and the operation of receiving the communication signal may include receiving the communication signal including the first direction information and identification information of the wireless power transmitter from the electronic device.
The control method of the wireless power transmitter according to various embodiments of the present disclosure may further include performing control such that the power for charging is transmitted in a first direction when the identification information of the wireless power transmitter included in the communication signal is the same as the identification information of the wireless power transmitter included in each of the plurality of detection powers, or such that the power for charging is not transmitted in the first direction when the identification information of the wireless power transmitter included in the communication signal is different from the identification information of the wireless power transmitter included in each of the plurality of detection powers.
A control method of an electronic device according to various embodiments of the present disclosure may include: receiving power including direction information; extracting the direction information from the received power; and transmitting a communication signal including the extracted direction information.
The operation of transmitting the plurality of detection powers, each of which includes direction information, in the plurality of directions, respectively, may include transmitting the plurality of detection powers, each of which includes direction information and distance information of a corresponding detection power, the operation of receiving the communication signal may include receiving the communication signal including the first direction information and first distance information included in the first detection power from the electronic device, and the operation of transmitting the power for charging may include transmitting the power for charging based on the first direction information and the first distance information included in the communication signal.
According to various embodiments of the present disclosure, a storage medium stores instructions, wherein the instructions are set to enable at least one processor to perform at least one operation when the instructions are executed by the at least one processor, and the at least one operation includes: transmitting a plurality of detection powers, each of which includes direction information, in a plurality of directions; receiving a communication signal including first direction information included in a first detection power, from an electronic device that receives the first detection power among the plurality of detection powers; and transmitting power for charging based on the first direction information included in the communication signal.
According to various embodiments of the present disclosure, a storage medium stores instructions, wherein the instructions are set to enable at least one processor to perform at least one operation when the instructions are executed by the at least one processor, and the at least one operation includes: receiving power including direction information; extracting the direction information from the received power; and transmitting a communication signal including the extracted direction information.
The instructions as described above may be stored in an external server, or may be downloaded by and installed in an electronic device, such as a wireless power transmitter. That is, the external server according to various embodiments of the present disclosure may store instructions that a wireless power transmitter can download.
Various embodiments disclosed herein are provided merely to easily describe technical details of the present disclosure and to help the understanding of the present disclosure, and are not intended to limit the scope of the present disclosure. Therefore, it should be construed that all modifications and changes or modified and changed forms based on the technical idea of the present disclosure fall within the scope of the present disclosure.