FIELD OF THE INVENTIONThe present invention generally relates to a crosslink for linking a pair of rods in a spinal fusion construct. Specifically, this invention relates to an articulating crosslink that attaches directly to the head of a pedicle screw.
BACKGROUND OF THE INVENTIONA crosslink is commonly used in a spinal fusion construct to connect rods that are on opposite sides of the spine. Currently available crosslink apparatuses are difficult to work with and suffer from design flaws that can lead to the other components of a spinal fusion construct becoming loose. In particular, currently available crosslinks have very limited range of motion incorporated into their structure. This design limitation can make a crosslink difficult for a surgeon to properly align and connect with the other elements of the spinal fusion construct. Additionally, currently available crosslinks attach to the pedicle screws of a spinal fusion construct in such a way that causes the expansion of the head of the pedicle screw and can lead to a loosening of the rod from the pedicle screw.
Therefore, there is a need in the art for an articulating crosslink apparatus that can securely attach to a pedicle screw without expanding the head of the pedicle screw and allow for articulation of the crosslink apparatus for an easier alignment and fit. These and other features and advantages of the present invention will be explained and will become obvious to one skilled in the art through the summary of the invention that follows.
SUMMARY OF THE INVENTIONAccordingly, embodiments of the present invention are directed to providing an articulating crosslink apparatus for linking a pair of rods in a spinal fusion construct. Embodiments of the present invention may include at least one ball joint that allows for spherical articulation of the arms of the crosslink and an expandable collet.
According to an embodiment of the present invention, a crosslink apparatus for linking at least two rods in a spinal fusion construct, the crosslink comprising: an articulating joint formed with one or more ball joint sockets and one or more joint locking points, a ball joint retained by each of the ball joint sockets, and a joint locking element for each of the joint locking points, wherein the joint locking element secures the ball joint within the articulating joint body.
According to an embodiment of the present invention, the articulating joint is further formed with a first crosslink arm that is integrated upon the articulating joint.
According to an embodiment of the present invention, the articulating joint is further configured with a crosslink arm receiving cylinder that permits a second crosslink arm to adjustably slide within the ball joint that is retained within the articulating joint.
According to an embodiment of the present invention, one of the one or more ball joint sockets is formed at the intersection of the joint locking point and the crosslink arm receiving cylinder.
According to an embodiment of the present invention, the articulating joint is formed with two ball joints sockets each of which is configured to engage with a ball joint.
According to an embodiment of the present invention, the ball joint is a ball joint connector comprised of ball joint head portion that is configured to engage with one of the ball joint sockets and a crosslink arm connector portion that is configured to attach to a crosslink arm and permit the crosslink arm to adjustably slide through the crosslink arm connector portion.
According to an embodiment of the present invention, a crosslink apparatus for linking at least two rods in a spinal fusion construct, the crosslink comprising: an articulating joint formed with a ball joint socket, a joint locking point, a crosslink arm that is integrated upon the articulating joint, and a crosslink arm receiving cylinder that permits a second crosslink arm to adjustably slide within the articulating joint, wherein the ball joint socket is formed at the intersection of the joint locking point and the crosslink arm receiving cylinder, a ball joint retained by ball joint socket and adapted to receive the second crosslink arm, and a joint locking element for the joint locking point, wherein the joint locking element secures the ball joint and the second crosslink arm within the articulating joint body.
According to an embodiment of the present invention, a crosslink apparatus for linking at least two rods in a spinal fusion construct, the crosslink apparatus comprising: an articulating joint with a joint locking element, a first crosslink arm and a second crosslink arm extending from the articulating joint, an attachment collar on the first crosslink arm that is adapted to receive an expandable collet, and a collet securing means that fastens to the expandable collet to cause the expandable collet to engage with the attachment collar.
According to an embodiment of the present invention, the articulating joint is comprised of a single ball joint that is configured to permit the first crosslink arm to adjustably slide within the articulating joint.
According to an embodiment of the present invention, the joint locking element is a joint set screw that secures the first crosslink arm in place within the single ball joint.
According to an embodiment of the present invention, the articulating joint is a double ball joint configured with two ball joint sockets each of which are configured to engage with a ball joint head portion of a ball joint connector that allows for spherical articulation of the crosslink arms.
According to an embodiment of the present invention, the ball joint connectors is further comprised of a crosslink arm connector portion that is configured to permit each of the crosslink arms to adjustably slide through the ball joint connector.
According to an embodiment of the present invention, the joint locking element is a joint set screw in each of the ball joint sockets that secures the crosslink arms in place via the ball joint connector on each of the crosslink arms.
According to an embodiment of the present invention, the second crosslink arm is further comprised of an attachment collar on the second crosslink arm that is adapted to receive an expandable collet.
According to an embodiment of the present invention, the second crosslink arm is further comprised of a hooked connector on the second crosslink arm.
According to an embodiment of the present invention, the expandable collet is comprised of an upper portion configured with internal threading and a lower portion configured with external threading.
According to an embodiment of the present invention, the upper portion of the expandable collet has a curved external surface.
According to an embodiment of the present invention, the upper portion of the expandable collet is divided into a plurality of sections that expand to engage with the attachment collar when the collet securing means is a fastened to the expandable collet.
According to an embodiment of the present invention, the collet securing means is a collet set screw that expands the expandable collet to engage with the attachment collar.
According to an embodiment of the present invention, the expandable collet is comprised of an internal driver feature formed within the expandable collet.
The foregoing summary of the present invention with the preferred embodiments should not be construed to limit the scope of the invention. It should be understood and obvious to one skilled in the art that the embodiments of the invention thus described may be further modified without departing from the spirit and scope of the invention.
BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a perspective view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention;
FIG. 2 is a front view of a main joint body of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention;
FIG. 3 is a cross-sectional view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention;
FIG. 4 is an exploded view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention;
FIG. 5 is a detailed exploded view of a crosslink arm of an articulating spinal crosslink apparatus in accordance with an embodiment of the present invention;
FIG. 6 is front view of an expandable collet in accordance with an embodiment of the present invention;
FIG. 7 is a cross-sectional view of an expandable collet in accordance with an embodiment of the present invention;
FIG. 8 is a top view of an expandable collet in accordance with an embodiment of the present invention;
FIG. 9 is a perspective view of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention;
FIG. 10 is a front view of a main joint body of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention;
FIG. 11 is a front cross-sectional view of a main joint body of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention;
FIG. 12 is an exploded view of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention;
FIG. 13 is an illustration of an articulating spinal crosslink apparatus with a single joint attached to the heads of two pedicle screws of a spinal fusion construct in accordance with an embodiment of the present invention;
FIG. 14 is an illustration of an articulating spinal crosslink apparatus with a double joint attached to the heads of two pedicle screws of a spinal fusion construct in accordance with an embodiment of the present invention; and
FIG. 15 is an illustration of an articulating spinal crosslink apparatus with a single joint with one crosslink arm attached to the head of a pedicle screw and the other crosslink arm connected directly to the rod of a spinal fusion construct via a hooked connector in accordance with an embodiment of the present invention.
DETAILED SPECIFICATIONThe present invention generally relates to a crosslink for linking a pair of rods in a spinal fusion construct. Specifically, this invention relates to an articulating crosslink that attaches directly to the head of a pedicle screw.
According to an embodiment of the present invention, a spinal crosslink apparatus is comprised of an articulating joint, a joint locking element, a plurality of crosslink arms, an attachment collar, an expandable collet, and a collet securing means. Another optional component in some embodiments of the present invention may be a hooked connector. Some embodiments of the present invention may include fewer or additional components depending on the specific application of the spinal crosslink apparatus. One of ordinary skill in the art would appreciate there are many possible configurations and components that might be used for a spinal crosslink apparatus, and embodiments of the present invention are contemplated for use with any such configuration or component.
According to an embodiment of the present invention, the spinal crosslink apparatus is constructed from a variety of durable materials. In a preferred embodiment, the majority of the components of the spinal crosslink apparatus are comprised of any variety of metals and metal alloys suitable for use inside the human body. Examples of suitable metals include, but are not limited to, titanium alloy, pure titanium, stainless steel, and cobalt chrome. In some embodiments, components of the spinal crosslink apparatus may be comprised of various plastics, including, but not limited to, polyether ether ketone (“PEEK”). In the preferred embodiment, the various components of the spinal crosslink apparatus are constructed from specific materials based upon the application or function of that component. One of ordinary skill the art would appreciate that there are numerous suitable materials from which the components of the spinal crosslink apparatus could be constructed, and embodiments of the present invention are contemplated for use with any such material.
According to an embodiment of the present invention, the articulating joint may be a single ball joint that allows for spherical articulation of the crosslink arms. In a preferred embodiment, the single ball articulating joint is comprised of a center ball joint and a main joint body that is formed with a ball joint socket, a joint locking point, a crosslink arm receiving cylinder, and one integrated crosslink arm that extends from the bottom of the main joint body. In this embodiment, the integrated crosslink arm is of a fixed length, but may be rotatable around the main joint body. The joint locking point is a cavity formed in the top of the main joint body that is configured to receive a joint locking element. In this embodiment, the crosslink arm receiving cylinder is a channel that transects the main joint body and is adapted to receive an additional crosslink arm. Likewise, the center ball joint is also configured with an opening that receives the additional crosslink arm. In this embodiment, the center ball joint is retained by a ball joint socket that is formed by the intersection of the joint locking point and the crosslink arm receiving cylinder. The center ball joint enables the spherical articulation of the crosslink arms. One of ordinary skill in the art would appreciate that there are many possible configurations for a single jointed embodiment of an articulating joint, and embodiments of the present invention are contemplated for use with any such configuration.
According to an embodiment of the present invention, the articulating joint may be a double ball joint that allows for spherical articulation of the crosslink arms. In a preferred embodiment, the double ball articulating joint is comprised of a two ball joint connectors and a main joint body that is formed with two ball joint sockets and two joint locking points. In this embodiment, each joint locking point is a cavity formed in the top of the main joint body that is configured to receive a joint locking element. Similarly, each ball joint socket is formed in the bottom of the main joint body and is configured to retain one of the ball joint connectors. Furthermore, a portion of the ball joint connector protrudes from the main joint body and is configured to connect with a crosslink arm. One of ordinary skill in the art would appreciate that there are many possible configurations for a double jointed embodiment of an articulating joint, and embodiments of the present invention are contemplated for use with any such configuration. Furthermore, one of ordinary skill would appreciate that the articulating joint could be configured with additional jointing for other applications without departing from the spirit and scope of the present invention.
According to an embodiment of the present invention, the articulating joint may be comprised of a main joint body. In a first preferred embodiment, the main joint body is a single jointed component. In the single jointed embodiment, the main joint body may be formed with a joint locking point, a crosslink arm receiving cylinder, and an integrated crosslink arm that extends from the main joint body. The single jointed embodiment may be further comprised of a single ball joint and a joint locking element. In the single jointed embodiment, the single ball joint may be retained within a ball joint socket formed by the intersection of the joint locking point and the crosslink arm receiving cylinder, while the joint locking element is adapted to engage with the joint locking point. In a second preferred embodiment, the main joint body is a double jointed component. In the double jointed embodiment, the main joint body may be formed with two ball joint sockets and two joint locking points. The double jointed embodiment may be further comprised of two ball joint connectors and two joint locking elements. In the double jointed embodiment, each ball joint connector is retained by one of the ball joint sockets, while the each joint locking element is adapted to engage with a joint locking point. One of ordinary skill in the art would appreciate there are main suitable designs for a main joint body, and embodiments of the present invention are contemplated for use with any such design.
According to an embodiment of the present invention, main joint body may be formed with one or more joint locking points. In a preferred embodiment, each joint locking point is formed in the top of the main joint body and merges with at least a portion of the ball joint socket. In the preferred embodiment, there is one joint locking point to correspond to the number of joints on the main joint body. For example, in a single jointed embodiment there is one joint locking point, while in a double jointed embodiment there are two joint locking points. In the preferred embodiment, the joint locking point is adapted to receive a joint locking element. In alternate embodiments, the joint locking points may be formed in alternate areas of the main joint body as may be necessary by the design of the main joint body. Additionally, the number of joint locking points may not directly correlate with the number of joints on the main joint body. For example, in some embodiments, there may only be one joint locking point for multiple joints. One or ordinary skill in the art would appreciate that there are many suitable arrangements for a one or more joint locking elements on a main joint body, and embodiments of the present invention are contemplated for use with any such arrangement.
According to an embodiment of the present invention, each joint locking point is adapted to receive a joint locking element. In a preferred embodiment, the joint locking element is a set screw that engages with the joint locking point. In the preferred embodiment, the joint locking element secures each joint of the articulating joint by engaging with the ball joint or ball joint connector that is retained by the ball joint socket. As an illustrative example, the joint locking element engages with the joint locking point and is tightened until the joint locking element secures the ball joint or ball joint connector within the ball joint socket, thereby stabilizing the joint and any crosslink arm that may also be connected. In an alternate embodiment the joint locking element may be any other suitable fastener that can secure the joint. One or ordinary skill in the art would appreciate there are many suitable designs for a joint locking element, and embodiments of the present invention are contemplated for use with any such design.
According to an embodiment of the present invention, the main joint body may be formed with one or more ball joint sockets. In a preferred embodiment, each ball joint socket is configured to retain a ball joint. In the preferred embodiment, the combination of the ball joint and the ball joint socket allow for spherical articulation of the crosslink arms that are connected to the crosslink apparatus. The ball joint socket may be continuously formed with at least a portion of the joint locking point so as to allow the joint locking element to secure the ball joint within the ball joint socket. In the preferred embodiment of the single jointed main joint body, the ball joint socket is formed by the intersection of the joint locking point and the crosslink arm receiving cylinder. In the preferred embodiment of the double jointed main body, the ball joint sockets are formed on the bottom of the main joint body. In alternate embodiments the ball joint sockets may be formed in other areas of the main joint body as is necessary by design or application. One of ordinary skill in the art would appreciate that there are many suitable arrangements for the one or more ball joints sockets, and embodiments of the present invention are contemplated for use with any such arrangement.
According to an embodiment of the present invention, the ball joint socket is configured to receive a ball joint. In a first preferred embodiment, the ball joint may be a spherical component that is configured with a cavity or similar opening that transects the body of the spherical component. In this first preferred embodiment, the cavity in the spherical component is adapted to receive a crosslink arm. This embodiment will typically be used in the single jointed embodiment of the main joint body, but may also be appropriate in other embodiments depending on the design of the main joint body. In the single jointed embodiment of the main joint body, the ball joint is positioned in the ball joint socket so that the hole in the ball joint aligns with the crosslink arm receiving cylinder. This arrangement allows for the crosslink arm to adjustably slide through the main joint body and the ball joint. Upon appropriate adjustment, the joint locking element may be secured in place on the ball joint so as to prevent the crosslink arm from sliding out of the main joint body and to prevent unwanted movement of the joint. One of ordinary skill in the art would appreciate that there are many suitable designs for a spherical ball joint and embodiments of the present invention are contemplated for use with any such design.
According to an embodiment of the present invention, the ball joint may be a ball joint connector. In a preferred embodiment, the ball joint connector is comprised of an upper ball joint head portion and a lower crosslink arm connector portion. The ball joint connector embodiment of the ball joint will typically be used in the double jointed embodiment of the main joint body, but may also be appropriate in other embodiments depending on the design of the main joint body. In the preferred embodiment, the ball joint head portion is retained by one of the ball joint sockets on the main joint body, while the crosslink arm connector portion protrudes from the bottom of the main joint body. The ball joint head portion enables the spherical articulation of any crosslink arm that is connected to the main joint body via the ball joint connector. The crosslink connector portion attaches to a crosslink arm and allows for the crosslink arm to adjustably slide back and forth maximizing the customization and arrangement options of the crosslink apparatus. Upon appropriate adjustment, the joint locking element may be secured upon the ball joint connector. This action will cause the ball joint head portion of the ball joint connector to be firmly secured within the ball joint socket to prevent unwanted movement of the joint and will also cause the crosslink arm connector portion to tighten around the crosslink arm to prevent the crosslink arm from sliding out of the ball joint connector. One of ordinary skill in the art would appreciate that there are many suitable designs for a ball joint connector and embodiments of the present invention are contemplated for use with any such design.
According to an embodiment of the present invention, the main joint body may be formed with a one or more crosslink arm receiving cylinders. In a preferred embodiment, the crosslink arm receiving cylinder is a channel that goes through the side wall of the main joint body. The crosslink arm receiving cylinder is typically used on single jointed embodiments of the articulating joint, but may also be appropriate in other embodiments depending on the design of the main joint body. In the preferred embodiment, the crosslink arm receiving cylinder is adapted to receive a crosslink arm and permit the crosslink arm to adjustably slide within the main joint body. The crosslink arm receiving cylinder may intersect with the joint locking point to form a ball joint socket at such intersection. In the preferred embodiment, the joint locking element will engage with the ball joint in the ball joint socket to secure the crosslink arm within the crosslink arm receiving cylinder and prevent the crosslink arm from sliding out of the main joint body. In alternate embodiments of the invention, the crosslink arm receiving cylinder may be located through any suitable portion of the main joint body. Similarly, the use of the word cylinder does not necessarily imply that the crosslink arm receiving cylinder will have a cylindrical shape. In a preferred embodiment, the crosslink arm receiving cylinder will have a shape to match that of the crosslink arm, which may include, but is not limited to, cylindrical, triangular, rectangular, and squared shapes. One of ordinary skill in the art would appreciate that there are many suitable arrangements for a crosslink arm receiving cylinder and embodiments of the present invention are contemplated for use with any such arrangement.
According to an embodiment of the present invention, the spinal crosslink apparatus may be comprised of one or more crosslink arms. In a preferred embodiment each crosslink arm extends from the main joint body. In some embodiments, the crosslink arm is fully integrated upon and forms a part of the main joint body. In some embodiments, the crosslink arm is a separate component that attaches to the main joint body via the crosslink arm receiving cylinder or the ball joint connector. In such an embodiment, the length of the crosslink can be adjusted by sliding the crosslink arm through the crosslink arm receiving cylinder or the ball joint connector. In some embodiments, the articulating joint will include both an integrated crosslink arm and a detachable crosslink arm. In the preferred embodiment, each crosslink arm includes both a first end that may be permanently fixed to or configured to detachably connect with the main joint body and a second end that is configured with an arm connector portion. Furthermore, because each of the crosslink arms are directly or indirectly attached to a ball joint, the crosslink arms may be articulated in a spherical manner to allow for the crosslink apparatus to be adjusted to a particular application. While many different lengths of crosslink arms are possible, the crosslink apparatus can typically be adjusted and expanded to cover up to twice its shortest length. One of ordinary skill in the art would appreciate there any many possible designs and arrangements for crosslink arms, and embodiments of the present invention are contemplated for use with any such design or arrangement.
According to an embodiment of the present invention, the crosslink arms may include an arm connector portion. In a preferred embodiment, the arm connector portion is an attachment collar that is configured to receive and engage with an expandable collet. In the preferred embodiment the attachment collar is a ring that goes around a portion of the expandable collet. In an alternate preferred embodiment, the arm connector portion is a hooked connector that is adapted to connect directly to a fusion rod of a spinal fusion construct. The hooked connector may also include a rod locking element, such as a set screw, that locks the hooked connector onto the fusion rod. One of ordinary skill in the art would appreciate that there are many suitable designs and configurations for an arm connector portion, and embodiments of the present invention are contemplated for use with any such design or configuration.
According to an embodiment of the present invention, the spinal crosslink apparatus may be comprised of one or more expandable collets. In a preferred embodiment, the expandable collet is comprised of an upper portion that engages with the attachment collar of a crosslink arm and a lower portion that engages with the head of a pedicle screw. The expandable collet may also be comprised of a collet securing means that engages with the upper portion of the expandable collet to cause the expandable collet to engage with the attachment collar of a crosslink arm. One of ordinary skill in the art would appreciate that there are many suitable designs for an expandable collet, and embodiments of the present invention are contemplated for use with any such design.
According to an embodiment of the present invention, the expandable collet is comprised of an upper portion. In a preferred embodiment, the inner wall of the upper portion of the expandable collet is configured with threading (or internal threading) that is adapted to engage with the collect securing means. Additionally, the outer wall of the upper portion may have a curved or rounded surface to allow the expandable collet to have some degree of articulation with the attachment collar of a crosslink arm. This feature allows the crosslink arm to have some degree of adjustment and permits the spinal crosslink apparatus to have a better fit as the crosslink arm is not required to lock in a specific alignment around the expandable collet. In the preferred embodiment, the upper portion of the expandable collet may be divided into a plurality of sections that expand to engage with the attachment collar of the crosslink arm. The expansion of these sections is caused by the collet securing means being fastened to the upper portion of the expandable collet. In a preferred embodiment, the collet securing means is a set screw that engages with the internal threading of the upper portion of the expandable collet thereby causing the sections of expandable collet to expand and engage with the attachment collar of the crosslink arm. One of ordinary skill in the art would appreciate that there are many possible configurations for the upper portion of an expandable collet, and embodiments of the present invention are contemplated for use with any such configuration.
According to an embodiment of the present invention, the expandable collet is comprised of a lower portion. In a preferred embodiment, the outer wall of the lower portion of the expandable collet is configured with threading (or the external threading) that is adapted to engage with the head of a pedicle screw. The expandable collet may also be configured with an internal driver feature that is formed within the expandable collet. In a preferred embodiment, the internal driver feature is formed in the bottom center of the interior of the expandable collet. The internal driver feature is adapted to allow a tool to be used to tighten the expandable collet onto the head of a pedicle screw. One of ordinary skill in the art would appreciate that there are many possible configurations for the lower portion of an expandable collet, and embodiments of the present invention are contemplated for use with any such configuration.
Exemplary EmbodimentsTurning now toFIG. 1, a perspective view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is comprised of a single jointed mainjoint body102. In the single jointed embodiment onecrosslink arm112 is integrated upon the mainjoint body102, while theother crosslink arm116 adjustably slides through the center of the mainjoint body102 via a crosslink arm receiving cylinder (not shown). At the end of eachcrosslink arm112,116 there is anattachment collar118. Theattachment collar118 is configured to receive theexpandable collet120. The collet securing means136 engages with an upper portion of theexpandable collet120 to firmly secure theexpandable collet120 within theattachment collar118. Thejoint locking element110 is used to secure the ball joint (not shown) inside the mainjoint body102 and to prevent unwanted articulation of the articulatingspinal crosslink apparatus100. Thejoint locking element110 is also used to secure theadjustable crosslink arm116 within the crosslink arm receiving cylinder (not shown), to prevent theadjustable crosslink arm116 from sliding out of the mainjoint body102.
Turning now toFIG. 2, a front view of a main joint body of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is primarily comprised of a single jointed mainjoint body102. In the single jointed embodiment onecrosslink arm112 is integrated upon the mainjoint body102, while the other crosslink arm (not shown) adjustably slides through the center of the mainjoint body102 via a crosslinkarm receiving cylinder114. Thejoint locking element110 is used to secure the adjustable crosslink arm (not shown) within the crosslinkarm receiving cylinder114, to prevent the adjustable crosslink arm (not shown) from sliding out of the mainjoint body102.
Turning now toFIG. 3 is a cross-sectional view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is comprised of a single jointed mainjoint body102. The mainjoint body102 is formed with ajoint locking point106 in the top of the mainjoint body102 and a crosslinkarm receiving cylinder114 in the side of the mainjoint body102. At the intersection of thejoint locking point106 and crosslink arm receiving cylinder114 a balljoint socket104 is formed that holds the ball joint108. In the single jointed embodiment onecrosslink arm112 is integrated upon the mainjoint body102, while theother crosslink arm116 adjustably slides through the center of the mainjoint body102 via a crosslinkarm receiving cylinder114. Theadjustable crosslink arm116 slides back and forth within the crosslinkarm receiving cylinder114 and a hole formed in the ball joint108. Thejoint locking element110 engages with the ball joint108 via thejoint locking point106 to secure the ball joint108. Securing the ball joint108 simultaneously prevents the articulation of the crosslink arms about the mainjoint body102 and fixes theadjustable crosslink arm116 in place to prevent theadjustable crosslink arm116 from sliding out of the mainjoint body102. At the end of eachcrosslink arm112,116 there is anattachment collar118. Theattachment collar118 is configured to receive theexpandable collet120. The collet securing means136 engages with an upper portion of theexpandable collet120 to firmly secure the expandable collet within theattachment collar118.
Turning now toFIG. 4, an exploded view of an articulating spinal crosslink apparatus with a single joint in accordance with an embodiment of the present invention. In a preferred embodiment, each of thecrosslink arms112,116 extend away from the mainjoint body102 of the articulatingcrosslink apparatus100. The mainjoint body102 is formed with ajoint locking point106 that receives ajoint locking element110. Theattachment collar118 on each of thecrosslink arms112,116 is each adapted to receive anexpandable collet120. The upper portion of theexpandable collet120 is configured to receive the collet securing means136.
Turning now toFIG. 5, a detailed exploded view of a crosslink arm of an articulating spinal crosslink apparatus in accordance with an embodiment of the present invention. In a preferred embodiment, theattachment collar118 is adapted to receive anexpandable collet120. The upper portion of theexpandable collet120 is configured to receive the collet securing means136.
Turning now toFIG. 6, a front view of an expandable collet in accordance with an embodiment of the present invention. In a preferred embodiment, theexpandable collet120 is comprised anupper portion122 that is divided into a plurality ofsections132 that expand to engage with the inner surface of the attachment collar (not shown) when the collet securing means (not shown) is fastened to theexpandable collet120. The expandable collet is also comprised of alower portion124 that hasexternal threading128. Theupper portion122 of theexpandable collet120 has curvedexternal surfaces130.
Turning now toFIG. 7, a cross-sectional view of an expandable collet in accordance with an embodiment of the present invention. In a preferred embodiment, theexpandable collet120 is comprised of an upper portion that hasinternal threading126 and a lower portion that hasexternal threading128. Theexpandable collet120 also includes aninternal driver feature134 that is adapted to engage with a tool that tightens theexpandable collet120 on to the head of a pedicle screw (not shown).
Turning now toFIG. 8, a top view of an expandable collet in accordance with an embodiment of the present invention. In a preferred embodiment, the upper portion of theexpandable collet120 is divided into a plurality ofsections132 that can be expanded to engage with the inner surface of the attachment collar (not shown). Theexpandable collet120 also includes aninternal driver feature134 formed in the bottom center of the interior of theexpandable collet120.
Turning now toFIG. 9, a perspective view of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is comprised of a double jointed mainjoint body102. In the double jointed embodiment eachcrosslink arms116 adjustably slides through a crosslink arm connector portion of the balljoint connector140. At the end of eachcrosslink arm116 there is anattachment collar118. Theattachment collar118 is configured to receive theexpandable collet120. The collet securing means136 engages with an upper portion of theexpandable collet120 to firmly secure the expandable collet within theattachment collar118. Thejoint locking element110 is used to secure the ball joint head portion (not shown) of the balljoint connector140 inside the mainjoint body102 and to prevent unwanted articulation of the articulatingspinal crosslink apparatus100. Thejoint locking element110 is also used to secure theadjustable crosslink arms116 within the crosslink arm connector portion of the balljoint connectors140, to prevent theadjustable crosslink arms116 from sliding out of the balljoint connectors140.
Turning now toFIG. 10, a front view of a main joint body of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention. In a preferred embodiment, the mainjoint body102 retains two balljoint connectors140. Each balljoint connector140, is comprised of an upper ball joint head portion (not shown) that is retained within a ball joint socket (not shown) formed inside the mainjoint body102 and a lower crosslinkarm connector portion144 that protrudes from the bottom of the main joint body to connect with a crosslink arm (not shown).
Turning now toFIG. 11, a front cross-sectional view of a main joint body of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention. In a preferred embodiment, the mainjoint body102 retains two balljoint connectors140 within balljoint sockets104 formed inside of the mainjoint body102. Each balljoint connector140 is comprised of an upper balljoint head portion142 that is retained within a balljoint socket104 and a lower crosslinkarm connector portion144 that extends beyond the bottom of the mainjoint body102 to connect with a crosslink arm (not shown). The main joint body is also comprised of twojoint locking elements110 that engage with the balljoint head portions142 of the balljoint connectors140 via the joint locking points106. The engagement of ajoint locking element110 with a balljoint head portion142 simultaneously secures the balljoint connector140 within the mainjoint body102 and the crosslink arm (not shown) within the crosslinkarm connector portion144 of the balljoint connector140.
Turning now toFIG. 12, an exploded view of an articulating spinal crosslink apparatus with a double joint in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is comprised of a double jointed mainjoint body102. The mainjoint body102 is formed with two joint locking points106 in the top of the mainjoint body102. Thecrosslink arms116 slide back and forth within the crosslinkarm connector portion144 of the balljoint connector140. Thejoint locking element110 engages with balljoint head portion142 of the balljoint connectors140 via thejoint locking point106 to secure the balljoint connectors140 from articulating with the mainjoint body102. Securing the balljoint connectors140 simultaneously prevents the articulation of the crosslink arms within the mainjoint body102 and fixes theadjustable crosslink arm116 in place to prevent theadjustable crosslink arms116 from sliding out of the crosslinkarm connector portion144 of the balljoint connector140. At the end of eachcrosslink arm116 there is anattachment collar118. Theattachment collar118 is configured to receive theexpandable collet120. The collet securing means136 engages with an upper portion of theexpandable collet120 to firmly secure the expandable collet within theattachment collar118.
Turning now toFIG. 13, an illustration of an articulating spinal crosslink apparatus with a single joint attached to the heads of two pedicle screws of a spinal fusion construct in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is connected to twopedicle screws152 of a spinal fusion construct. Thecrosslink arms112,116 extend from themain body102 of the articulatingspinal crosslink apparatus100 to connect with the pedicle screw heads154. Thecrosslink arms112,116 are attached to the pedicle screws152 via anexpandable collet120. In practice, thepedicle screw152 will first be implanted into the patient that is undergoing spinal fusion surgery, followed by the placement of aspinal fusion rod150 in the groove of thepedicle screw head154. Next, the lower portion of theexpandable collet120 is secured to thepedicle screw head154 using an internal driver feature (not shown) formed in the bottom center of theexpandable collet120. This will lock thespinal fusion rod150 in place within thepedicle screw head154. Then, theattachment collar118 of acrosslink arm112,116 is placed over and around the upper portion of theexpandable collet120. Subsequently, the collet securing means136 is attached to the upper portion of theexpandable collet120 to secure theexpandable collet120 within theattachment collar118. Finally, thejoint locking element110 can be tightened to secure thecrosslink arms112,116 of the articulatingspinal crosslink apparatus100.
Turning now toFIG. 14, an illustration of an articulating spinal crosslink apparatus with a double joint attached to the heads of two pedicle screws of a spinal fusion construct in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is connected to twopedicle screws152 of a spinal fusion construct. Thecrosslink arms116 extend from themain body102 of the articulatingspinal crosslink apparatus100 to connect with the pedicle screw heads154. The crosslink arms are attached to the pedicle screws152 via anexpandable collet120. In practice, thepedicle screw152 will first be implanted into the patient that is undergoing spinal fusion surgery, followed by the placement of aspinal fusion rod150 in the groove of thepedicle screw head154. Next, the lower portion of theexpandable collet120 is secured to thepedicle screw head154 using an internal driver feature (not shown) formed in the bottom center of theexpandable collet120. This will lock thespinal fusion rod150 in place within thepedicle screw head154. Then, theattachment collar118 of acrosslink arm116 is placed over and around the upper portion of theexpandable collet120. Subsequently, the collet securing means136 is attached to the upper portion of theexpandable collet120 to secure theexpandable collet120 within theattachment collar118. Finally, thejoint locking elements110 can be tightened to secure thecrosslink arms116 of the articulatingspinal crosslink apparatus100.
Turning now toFIG. 15, an illustration of an articulating spinal crosslink apparatus with a single joint with one crosslink arm attached to the head of a pedicle screw and the other crosslink arm connected directly to the rod of a spinal fusion construct via a hooked connector in accordance with an embodiment of the present invention. In a preferred embodiment, the articulatingspinal crosslink apparatus100 is connected to onepedicle screw152 on one side of a spinal fusion construct and directly to the spinal fusion rod on the other side. Onecrosslink arm116 extends from themain body102 of the articulatingspinal crosslink apparatus100 to connect with thepedicle screw head154. Thecrosslink arm116 is secured to thepedicle screw head154 in the same manner described above. On the other side, thecrosslink arm112 includes a hookedconnector119 at the end of thecrosslink arm112 that is opposite the mainjoint body102. The hookedconnector119 connects directly to aspinal fusion rod150 that is already being held in place by pedicle screws152. The hookedconnector119 is secured to thespinal fusion rod150 using a set screw on the hookedconnector119. Thespinal fusion rod150 is held within a grove in the pedicle screw heads154 and firmly secured byset screws156 that are fastened to the pedicle screw heads154. Lastly, thejoint locking element110 can be tightened to secure thecrosslink arms112,116 of the articulatingspinal crosslink apparatus100.
It should be noted that the features illustrated in the drawings are not necessarily drawn to scale, and features of one embodiment may be employed with other embodiments as the skilled artisan would recognize, even if not explicitly stated herein. Descriptions of well-known components may be omitted so as to not unnecessarily obscure the embodiments.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from this detailed description. The invention is capable of myriad modifications in various obvious aspects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature and not restrictive.